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Incommensurate-commensurate phase transitions are analyzed 

using a model derived from the normal coordinate Hamiltonian 

for a crystal lattice. The Hamiltonian consists of a local 

self-potential and effective third-neighbor interactions. Free 

energies of various modulated phases are calculated with a 

mean-field approximation under the condition that two quantum 

states within the local potential are important at low temperature. 

It is demonstrated that the quantum effect works to stabilize the 

incommensurate phase rather than the commensurate phase. 

Even at zero temperature, the incommensurate phase can occupy 

a finite region in the phase diagram. This situation is similar to 

quantum paraelectricity in some ferroelectrics, and can be 

expected as a general feature of modulated structures of 

dielectric crystals. The phase diagram for ferroic first- and 

third-neighbor interactions but antiferroic second-neighbor 

interactions is constructed theoretically and is discussed in detail 

to explain qualitatively the low-temperature behavior of some 

ferroelectric crystals. 

 
 

1. Introduction 

Phase transitions of ferroelectric materials are usually described using thermodynamic 

models based on classical mechanics. The well-known Ising spin model 
1)

 or Landau’s 

thermodynamic potential model 
2)

 can explain various phase transitions successfully. The 

order-disorder character of the transition in KH2PO4 (abbreviated KDP hereafter) was firstly 

analyzed using the Ising spin model with statistical mechanics.
3)

 To explain the prominent 

isotope effect in KDP, Blinc proposed the proton tunneling model.
4)

 Soon after, it was pointed 

out that the tunneling model was equivalent to the Ising spin system in a transverse field.
5)

 

Furthermore, the model was represented by using field operators, and the transition of KDP 

was reinvestigated quantum-mechanically.
6)

 Thus, the order-disorder transition in KDP was 

considered to represent the quantum effect afterward.
7,8)

 Another quantum phenomenon in 

dielectrics is the quantum paraelectricity observed in SrTiO3 and related crystals.
9-11)

 Modified 



 2 / 18 

 

thermodynamic potentials have also been proposed to represent thermodynamic quantities in 

a wide temperature range including low temperature.
12)

 However, the quantum effect in 

ferroelectrics is limited and usually considered as an exceptional problem. 

Incommensurate-commensurate transitions in dielectric crystals attracted much interest a 

few decades ago.
13,14)

  Phenomenological thermodynamic potential models,
15,16)

 the ANNNI 

model,
17-19)

 the 
4
 model,

20)
 the EXAFII model,

21,22)
 the ELRI model,

23)
 and other models 

were developed to explain the many types of complex phase diagram consisting of 

commensurate and incommensurate phases.
24,25)

 It was shown in the DIFFF model
26)

 or in 

another model that was described by continuous variables that the incommensurate phase did 

not necessarily transform to the commensurate phase at low temperature (absence of lock-in 

transition).
27)

  

Concerning the stability of commensurate phases, the properties of the two-dimensional 

classical ANNNI model have been investigated by studying an equivalent quantum spin-chain 

in a magnetic field.
19,28-31)

 The commensurate structures become rather unstable except for 

q=0, 1/4, and 1/2 phases. On the other hand, many commensurate phases with long periods 

appear, and successive transitions including lock-in transitions proceed in the original ANNNI 

model in three dimensions. 
19)

 

Recently, it has been found that the incommensurately modulated structure persists down to 

very low temperature in ferroelectric crystals. In monoclinic Rb2ZnI4, the incommensurate 

structure with ** 30.017.0 caq   appears below 62 K.
32)

 The dielectric susceptibility shows 

a broad peak at around 5 K, but no ferroelectricity is observed down to 1.5 K.
33-35)

 Such 

dielectric behavior is similar to the famous quantum paraelectricity in SrTiO3, where 

ferroelectricity is suppressed by quantum fluctuation.
10,11,36)

 While a ferroelectric transition is 

induced by the instability of a zone-center optical mode, the stability of a modulated structure 

is of concern in the general wave number q in incommensurate crystals. To explain the 

incommensurate phase that survives down to low temperature, we should consider 

third-neighbor interactions and quantum effect. To the best of the author’s knowledge, a 

quantum three-dimensional system described by Ising variables has not been investigated so 

far. The phase diagrams are not fully understood, particularly for the model Hamiltonian with 

more than second-neighbor interactions. 

In this work, we study how a phase diagram displaying incommensurate and commensurate 

phases is affected by quantum effect at low temperature, by employing a model Hamiltonian 

that describes structural phase transition.
37,38)

 The Hamiltonian is constructed by unit-cell 
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coordinates derived from normal coordinates of the harmonic lattice dynamics theory, as 

explained in Appendix. In Sect. 2, an anharmonic local potential for the local coordinate is 

added to the Hamiltonian, and effective interactions between cells up to third neighbors along 

one direction are assumed, in order to discuss the successive transitions from the disordered to 

incommensurate phases, which may be followed by commensurate phases. At low 

temperature, we consider that two quantum states in the anharmonic self-potential are 

essential, and thermodynamic quantities and the free energy are calculated by statistical 

mechanics using the mean-field theory. It is found that the quantum character becomes real if 

the energy gap of the two quantum states is comparable to the interaction energy between 

neighboring cells.
36)

 In our previous paper, only ferroic transition is treated; here, we derive 

the expressions of the free energy for modulated structures as well.  

The free energy for a modulated structure is minimized by numerical iteration methods; the 

phase diagrams for various interaction parameters are demonstrated in Sect. 3. In the classical 

limit (the quantum energy gap is zero), the model is reduced to the Ising spin model with 

third-neighbor interaction, and only five modulated spin alignments with reduced wave 

numbers q=0, 1/2, 1/3, 1/4, and 1/6 are stable at zero temperature.
22, 39)

 On the other hand, the 

order parameter does not increase up to a classical value at low temperature, due to the 

quantum effect.
36)

 Therefore, an incommensurate state has an advantage in terms of the 

internal energy at low temperature so that the incommensurate phase may maintain stability 

down to zero temperature. Strictly speaking, commensurate phases whose periods are longer 

than 10 are not considered explicitly, and are regarded as if incommensurate in this study, 

because we are interested in phase transitions of real dielectric crystals and not in high-order 

commensurate phases with long periods. In the final section, we discuss that calculated results 

are rather general regardless of the details of the model. We also try to explain the 

experimentally observed phenomena, with reference to our calculated phase diagrams. 

 

2. Model and Approximations 

2.1 Model Hamiltonian 

To discuss one-dimensional modulation, let us consider the model lattice Hamiltonian as 

described in Appendix: 

   
lj

ljjl

j

jjjj xxJxhxVxH
,

2

2
1

2

1
)(  .    (1) 

Here, jx  represents a displacement pattern at the j-th cell, belonging to a normal mode 
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relevant to the structural phase transition. The conjugate external force and self-potential for 

the variable jx  are given by 
jh  and )( jxV , respectively. The anharmonic potential is 

indispensable for inducing the phase transition.
37, 38)

 The self-potential is an even function, 

since a disordered phase is assumed at high temperature.  

In a deep double-well case, the model Hamiltonian is equivalent to the Ising spin system. 

Such a linear Ising system where 01 J  and 02 J  is well-known as the ANNNI model 

displaying various commensurate phases.
18, 19)

 On the other hand, the EXAFII model with 

01 J , 02 J , and third-neighbors interaction 3J  was investigated to explain the 

successive transitions in A2BX4-type crystals.
21, 22)

 In this work, we consider that the double 

well is not so deep that the quantum effect appears.
4-6)

 We shall consider the case of 01 J , 

02 J , and 03 J  in detail. Although the displacement variable jx  is not a spin variable, 

the Hamiltonian is equivalent to an Ising model in a transverse field as stated in Sect. 1,
5)

 if a 

two-level approximation is adopted as described below. Such a quantum system is reduced to 

the classical Ising model continuously when a quantum parameter is vanishing. Thus, our 

model may be called a quantum Ising model with third-neighbor interactions (QITNI). 

 

2.2 Approximations 

Firstly, we define the one-particle Hamiltonian using mean field approximations as 

jjjj xhxVxH
~

)(
2

2
1

MF    .      (2) 

Here, the mean field is written explicitly as 

  ljljl

l

jj Jhh 



  
3

1

~
 ,      (3) 

and jj x  is the expectation value of the order parameter. 

If the interactions with neighbors are sufficiently weak (i.e., without the mean field), the 

quantum state of the “particle” is represented by the wave mechanics equation 

mmxV
x

m












 )(

2 2

22
 .      (4) 

The energy m  and wave function m  of the m-th state can be calculated analytically or 

numerically, once the potential is given. If temperature is low, and the ground state m=0 and 

first excited state m=1 are separated from m=2 or higher states, then the two-state 

approximation may be sufficient to describe the system.
4-6)

 Under such a condition, the mean 
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field is taken into account by perturbation methods, and the energy of the particle in the mean 

field is given by 
36)

 

 
2

2

0110 1
~

0
22

xhE jj 






 





 
 .    (5) 

The partition function of the N-particle system is then written as 

    )/exp()/exp(/expTr BBBMF TkETkETkHZ jj
j


  ,  (6) 

and the expectation value can be calculated using the mean field Hamiltonian as 

 
Tk

x
h

h

Z
Tk

e

ex

B

j

j

j

j

BH

H

j

j
MF

MF 













tanh

~
ln

Tr

Tr 2

0



  ,   (7) 

where the quantity 

    2

0

22

014
1

~
xh jj         (8) 

contains the mean field; Eq. (7) is the self-consistent equation for determining the order 

parameter j . Here, 100 xx   gives a measure of the spread of the wave function of the 

quantum particle, and is determined by the self-potential width.
36)

 

If the external field jh is absent, the disordered state ( 0j ) should be a stable phase 

thermodynamically at high temperature. With decreasing temperature, a spontaneous 

displacement with the wave number q, 

 jqAxj  2cos10  ,  

will appear, where the dimensionless amplitude A1 is small. Then, Eq. (3) will be 

approximated as 

 qjqJAxljqAxJh
l

lj  2cos)()(2cos
~

1010   , 

where qlJqJ l

l

2cos2)(
3

1




  is the Fourier component of the interaction defined by Eq. 

(A.7). Hereafter, the energy gap is represented by the temperature T1 defined as 

   BkT /011   .       (9) 

Around the transition temperature, the amplitude of the spontaneous displacement should be 

small; thus, we can write the self-consistent Eq. (7) as 

  )(1
2

tanh)(
2

2

1
12

01
1

1 AO
T

T
qJxA

Tk
A B  . 

Therefore, the spontaneous parameter with the wave number q firstly appears at the 
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temperature T that satisfies 

 
T

T

qT

T 2/
tanh

)(2

1

0

1  ,       (10) 

where the interaction magnitude is represented by the following temperature 

 BkxqJqT /)()(
2

00  .       (11) 

Thus, the transition temperature where the order parameter with the wave number q appears 

spontaneously is given by 

     10101c )(2/)(2ln)( TqTTqTTqT  .     (12) 

If the system is classical (i.e., T1=0), then )()( 0c qTqT   as expected.  

A typical q dependence of the interaction )(qJ  is shown in Fig. 1. With decreasing 

temperature, the disordered phase transforms to an ordered phase with the wave number maxq , 

which gives the maximal )(qJ . As will be described in Fig. 3, a commensurate value of 

maxq  is realized on a straight line in the J2-J3 parameter plane; however, the ferroic state 

(q=0) and the antiferroic state (q=1/2) are realized within finite regions in the J2-J3 plane. 

Here, note that the transition temperature given by Eq. (12) decreases with increasing T1. If 

)(2 01 qTT  , then the ordered state becomes unstable down to zero temperature, which is well 

known as quantum paraelectricity for q=0.
10)

 Thus, T1 is the measure of how the quantum 

effect works in the system. 

 

 

-4

-3

-2

-1

0

1

2

0 0.1 0.2 0.3 0.4 0.5

-0.5

-1.0

-1.5

J(
q)
-J

(0
)

q  
Fig. 1.  Fourier component of interaction J(q). Three 

typical cases with the interaction parameters J1=0, J2=-0.5, 

-1.0, and -1.5, and J3=1 are drawn, for which q=0 (ferro) or 

q=qmax may be realized at low temperature. 
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2.3 Free energy 

The free energy of the system is calculated from the partition function (6) using mean field 

approximations as
12, 36) 

 

2
cosh2ln

2

1

ln
2

1

10

,

,

















 












N
Tk

TkJ

ZTkJF

B

j

j

Bljjl

lj

Bljjl

lj

 .   (13) 

Since the energy origin is arbitrary, the last constant term is neglected hereafter.  

Simple commensurate structures with q=0, 1/2, and 1/4 are represented by displacement 

patterns  ,  , and  , respectively. Each structure is described by one order 

parameter, 0xj  .
23)

 The free energy per site of such a structure is represented as 

 
























T
T

qT

Nk

F
qf

q
 cosh2ln

2

)(
)( 20

B

 ,    (14) 

where the mean field is given by 

 22

0

2

14
1 )(  qTTq   .       (15) 

With the free energy minimized, the normalized order parameter  is given by the following 

self-consistent equation: 

 












T

qT q

q





 tanh

)(0 .       (16) 

In the case of q=0, the equation was given in a previous paper.
 36)

 The same form of Eq. (16) 

holds for commensurate phases with q=1/4 and 1/2. In the limit of zero temperature, we 

obtain the asymptotic values as 

   2

01 )(21 qTT  and     2

0102
1 )(21)()( qTTqTqf   .  (17) 

While the order parameter  approaches 1 in the classical system of T1=0, the value is 

suppressed in the quantum system of T1>0. The ordered phase of the wave number q does not 

appear down to zero temperature if )(2 01 qTT  . 

In the following, we adopt a normalized unit such that Bk  and 0x  are unity. The order 

parameter of the wave number q can be represented by a Fourier series as 

  qjAqjAqjAe
q

iqr

qj
j 


10cos6cos2cos 531

2
 .  (18) 

If q is commensurate, then the series is terminated at the zone center or zone boundary.
23)

 

Explicitly, we obtain  
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 3/1q ： 
31

3

2
cos AjAj 


      (19) 

 10/3q ： jAjAjAj 


 cos
5

9
cos

5

3
cos 531     (20) 

 7/2q ： 
7531

7

20
cos

7

12
cos

7

4
cos AjAjAjAj 


 . (21) 

The free energy should be minimized with respect to the amplitude  12 nA . The concrete 

equations for q=2/7 are written as  

 0tanh
7

)12(2cos

2
))12((

6

0

12

0

12


























 T

hqjnA
qnT

A

f j

j

j

j

n

n






 , (22) 

 0tanh
7

)0(
6

0

70

7



















 T

h
AT

A

f j

j

j

j




 ,    (23) 

where 

   22

12
12

jj hT   ,      (24) 

70120

3

1

)0())12(2cos())12(( ATqjnAqnTh n

n

j  



   .   (25) 

Once the amplitudes are calculated, we obtain the free energy f(q) for each q structure. By 

comparing various f(q) values, we can determine the minimum free-energy phase for the 

given interaction parameters  lJ  and temperature T. Actually, the self-consistent equations 

are solved numerically by iteration methods.  

In the case of the classical ANNNI model in three dimensions, many commensurate phases 

with a long period are recognized in the phase diagram.
19, 21, 22)

 In principle, we can calculate 

high-order commensurate phases.
23)

 However, the regions of such commensurate phases are 

narrow. Thus, we consider an “incommensurate” structure instead of high-order 

commensurate structures below. 

In the case of the incommensurate wave number q, we cannot terminate the Fourier series 

as demonstrated in Eqs. (19) – (21). The harmonics of q are expected to distribute in the range 

of )2,0(  , if the wave number is reduced within 2. Therefore, we assume a uniform 

distribution and replace summation by integration as follows: 

   















  T

d
T

AqTAqTqf







cosh2ln
2

)3()(
4

1
)(

2

0

2

30

2

10   ,  (26) 

where  
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22

1 )()2/(  hT   ,       (27) 

 ))12cos(())12(()( 0   nAqnTh n

n

 .    (28) 

The extremal condition for Fourier amplitudes is given by 

 0tanh)cos(
1

2

1
)(

0
0 





















 T

h
ndAnqT

A

f
n

n










 .   (29) 

The numerical calculation is carried out in the following section. 

 

3. Phase Diagrams 

3.1 Low-temperature phases in classical limit  

The Ising spin system with third-neighbor interaction was investigated about 40 years 

ago.
39)

 Such a system corresponds to the classical limit of our model. The phase diagram at 

zero temperature is shown in Fig. 2, in agreement with the old paper.
22)

 If the nearest-neighbor 

interaction is ferroic ( 01 J ), there exist six phases with the reduced wave numbers q=0, 1/3, 

1/4, 2/5, 1/6, and 1/2. Each phase has a region with a finite area. However, the internal energy 

of the spin alignment with q=2/7, for example, degenerates to those with q=1/3 and 1/4 at the 

boundary between these phases.
22) 

 

When the nearest-neighbor interaction is antiferroic ( 01 J ), the Hamiltonian (the 

internal energy) is the same as the ferroic one, if the spin alignment is inverted alternatively 

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

(a)

J 2

J
3

q = 0
q = 1/2

q = 1/6

q = 1/4

q = 1/3

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

(b)

J 2

J
3

q = 0

q = 1/2

q = 1/6 q = 1/3

q = 1/4

 
Fig. 2.  J2-J3 phase diagram at zero temperature for the classical model. The 

nearest-neighbor interaction is (a) J1=1 and (b) -1. One-dimensional displacement 

patterns are indicated by reduced wave numbers. 
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along the modulation and the sign of J3 is changed simultaneously. Therefore, the phase 

diagram for J1<0 given in Fig. 2(b) is a mirror reflection of the phase boundaries shown in Fig. 

2(a). The wave number q of each phase in Fig. 2(b) is changed by 1/2-q from Fig. 2(a). 

The famous ANNNI model considers the cases of J1>0, J2<0, and J3=0.
18)

 On the other 

hand, the EXAFII model treats the cases of J1<0, J2>0, and 03 J .
21, 22)

 In this paper, we are 

mainly concerned with the case of J1>0, since we are interested in modulated phases with 

q~0.3.
32)

 However, our results for J1>0 are straightforwardly applied to the system of J1<0, by 

changing the sign of J3 and converting q to 1/2-q. 

 

3.2 Modulation wave number at high temperature 

The ordered structure just below the transition from the disordered phase is represented by 

a sinusoidal modulation, whose wave number q corresponds to the maximal point of J(q) as 

described by Eq. (11) at the end of Sect. 2.2. The interaction function J(q) is also extreme at 

the zone center q=0 and the zone boundary q=1/2. Thus, we have to find the true maximum, 

and we finally obtain the wave number "contour lines" in the (J2, J3) parameter space as 

shown in Fig. 3. 

 

Taking both Figs. 2(a) and 3 into account, we observe that the disordered phase transforms 

to the ferroic phase q=0 if 0/ 124
1  JJ  or to modulated phases with q<1/3 if 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

J 2
/
J 1

J
3
/J

1

q = 1/2

q = 0

q = 1/6

1/4

2/11

1/5
2/9

1/7

1/8

1/9

2/73/11

3/10

4/13

 

Fig. 3.  Contour map of initial wave number at phase transitions 

from the disordered phase for one-dimensional classical chain model 

with ferroic nearest-neighbor interaction (J1>0). 
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4
1

12 / JJ . Moreover, note that the classical state at T=0 is ferroic if 122
1 / JJ , and 

antiferroic with q=1/4 if 2
1

12 / JJ , and three states with q=0, 1/6, and 1/4 degenerate if 

2
1

12 / JJ . These features are known from the analysis of the ANNNI model.
18)

  

In the following, we investigate around 4
1

12 / JJ  and 1/ 13 JJ  for 01 J  in 

detail, since we are interested in explaining the incommensurate phase of q<1/3 in Rb2ZnI4 

and related crystals.
32)

 

 

3.3 T-J2 phase diagrams 

The free energies of six commensurate phases of q=0, 1/2, 1/3, 3/10, 2/7, and 1/4 are 

minimized iteratively with respect to the order parameter (the Fourier amplitudes) with the 

given interaction parameters J2 and J3. Other commensurate phases should exist; however, 

each region is generally narrow. Therefore, wave numbers with a large denominator are 

neglected and we consider such high-order commensurate phases as incommensurate in this 

work. The wave number q of the incommensurate phase is fixed to the initial value of qmax at 

the transition from the disordered phase. Five Fourier amplitudes of the modulation are 

determined numerically by iteration methods. The minimum free energy phase is obtained 

finally by comparing the free energies of various structures. The accuracy for the 

incommensurate phase is limited at low temperature, say, 5.0/ 1 JT , because of the 

assumptions to represent the incommensurate structure. Moreover, it is difficult to consider 

the discommensurated structure in our treatment. Thus, the estimated free energy of the 

incommensurate phase may be higher than the true value, and the incommensurate phase is 

disadvantageous somehow to commensurate phases in our numerical result. However, the 

qualitative feature of the phase diagram might not be changed considerably. 

Figures 4-6 show phase diagrams whose interaction parameters are J1>0, -1.8<J2/J1<-0.6, 

and J3/J1=0.9, 1.0, and 1.1. The phase boundaries for classical (T1=0) and quantum (T1/J1=1) 

are drawn by broken and solid lines, respectively. The phase transitions are first-order ones, 

except for the transition from the disordered phase. The quantum effect lowers the transition 

temperature given by Eq. (12).  

More remarkable changes become clear at low temperature. The incommensurate region 

extends to zero temperature with commensurate regions thrust away. In the following, energy 

is normalized so that J1=1. In the classical case of J3=0.9 (Fig. 4), two commensurate phases 

of q=0 and q=1/4 counterchange at J2=-0.95 and T=0. On the other hand, the incommensurate 

region occupies the region between these commensurate phases of q=0 and q=1/4, in the 
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quantum case of T1=1. 

 

In the classical case of J3=1 (Fig. 5), three phases of q=0, q=1/4, and q=incommensurate 

are degenerate at J2=-1 and T=0. If the quantum effect is introduced, two commensurate 

phases of q=0 and q=1/4 pull back, while the incommensurate phase extends its region. 

In the case of J3=1.1 (Fig. 6), another commensurate phase of q=1/3 appears in the range of  

115.1 2  J  (T1=0) between commensurate phases of q=0 and q=1/4. With increasing T1, 

the commensurate phases shrink, and in particular, the q=1/3 structure disappears perfectly 

above some critical value of 
1T , which exists between 0.2 and 0.5.  
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Fig. 5.  Phase diagram T vs J2 for J1>0 and J3/J1=1.0. 
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Fig. 4.  Phase diagram T vs J2 for J1>0 and J3/J1=0.9. 
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The commensurate phase of q=2/7 is stable in a narrow region, as shown in Figs. 4-6. The 

shape is similar to that of a bird’s bill, as is well known at a temperature below )(qTc
. The 

commensurate state of q=3/10 is metastable even for J3= 1.1, while the phase appears in a 

narrow region between the incommensurate and q=0 phases for J3> 1.1.  

 

 

4.  Conclusions 

Generally, the entropy S of an incommensurate phase is larger than those of commensurate 

phases, since the degree of freedom is large. Thus, the ordered phase just below the transition 

from the disordered phase may take an incommensurate wave number. With decreasing 

temperature, the so-called lock-in energy favors commensurate phases.
18-25)

 At low 

temperature, the entropy term in the free energy vanishes rapidly, and the internal energy 

dominates phase stability. In the classical ferroic Ising system with third-neighbor interaction, 

only low-order commensurate phases with q=1/6, 1/4, and 1/3, as well as ferroic q=0 and 

antiferroic q=1/2 phases, are stable in finite regions of the phase diagram at 0 K.
 22, 39)

  

Therefore, it may sound peculiar that the incommensurate phase survives down to 0T in 

our extended ANNNI model. While the entropies of the commensurate states decrease rapidly 

at low temperature, the entropy of the incommensurate phase decreases somewhat gradually. 

However, the entropy contribution to the free energy is small at low temperature. We observe 

that the internal energy dominates the phase boundary at low temperature. As indicated by Eq. 

(17), the magnitude of the normalized order parameter  is less than unity at 0 K because of 

the quantum effect. This situation resembles that of the high-temperature state below )(c qT . 
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Fig. 6.  Phase diagram T vs J2 for J1>0 and J3/J1=1.1. 
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Therefore, the incommensurate phase can occupy a large area in the phase diagram. The 

unstable character of a commensurate phase with a long period at T=0 was already suggested 

for the two-dimensional ANNNI model, by soft mode analysis.
28-31)

 The present work shows 

explicitly the temperature vs J2 and J3 dependences of phase diagrams for the 

three-dimensional model which includes the third-neighbor interaction. 

In the case of quantum paraelectricity, a ferroelectric transition is blocked at low 

temperature because of the quantum effect.
10)

 In our model, the transition temperature of Eq. 

(12) does not exist if the quantum effect is so strong that )(2 01 qTT  ; neither ferroic, 

antiferroic, nor other modulated phases exist. On the other hand, if the quantum effect is not 

so strong that the incommensurate phase and the commensurate phase with 3/1q  can exist 

as shown in Fig. 6, the incommensurate phase can survive down to 0T .  

The incommensurate phase is less stable than the commensurate phase with 3/1q  in the 

classical case ( 01 T ) at low temperature. However, the former has an advantage over the 

latter owing to the quantum effect as shown in Fig. 6. We can expect that such a conclusion 

holds regardless of the details of the model Hamiltonian. In Sect. 3.3, we show the phase 

diagrams in a narrow region in the J2-J3 parameter plane only for J1>0. The obtained 

prediction that the incommensurate state extends its region in the J2-J3 parameter plane should 

be general for a wide range of parameters of J2 and J3, with the case of J1<0 included, if the 

quantum effect is taken into account. 

Here, we note the origin of the rather large third-neighbor interaction J3, the same as J1 and 

J2. It is not necessarily claimed that the interatomic interaction extends more than the 

third-neighbor unit cell microscopically. Our interaction parameters Jl are defined by Eq. 

(A.6) and represent not interatomic interactions but effective interactions while reflecting the 

dispersion relation of the relevant mode. If a modulated structure appears as a result of some 

complicated interaction between many degrees of freedom, the dispersion relation )()( qs  

should take a minimum point at the general wave number q, although such a soft mode may 

not be observed experimentally, because such a mode is often an overdamped one. Then, the 

wave number-dependent )(qJ  is maximal, and J2 and J3 inevitably become as large as J1. 

To represent the dispersion relation )()( qs  accurately, we have to consider a longer range of 

effective interactions. However, our aim is to explain incommensurate-commensurate 

transitions at low temperature qualitatively. The wave number dependence, such as that 

shown in Fig. 1, is essential regardless of the details of the dispersion relation itself. Therefore, 

we are convinced ourselves with only three effective interactions for simplicity. 



 15 / 18 

 

Finally, let us comment on the phase transition of Rb2ZnI4. The crystal system is 

monoclinic with the formula unit of Z=2.
 40)

 It transforms from the disordered phase to the 

incommensurate phase with the modulation wave vector ** 30.017.0 caq   at 62 K.
 32)

 

With the actual crystal structure considered,
40)

 this wave vector points almost parallel to the 

c-axis of the unit cell. We can see a pseudo-orthorhombic super cell of Z=6 with the common 

c-axis. Thus, we can reveal that the constituent atoms couple ferroic within the a-b plane of 

the super cell and the interactions along the c-axis are competing. Then, our one-dimensional 

modulation model can be applied to Rb2ZnI4.
41) 

The magnitude of the modulation wave 

number is 3.0i q . Thus, the crystal may retain the incommensurate state down to low 

temperature, if the effective interactions satisfy 1/ 12 JJ  and 1/ 13 JJ , as shown in 

Figs. 4-6.  

It is reported that the dielectric constant b displayed a remarkable peak at around 5 K; 

however, no evidence of ferroelectricity was observed down to 1.5 K.
33,34)

 Figures 5 and 6 

indicate that the ferroic states of 3/1q  and 0q  may exist in the low-temperature end of 

the incommensurate state of 3.0q , if 11 T . Then, the ferroelectric fluctuation may 

enhance the dielectric constant at low temperature. To investigate this point, the computation 

of dielectric susceptibility is desired in the near future. In any way, theoretical calculations 

only demonstrate various possibilities, and a diffraction study at low temperature should be 

performed to answer the question about the dielectric anomaly and the stability of the 

incommensurate phase at extremely low temperature. 
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Appendix: Derivation of 1D Hamiltonian from 3D Lattice 

To demonstrate what the displacement variable in Eq. (1) means, we review how to derive 

the Hamiltonian. According to a standard textbook of solid-state physics, harmonic lattice 

vibration can be represented by the following Hamiltonian: 

 













  ',',',',,

',',,

2

,

,2

1
jkjkjkjk

kjkj

jkk

kj

uuumH   .    (A.1) 

Here, jku ,  is a small deviation of the k-th atom with the mass mk in the j-th unit cell from its 
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equilibrium position. Actually, the variable is a vector component; we neglect vector notations 

to avoid complexity in this report. In Eq. (A.1), bilinear interactions are represented by 

',',, jkjk . The Hamiltonian can be diagonalized by the famous linear transformation:  

 jiqR

skq
s

sqk

jk qeQ
Nm

u
2

,

)(

,

, e)(
1

  ,     (A.2) 

where )(, qe sk  is an eigenvector of the so-called dynamical matrix for the wave number q 

and belongs to an irreducible representation specified by the label s. The familiar form of the 

harmonic Hamiltonian is rewritten using the eigenvalues )()( qs  of lattice vibration as 

  q
s

q
ss

q
s

q
s

sq

QQqQQH    )()(2)()()(

,

)(
2

1
  .    (A.3) 

Usually, one mode is relevant to a phase transition;
 2)

 thus, we consider only this normal 

mode and define the displacement jx  at the j-th cell as the representative of the relevant 

mode of the phase transition;  

 
jiqR

q
s

q

j Q
N

x
2)( e

1
  .      (A.4) 

With the local variable of (A.4), Eq. (A.3) is rewritten as 









  ljjl

l

j

j

xxJxH
2

2

1
   ,    (A.5) 

where the effective interactions between cells are defined as  

  )(2exp)(
1 2)(

ljj

s

q

l RRiqq
N

J     .    (A.6) 

The inversion symmetry ll JJ   is assumed, and we consider that the modulated structures 

can be represented by the one-dimensional wave number q. Then, the Fourier transformation 

of the effective interaction is given explicitly by  

 qlJqJ l

l

2cos2)(
1




  ,       (A.7) 

where the wave number q is a reduced one.  

However, a phase transition does not take place in such a quadratic Hamiltonian as Eq. 

(A.5). Some anharmonicity is necessary. We follow Lines and Glass
38)

 and add to Eq. (A.5) an 

anharmonic self-potential )( jxV , which is an even function to ensure a disordered phase at 

high temperature. Thus, we derive the model Hamiltonian Eq. (1), which is widely introduced 

in prominent monographs.
37, 38)

 We suppose that the crystal consists of a stacked layer with 
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ferroic intralayer interaction, and effective interlayer interactions lJ  are defined using Eq. 

(A.6).  If the interlayer interactions are competing ones, then one-dimensional modulated 

structures may appear. 
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