Ph.D. Thesis

Tissue Classification of Atherosclerotic Coronary
Plaque from Imbalanced IVUS Data Sets Using Deep
Boltzmann Machine

2018

<z A Hrhi <BA

NGUYEN TRONG KUONG

Advisor: Prof. Eiji Uchino

Graduate School of Science and Engineering

MBmaguchi University



Acknowledgment

I am so grateful to the individuals who have given me precious time and in-
valuable guidance throughout the study. First of all, I would like to express
my sincere thanks to my advisor, Prof. Eiji Uchino who has been always en-
thusiastic to read and reread my writings, and given me precious discussions.
Also, many thanks to the friends who directly discussed with me about the
research in the laboratory.

I very much appreciated the financial support of the Vietnam Interna-
tional Education Cooperation Department (VIED) and the MOU signed be-
tween the VIED and Yamaguchi University in pursuing my graduate study.

Special thanks to my family, they have always been encouraging me and
filled with more respect and higher expectations for my profession than I
have ever had.



Abstract

This dissertation presents a study of tissue characterization of human atheroscle-
rotic coronary plaque by deep Boltzmann machine (DBM). The research data
sets include intravascular ultrasound (IVUS) radiofrequency signals acquired
from human coronary arteries. IVUS tissue characterization has been an issue

of great concern in medical application studies for the reason that coronary
heart disease (CHD) statistically accounts for a high proportion of mortality
whereas the formation of atherosclerotic plaque is a leading cause of CHD.

In machine learning, deep networks have attracted much interest in re-
cent years, which play as powerful frameworks to handle with large and high
dimensional data sets. Restricted Boltzmann machine (RBM) is a good ini-
tialization for constructing deep networks. In addition, RBM is developed
as a stand-alone classification network for supervised learning, so it has at-
tracted many studies recently. The aim of this thesis is to provide insights
into learning features of imbalanced IVUS data sets to classify IVUS tissues
by the use of RBM and DBM.

Structurally, this dissertation is organized in seven chapters. The two first
chapters introduce about our IVUS data sets and the interested classifiers.
The next chapters present the results of tissue classification with respect to
specific methods. The details of each chapters are summarized as follows:

Chapter 1 describes the IVUS data sets and our target problem of IVUS
tissue classification. Related work and background in the literature of IVUS
tissue characterization are briefly reviewed. In particular, a brief description
of how to acquire IVUS signals, concerned techniques of IVUS signal pre-
processing are presented. Besides that, the literature of imbalanced dataset
learning is analyzed in relation to our present topic, specially, the evaluation
for multiclass classification and the difficulties of class imbalance problem.

Chapter 2 describes the network structure of RBM. Its capacity for
unsupervised learning and learning stability are discussed. Regarding su-
pervised learning, RBM is developed as a stand alone classification model,
it is called classification restricted Boltzmann machine (ClassRBM). Next,
deep Boltzmann machine (DBM) is presented as an interested deep network.
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With a step-by-step approach, our first results in this dissertation are mainly
from using ClassRBM. After dealing the difficulties of class imbalances and
understanding the learning capacity of ClassRBM, the deep network DBM
is a next consideration in order to improve tissue classification performance.

Chapter 3 presents the IVUS tissue classification by ClassRBM in com-
parison to integrated backscatter method (IB-IVUS) which is as a conven-
tional method in the literature of IVUS tissue characterization. The results
show a better classification evaluation performed by ClassRBM as compared
to IB-IVUS for the same task. Above all, this study shows a more under-
standing of ClassRBM when featured IVUS patterns are proposedly bina-
rized. That work proves an advantage as compared to the classification of
ClassRBM performed with real-valued featured patterns, hence the bit level
of IVUS data is a considerable point regarding the use of ClassRBM.

Chapter 4 shows efforts to deal with the class imbalances of IVUS data
sets that hinder the training of RBM. Balancing training sets is first con-
cerned by the use of adaptive synthetic sampling technique (ADASYN) which
employs oversampling, undersampling and synthetic sample creating to bal-
ance training sets. Another consideration is the use of multiclass AdaBoost
which ensembles ClassRBMs. This chapter mainly focuses on the frequency
domain of IVUS signals. The tissue class imbalances are still obstacles and
challenges for training of ClassRBM although the results show little improve-
ment of tissue classification by comparison of ClassRBM with neural networks
and support vector machine.

Chapter 5 takes pixel level of dataset into account and presents a pro-
posed training algorithm of ClassRBM with a misclassification cost-sensitive
algorithm to address IVUS dataset imbalances. In words, the proposed algo-
rithm is a strategy to accumulate training sets step-by-step which is based on
the misclassification rate of each class. The proposed misclassification cost-
sensitive algorithm supports the training of ClassRBM better as compared
to neural network for the same network size and same task.

Chapter 6 shows an application of deep Boltzmann machine with the
understandings from previous chapters. Particularly, the misclassification
cost-sensitive training algorithm in chapter 5 is simplified. In addition, using
unsupervised learning is first considered and fed for supervised learning in
the upper layer of DBM. In other words, DBM contains stacked RBMs of
which the first RBM squeezes input data and feeds for the upper one where
the uppermost layer is ClassRBM. DBM proves a high representation for the
tissue classification. The results also show the better performance by DBM
as compared to IB-IVUS. In addition, in this chapter, different sizes of IVUS
patterns are paid attention to specify a better size in IVUS pattern extrac-
tion.
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Chapter 7 is for our conclusion, the achieved results are promising to
encourage us to improve the IVUS issue towards the application of deep
learning. The limitations of our method are inevitable points discussed here
for future work.

In sum, in attempting to improve the IVUS tissue classification, this dis-
sertation shows a step-by-step approach to deal with the obstacles of IVUS
data sets as well as the network derived from restricted Boltzmann machines.
In a nutshell, the data binarization and misclassification cost-sensitive train-
ing algorithms of ClassRBM and DBM are the key solutions to solve the
IVUS tissue classification issue.
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Chapter 1

Introduction

1.1 Coronary atherosclerosis and IVUS method

Cardiovascular diseases such as heart attack or stroke account for high rates
of mortality [1]. Coronary atherosclerosis, a disease of coronary artery wall, is
the major cause of cardiovascular diseases. It is diagnosed on the detection of
atherosclerotic plaque inside coronary arteries. Atherosclerotic plaque is the
major risk factor for heart failure because it narrows the arteries when coro-
nary plaque develops, and in final stage plaque rupture occurs that causes a
blood block.

Many research efforts have been devoted to understanding atheroscle-
rotic plaque morphology and rupture-proneness |2, 3]. The presence of fi-
brous cap encaging a central lipid core is the predicted precursor of plaque
rupture. Early detection of vulnerable plaques in vivo is essential to assess
their progress and to evaluate potential treatment modalities which may ulti-
mately impact on the prevention of heart failure. A particular example from
the data sets of this study is shown in Fig. 1.1, the vessel section stays at the
left anterior descending (LAD) coronary artery of a patient. According to
the examinations, medical expert identified atherosclerotic plaque containing
fibrofatty, fibrocellular, fibroacellular and lipid.

Intravascular ultrasound (IVUS) is a medical imaging methodology using
a designed ultrasound transducer probe which allows the state observation
of the vessel wall and lumen, monitoring and quantifying its compositions.
The acquired ultrasound signals are then processed by a computerized pro-
gram to visualize the intra vessel. Fig. 1.2 illustrates the process from the
ultrasound observation by a transducer to the B-mode image screened by a
computerized program. When the transducer probe is located at a target
position of vessel as in Fig. 1.2(a), it emits ultrasound beams to tissues and
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Figure 1.1: Plaque component identification, (a) is the stained film of coro-
nary section, (b) shows delineated components of (a) drawn by the medical
experts including fibroMtty (ff), fibroacellular (Hc), fibrocellular (fc) and
lipid core.

senses the backscattered signals. In addition, due to the rotation ability of
the transducer, different directions of vessel cross sectional plane are investi-
gated corresponding to A-lines as plotted in Fig. 1.2(b). Thanks to Hilbert
transform [4], amplitude envelopes of the whole signals of cross section are
extracted and transformed into gray scale in order to visualize the cross sec-
tional plane of the vessel at the probing point, this shows as the first use of

Figure 1.2: Ultrasound acquisition and B-mode image construction of ves-
sel cross section. IVUS transducer probe reaches at a given section as picture
(a) and carries out ultrasound observation, 256 backscattered signals corre-
sponding to 256 different angles are collected in picture (b), and picture (c)
is the B-mode image constructed from the acquired signals.
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the acquired signals. It is called B-mode image as seen in Fig. 1.2(c).

Yet, the IVUS signals have not shown immediately the properties as-
sociated with tissue components, and neither has B-mode image displayed
tissues explicitly. Thus, it needs an intermediate process to find out the
characteristics of tissues in relation to their backscattered amplitudes. This
is illustrated from the comparison and contrast between the true vessel sec-
tion, its B-mode display and the plaque area identified by medical experts as
in Fig. 1.3. Here, to display the region of interest (ROI) as Fig. 1.3(c), the
medical experts identified tissues from the stained slice film (Fig. 1.3(a)) and
morphed corresponding plaque area into its B-mode image (Fig. 1.3(b)).

In short, there are two main processes of IVUS methodology which in-
clude data acquisition and data analysis. While data acquisition depends
on the IVUS device and the examination conduction, in the next step after
data acquisition, how well tissues are characterized, it depends on the data
analysis model used.

1.2 1IVUS research data sets

The IVUS data sets for our study are from the graduate school of medicine,
Mmaguchi University. W& have full approval of ethics committee l@r study.
The data sets include coronary vessels of human left anterior descending
(LAD) and left circumflex coronary arteries (LCX). They were acquired un-
der the examinations conducted by medical experts in the graduate school

Figure 1.3: Plaque component identification by medical experts, (a) is
stained film image, (b) is B-mode image, and (c) shows plaque areas morphed
corresponding between (a) and (b) where fibrolftty is dramn by green line,
@tty is drawn by blue line, and the rest area between yellow lines is fibrous.
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of medicine.

In those examinations, Galaxy IVUS imaging device (Boston Scientific,
USA) with a 40 MHz transducer was used for the ultrasonic observation.
The transducer rotation was 30 revs/s, sampling rates of 210 and 400 MHz
and 256 signal lines were collected per one revolution.

Immediately after the ultrasonic observation, the coronary sections were
stained with Masson’s Trichrome method. Then, plaque was manually delin-
eated by medical experts from the stained film observations. To clarify the
rotational position of the sections which would be observed, stainless steel
needles were carefully inserted into those sections in advance to be used as a
reference point to track the corresponding IVUS frame.

1.3 IVUS signal characterization problem

As presented in section 1.1, acquired IVUS signals need to be carefully an-
alyzed by a data analysis model to characterize how plaque tissues react to
ultrasound. Theoretically, IVUS radiofrequencies contain informative mea-
sures of intrinsic plaque features. In experimental reality, however, IVUS
acquisition and informative feature extraction are very complicated. Ka-
touzian et al. [5] shows challenges from data acquisition to classification of
this method while the reliability of training dataset and the complexility of
recognition algorithm can highly impact the accuracy of characterization.
The following subsections present the problems involving IVUS tissue char-
acterization we are interested in.

1.3.1 Noise removal

Just after IVUS signal acquisition, the immediate problem is to process noise
of IVUS signals. Due to noise, it challenges any classification models not only
in IVUS characterization but also in other research fields of signal process-
ing. Noise is often unknown. Various artifacts affect the data collection, thus
handling noise is laborous. In particular, some advanced studies |6, 7| inves-
tigate noise acted by blood flow. When noise is blind, statistical methods
which are fundamental tools are used to evaluate noise. In this study, we
consider outliers defined by statistical techniques are noise and remove them
for the next analysis.
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1.3.2 Data standardization

Data standardization is essential to avoid incompatible data in IVUS classi-
fication problems [8-10]. It includes the standardization of data for classifi-
cation and for evaluation methodology. In IVUS data preprocessing, there
are some common steps [10] as listed in the follows we use them in the study.

Time gain compensation (TGC). This procedure aims to compensate
the attenuation of ultrasound signals due to depth. That is done by the
following attenuation function:

T(r)y=1—e"", (1.1)

where 8 = log10%18*f/20 f is the frequency of the transducer (MHz), r is
the radial distance from catheter (cm).

Data normalization. o homogenize the data sets i the same range,
there are some norms used to transform data into unit interval. Specifically,
Eq. (1.2) shows the data normalization by minmax norm which is often used

in our study.
R— Rmin
Ry = —T1min 1.2
Rmax - Rmin ( )

1.3.3 Signal representation domain

Ultrasonic waves are real-time continuous but the acquired signals sensed by
IVUS device are sampled at a specific sampling rate. Time-series domain
allows to locate radiofrequency amplitudes of signal corresponding to their
distance when sound speed is specified in advance. Frequency is another
fundamental domain in signal processing. These two kinds of signal repre-
sentation have a tight relationship by Fourier transform.

Theoretically, the relationship between time series and frequency is de-
fined by time-frequency transform [11] as Eq. (1.3), where ¢, w are time and
frequency variables, h(t) is a window function.

= % /e_j“”s(T)h(T —t)dr. (1.3)

Feature extraction depends on a specific problem and the data represen-
tation domain the researchers are interested in for analysis.

Si(w)
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Multiclass classification problem means that the number of classes are more

performance of classification is evaluated based on the quantitative measures

Evaluation measures play a crucial role in classifier design to evaluate the
performance of a learning paradigm. In many cases, evaluation measures for

2
Zi:l Nii 1.4
= (1.4)
Zi,j:l T

Overall accuracy =

res recall and precision are

nsidered [12] e v. let R; and P; denote recall and precision of
lass Ai, i = {1,2}, respectively. Then, they are defined as:
Ri= —% (1.5)
N1+ M2
M1+ Mo

1/l shows that on a given class set how many percent of correct samples
, ' tifi precision refl
relevent samples. In other words, precision
predicted as he same class how manv percent of accuratelv predicte
[13] 7 F-measure| 11
measures as the following equation:

2R; P
F —measure; = R (1.7)
Table 1.1: Con sion Matrix of Classifi
A, As
True A; | N1y n12
lass Ao | noy 22
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Alternatively, these measures are developed in the extension to k classes
(k > 2). However, there are two considerable approaches: one-versus-one and
one-versus-all [15-17]. In words, each individual class is evaluated in pairs
with one another or against with all others. The first case requires a class
pair decomposition. As a result, there have been more indexes for decision,
it leads to a problem of multi decision making. Clearly, the more measures
used the more difficulties in making decision. In common, learning models
prefer overall performance evaluation such as overall accuracy. Besides overall
accuracy, another such overal evaluation measures are G-mean [18]| which is
defined as Eq. (1.8) and MAUC [19] which stands for multiclass area under
curve. They are used to interpret some our results.

G-mean = k/HRi. (1.8)

1.3.5 Class imbalance problem

In many real world applications, it is usually faced to the problem of im-
balanced data sets [20]. Imbalanced data sets mean one class outrepresents
the others, the distribution between classes is significantly different. For
instance, the proportion of two classes is 1:100, 1:1000, etc. Since almost
all traditional classifiers seek the overall accuracy more than individual, the
classification evaluation needs careful considerations, even some evaluation
indexes become invaluable. For example, let us consider the binary classi-
fication problem where the ratio of the number of two classes is 1:100, if a
classifier identifies all elements as the major class, the achieved overall accu-
racy is 99%. It seems too good but that classifier is biased towards the major
set and not worthy if the objective is to recognize minor class. Usually, such
problems have multiple classes with different proportions and the rare classes
are targeted objects of research.

Up to now, class imbalance tasks are faced to two main difficulties: (i)
how to deal with class imbalances, and (ii) how to evaluate the prediction.
Nonetheless, the way to interpret the result is important, and another dif-
ficulty is how to train a classifier to handle both major and minor classes.
At dataset level, there have been a number of techniques to rebalance the
training data sets, they can be roughly categorized into (i) oversampling by
creating more synthetic samples of minor class, and (ii) undersampling by
removing a number of samples of major sets. These cases have been con-
cerned in many recent studies [20-24]. Another solution to deal with class
imbalances studied is bootstrapped sampling as in [25-27].

An another solution to deal with imbalanced datasets is to integrate learn-
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specific technique of sampling. For example, removing instances of major
sets which are far from borderlines can boost the training of support vector
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The joint distribution P(x,h) is defined by:

Pla,h) = ea:p(—g(x,h)) |

(2.2)

where Z is a normalization constant. The conditional probabilities for visible
units and hidden units are:

P(h; | z) = sigm(D> _Wiz; + ¢;) (2.3)
and
P(x; | h) = sigm()_Wijh; + i), (2.4)
J
1
where sigm(z) = e is a sigmoid function. The RBM model is briefly
e x

illustrated in Fig. 2.1.

With contrastive divergence algorithm (CD) [32, 33|, RBM has demon-
strated its capacity to be a powerful model to extract features from high
dimension dataset for the unsupervised learning problems, or it is used to
build deep artificial neural networks. Particularly, CD algorithm seeks the
generative distribution of input and hidden units, thus hidden units become
as intermediate units to understand input data. Alternatively, hidden units
can be fed for deeper networks. RBM is a good initialization for constructing
deep network to handle big data |34], that explains why RBM has attracted
much attention recently.

The above network is set up with binary data inputs, it is called Bernoulli
RBM. Gaussian RBM [32] is an another version associating to real-valued
inputs. To control the sparsity of input data, regularization is used, for ex-
ample, Ngiam et al.|35] proposed a penalty to regularize RBM model for
sparsity. In our studies, we often use Lo-regularization for sparsity [36].

In addition, RBM can be developed as a standalone classifier. The follow-
ing section will present an implementation of RBM to tackle the classification
problem.

2.2 Classification restricted Boltzmann machine

As above mentioned, restricted Boltzmann machine has been interested in a
variety of learning problems [31]. It plays as an unsupervised learning model,
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Graphical representation of ClassRBM which shows hidden
layer h. mpu r z and its class y. W and U : (
hidden units and class units, respectively.

the data input. In words, if input vector x has class label k

(k)
onding class vector is yp = (0,..., 1,...) € {0,1}X. Here, K is the
number « lasses of data set and also the number lass units of Class

E(z, h,yx) E:VVZ]:(:Z Zb T; — ZCJ

(2.5)
- ZUkj i — d,
J
Ukj and dk
unit k. Ther Nno connection betwe 71s1ble units and
energy function defines the following joint distribution:
—E(z,h
Pla,hy) = “PEE@ L Y) (2.6)
A
Z
fined:
P(hj | z,yx) = sigm(ZVVijxi + Uyj + ¢j) (2.7)
and
P(x; | h) = sigm(D)_Wijh; +b;), (2.8)

J
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pr(zUkjhj + dk)

P(yx | h) = ZefﬂpZZUU ) (2.9)

exp <dk + Zf(ZWm!L"z + Ukj + Cj))
j i

, (2.10)

Py | x) =
Sexp (dl + Z:f(Z:VVZ]acZ + Uy + cj)>

Y

f(z) =log(1 + exp(x)) is the softplus function.

11 ( I BM 1 alle e
two possible learning cases of ClassRBM corresponding to two kinds of learn-
ing objective functions to be optimized as the follwings.

Generative learning (GenRBM). |
istribution of input and label data. Specifical
log P(xy,y;) — max.

discriminative probability of class given input data. Specifically,

log P(x;| y;) — max.

x; varies around the mean b; anc ( ] n oj.

T; — bl 2 €;
E(z, h, yr) :Z% = 25 Wishs

(2.11)

7 %7
- chhj — ZUkjh'j — dk
J J

Obvisously, for the two abovementioned training modes which one is chosen it
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2.3 Deep Boltzmann machine

In the above s ections, the su vised and 1Isupervised learning model
of RBM are introduced. In superv1sed learning, a class layer is added to
incorporate the classification model of RBM. For the unsupervised learning,
RBM hidden layer encodes the mput layer of RBM. F1g 2.3 shows a DBM
v and hidden lavers

cludes stacked hldden layers where the precedent h1dden layer will pay as the
input layer of the succeeding RBM.

Deep netvvorks has attracted enthusmstlc interest in recent years. The

[OO . OO] Input layer




Chapter 3

Data Binarization for Restricted
Boltzmann Machine

This chapter introduces a study of IVUS data binarization for ClassRBM.
The results are presented in [40].

3.1 Background

Frequency analysis method is widely used for IVUS signal processing. In par-
ticular, integrated backscattered IVUS or IB-IVUS [41] is as a conventional
method which analyzes the ultrasound backscattered power to identify the
difference of acoustic characteristic impedance that is determined by the den-
sity of tissue. However, the tissue characteristics are uneasily determined by
the domination of various factors and by the robustness of data. The studies
in [3, 5] showed the complexity of atherosclerotic plaque characterization,
which requires a careful consideration from data collection step to classifica-
tion method, and any artifact will cause inconsistencies among the extracted
features.

As noted in [31], training of RBM with binary inputs may be more stable
although RBM network was developed for the both cases binary and real val-
ues of input units. The purpose of this chapter is to preprocess IVUS signals
and binarize extracted patterns for ClassRBM. We propose to binarize the
time-series patterns for the classification, the results will be evaluated by the
classification performance between before and after binarization of patterns,
and compared with the performance of IB-IVUS method for the same task.

14
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3.2 Methodology

As well as the signal preprocessing presented in section 1.3, we propose to
apply the quantization of patterns and graph-to-image transformation to re-
ceive binary feature vectors corresponding tissues for the classification. Those
steps are presented the steps from pattern extract to binary conversion as
following:

Pattern Extraction. We assume that the physical properties evaluated
over a range of frequencies will pathologically characterize the pixel of tissue.
In particular, each pattern of time-series RF signal with the length of [ will
reflect the characteristic of the middle point of the pattern. The value [=51
is selected for our study.

The extracted patterns containing real-valued radio-frequencies can be
used to train ClassRBM. However, under the view that ClassRBM can work
better with binary input, that directs us to the work of data binarization.
The following steps show the binarization procedures of data.

Pattern Quantization. Pattern quantization is to approximate the real-
valued patterns to the integer-valued ones. That work depends on the number
of quantization partitions h, called quantization size. Specifically, for a given
integer h, the unit interval will be uniformly partitioned into A subintervals
in order, then each normalized RF value of patterns falls in one of such subin-
tervals. The order of obtained interval will be its quantized value.

Definitely, the quantization will be unavoidably prone to errors, i.e., the
two different patterns of the two classes will be changed to the same after
quantization. Theoretically, the bigger quantization size h is the less approx-
imation errors it causes. Of course, as h increases, it requires more input
units of classRBM, thus more computation needs. In experiments, to deter-
mine h, we carried out a grid search to satisfy that the quantization error is
under a predefined error.

Binary Image Conversion. Fig. 3.1 illustrates the process from the time-
series pattern in Fig. 3.1(a) to black-white image in Fig. 3.1(c) with the
length of pattern /=51 and the height of image h=70. Generally, as a quan-
tized pattern has length of [ and quantization size of h. the bhinary image with
size of h x [ where each pixel of the image is set 1 if the quantized pattern
graph falls in, and 0 otherwise is the binary image of the given quantized
pattern.
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Figure 3.1: Binarization of IVUS featured pattern where picture (a) is a
time-series pattern extracted with length of 51 from a time-series point ¢
to t + 50 of one IVUS signal, its amplitudes are quantized into 70 levels in
picture (b). The corresponding binary image of (b) is shown in picture (c).

3.3 Experiments and results

The experiment dataset includes four coronary artery section of a subject
who had a serious coronary heart disease with the occurrence of atheroscle-
rotic plaque in the left circumflex coronary arteries. The medical doctors’
examinations showed the atherosclerotic plaque area of those cross sections.
Plaque components were identified and classified as three types of plaque tis-
sue: fibrous, fibroltty and fatty. In particular, the four cross sections with
a distance between them is illustrated in Fig. 3.2, and the number of tissues
of each cross section is described in IMble 3.1.

In data acquisition, a 40-MHz catheter was used. Its rotation speed is 30
revolutions per second and the sampling rate is 210 Hz. In each vessel cross
section, 256 A-lines with depth of 1024 are collected. As a result, a 1024 x 256
matrix of sampled amplitudes corresponds to a vessel cross section.

Fig. 3.3 shows the display in B-mode of the above cross sections, where
the colored area is plaque marked by the medical doctors. According to those

96um 112pm gépm

Figure 3.2: Location of interested sections in vessel.
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i®ble 3.1: Number of pixels corresponding to tissues in cross sections

Fibrous Fibroiflitty Rttty

Cross section S1 21,288 3,734 1,480
Cross section S2 31,560 4,933 1,338
Cross section S3 42,037 5,016 2,296
Cross section S4 32,176 5,094 894

Figure 3.3: B-mode images of four cross sections shown in upper row and
their medical doctor’s findings correspondingly in the below. A, B and C
shades are fibrous, fibroltty and fatty, respectively.

examinations, the buildup plaque inside the artery of the patient constitutes
the prominent fibrous materials (yellow color) as well as fibrofatty (green
color) and little core Btty materials (blue).

In experiments, we choose the cross section S2 for training, and tested on
the remaining cross sections. ascertain that the binarization is an advan-
tange, we run ClassRBMs for two cases: the inputs f#r ClassRBM are the
binarization images of the quantized patterns, says B-ClassRBM. And, the
other case is non binarization, says N-ClassRBM, i.e., the inputs are patterns
of normalized signals. The results are compared each other along with the
IB-IVUS method [10, 42].

In training, we used 31,296 fibrous patterns, 4,317 fibrolftty patterns, and
1,177 I@tty patterns where the instances close to the boundaries of tissue are
not included. Once running ClassRBM by choosing randomly a number of
each class, we observed that the number of each class around 6,000 fibrous,
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4,000 fibrofatty, and 1,000 fatty is better for both cases: binarization and
non binarization.

In setting, we configured the network for the binarization case with 500
hidden units and ran by 30 epochs, while for the non binarization case it
contains 500 hidden units and ran by 300 epochs. In both cases, the connec-
tion weights were initiated using a uniform distribution with values between
—1073 and 1073, The bias weights in ClassRBM networks were all initiated
to zero. The learning rate varied by the number of hidden units H, namely,
learning rate was set to 0.1/ H.

For the IB-IVUS method, IB values were calculated by [10|. Here, the
IB intervals of three categories obtained from training data are: fibrous
(IB > 35.8), fibrofatty (28.3 < IB < 35.8) and fatty (IB < 28.3).

In evaluation, we compare and contrast methods by two evaluation mea-
sures: G-mean and overall accuracy. The predicted values observed by the
models are compared to the medical doctor’s findings, then G-mean and over-
all accuracy are calculated. Here, calculating the Recall of each class is based
on the rule “one-versus-all”. For example, to concern the Recall of fibrous we
arrange the predicted values and the doctor’ findings in a contingency table
with the two categories: fibrous and non fibrous. The Recall of fibrous is
then defined as Eq. (1.5).

The training and test procedure were repeated 20 times. Each time the
training inputs was reselected randomly as aforementioned. The averaged
measures are shown in Table 3.2.

It can be seen that the binarization case, B-ClassRBM, mostly received
the higher average G-mean values for all these three test cases. B-ClassRBM
gives the better results than the two others, whereas the non quantization

Table 3.2: Overall accuracy and G-mean of each test cross section

Test cross section Method Accuracy G-mean
1B 0.46 0.54
Cross section S1 ~ N-ClassRBM 0.61 0.52
B-ClassRBM 0.71 0.62
1B 0.43 0.54
Cross section S3  N-ClassRBM 0.63 0.58
B-ClassRBM 0.65 0.67
1B 0.42 0.54
Cross section S4  N-ClassRBM 0.60 0.53

B-ClassRBM 0.67 0.70
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Figure 3.4: Visualization of three test cross sections S1, S3, S4 in the train-
ing case of section S2. Column B-mode shows B-mode images of test cross
sections, column Doctor’s shows tissues identified by medical doctors, col-
umn W shows the classification by IB-IVUS method, columns W&@assRBM
and B-@llassRBM are the results from non binarization case and binarization
case of ClassRBM, respectively.

cases, N-ClassRBM, received the same G-mean as IB method.

On average, the geometric mean of Recalls of all fibrous, fibrofatty and
fatty for three test cases are about 0.54, 0.54, and 0.65 for 1B, N-ClassRBM
and B-ClassRBM, respectively. Bking into account both G-mean and Over-
all accuracy, it is obvious to ascertain that the binarization cases with Class-
RBM can give us not only a better overall accuracy, but also a significantly
improved G-mean. The classification capacity of ClassRBM is proved from
the results compared to IB-IVUS. Moreover, the accuracy is better when the
input data is binarized by the quantization of ultrasound signals.

In regard to visualization, it is clear that not only does B-ClassRBM give
a better G-mean but also the enhancement of image is seen as in Fig. 3.4. In
addition, tissues identified by B-ClassRBM and N-ClassRBM cases are more
compact and close to the medical doctor’s findings while the IB method
hardly dififdrentiates between fibrous and fibrol@tty.

Alternatively, we carried out the same above experiments for the cases
that training cross sections were S1, S3 or S4, and the others [fr test. The
test G-means and overall accuracy @r those learning cases are listed in Ible
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Table 3.3: G-means and overall accuracy of learning cases

Train  Test 1B N-ClassRBM B-ClassRBM
section  section

Accuracy G-mean Accuracy G-mean Accuracy G-mean

S1
S2 0.45 0.65 0.48 0.61 0.60 0.61
S3 0.40 0.55 0.50 0.62 0.60 0.56
S4 0.37 0.51 0.43 0.52 0.68 0.65
S3
S1 0.45 0.55 0.53 0.63 0.65 0.60
S2 0.50 0.68 0.55 0.67 0.68 0.67
54 0.43 0.58 0.51 0.56 0.64 0.59
54
S1 0.49 0.51 0.55 0.51 0.65 0.62
S2 0.53 0.60 0.57 0.62 0.69 0.62
S3 0.50 0.58 0.59 0.60 0.56 0.60

3.3. The results also showed a higher performance of ClassRBM compared
to IVUS-IB, although the training sets needed to be chosen with different
ratios of classes in each case because of imbalanced data sets.

3.4 Conclusion

In this study, the classification restricted Boltzmann machine was applied to
the characterization problem of IVUS tissues. Although, the research dataset
is relatively small, the results showed that the classification performance was
significantly improved by ClassRBM network compared to the conventional
method of Integrated Backscatter (IB). Cross sectional images was also en-
hanced in visualization.

This study also ascertains that ClassRBM can work more stably with
the binary input. In our experience, the quantization of patterns and bina-
rization of input data boosted the learning ability of ClassRBM much better
than the real-valued input case. However, when applied the proposed quanti-
zation of IVUS patterns, the dataset becomes sparse although this emerging
problem has been sovled by the use of Ls-regularization. In addition, the
binarization steps of featured patterns gave rise to better tissue classification
but, we observed that near field or far field tissues seem to be categorized
into same classes as can be seen in Fig. 3.4. Near field artifacts [43] are main
factors that cause the miscorrection of data normalization. Those limitations
need further considerations.

Although the results showed an improvement by classification restricted



Chapter 3 21

Boltzmann machine, the imbalance of three classes of IVUS data is still the
ahead problem to advance the accuracy and visualization quality of IVUS
images.
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Two Sub-study Cases about
Imbalanced Dataset Learning

4.1 'Training restricted Boltzmann machine with
synthetic sampling

The objective of this section is to consider sampling techniques to balance the
data sets for training of ClassRBM. The results in this section are presented
in [44].

4.1.1 Background

The results in chapter 3 showed that RBM could recognize the IVUS tissues
better than the conventional method, IB-IVUS. However, the class imbal-
ances had a negative impact on the training of ClassRBM, this is still ahead
problem which needs to be tackled.

Medical data analysis is often faced with imbalanced datasets [20, 45].
One of ideas to solve data sets imbalances is to balance the data sets for
training. This study uses adaptive synthetic sampling technique (ADASYN)
to oversample the minority classes. The balanced training data sets are then
used to train classification restricted Boltzmann machine to recognize pat-
terns.

4.1.2 Methodology

Balancing training sets. Imbalanced dataset learning refers to the prob-
lem that has an unequal distribution between data classes. This means that

22
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one class outpresents the other classes, i.e., there is a high proportion be-
tween classes, for example, 10:1, 100:1, or more severely. The imbalanced
data problems often occur in the real-world applications. Moreover, most
standard algorithms assume or expect balanced class distributions, that re-
quires us to deal with a compromise of major and minor classes.

The solution to balance the distribution of classes for training is often
to oversample the minority sets or undersample the majority sets [20, 46].
Such a well-studied technique is adaptive synthetic sampling (ADASYN) [21].
This method is briefly described in the following:

(i) Define the number of synthetic data examples that need to be generated
for the minority class based on the degree of class imbalance.

(ii) Define the number of synthetic data examples the need to be generated
i@®r each minority example.

(iii) Generate the synthetic examples corresponding to each minority ex-
ample with the defined number by linear combination with its random

K-nearest neighbors.

Weature extmmction. In this study, we use Hamming window with size of
128, then in the time-frequency domain, the patterns of normalized frequen-
cies are extracted corresponding to each point of time. They are then used
for the classification.

)
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Figure 4.1: Time-frequency transform: (a) is time-series representation of
an IVUS signal, and (b) is the time-frequency representation of the signal of
(a) by Hamming window.

Magnitude (dB)
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Four coronary vessel cross sectional images of left circumflex coronary arter-
1eS af : 3 ( 1 tu In t i
area is categorized into fibrous, fibrofatty and fatty tissue classes. Each pixel
LD N ‘ Ol our roul
ages. In the experiments, we selected one cross sectional image for training
and the three other ones for test.
To evaluate the classification performance, we use two multiclass eval-

In settings, the ClassRBM with discriminative training is set up with 500
hidden units, while the neural networks contain 3 hidden layers with the size
of 500-300-100. The best case of test is shown in Table 4.2 and Fig. 4.2.

ference for MAUC.
In the visualizations of cross sections, Fig. 4.2 shows three test cross sec-
y
the ClassRBM shows slightly better performance compared with the neural
nets.

Table 4.1: Distri ) : brofatty and fat -

Fatty 6,008 3.9%

ADASYN
Method G-mean MAUC

sRBM 0.67 0.79
‘ ‘ 0.80
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Figure 4.2: Visualization of three test sections denoted a, b, ¢ with their
B-mode, doctor’s findings, neural nets and ClassRBM display, where yellow
is fibrous, blue is fatty and green is fibrol@tty.

4.1.4 Conclusion

This study has shown an application of discriminative restricted Boltzmann
machine to characterize IVUS tisues with the incorporation of ADASYN
technique to balance the training data sets. Although the data sets are rela-
tively small, the experiments showed that ClassRBM could be a considerable
classifier compared with neural networks in IVUS tissue characterization.

4.2 Ensembling restricted Boltzmann machines

This section shows an application of multiclass AdaBoost to ensemble Class-
RBMs. The results in this section are presented in [47].

4.2.1 Background

In chapter 3, we proposed a technique to binarize IVUS signal patterns. That
work boosted the tissue characterization learning compared with training on
those extracted patterns. For the binarized instances, generative training
model of ClassRBM worked better compared with conventional IB-IVUS
method for the same task.
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However, existing difficulties need to be addressed those are the imbal-
ances of tissue classes. In our IVUS data sets, tissue components include
fatty, fibrofatty and fibrous class, usually, the number of fibrous tissues dom-
inates the two others, specifically around 75% of tissues is fibrous. Section 4.1
has applied the adaptive synthetic sampling (ADASYN) technique which is
in terms of balancing training data sets. In this section, we study the capa-
bility of ensembling ClassRBMs that aims to tailor all the discrete trained
cases instead of single case as previous studies.

Ensembling methods have attracted researchers a lot in recent years as
reviewed in |48, 49|. Such effective algorithms are AdaBoost |28|, Bagging
[26], etc. These algorithms have proved successful applicability in real world.
Theoretically, these algorithms were developed independently with classifiers,
thus the ensembling of classifiers using these algorithms is practical.

4.2.2 Methodology

IVUS data preprocessing. Frequency patterns extracted from time-frequency
transform as in Eq. (1.3). Fig. 4.1 shows the transformation from time-series
to time frequency domain, where Hamming window is used.

Multiclass AdaBoost. Zhu et al.[28] developed a very successful tech-
nique for boosting the multiclass classification problem. Theoretically, this
technique implements an algorithm to combine weak classifiers. We follow
the algorithm SAMME of AdaBoost to boost the training of ClassRBM in
this study. Specifically, the pseudo-code of SAMME is presented in Algo-
rithm 4.1.

In practice, since the IVUS data sets have class imbalances, training clas-
sifiers associated with distribution parameters wis tend to be biased towards
overfitting of major set or minor set. Thus, we simplify the choice of training
samples by randomly choosing, then tailor all the trained classifiers. The
schematic diagram for boosting ClassRBMs is described in Fig. 4.3.

4.2.3 Experiments and results

In the experiments, four coronary vessel cross sections involved in this study
which positioned the main plaque area. Three of them are mixed and ran-
domly partitioned into training, validation and test sets to study how Class-
RBMs can be ensembled. Whereas the number of featured patterns is 125,344
with 4,528 patterns labeled as fatty tissues, 15,043 labeled as fibrofatty tis-
sues, and 105,773 are fibrous tissues. The other section is used to perform
visualization.
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Algorithm 4.1 54 MV

Input: Training sets X of N examples (x1,11), ..., (zn,yn)
yeY={1,..., K}

Init: Observation weights w; = 1/N aining sets, 1 =1,2,..., N.

for t=1to M do
Training classifier R® w ect to weights w;.

N N
€W = S wile; # RO (x;)]/ > w;.
i=1 i=1
Compute:
1—e®

G +log(K —1).

Update :
w; + wi.exp(a®[e; # R¥)(z)]), i=1,..., n.

Re-normalize w;

Prediction: y
C(z) = arg mnga(t) [R®)(x) = k.

t=1

(ClassRBM ) (ClassRBM )+ ClassRBM |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, §- -
Validation Phrase

wo measures overall accuracv and G-m« re used to all N -

sults of our experiments. The results are compared with SVM and Neural

Nets for the same tasks. Once training ClassRBMs, the input sets are ran-
) \i Cll 1 ] Ul¢ ] J |
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lected M@r training gave better evaluations.

Ilble 4.3 shows the results of boosting cases in 120 iterations, where the
averaged value of G-means of all individual training cases and the G-mean
after boosting are listed to compare. In general, the boosting cases receive
slightly better measures compared to the average of individuals except SVM,
the boosted G-mean of which is smaller than the averaged one. The G-means
of boosting are 54.5, 71.0 and 74.7 l@r SVM, Neural Nets and ClassRBMs,
respectively. Fig. 4.4 shows the trend of G-means by boosting over 120 iter-
ations.

Visualization is another important point we pay attention. The section
for visualization check stays independent with learning cases and the visual
perff@rmance is shown in Fig. 4.5 where the G-means of SVM, Neural Nets
and ClassRBMs are 46.9, 57.8 and 61.2, respectively.

IMble 4.3: G-means and overall accuracy evaluated in test and visualization

sets
Method G-mean Overall accuracy
averaged ensembled averaged ensembled
Test sets
SVM 60.2 57.1 71.1 72.5
Neural Nets 73.9 74.5 74.4 75.0
ClassRBMs 74.7 74.8 69.8 70.0
Visualization sets
SVM 51.9 49.0 68.3 69.4
Neural Nets 59.5 59.7 68.7 69.0
ClassRBMs 61.3 61.3 65.2 65.1

G-means on test sets

60
lteration

Figure 4.4: G-means of test by multi-class AdaBoost over 120 iterations.
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Figure 4.5: Visualization perfllrmance where (a) B-mode image, (b) plaque
and its components found by medical doctors, (¢) SVM, (d) Neural Nets and
(e) ClassRBMs. The colored is plaque area where yellow, green and blue are
fibrous, fibrofatty and fatty, respectively.

4.2.4 Discussion

This study aimed to ensemble ClassRBMs to characterize IVUS tissues by
multi-class AdaBoost. have shown comparisons how the AdaBoost SAMME
algorithm behaved with ClassRBMs, Neural Nets and SVMs. The results
proved that ClassRBMs could perform better than the two others. AdaBoost
did not crucially improved the accuracy, yet that demonstrated that multi-
class AdaBoost could be implemented to work with ClassRBMs on this data.
It can be a further consideration to better identiff§ IVUS tissues.
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Misclassification Cost-Sensitive

Training of Restricted Boltzmann
Machine

This chapter presents an algorithm for training set selection which is sensitive
to misclassification of classes. The results in this chapter are presented in
[50].

5.1 Background

So far, we have studied the IVUS signals in time series and frequency do-
mains. In chapter 3, we proposed a technique to binarize data for the clas-
sification of RBM (classRBM), and chapter 4 showed two sub-studies about
tackling the difficulties of IVUS class imbalances are considered. Never-
theless, classRBM performed better as compared with other classifiers such
as conventional method integrated backscatter intravascular ultrasound (IB-
IVUS), support vector machine and neural network for the same tasks, the
difficulties of class imbalances have not been addressed thoroughly as ex-
pected, i.e., the output of training classRBM has been significantly affected
by the difference of class distributions. In this chapter, we aim to implement
an algorithm to solve the class imbalances which is sensitive to the misclas-
sification rate of each individual class. The featured patterns are considered
at bit level pertaining to the binary representation of quantized signal am-
plitudes.

As partially reviewed in Section 1.1, many research fields of machine
learning has been applied in IVUS issues, for example, Nair and et al.,[51]
proposed autoregressive classification model that used mathematical autore-

30
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gressive model to analyze in frequency domain. Or, using sparse features
in |52] or fractal-based features in [53| to characterize tissues in time series
domain. Also, wavelet analysis was used in [54] to study IVUS signals and
showed that wavelet coefficients could discriminate lipid tissue and others.

Concerning imbalanced datasets, various solutions have proposed involv-
ing this kind of issue. In such problem, recognizing major (negative) instances
is sometimes not as important as recognizing minor (positive) ones. Besides
the techniques of sampling as mentioned in chapter 1 which can balance the
training data sets, designing classifier which is sensitive to class distribution
is also considerable. Chapter 4 shows the two cases balancing training data
sets by sampling; and ensembling classifiers. However, those cases use the
traditional algorithm of RBM without any further consideration of the rela-
tionship between the training algorithm and its sensitiveness to the training
set imbalance degree.

As concluded in chapter 3, ClassRBM worked stably with the binarized
IVUS patterns. In addition, the IVUS signals are quantized ones with 12-bit
quantization, it means that those quantized signal amplitudes can be dis-
played in binary series. For that reason, we are interest in the binary level
of IVUS data for this study.

In this chapter, the training of ClassRBM which is sensitive to imbalance
degree of training sets is studied. The followings show the methodology,
experiments and results.

5.2 Methodology

5.2.1 Discriminative restricted Boltzmann machine

Classification restricted Boltzmann machine with discriminative training (Dis-
RBM) is presented in Section 2.2. That learning network is shown as in
Fig. 5.1. Each hidden unit h; connects to visible unit z; and label unit y; by
connection weights Wy and Uy;. If input vector x has class label £, then the

(k)
corresponding class vector s yp = (0,..., 1,...) € {0,1}¥. Here, K is the
number of classes. The objective of discriminative learning is:

|Xsub—train|

- Z log p(y¢| ¢) — min . (5.1)

t=1

Here, | Xsub_train| is the subset of training sets which is chosen towards bal-
ancing training classes. Classification of input vector z with unknown class
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Figure 5.1: Graphical representation of ClassRBM with discriminative
training where h is hidden layer, x is input layer , and its class layer y.
W and U are connections between hidden units and class units, respectively.

label j in test sets are defined according to the largest output:

j =argmaxP(y; | x). (5.2)

5.2.2 Pattern Extraction

Fig. 5.2 shows an example of a stained sectional image, its B-mode image and
its plaque components from the data sets. And, its acquired IVUS signals
are displayed in Fig. 5.3. extract patches of 5 x 9 pixels correspond-
ing to 5 adjacent A-lines and 9 time-series points in depth of each A-line in
plaque area. The label of a patch is defined by its central point. Each
extracted patch is a 5 x 9 matrix of quantized amplitudes, and these values
were already represented in a series of 12 bits by the IVUS transducer quan-
tization. Therefore, amplitude values of patches are represented into binary,
hence such a patch responds to a matrix of 5 x 9 x 12 for the classification of
DisRBM. In one rough interpretation, this work means that 12 input units
of DisRBM are allocated to encode a quantized amplitude of IVUS patches.

Figure 5.2: The visualization of vessel image. Picture (a) is a cross sectional
image of vascular and (b) is the B-mode image of (a). The plaque area is
delineated by colored borderlines where fibroltty is dramsn by green line,
@tty is drawn by blue line, and the rest area between yellow lines is fibrous.
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Extract patches of 5x9 pixels
corresponding to 5 adjacent A-lines
and 9 time-series points in depth of each A-line

Out of plaque

5 )
Time (us) 2 0

Figure 5.3: Acquired IVUS signals of section in Fig 5.2 is longitudinally
displayed. Patches in plaque area are extracted. The colored expresses plaque
which is identified by medical experts.

IBble 5.1 shows the number of patches extracted from the IVUS data sets,
their class and distribution.

5.2.3 Dealing with imbalanced dataset

As the previous discussion, DisRBM is the same as traditional classifiers
which seek the overall accuracy. Thus, it tends to identif§f all the data into
the majority class. For the case of class-imbalances, choosing balanced sub-
sets for training is not appropriate because it leads to underfitting of major
class. Conversely, the major class will overrepresent the others if all the data
sets is used.

deal with the problem of class imbalances, we propose to use mis-
classification cost-sensitive training of DisRBM. Specifically, the misclassi-
fication cost-sensitive training theme is presented in Algorithm 5.1. The
Algorithm 5.1 expresses that the number of training samples is increasingly
updated [l@r all classes after each iteration. How many additive training sam-
ples are chosen, it depends on the misclassification rate of each class. After

Table 5.1: Distribution of fibrous, fibrolftty and #tty tissues in data sets

Tissue name Quantity Distribution
Fibrous 140,576 88.4%
Fibro@tty 14,968 9.4%
Fatty 3,530 2.2%
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Algorithm 5.1 Misclassification Cost-Sensitive Training

Input: Imbalanced training sets X, the number of iterations M.
Initialize parameters of classifier R.
Choose randomly class-balanced subsets X4, from X.
for iter =1to M do

Train R by X;,.4;n and update the parameters of R.

Calculate misclassification rates of classes and the update numbers of
classes which are proportional to their misclassification rates.

for each major class 7 do
8: Resample training sets X;,.q;, by choosing samples of class ¢ which
satisflf that their one-nearest neighbors have the same class as them.

N

defining the number of training samples, training samples are selected ran-
domly, however in experiments, we only selected such random samples that
they are far from the borderlines between classes. In words, every chosen
sample must be the same class as its one-nearest neighbors. IM@r the binary
vectors, the distance we used is Jaccard metric.

5.3 Experiments

In our IVUS data sets, the plaque area are categorized into fibrous, fibrofatty
and Bty tissue classes. Table 5.1 shows the class distribution of our eight
vessel cross sections. In the experiments, we used data from five sections for
training and the left ones for test.

In settings, the number of hidden units of DisRBM was 200, and learn-
ing rate was 1073, Parameters of DisRBM network were randomly initiated

TPRs of classes in test

IB-IVUS DisRBM

Figure 5.4: WBst classification performance by three classifiers IB-IVUS,
Neural nets and DisRBM.
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Neural Nets in training DisRBM in training

fibrous
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Neural Nets in test A DisRBM in test
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Figure 5.5: Effect of Algorithm 5.1 in training and test of neural network
and DisRBM.

Real vessel B-mode and ROI IB-IVUS Neural Nets DisRBM

Figure 5.6: Visualization of test classification between IB-IBUS, Neural
nets and DisRBM with fibrous, fibroltty and fatty colored by yellow, green
and blue, respectively.

in range +107°. The number of training iteration was set up to 200.
compared ClassRBM with neural network to show how better the misclassi-
fication sensitive training algorithm incorporated with ClassRBM or neural
network for the same tasks, here neural network has the same network size
as ClassRBM. Besides, the classification was evaluated in comparison among
IB-IVUS method, neural network and ClassRBM.

used true positive mmtes (TPRs) for the evaluation. Fig. 5.4 shows the
TPRs of test results @@r IB-IVUS, neural network and ClassRBM. The pro-
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posed method is improved as compared with neural network and IB-IVUS.
TPRs in Fig. 5.5 displays the progress of TPRs of classes by Algorithm 5.1
between neural network and ClassRBM. In general, Algorithm 5.1 works bet-
ter with ClassRBM to alleviate the burden of class imbalances.

In visualization, Fig. 5.6 shows one test vessel image with the classification
of IB-IVUS, neural network and ClassRBM. Tissues are colored by yellow,
green and blue corresponding to fibrous, fibrofatty and fatty. Fig. 5.6(a)
shows the stained vessel image, and its B-mode image is constructed as in
Fig. 5.6(b) with the region of interest (ROI) drawn by colored lines corre-
sponding to tissue colors. Fig. 5.6(c)-(e) are the classification of IB-IVUS,
neural network and ClassRBM correspondingly.

5.4 Conclusion

In this study, we used the discriminative restricted Boltzmann machine to
the characterize IVUS signals. We used binary representation of quantized
amplitudes of time-series signals, and proposed to use misclassification cost-
sensitive training for the classification of ClassRBM. Although, the research
data sets are relatively small, the results showed that the proposed method
could better characterize as compared with the conventional methods of IB-
IVUS and neural network for the same tasks and the same network size.



Chapter 6

Deep Boltzmann Machine

This chapter presents an application of DBM to classify IVUS tissues. Accu-
mulative training of DBM is proposed to deal with IVUS class imbalances.
The results in this chapter are presented in [55].

6.1 Background

Using powerful classification frameworks is a trend to handle with large data
sets. In medical applications, it has also emerged as an active area of research.
This chapter shows an application of deep Boltzmann machines (DBM’s) to
characterize intravascular ultrasound (IVUS) signals of coronary plaque. An
accumulative selection of training sets is introduced, which is sensitive to
misclassification rates to deal with class imbalances while the IVUS dataset
is concerned at binary level.

Machine learning has become a great concern in medical applications be-
cause it provides some powerful learning models for handling big data sets.
In the field of machine learning, deep learning [39] has attracted enthusiastic
interest in recent years, which is architected by a deep network to handle with
large, high dimensional data sets. Restricted Boltzmann machine (RBM) is a
good initiation for constructing multiple-layer network [34, 39]. It is a prob-
abilistic model that contains a layer of hidden binary variables connecting
to a visible layer of visible variables, and the hidden layer will model the
distribution of visible layer [31, 33].

RBM itself can play as a self-contained framework as a classification model
[37]. Originally, RBMs were developed using binary stochastic units for both
input and hidden layers, and the extension to Gaussian visible inputs were
also implemented [31]. The latter case employs data normalization to trans-
form data sets into unit interval or standard normal distribution. In chap-
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ters 3,4,5, we used the standalone model of RBM for the classification of
IVUS tissues. However, because IVUS signals are affected by near field ar-
tifacts, i.e., it results in high amplitudes surrounding transducer [43]. We
observed that the data normalization of IVUS signals is significantly affected
by those artifacts [40]. In addition, the class imbalances of IVUS training
data sets give rise to difficulties of tissue classification.

Pursuing a deep network to learn complicated IVUS data sets better, in
this study, we are interested in deep Boltzmann machines (DBM’s) [38] as
stacked restricted Boltzmann machines (RBM’s). We employ a quantization
domain to extract binary featured patterns for DBM to avoid near field ar-
tifacts by normalization.

The following sections will present about the method, experiments and re-
sults in detail.

6.2 Methodology

6.2.1 Deep Boltzmann machine

The DBM network we use in this study is shown in Fig. 6.1 with two hidden
layers h' and h? where x, y are visible and class layers. Architecturally, the
DBM includes RBM with (z, h!) and classification RBM with (h!, h% y). The
first RBM transforms data into a low dimensional codes for the classification
of the latter one. We call coding phase and classification phase correspond-
ingly.

In coding phase, RBM is trained by stochastic contrastive divergence
[31]. In classification phase, we use discriminative training of classification
RBM. In prediction, class j of input x is defined by:

j = argmax P(y; | h', x). (6.1)

h2
»©000
» (00000

)

(OO0

Figure 6.1: Network structure of deep Boltzmann machine with RBM of
(x, h') and ClassRBM of (Y, k2, y) whereas ht and h? are hidden layvers, o
and y are input and class layers, respectively.
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The readers can refer to [37] for further detail.

6.2.2 Pattern extraction

Fig. 6.2 illustrates the patch extraction where Fig. 6.2 is about a stained
vessel section. Its B-mode image is displayed in Fig. 6.2(b). Plaque is drmsin
as in Fig. 6.2(c) whereas fibrolflitty and @tty are enclosed by green and blue
lines, respectively. The rest area between yellow lines is fibrous. Time-series
signals (A-lines) of vessel section in Fig. 6.2(a) are longitudinally shown in
Fig. 6.2(d). WM& extracted patches of M x N pixels as red frames in Fig. 6.2(d)
whereas yellow, green and blue colored points correspond to the fibrous,
fibrofatty and @ty areas in Fig. 6.2(c). Each patch corresponds to an M x N
matrix of quantized amplitudes which were integer-valued ones received from
a 12-bit analog-to-digital converter (ADC) of the IVUS transducer. Then,
those quantized amplitudes are represented in binary series of 12 bits the

(C)]

Extracting patches of M x N pixels
corresponding to M adjacent A-lines
and N time-series points in depth of each A-line

[0}
ie]
35
=

a
0E
<
ko]

A-line Quantize

Figure 6.2: Patch extraction from the longitudinal display of time-series
IVUS signals where picture (a) is a real vessel and its B-mode display is
picture (b). Plaque tissue areas are drawn by borderlines in picture (c) with
fatty enclosed by blue line, fibrotty enclosed by green line, and fibrous in
the rest area between yellow lines. The collection of acquired signals from

(a) are displayed in (d).
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same as the [IVUS transducer quantization size. In one rough interpretation,

6.2.3 Dealing with class imbalances

classification phase of DBM, we reselect the training volume of each class.

chosen for training is accumulated so that it depends on the training cost of

1
roportior niscl ‘
n;x be the number of samples in class 7
Ngj 1 um i | ) J-
Then, the misclassification rate of class i, say M1ss;, is defined by:

> M

Miss; = 72— (6.2)
Tojx
(k) to n;; and Miss;, those are nl(-f), Missgk), to
it they are c: ) .© k-th training iteration. Let nl(-k)
" 1-class training inmpi hich are cl ] ;ST k tl he ab¢

assumption of cost sensitiveness, we define the number of i-class training
input samples at step k + 1 by:

D = ™ 4 [ X my % (Mz'ssgk) — min Missgk))}. (6.3)
J
0 CaASe Ny < nz(»kﬂ) ,i.e., the number of

) ] 1-class
samples in training sets, oversampling is used, otherwise undersampling is

1 ‘ !
to control the updated number of training samples. Obviously, if at step k,
N : 5 o i, then the number of i-class



Chapter 6 41

6.3 Experiments and results

The research data sets were provided by the Graduate School of Medicine,
Mmaguchi University. Six vessel sections of human left circumflex coronary
artery were involved in this study. The ultrasonic observation was carried
out using a Galaxy IVUS system (Boston, USA) with a 40 MHz transducer
at rotation speed of 30 revs/s, and 256 A-lines were collected in one revolu-
tion. The analog signals were sampled at the sampling rate of 210 MHz and
quantized by a 12 bit ADC.

used three coronary sectional images for training and three others
for test. IM@ble 6.1 shows the number of each class in datasets. Patches are
extracted with five cases of size: 3 x 5,5 x 9,5 x 17,5 x 25 and 7 x 17
of pixels, then those patches are represented in 12 bit series as binary stored
by the IVUS transducer.

In settings, we set « of Eq. (6.3) equal to 0.1, and the number of iterations
equal to 200 in all the cases of classification phase.

Fig. 6.3 shows the classification of test case for the cases of patch sizes

I¥ble 6.1: Number of each tissue class in data sets.

fibrous fibrolf@tty fatty
Training sets 106,002 12,682 4,585

Test sets 89,440 13,880 3,898

Test performance

500-50 DBMs
500-150 DBMs
IB-IVUS

2EYe size

Figure 6.3: Classification of DBM in the cases of patch size.
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No. of samples of each class in training

30,000
25,000 fibrous
20,000 fibrofatty
fatty

15,000
10,000

5,000
0

No. of samples

50 10[¢ 150 200
ILerdation

LENECEI W RAEN ROl ining sets in progress
1.00

0.75
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0.00
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TPR of each class of eI HIaNelgele[g=I3

TPR of fibrous
TPR of fibrofatty
I PR of fatty

101 150 200

Ite rajdlelg)

Figure 6.4: Number of samples in each class by Eq. (6.3) and the TPR
progress of each class achieved by 500-150 DBM with the patch size case of
5 x 25.

whereas the DBM has a network size of 500-150, i.e., 500 units of first hidden
layer and 150 units of second one. The results are also compared with the
performance of IB-IVUS method for the same volumn size. The classification
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B-mode aque IB-IVUS

ER T 7 &R W T

R

Figure 6.5: Classification performance of one test vessel section by IB-TVUS
and DBM with fibrous, fibroltty and fatty colored by yellow, green and blue,
respectively.

performances are assessed by G-mean which is the geometric average of true
positive rates (TPR) of all classes. Clearly, the G-means by the proposed
method are significantly improved as compared to the conventional method
IB-IVUS.

Obviously, the 5 x 25-size patches are better classified than the others
as seen in Fig. 6.3. Il show the elllict of Eq. (6.3), TPRs of each class are
evaluated in each iteration, Fig. 6.4 shows the number of each class defined
by Eq. (6.3) and the TPRs corresponding to each iteration step for the patch
size case of 5 x 25 and the 500-150 size of DBM. The trend of TPRs are
asymptotically closed, that means that the classification is not significantly
affected by the between-class imbalance degree.

Fig. 6.5 shows the classification performance of one test vessel section by
IB-IVUS method and DBM with 500-150 of hidden layers, and patch size
of 5 x 25. Fig. 6.5(a) is a B-mode image, Fig. 6.5(b) shows the plaque
area drawn by experts, Fig. 6.5(c) and Fig. 6.5(d) show the classification
performance of IB-IVUS and DBM, respectively, where yellow, green and
blue correspond to fibrous, fibro@tty and fatty, respectively. Obviously, in
that IVUS image displays, IB-IVUS recognizes between fibrol@tty and fibrous
tissues not good as DBM does.

6.4 Conclusion

This study used deep Boltzmann machines to characterize IVUS signals. The
bit level of dataset was concerned. presented an accumulative training
selection method to train deep Boltzmann machines that was sensitive to
misclassification rates. Although, the research dataset is relatively small, the
experiments showed the accumulative elifict of the proposed method.
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This study proposed a training set selection as in Eq. (6.3), the parameter
« was introduced to control the input number of each class. However, it was
heuristically defined in the experiments. The optimal value of « should be
studied as a future work. In addition, the proposed method has been evalu-
ated by comparison with the conventional method IB-IVUS. The evaluation
of the proposed method needs more considerations in comparison with other
methods in the literature of IVUS tissue characterization, or other traditional
classifiers in the field of machine learning.



Chapter 7

Conclusion and Future Work

Up to now, we have achieved some results of the IVUS tissue classifica-
tion. The difficulties of IVUS data sets were analyzed, especially the class
imbalances between tissues, and the limitation of conventional training algo-
rithm of ClassRBM with imbalanced training sets. This dissertation showed
a step-by-step approach to improving the tissue classification performance.
In words, the IVUS tissue classification problem was first studied by using
the classification model of a standalone RBM without any consideration of
class imbalances. The more insights into learning from imbalanced IVUS
data sets were studied in next steps. Regarding network structure, from a
single hidden layer (RBM) to multiple hidden layers (DBM) were gradually
concerned.

The first study in chapter 3 showed a comparison between ClassRBM
and the conventional method IB-IVUS. The results proved that, in both in-
terested domains of data representation which are time-series and frequency,
ClassRBM could be trained better than IB-IVUS for the same task. More
considerably, the proposal of IVUS pattern binarization was advantageous,
it could adapt the training stability properties of ClassRBM. That was a
noticeable point, thus the quantization of IVUS signals would be taken into
account in the next studies.

As well as the consideration of the learning capacity of RBM and DBM
in IVUS tissue classification. This dissertation spent much time on tack-
ling the problems of imbalanced dataset learning. Evidently, chapters 4, 5
and 6 mainly solved this problem. Exactly, the proposed training algorithms
of ClassRBM and DBM focused on designing a train theme which could
force ClassRBM and DBM to be sensitive to between-class imbalance de-
gree. These algorithms well supported the training of ClassRBM and DBM,
the more considerations of them should be a future work to improve the
IVUS classification.
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Although all the evaluations might be inefficient, the achieved results are
contributed to a better understanding of the IVUS tissue characterization.
In comparison with the conventional methods such as integrated backscatter
IVUS and other methods in the literature of machine learning such as sup-
port vector machine, neural network, having done work proved a promising
prospect of solving the problem by the application of deep learning.

However, the IVUS data sets are small, the above results only shows first
steps of using deep learning to characterize IVUS signals. This problem needs
further considerations to assess the stability of the proposed method.
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