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To explain the anomalous increase in the permittivity of monoclinic Rb2ZnI4 at low 

temperatures, the dielectric susceptibilities of modulated structures are calculated. A 

quantum Ising model is reduced from a lattice Hamiltonian by the mean field approximation 

and two-quantum-level approximation. The susceptibilities of modulated phases remain to 

be finite values at zero temperature as in the uniform ferroelectric phase, if the quantum 

effect works. Furthermore, the susceptibilities of the incommensurate and high-order 

commensurate phases increase at low temperatures. Since the ferroelectric phase can be 

realized with accompanying strong discontinuity, such an increase is different from the 

phenomenon during the lock-in transition. The phase diagram and the temperature 

dependence of susceptibility are calculated. With the selection of a proper set of parameters, 

the theoretical results agree qualitatively with experimental reports of (Rb1-xKx)2ZnI4.  
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1. Introduction 

A high dielectric permittivity is one of the useful properties of ferroelectric materials in 

applications.1) The temperature dependence of dielectric susceptibility can be described by 

the Curie-Weiss law in proper ferroelectrics, which predicts that the permittivity diverges in 

second-order transitions.2,3) The presence of ferroelectric domains additionally contribute to 

the permittivity in ferroelectric phases.4)  

On the other hand, the permittivity shows slight changes during the phase transition of 

improper ferroelectrics, in which the order parameter of the phase transition is not a dielectric 

moment but another quantity coupled with the dielectric moment.5) In the case of 

incommensurate crystals, the permittivity increases considerably during the lock-in 

transition between incommensurate and commensurate (ferroelectric) phases, even though 

the commensurate phase is an improper ferroelectric state.6-10) Such a case is observed in 

K2SeO4,
11,12) Rb2ZnCl4,

13) and isomorphous A2BX4 crystals with the similar orthorhombic 

structure.14) The abnormal increase in the permittivity can be attributed to movable 

discommensurations in the incommensurate phase and the residual domain walls in the 

commensurate phase.15,16)  

Although the chemical formula is the same as that of A2BX4, K2ZnI4 has a different 

monoclinic morphology and undergoes the proper ferroelectric transition at 270 K 

accompanying the Curie-Weiss behavior of the permittivity.17) The isomorphous Rb2ZnI4 

was investigated previously; the temperature dependence of the permittivity somehow 

resembles that in K2SeO4, but no ferroelectricity was detected below the reported second 

transition at 7.5 K.18) The crystal is paraelectric in the entire temperature range. The cusplike 

anomaly at 62.4 K was later found to be the incommensurate transition.19,20) The modulation 

wave number is about 0.3 referring to the pseudo-orthorhombic cell.21) No lock-in transition 

is observed at low temperatures.  

Rb2ZnI4 was reinvestigated later.20) Its permittivity showed a peak at approximately 4 K, 

if the applied electric field was in the radio frequency range. However, the permittivity 

saturated gradually toward 0 K, if static measurement was performed. Down to 1.4 K, no 

ferroelectricity nor pyroelectricity was detected,20) and the behavior resembles the quantum 

paraelectricity of SrTiO3.
22,23)  

To elucidate the low-temperature state of Rb2ZnI4, a mixed crystal system of (Rb1-
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xKx)2ZnI4 has been investigated recently.20,24,25) With the increasing substitution ratio x, the 

incommensurate transition temperature from the disordered phase (the paraelectric room-

temperature phase) increases gradually. The ferroelectric phase appears at low temperatures, 

if 𝑥 ≥ 0.14. With the further increase in x, the transition temperature to the ferroelectric 

phase increases, and finally the paraelectric-ferroelectric transition takes place directly for 

𝑥 > 0.4 as in pure K2ZnI4.  

It is plausible that Rb2ZnI4 shows an increased permittivity with the approaching 

commensurate phase of q = 0 (the proper ferroelectric state) at low temperatures, similarly 

to the lock-in transitions of K2SeO4 or Rb2ZnCl4.
12-15) However, this will not be the case, 

because the transition from the incommensurate phase with q~0.3 to the commensurate 

phase with q=0 is strongly first-order. Therefore, Takashige et al. suggested that the 

phenomenon was similar to quantum paraelectricity.20)  

To explain the dielectric susceptibility of an incommensurate phase, thermodynamic 

functions (phenomenological free energy) with the additional Lifshitz invariant were 

investigated previously.6-10) Such phenomenological explanations were based on classical 

thermodynamics. The quantum effect can be considered in the paraelectric phase using 

microscopic or semimicroscopic consideration.23,26) In the proper ferroelectric phase, a 

quasi-harmonic approximation27,28) or a two-level approximation29-32) was useful in 

theoretical analysis. Quantum paraelectricity is usually described by the Barrett’s equation 

of dielectric susceptibility; the equation was derived theoretically for paraelectric-

ferroelectric (proper) transitions previously.  

In Rb2ZnI4, not the disordered phase, but the incommensurate phase, displays the 

increased permittivity at low temperature.20) To examine the modulated phases, we have to 

consider models of incommensurate structures. A typical one is the Ising model with 

competing interactions.33) The model was investigated extensively and named axial next-

nearest neighbor Ising model (ANNNI), which contained first- and second-nearest-neighbor 

interactions.34) The revised one was extended to third-nearest-neighbor interactions.35-37) If 

such ANNNI models were analyzed using classical thermodynamics, then the modulated 

structures at zero temperature were commensurate phases, and the incommensurate phase 

was stable only at a finite temperature.34-37)  

Previously, we analyzed the ANNNI model using quantum thermodynamics. We found 
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that the incommensurate phases may extend down to zero temperature.21) Therefore, the 

quantum ANNNI model can describe the phase diagram of the mixed system of (Rb1-

xKx)2ZnI4. However, the dielectric susceptibility of modulated structures in the quantum 

ANNNI model has not been calculated so far. Within the theoretical framework, the 

dielectric susceptibility was calculated only for the paraelectric-ferroelectric (q = 0) 

transition.32) Whether the peculiar permittivity of Rb2ZnI4 can be explained theoretically or 

not requires further analysis.  

Here, we would like to note that quantum effects on ferroelectrics have also been the focus 

of much interest recently for developing novel ferroelectric materials.38,39) Therefore, the 

analysis of quantum effects would provide useful insights into ferroelectricity in both 

fundamentals and applications.  

This paper is devoted to the calculation of dielectric susceptibility in modulated phases. 

Firstly, a lattice Hamiltonian including an unharmonic self-potential is presented after the 

model of previous works.3,21,32,40) A quantum two-level approximation and the mean field 

approximation reduce the Hamiltonian to the quantum ANNNI model. Although the free 

energy of the quantum ANNNI model was presented previously, we briefly summarize the 

formulation in the next section. The permittivity is then derived within linear responses 

against the applied external field.  

By choosing the appropriate set of effective interaction parameters, the phase diagram and 

the temperature dependence of dielectric susceptibility are obtained by numerical 

computations in Sect. 3. To explain the mixed system of (Rb1-xKx)2ZnI4 successfully, an 

ambitious assumption of parameters will be introduced. In Sect. 4, we present some 

conclusions.  

 

2. Model and formulation 

The Hamiltonian of lattice vibrations is written as  

𝐻 = 1

2
∑ (�̇�𝑞

(𝑠)
�̇�−𝑞
(𝑠)
+ 𝜔(𝑞; 𝑠)2𝑄𝑞

(𝑠)
𝑄−𝑞
(𝑠)
)𝑞,𝑠   ,   (1) 

where Qq
(s) is a normal coordinate of the wave number q and the mode is classified by s.3,21) 

In the following, we consider only one mode relevant to the ferroelectric transition and omit 

the superscript s hereafter. The Hamiltonian Eq. (1) for the mode can be rewritten as  

𝐻 = 1

2
∑ (�̇�𝑛

2 − ∑ 𝐽𝑙𝑙 𝑥𝑛𝑥𝑛+𝑙)𝑛  .     (2) 
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Here, a local coordinate is given by  

𝑥𝑛 =
1

√𝑁
∑ 𝑄𝑞𝑒

2𝜋𝑖𝑞𝑅𝑛
𝑞  ,     (3) 

which represents the phonon wave pattern on the n-th unit cell. We are concerned with the 

one-dimensional transverse mode explicitly. The interlayer interaction Jl is a Fourier 

transform of the phonon energy Eq. (1).  

 𝐽𝑙 = −
1

2
∑ 𝜔(𝑞)2𝑒2𝜋𝑖𝑞(𝑅𝑛+𝑙−𝑅𝑛)𝑞      (4) 

  To permit a phase transition in the system, let us introduce a self-potential V(x) into Eq. 

(2):3,21,32,40)  

 𝐻 = ∑ (1
2
�̇�𝑛
2 + 𝑉(𝑥𝑛) − 𝑥𝑛ℎ)𝑛 − 1

2
∑ 𝐽𝑙𝑥𝑛𝑥𝑛+𝑙𝑛,𝑙  ,   (5) 

where h is an external field conjugate to xn. We assume that the self-potential is unharmonic 

but is symmetric: V(-x) = V(x), so that the expectation value 〈𝑥𝑛〉 = 0 at a high temperature.  

  We adopt two approximations similar to the case of nearest-neighbor interactions: 32) (i) 

the mean field approximation  

 𝐽𝑙𝑥𝑛𝑥𝑛+𝑙
          
→  𝐽𝑙𝑥𝑛〈𝑥𝑛+𝑙〉 ,      (6) 

and (ii) two-quantum-level approximation. Without h and Jl, the single-particle Hamiltonian 

Eq. (5) can be solved in principle, and energy levels higher than 2 (ϵ𝑚; 𝑚 ≥ 2) are neglected 

at low temperatures. Then, we can derive analytical expressions for the free energy and other 

thermodynamic quantities, which contain the quantum parameter 𝑇1 ≡ (𝜖1 − 𝜖0)/𝑘B , a 

representative of the energy gap of the single-particle Hamiltonian.21,32) The Boltzmann 

constant kB is set to 1, hereafter. 

  We write the free energy on the basis of our previous paper as21)  

 𝐹 =
1

2
∑ 𝐽𝑙𝜉𝑛𝜉𝑛+𝑙𝑛,𝑙 − 𝑇∑ ln (2 cosh

Λ𝑛

𝑇
)𝑛  .    (7) 

Here, 𝜉𝑛 ≡ 〈𝑥𝑛〉/‖𝑥‖ is the order parameter normalized by the quantum expectation value, 

which is set to 1 in length unit, hereafter.21) The mean field is given by  

 Λ𝑛 = √(𝑇1/2)2 + (ℎ + ℎ𝑛)2 ,     (8) 

with  

 ℎ𝑛 = ∑ 𝐽𝑙𝜉𝑛+𝑙𝑙  .       (9) 

The obtained relations are equivalent to those of the Ising model with a transverse field,29,30) 

but the interactions extend further than those in second-nearest neighbors. Therefore, the 

system is called the quantum ANNNI model in this paper.  
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The Fourier component of the interactions in Eq. (4) can be written as  

 𝐽(𝑞) = ∑ 𝐽𝑙𝑒
2𝜋𝑖𝑞𝑙

𝑙 = 𝐽0 + 2(𝐽1 cos 2𝜋𝑞 + 𝐽2 cos 4𝜋𝑞 + 𝐽3 cos 6𝜋𝑞 +⋯).  (10) 

We truncate up to J3, because many incommensurate ferroelectrics can be described by this 

restriction qualitatively.21,34,36) An ordered structure with the wave number q is represented 

by Fourier components as 

𝜉𝑛 = ∑ 𝜉𝑘𝑘 𝑒2𝜋𝑖𝑘𝑞𝑛 = 𝐴1 cos 2𝜋𝑞(𝑛 + 𝜈) + 𝐴3 cos 6𝜋𝑞(𝑛 + 𝜈) + ⋯.     (11) 

The phase shift  is 1/2 for q = 1/2, 1/4, 1/8, etc., and 0 in other cases. The free energy is 

also written as {𝐴𝑘}  and is minimized analytically or numerically to fix the amplitudes 

{𝐴𝑘} for the given wave number q. The primary amplitude A1(q) appears spontaneously 

below the transition temperature Tc(q). For the given parameters Jl and T1, the structure with 

the minimum free energy is stable among modulated structures.21)  

  If the external field h is switched on, additional even terms should be added to Eq. (11),  

          𝛿𝜉𝑛 = 𝛿𝐴0 + 𝛿𝐴2 cos 4𝜋𝑞(𝑛 + 𝜈) + 𝛿𝐴4 cos 8𝜋𝑞(𝑛 + 𝜈) + ⋯.  (12) 

We consider a linear response to h, then the induced Ak’s obey the following relations:  

 ∑ [Λ𝑛 − Ξ𝑛𝐽(𝑘𝑞)] cos 2𝜋𝑘𝑞(𝑛 + 𝜈) 𝛿𝐴𝑘𝑘=0,2,⋯ = Ξ𝑛ℎ,  (13) 

where  

 𝛯𝑛 = −
ℎ𝑛𝜉𝑛

Λ𝑛
+ tanh

Λ𝑛

𝑇
+

ℎ𝑛
2

𝑇Λ𝑛
sech2

Λ𝑛

𝑇
,    (14) 

and the coefficients n and n are given by Ak’s under zero field. Since n may be 1 to N (the 

commensurate cell period), Eq. (13) shows linear equations for Ak’s. If q is incommensurate, 

the number of Fourier amplitudes is infinity in principle. We truncate them at 5 or 10 orders 

and replace discrete summations by integrations.21) Thus, it is solved algebraically, once the 

zero-field order parameters n’s are fixed. The susceptibility for the uniform external field is 

obtained as  

 𝜒 = 𝛿𝐴0/ℎ .       (15) 

In the disordered (paraelectric) phase, the susceptibility is identical to Barrett’s equation:23,26)  

 𝜒 = [
𝑇1

2
coth

𝑇1

2𝑇
− 𝐽(0)]

−1

 .     (16) 

Generally, the calculations to minimize free energy and obtain Fourier components and 

susceptibility are performed numerically. 

 

3. Results and discussion 
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If we apply the formulations to incommensurate phases of thiourea (J1 > 0, J2 < 0) and 

orthorhombic A2BX4 systems (J1 < 0, J2 < 0), then the increase in permittivity accompanying 

lock-in transitions can be simulated successfully. However, in the following, we apply 

another case to clarify the quantum effect on modulated crystals. 

3.1 Phase diagram 

In our previous paper,21) we considered the quantum effect on the phase diagram for the 

interaction parameters J1 = 1, J2 < 0, and J3 > 0 in the discussion of the phase transition of 

monoclinic A2BX4.
20) We demonstrated successfully that the incommensurate phase with the 

wave number ca. 0.3 extends down to zero temperature and the regions of commensurate 

phases shrink owing to the quantum effect. However, the parameter J0 was ignored in that 

paper.  

Here, we take J0 into account and reconstruct the phase diagram. The magnitude of the 

nearest-neighbor interaction J1 is set to 1 for the scale of energy/temperature. The other 

parameters are J0 = 2, J3 = 1.5, and -3 < J2 < -0.5 in the phase diagram of Fig. 1. At high 

temperatures, the system is disordered, as denoted by ‘PARA’. At low temperatures, ordered 

states with incommensurate or commensurate wave numbers are stabilized. The period of 

the commensurate states is limited to 10 unit cells for simplicity, and the longer-period 

structures are regarded as the incommensurate state denoted by ‘INCOM’. If the system is 

classical, i.e., the quantum parameter T1 = 0, then the zero temperature states are 

commensurate phases q = 0, 1/3, 2/7, and 1/4; no incommensurate state, as well as q = 3/10 

commensurate state, survives at zero temperature. The classical phase boundaries are 

indicated by broken lines in Fig. 1.  

When the quantum parameter is switched on, the phase boundaries shift to lower 

temperatures as shown by solid lines in Fig. 1 for T1 = 5. Note that the regions of q = 1/3, 

2/7, and 1/4 are narrow, and the regions of the incommensurate state and commensurate q = 

3/10 state enlarge and reach the axis of zero temperature. 

3.2 Dielectric susceptibilities 

The susceptibility  defined by Eq. (15) represents the dielectric susceptibility if the local 

coordinate xn belongs to the polar symmetry and the external field is an electric one. 

Therefore,  will demonstrate the permittivity of a nominally single crystal. The calculated 

susceptibility  is plotted in Fig. 2 as a function of temperature T, where T1, J0, J1, and J3 are 
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5, 2, 1, and 1.5, respectively. The value of the parameter J2 is shown in the figure. The cusps 

at approximately T = 6 indicate PARA-INCOM transitions. The INCOM phase 

discontinuously transforms to q = 1/3 (J2 = -1.1), 3/10 (J2 = -1.6), or 2/7 followed by 1/4 (J2 

= -2.4). If the system is classical (T1 = 0),  decreases monotonically to zero as temperature 

decreases. However, quantum fluctuations increase the susceptibility even at low 

temperatures, so that  remains at a finite value even at T = 0 in both incommensurate and 

commensurate states. A marked increase in  is recognized at approximately T = 3 in the 

commensurate phase of q = 3/10 for J2 = -1.6. The system remains INCOM, but  is 

maximum at T = 0 if the INCOM phase reaches T = 0, as shown in the case of J2 = -2. The 

marked increase in incommensurate  is also recognized for J2 = -1.1 at low temperatures 

before the transition to the q = 1/3 state.  

3.3 Simulation of (Rb1-xKx)2ZnI4 system 

The ferroelectric crystal of K2ZnI4 shows a typical paraelectric-ferroelectric transition at Tc, 

which may correspond to -0.9 < J2 in Fig. 1. On the other hand, Rb2ZnI4 undergoes the 

paraelectric-incommensurate transition at a temperature lower than that in the ferroelectric 

transition of K2ZnI4. To simulate the mixed crystal system of (Rb1-xKx)2ZnI4, let us introduce 

a simple but arbitrary assumption for the parameter,  

 𝐽0 = 4.5 + 4𝐽2 .       (17) 

Other parameters are set at T1 = 2, J1 = 1, J3 = 0.9, -1.1 < J2 < -0.7. Then the phase diagram 

is modified as shown in Fig. 3. No commensurate phase except for the ferroelectric phase (q 

= 0) appears. This phase diagram is similar in phase boundaries to (Rb1-xKx)2ZnI4 with x < 

0.5. The incommensurate wave number for J2 = -1 is q = 0.29, which fairly agrees with the 

reported value of 0.3 for Rb2ZnI4. The transition between the incommensurate phase and the 

commensurate (q = 0) phase is a first-order one. 

  The temperature dependence of the susceptibility is shown in Fig. 4 for three selected J2’s. 

For J2 = -0.75, the paraelectric-ferroelectric transition occurs at Tc = 3.71, where  diverges 

to infinity. With decreasing temperature below Tc,  decreases monotonically; however, it 

shows an expanded curvature at around T ~ 2. Since the calculation assumes a single domain 

in the ferroelectric phase, this behavior is caused not by domains but by quantum fluctuations. 

  For J2 = -0.85, the paraelectric phase transforms to the incommensurate phase with an 

accompanying cusp anomaly at Tc = 3.23, which is followed by the ferroelectric phase below 
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T = 2.50. At T = 0,  of the ferroelectric phase remains finite as mentioned above.  

  For J2 = -0.95, the paraelectric phase transforms to the incommensurate phase at Tc = 2.99, 

below which the incommensurate phase is stable down to zero temperature. The 

susceptibility  takes a minimum value at around T = 1.15, and it grows slightly in the low- 

temperature range. The value saturates at 140% of the local minimum. Such an increase in 

 qualitatively resembles the temperature dependence of the permittivity of Rb2ZnI4 (Fig. 1 

in Ref. 20 and Figs. 2 and 3 in Ref. 24). 

  

4. Conclusions 

In SrTiO3 and related perovskite crystals, quantum fluctuations suppress ferroelectricity and 

the crystals remain in the paraelectric state accompanied by markedly increased permittivity 

at low temperatures.22,23,26) Quantum paraelectricity has been the focus of much interest 

recently in the field of novel organic ferroelectrics.38,39) The similar phase diagram and the 

increased permittivity in the mixed crystal system (Rb1-xKx)2ZnI4 have been 

reported.17,20,24,25) The typical quantum paraelectricity is recognized at the ferroelectric phase 

transition from the paraelectric phase. However, in the case of (Rb1-xKx)2ZnI4, the increased 

permittivity is observed in the ordered incommensurate phase. To explain the quantum effect 

on the incommensurate phase, we have analyzed the quantum ANNNI model and calculated 

the dielectric susceptibility.  

The conclusions are summarized as follows: (i) We can reconstruct the phase diagram 

qualitatively, and the incommensurate state is stable down to zero temperature for some 

parameter regions. (ii) The incommensurate-ferroelectric transition is a strong first-order 

transition, so that the susceptibility only changes discontinuously, which is different from 

the case of the lock-in transitions. (iii) Not only in the incommensurate phase but also in the 

high-order commensurate phase as q = 3/10, the susceptibility tends to increase and saturates 

at zero temperature. (iv) Because of the quantum effect, the order parameter cannot increase 

to the classical value, and the parameter can change its magnitude in response to the external 

field. Such a phenomenon may be called quantum incommensurability as an analogy of 

quantum paraelectricity. 

  Finally, let us comment on the chosen parameters. The parameters {Jn} do not indicate the 

bare atomic interactions between neighbors, but only represent the soft mode dispersion [see 
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Eq. (4)]. Therefore, such a range of J3 > J1 ~ -J2 is not peculiar at all. As discussed in our 

previous paper,21) the parameters are set to reproduce the phase diagram where the q ~ 0.3 

incommensurate phase lies beside the q = 0 commensurate phase; that is, the phonon 

dispersion (q) has two minima at around q = 0 and q ~ 0.3. Further experimental 

investigations, especially diffraction studies of Rb2ZnI4 and the isomorphous crystals at low 

temperatures are desirable. In addition, dynamical susceptibility shall be calculated within 

the mean field approximation, if time-dependent external force and responses are 

considered.3,40,41) 
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Figure Captions 

Fig. 1. (Color online) Calculated phase diagrams for a classical case (broken lines) and a 

quantum case of T1 = 5 (solid lines). Modulated commensurate phases and uniform phase 

are shown by q = 1/4, 2/7, 3/10, 1/3, and 0. The incommensurately modulated phases denoted 

by INCOM extend down to zero temperature for the quantum case. 

 

 

Fig. 2. (Color online) Calculated susceptibility for the quantum case of T
1 

= 5. The 

parameters are J0 = 2, J1 = 1, and J3 = 1.5; J2 = -1.1, -1.6, -2.0, and -2.4 are shown in the 

figure. 

 

 

Fig. 3. (Color online) Calculated phase diagram with the assumption of J0 = 4.5 + 4J2. Other 

parameters are T1 = 2, J1 = 1, and J3 = 0.9. 

 

 

Fig. 4. (Color online) Temperature T dependence of calculated susceptibility  with the 

parameters of T1 = 2, J1 = 1, J3 = 0.9, and J0 = 4.5 + 4J2. Three cases of J2 are plotted. 
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Fig. 1.  (Color Online) 

  

0

2

4

6

8

10

-3 -2.5 -2 -1.5 -1 -0.5

T
em

p
er

at
u

re

Parameter J
2

q = 01/3

3/10

2/7

q =1/4

INCOM

INCOM

PARA



  Template for JJAP Regular Papers (Feb. 2017) 

15 

 

 

Fig. 2. (Color online) 
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Fig. 3. (Color online) 
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Fig. 4. (Color online) 
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