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The Fokas-Lenells (FL) equation is an integrable model for the nonlinear propagation of short pulses in an

optical fiber. We introduce an integrable multi-component FL system and provide its bright multisoliton

solutions as well as an infinite number of conservation laws under the vanishing boundary conditions. We

also give the dark multisoliton solutions of the system under the nonvanishing boundary conditions.

1. Introduction

1.1. Basic equation

The Fokas-Lenells (FL) equation is an integrable generalization of the nonlinear Schrödinger (NLS)

equation. In the context of fiber optics, it describes the nonlinear propagation of short pulses in a

monomode fiber. Starting from Maxwell’s equation for an electric field, Lenells derived the following

equation [1]

iAz +
1
β0

Azz − 1
β0vg

AzT + γ ATT − iβ3

6
ATTT

= −ρA|A|2 − is(A|A|2)T − iτA(|A|2)T , (1.1)

where A = A(z, T ) is an envelope of an electric field, z and T = t − z/vg denote the space and time

variables, respectively, β0 is a wave number, vg is a group velocity, and γ, β3, ρ, s, τ are real constants.

The several completely integrable equations are obtained by the reductions of Eq. (1.1). Among

them, the following four equations are well-known:

1) A modified NLS equation

iAz + γ ATT = −ρA|A|2 − is(A|A|2)T . (1.2)

2) Hirota equation (Hirota [2])

Az + ATTT = −6|A|2AT . (1.3)

3) Sasa-Satsuma equation (Sasa & Satsuma [3])

Az + ATTT = −6|A|2AT − 3A(|A|2)T . (1.4)
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4) FL equation (Fokas [4], Lenells [1]

iAz − 1
β0vg

AzT + γ ATT = −ρ|A|2
(

A + i
s

ρ
AT

)
, s + τ = 0, 1/β0vg = s/ρ. (1.5)

If we put A = u, s/ρ = ν in Eq. (1.5) and identify z and T with t and x, respectively, the FL equation

can be rewritten as

iut − νuxt + γuxx + ρ|u|2(u + iνux) = 0.

Replacing u by
√

a/|ρ|b ei(bx+2abt)u (a = γ/ν > 0, b = 1/ν), this equation becomes

uxt − auxx = ab2(−u + iσ|u|2ux), (σ = sgn ρ).

Last, by means of the transformations x + at → x,−ab2t → t, we arrive at the simplified form of the FL

equation

uxt = u− iσ|u|2ux, σ = ±1. (1.6)

1.2. Purpose

Here, we address the following issues:

• Generalization of the FL equation to an integrable multi-component system.

• Construction of the bright soliton solutions of the multi-component FL system by means of a direct

method.

• Derivation of an infinite number of conservation laws of the multi-component FL system.

• Bilinearization under the nonvanishing boundary conditions and construction of the dark soliton

solutions.

In this report, we outline the main results and the detail will be published in a separate paper.

2. Multi-component Fokas-Lenells system

2.1. Lax pair

The FL equation has an integrable multi-component generalization. Actually, it exhibits a Lax rep-

resentation

Ψx = UΨ, Ψt = V Ψ, (U, V : (n + 1)× (n + 1) matrices), (2.1a)

U =
(

i
2ζ2 −iζux

iζvT
x − i

2ζ2I

)
= (ujk)1≤j,k≤n+1, V =

(
− i

2ζ2 − iuvT 1
ζ u

1
ζ v

T i
2ζ2 I + ivT u

)
= (vjk)1≤j,k≤n+1,

(2.1b)

Ψ = (ψ1, ψ2, ..., ψn+1), u = (u1, u2, ..., un), v = (v1, v2, ..., vn), Ψ ∈ Cn+1, u,v ∈ Cn, (2.1c)
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where ζ is a spectral parameter. It follows from the compatibility condition of the Lax pair that Ut −
Vx + UV − V U = O. This yields the system of equations for the vector variables u and v:

uxt − u + i(uxvT u + uvT ux) = 0, (2.2a)

vxt − v − i(vxuT v + vuT vx) = 0. (2.2b)

Recall that the system of equations (2.2) can be reduced from the first negative flow of the matrix

derivative NLS hierarchy. See, for example Fordy [5], Tsuchida & Wadati [6], Tsuchida [7], Guo & Ling

[8].

2.2. Reduction

If we put vj = σju
∗
j , σj = ±1 (j = 1, 2, ..., n), then the system of equations (2.2) reduces to

uj,xt = uj − i

{(
n∑

s=1

σsus,xu∗s

)
uj +

(
n∑

s=1

σsusu
∗
s

)
uj,x

}
, (j = 1, 2, ..., n). (2.3)

The following two special cases have been considered for the system (2.3):

1) n = 1: FL equation (Fokas [4], Lenells [1])

uxt = u− 2iσ|u|2ux, (u ≡ u1, σ1 = 1).

2) n = 2: Two-component FL system (Guo & Ling [8], Ling et al [9])

u1,xt = u1 − i
{
(2|u1|2 + σ|u2|2)u1,x + iσu1u

∗
2u2,x

}
, (2.4a)

u2,xt = u2 − i
{
(|u1|2 + 2σ|u2|2)u2,x + iσu2u

∗
1u1,x

}
, (σ1 = 1, σ2 = σ). (2.4b)

3. Soliton solutions

3.1. Bilinearization

There exist several exact methods of solution for solving integrable soliton equations. Among them,

we employ a direct method [10] (or, bilinear transformation method [11]). Specifically, we construct the

bright soliton solutions of the multi-component FL system (2.3) under the vanishing boundary conditions

uj → 0 as |x| → ∞ (j = 1, 2, ..., n).

• Proposition 1

Under the dependent variable transformations

uj =
gj

f
, (j = 1, 2, ..., n), (3.1)

the multi-component FL system (2.3) can be decoupled into the system of equations

Dtf · f∗ = i
n∑

k=1

σkgkg∗k, (3.2)
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DxDtf · f∗ = i
n∑

k=1

σkDxgk · g∗k, (3.3)

f∗(gj,xtf − gj,tfx − gjf) = f∗t (gj,xf − gjfx), (j = 1, 2, ..., n), (3.4)

where f = f(x, t) and gj = gj(x, t) are the complex-valued functions of x and t and the bilinear operators

Dx and Dt are defined by

Dm
x Dn

t f · g =
(

∂

∂x
− ∂

∂x′

)m (
∂

∂t
− ∂

∂t′

)n

f(x, t)g(x′, t′)
∣∣∣
x′=x, t′=t

with m and n being nonnegative integers.

• Remarks

1) We can decouple the trilinear equations (3.4) into a system of bilinear equations

gj,xtf − gj,tfx − gjf = hjf
∗
t , (j = 1, 2, ..., n), (3.5a)

gj,xf − gjfx = hjf
∗, (j = 1, 2, ..., n), (3.5b)

where hj = hj(x, t) are the complex-valued functions of x and t. This system can be rewritten by using

the bilinear operators

DxDtgj · f − 2gjf = −Dthj · f∗, (j = 1, 2, ..., n), (3.6a)

Dxgj · f = hjf
∗, (j = 1, 2, ..., n). (3.6b)

2) If we introduce the variables qj = uj,x, then

qj =
(

gj

f

)

x

=
hjf

∗

f2
, (j = 1, 2, ..., n), (3.7)

solve the n-component derivative NLS system

iqj,t + qj,xx + 2i

[(
n∑

k=1

σk|qk|2
)

qj

]

x

= 0, (j = 1, 2, ..., n). (3.8)

This comes from the fact that the n-component FL system (2.3) is the first negative flow of the n-

component derivative NLS hierarchy.

3.2. The bright N-soliton solution

• Proposition 2

The bright N -soliton solution of the system of equations (3.2)-(3.4) are given in terms of the following

determinants

f = |D|, D = (djk)1≤j,k≤N , gj =
∣∣∣∣
D zT

t

a∗j o

∣∣∣∣ , (j = 1, 2, ..., n), (3.9)

djk =
zjz

∗
k − ip∗kCjk

pj + p∗k
, zj = epjx+ 1

pj
t
, Cjk =

n∑
s=1

σsαsjα
∗
sk, (3.10)
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z = (z1, z2, ..., zN ), zt =
(

z1

p1
,
z2

p2
, ...,

zN

pN

)
, aj = (αj1, αj2, ..., αjN ), (j = 1, 2, ..., n). (3.11)

Here, pj (j = 1, 2, ..., N) and αjk (j = 1, 2, ..., n; k = 1, 2, ..., N) are arbitrary complex parameters.

The proof of the Proposition 2 can be done by means of an elementary calculation using the basic

formulas of determinants, i.e.,

∂

∂x
|D| =

N∑

j,k=1

∂djk

∂x
Djk, (Djk : cofactor of djk),

∣∣∣∣
D aT

b z

∣∣∣∣ = |D|z −
N∑

j,k=1

Djkajbk,

|D(a,b; c,d)||D| = |D(a; c)||D(b;d)| − |D(a;d)||D(b; c)) : Jacobi′s identity.

If one replaces zj by zj = epjx+ip2
j t, then Proposition 2 provides the bright N -soliton solution of the

n-component derivative NLS system [12]

qj =
hjf

∗

f2
, hj = (−1)N

N∏

j=1

p∗j
pj

∣∣∣∣
D zT

a∗j o

∣∣∣∣ , (j = 1, 2, ..., n).

4. Conservation laws

The several methods are available to derive an infinite number of conservation laws for integrable

soliton equations. One of them is based on the inverse scattering method, which we apply to the system

(2.3). First, we write the linear system (2.1a) in terms of its components

ψj,x =
n+1∑

k=1

ujkψk, ψj,t =
n+1∑

k=1

vjkψk, (j = 1, 2, ..., n + 1). (4.1)

The compatibility condition of this system gives
(

n+1∑

k=1

ujkψk

ψj

)

t

=

(
n+1∑

k=1

vjkψk

ψj

)

x

, (j = 1, 2, ..., n + 1). (4.2)

For j = 1, the relation (4.2) yields
(

u11 +
n+1∑

k=2

u1kψk

ψ1

)

t

=

(
v11 +

n+1∑

k=2

v1kψk

ψ1

)

x

.

If we substitute the matrix elements of U and V from (2.1b) and introduce the new variables Γj =

ψj+1/ψ1 (j = 1, 2, ..., n), this expression can be put into the form



n∑

j=1

qjΓj




t

=


1

ζ

n∑

k=1

σkuku∗k +
i

ζ2

n∑

j=1

ujΓj




x

, (qj = uj,x). (4.3)

showing that the quantity
∫∞
−∞

∑n
j=1 qjΓjdx is conserved.
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Similarly, it follows from the first equation in (4.1) that

qjΓj =
1
ζ
σjqjq

∗
j +

i
ζ2

qjΓj,x +
1
ζ

qjΓj

n∑

k=1

qkΓk, (j = 1, 2, ..., n). (4.4)

We expand the quantity qjΓj in inverse powers of ζ as

qjΓj =
∞∑

k=1

f
(k)
j

ζ2k−1
, (j = 1, 2, ..., n), (4.5)

subsitute it into (4.4) and compare the same power of ζ. Then, we obtain the recursion relation that

determines f
(k)
j :

f
(1)
j = σjqjq

∗
j , (j = 1, 2, ..., n), (4.6a)

f
(k)
j = iqj

(
f

(k−1)
j

qj

)

x

+
k−1∑

l=1

f
(k−l)
j

n∑
s=1

f (l)
s , (j = 1, 2, ..., n, k ≥ 2). (4.6b)

Consequently, the quantity

I =
∫ ∞

−∞

n∑

j=1

qjΓjdx =
∞∑

k=1

1
ζ2k−1

∫ ∞

−∞

n∑

j=1

f
(k)
j dx ≡

∞∑

k=1

Ik

ζ2k−1
, (4.7)

is conserved. Thus, we obtain an infinite number of conservation laws

Ik =
∫ ∞

−∞

n∑

j=1

f
(k)
j dx, (k = 1, 2, ...). (4.8)

The first three of them read

I1 =
∫ ∞

−∞

n∑

j=1

σjqjq
∗
j dx, (qj = uj,x), (4.9a)

I2 =
∫ ∞

−∞


 i

2

n∑

j=1

σj(qjq
∗
j,x − q∗j qj,x) +




n∑

j=1

σjqjq
∗
j




2

 dx, (4.9b)

I3 =
∫ ∞

−∞




n∑

j=1

σjqj,xq∗j,x +
3
2

i
n∑

j=1

σj(qjq
∗
j,x − qj,xq∗j )

n∑
s=1

σsqsq
∗
s + 2




n∑

j=1

σjqjq
∗
j




3

 dx. (4.9c)

5. Discussion

We discuss solutions of the n-component FL system (2.3) under the nonvanishing boundary conditions

uj ∼ ρj exp
(
ikjx− iωjt + iφ(±)

j

)
, x → ±∞, (j = 1, 2, ..., n), (5.1)

where ρj ∈ C, kj , ωj ∈ R represent the amplitude, wavenumber and angular frequency of the plane wave,

respectively, and φ
(±)
j are phase constants. The linear dispersion relation of the system (2.3) then becomes

kjωj = 1 +
n∑

s=1

σsks|ρs|2 +
n∑

s=1

σs|ρs|2kj , (j = 1, 2, ..., n). (5.2)
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Introducing the dependent variable transformations

uj = ρjei(kjx−ωjt) gj

f
, (j = 1, 2, ..., n), (5.3)

and performing the bilinearization, we obtain

Dtf · f∗ = i
n∑

k=1

σk|ρk|2(gkg∗k − ff∗), (5.4)

DxDtf · f∗ − i
n∑

k=1

σk|ρk|2Dxgk · g∗k + i
n∑

k=1

σk|ρk|2Dxf · f∗ + 2
n∑

s=1

σsks|ρs|2(gsg
∗
s − ff∗) = 0, (5.5)

f∗
[
gj,xtf − (fx − ikjf)gj,t − i

kj

(
1 +

n∑
s=1

σsks|ρs|2
)

Dxgj · f
]

= f∗t (gj,xf − gjfx + ikjgjf), (j = 1, 2, ..., n). (5.6)

As in the case of Eqs. (3.4), the trilinear equations (5.6) can be decoupled to the bilinear equations.

In the special case of n = 1, the corresponding expressions are given by

u = ρei(kx−ωt+φ(±)) g

f
, (5.7)

Dtf · f∗ = iρ2(gg∗ − ff∗), (5.8)

DxDtf · f∗ = iρ2Dxg · g∗ + iρ2Dxf · f∗ + 2ρ2k(gg∗ − ff∗), (5.9)

f∗
[
gxtf − (fx − ikf)gt − i

(
1
k

+ ρ2

)
Dxg · g∗

]
= f∗t (gxf − gfx + ikfg), (5.10)

where g = g1, ρ = ρ1, k = k1, ω = ω1, φ
(±) = φ

(±)
1 , σ1 = 1. This system of equations coincides with that

given in Matsuno [13] for the FL equation under the boundary condition (5.1).

The construction of the dark N -soliton solution of the system of equations (5.4)-(5.6) can be done

following the similar procedure as that developed for the vanishing boundary conditions. It is given

compactly by the determinantal form

f = |D|, D =
(

δjk − ipj

pj + p∗k
zjz

∗
k

)

1≤j,k≤N

, (5.11)

gs = |Gs|, Gs =
(

δjk − ip∗k
pj + p∗k

pj − iks

p∗k + iks
zjz

∗
k

)

1≤j,k≤N

, (s = 1, 2, ..., n), (5.12)

zj = exp
[
pjx +

1 +
∑n

s=1 σsks|ρs|2
pj

t + ζj0

]
, (j = 1, 2, ..., N), (5.13)

where pj and ζj0 (j = 1, 2, ..., N) are arbitrary complex parameters and the N constraints are imposed

on the former parameters

n∑
s=1

pjp
∗
jσsks|as|2

(pj − iks)(p∗j + iks)
= 1 +

n∑
s=1

σsks|ρs|2, (j = 1, 2, ..., N). (5.14)
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We point out that the expressions (5.11)-(5.14) will provide the dark N -soliton solution of the n-

component derivative NLS system (3.8) if one changes the time dependence of zj from (5.13) and the

constraints (5.14) appropriately.
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