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Abstract

 MicroRNAs (miRNA) in tissues and liquid samples can serve as biomarkers of 

many diseases. The thesis hypothesis is miRNA can be the biomarker of bovine mastitis 

milk. The primary aim of this thesis is to identify alternatively expressed miRNAs in 

mastitis milk compare to normal milk. 

 In the first chapter, experiments are designed to decide the suitable reference 

miRNA in milk for qPCR assay. We chose miR-92a, miR-375, and let-7g as candidate 

reference genes on the basis of previous report of next generation sequencing dataset. 

The Normfinder software was identified miR-92a as the most stable reference gene. 

The candidates were then validated by normalizing the expression levels of miR-146a,

the well-known inflammation associated miRNAs. The significance levels were most 

remarkable and reproducible when miR-92a used as the reference. Based on the results, 

miR-92a is the best reference gene for relative quantification of miRNA expression in 

bovine milk. 

 In the second chapter, experiments are designed to identify the miRNA biomarkers 

of bovine mastitis. The expression levels were analyzed using qPCR and normalized to 

miR-92a. Eight miRNAs (miR-21, miR-29b, miR-122, miR-125b, miR-204, miR-205, 

miR-222, and miR-383) were compared to normal and mastitis cows. MiR-21, miR-



2 

122, miR-125b, miR-205, miR-222 and miR-383 were significant up-regulated and 

miR-29b was significant down-regulated in mastitis cows. We separated mastitis cow 

samples into non-inflammation quarter group (CMT ) and inflammation quarter group 

(CMT+). We found that MiR-21, miR-146a, miR-155, miR-222 and miR-383 were 

significant up-regulated in mastitis milk. These genes were further analysis using the 

Digital PCR System. The results of Digital PCR had a strong correlation with qPCR, 

and up-regulating of miR-21, miR-146a, miR-155, miR-222 and miR-383 were also 

confirmed in mastitis milk. MiR-21, miR-146a, and miR-155 are known to be 

associated with inflammation. In the second study, we discovered the new target 

miRNA as biomarkers of bovine mastitis milk. 

 In the third chapter, experiments are using next generation sequencing technic to 

study miRNA 

expressed, with 23 miRNA being upregulated and 2 downregulated in bovine mastitis 

relative to the normal milk. The upregulated mature miR-1246 was likely derived from 

U2 small nuclear RNA instead of miR-1246 precursor. The significantly upregulated 

miRNA precursors and RNU2 were significantly enriched in the bovine chromosome 

19. Bovine chromosome 19 is homologous to human chromosome 17, the gene related 

with human breast cancer. Gene ontology analysis of significantly upregulated miRNA 

putative mRNA targets showed that the upregulated miRNA were involved in bind to 
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target mRNA transcripts and regulate target gene expression, while KEGG pathway 

analysis showed that upregulated miRNA were mainly related to cancer and immune 

system pathways. Three of novel miRNA were related with bovine mastitis and 

relatively highly expressed in milk. We further verified that one of the mastitis related 

novel miRNA was significantly upregulated using a digital PCR system. The 

differentially expressed miRNA are known to involve in human cancer, infection and 

immune related diseases.  

 In final conclusion, our studies find that miRNA could be biomarkers of bovine 

mastitis. The genome-wide views of miRNA profiles provide insights into bovine 

mastitis and inflammatory diseases
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General Introduction

Inflammation processes are controlled by miRNA, thus the hypotheses of this thesis 

are: Because of the regulatory functions of miRNA, miRNA play a role in bovine 

mastitis, and some of inflammation related miRNA are conserved between humans and 

cows. The primary aim is to identify alternatively expressed miRNAs in mastitis milk 

compare to normal milk, and use these miRNA as biomarkers for bovine mastitis.

Because PCR technic needs housekeeping gene, we investigated the suitable miRNA 

as a housekeeping gene for bovine mastitis milk in real time PCR experiment in chapter

1. The suitability of inflammation related miRNA as bovine mastitis biomarkers will be 

investigated in chapter 2. To investigate genome-wide miRNA expression in bovine 

mastitis, we performed next generation sequencing experiment and the result will be 

introduced in chapter 3. 

Bovine mastitis 1, 2

 Mastitis is inflammation of the parenchyma of the mammary gland, a major 

disease affecting dairy cattle worldwide. Mastitis is one of the important dairy animal 

disease because of its economic importance, the effect including: 1) loss in milk 

production. An estimate for the average milk-yield loss at the lactation level can be set 
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at 300-400 kg (4-6%) at lactation level 3. 2) Milk composition changes. Reduction in 

milk fat content, resulting in dairy products with less favorable organoleptic properties. 

High bulk tank somatic cell counts cause reduction in price, penalty payments or 

unearned premiums 2, 4. High somatic cell counts are associated with decreased 

productivity, shorter shelf life of fluid milk, and reduced cheese yield and quality 5, 6. 3)

Treatment and milk discard costs. Antibiotics, veterinary care, extra labor for husbandry, 

preventive, and medication measures. Mastitis milk and milk with antibiotics should be

discarded. The withdrawal period also result in economic lost. 4) Culling. Clinical 

mastitis cows have an increased risk of being culled, and mastitis accounts for 5-24% 

of the reasons for culling 7. The cost of mastitis has been estimated at $200/cow/yr, or 

$1.5 to $2 billion in the US 4.  

Etiology  

 Although bacteria are the most common microorganism causing mastitis, fungi, 

yeast, algae, and virus can cause mastitis. Pathogens can be further classified as 

contagious, teat skin opportunistic and environmental pathogens. The most common 

contagious pathogens are Staphylococcus aureus and Streptococcus agalactiae. This 

type of mastitis is usually caused by contaminated udder washcloths, inadequate 

milking equipment, and residual milk in teat cups; however, the hands of milkers can 
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be a source of S. aureus. Mycoplasma bovis is less common but once clinical mastitis 

outbreaks, it does not respond to therapy and difficult to control, and thus needs culling.

Coagulase-negative staphylococci (CNS) are the most common teat skin opportunistic 

mastitis pathogens. The skin opportunistic pathogens can ascend through the teat canal 

and create infection. The most common environmental mastitis pathogens are 

Escherichia coli and Klebsiella spp. (Coliform organisms are a common cause of 

clinical mastitis.), environmental Streptococcus spp. (most prevalent species are 

Streptococcus uberis and Streptococcus dysgalactiae, these pathogens usually cause a 

chronic subclinical infection.), and Trueperella pyogenes (important seasonal cause of 

mastitis in dry cows and late pregnant heifers). The environmental mastitis is caused by 

inadequate management of the environment, such as wet/dirty bedding or lots, 

inadequate premilking udder and teat preparation and milking processes, poor housing 

systems and fly control.  

Epidemiology 1

 Incidence of clinical mastitis ranges from 10%-12% per 100 cows at risk per year

1. The prevalence of bovine mastitis ranged from 29.34%-78.54% in cows 8. Prevalence 

of infection with contagious pathogens ranges from 7%-40% of cows and 6%-35% of 

quarters 1. Prevalence of infection with environmental pathogens: coliforms 1%-2% of 
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quarters; streptococci less than 5% 1. Staphylococcus aureus and Streptococcus spp. are 

the chief etiological agents, the prevalence ranged from 2.89%-79.12% and 0.4%-53%, 

respectively in Asian country 8. Coagulase-negative Staphylococcus spp. (CNS) have 

traditionally been considered to be minor mastitis pathogens; however, needs to be 

reconsidered as in many countries they have become the most common mastitis-causing 

agents 8, the prevalence ranged from 0.93%-97.80% 8. Although the prevalence may 

differ from countries or experiment design, based our sample set from Hokkaido, Japan,

the most prevalence bacteria were nonagalactiae streptococci, Coagulase-negative 

Staphylococcus spp. and Staphylococcus aureus. 

Clinical signs 1

 Clinical signs including abnormal secretion, abnormal udder, and an abnormal cow. 

Gross abnormalities in secretion including discoloration, clots, flakes, and pus. Physical 

abnormalities of udder are in size and consistency than other quarters: Acute 

inflammatory is accompanied by swelling, heat, pain and marked abnormality of the 

secretion. Severe cases may have gangrene or abscesses. Local fibrosis and atrophy can 

be found in chronic cases. Systemic response including anorexia, toxemia, pyrexia, 

tachypnea, depression, dehydration, fever, tachycardia, ruminal stasis, recumbency and 
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death 1. Because presence of localized pain in the udder, the hock-to-hock distance is 

increased in cattle with clinical mastitis 9.

Treatment 1

 Treatment of mastitis cow can be categorized into lactating cow and dry cow 

therapy. Mild cases of clinical mastitis with abnormal secretion only may not require 

treatment. Mastitis accompanied by an abnormal gland or systemic signs should 

administrate antimicrobial agents by intramammary infusion and parenterally. The 

considerations of making a choice of antibiotic for treatment including 10: Antibiotic 

sensitivity, ability to penetrate the udder and persist at a concentration to kill bacteria, 

residue and withdrawal periods and cost. Commonly used antibiotics including 

Penicillins, Aminoglycosides, Cephalosporins, and Tetracyclines 10. Acute and peracute 

mastitis cases require fluid, electrolytes supportive therapy and nonsteroidal

antiinflammatory agents 1. Intramammary infusion of long-acting antimicrobial agents 

at drying off prevents new infections during the early weeks of the dry period, and 

provides treatment for subclinical mastitis 1. 
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History of miRNA 11-13

miRNA are small non-coding RNA (ncRNA) molecules with ~22 nucleotides in 

length and functions as a post-transcriptional regulation regulator. The hint of 

transcriptional regulation function of miRNAs came from work that began in early 

1980s, which showed that lin-4 gene mutation in Caenorhabditis elegans caused 

developmental abnormalities 14, 15. Mutation in another Caenorhabditis elegans gene

named lin-14 also cause developmental defects 16. In 1987, Ferguson et al. found that a 

suppressor mutation in lin-14 reversed lin-4 mutation phenotype, suggested that lin-4

negatively regulates lin-14 17. In 1993, a novel regulatory mechanism mediated by non-

coding RNA has been found by researchers. Two small non-coding lin-4 transcripts of 

22 and 61 nt -14 that had sequence complementarity 

to the lin-4 small RNAs 18, 19. A second microRNA let-7 has been discovered in 2000. 

The function of let-7 is similarly to lin-4, controlling the L4-to-adult stage transition of 

larval development 20. Unlike lin-4, let-7 family is conserved among other species from 

flies to humans, suggesting that small RNA regulation mechanism is not a specific

phenomenon in nematodes 20. Since then, hundreds of miRNA have been identified in 

almost all metazoan genomes, including worms, flies, plants and mammals 21. In 2002, 

Calin et al. found that miR-15 and miR-16 are frequently deleted or down-regulated in 

chronic lymphocytic leukemia samples with deletions on 13q14 22. Within few years, 
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miRNA became a research hotspot of cancers, biomarkers and other diseases. In 2004, 

Takamizawa et al. demonstrated the prognostic value of miRNAs. They found the 

reduced expression of let-7 in human lung cancers in association with shortened 

postoperative survival 23. In 2005, Zhao et al. reported that miR-1 are specifically 

expressed in cardiac and skeletal muscle precursor cells and that miR-1 regulates 

ventricular cardiomyocytes. MiR-1 effects of cardiac regulatory proteins to control 

differentiation and proliferation during cardiogenesis 24. In 2007, Sonkoly et al. found 

that keratinocytes expressed miR-203 is upregulated in an autoimmune disease: 

psoriasis affected skin compared with healthy human skin or chronic inflammatory skin 

disease 25. Stanczyk et al. found increased expression of miR-155 and miR-146 in 

another autoimmune disease: rheumatoid arthritis affected synovial fibroblasts and 

synovial tissues 26. In 2007, Schaefer et al. suggested an involvement of miRNAs in 

neurodegenerative disorders 27. In 2010, Weber et al. investigated the miRNA spectrum 

in 12 body fluids and expand using body fluids as biomarkers for detecting and 

monitoring various physiopathological conditions 28. Because of the important roles of 

miRNA in cancer, miravirsen was the first miRNA which entered phase I clinical trial 

otide antisense RNA oligo with complementarity to 

29.  
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Biogenesis 30

miRNA biogenesis processes including 1) Gene transcription. 2) Processing by 

Drosha. 3) Exported into the cytoplasm by Exportin-5. 4) Processing by Dicer. 5)

Loading onto AGO proteins. MiRNA genes are mainly transcribed by RNA polymerase 

II 31. Transcribed primary miRNA undergoes nuclear processing by Drosha. The pre-

miRNA is then exported into the cytoplasm by Exportin-5 (EXP5). In the cytoplasm, 

pre-miRNA is cleaved by Dicer near the terminal loop, and producing a small RNA 

duplex. The Dicer produced small RNA duplex is subsequently loaded onto an AGO 

and form RNA-induced silencing complex (RISC) assembly. 

miRNA binding to mRNA and types of target sites 

 After miRNA incorporated into 

 target mRNAs and result in mRNA repression or

degradation. The fate of mRNA depends on the base pair matching degree. If the 

miRNA is perfectly matched to mRNA, the target mRNA will be degraded. However,

miRNA usually have mismatches to mRNA, and thus repress mRNA translation while 

it remain intact, although target degradation also can be triggered. Imperfect centered 

miRNA binding sites are common and can mediate repression of target mRNA; 

however the functional importance relative to seed region remains unknown 32. 
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The most effective canonical binding site of miRNA-mRNA is conserved Watson

region of the miRNA on the miRNA seed region nucleotides 2

7 33-37. Listed in order of decreasing preferential conservation and efficacy, the sites are: 

1) 8mer site. miRNA positions 2 8 match with an A in position 1 37. 2) 7mer-m8 site. 

miRNA position 2 8 match 35-37. 3) 7mer-A1 site. miRNA position 2 7 match with an 

A in position 1 37. 6mer sites have weaker preferential conservation and much lower 

efficacy, including 4) 6mer site. miRNA position 2 7 match37. 5) Offset-6mer. miRNA 

position 3 8 match 38 and 6) 6mer-A1 site, in which the efficacy is difficult to 

distinguish from background 38, 39. The 3  end pairing can supplement canonical sites, 

however no more than 5% of the seed matched sites supplement with 3 end 

supplementary pairing 35, 37-39.  

Canonical binding site types of miRNA. Figure from Target scan website 

(http://www.targetscan.org/docs/8mer.html). 
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Based on the miRNA-mRNA binding types and other characteristics, the targets 

of miRNA can be predicted by computational methods. Introduction of available target 

predicting tools please refer to chapter 3.  

miRNA in inflammatory responses 

 Bovine mastitis is caused by pathogenic challenge and related with host immune 

response. When the immune cells expose to inflammatory mediator, the signals can 

cause up- or downregulation of hundreds of immune response genes. miRNA also play 

a role in the inflammatory processes. This section will introduce the roles for miRNA 

in immune system.  

 miR-146a and miR-155 are originally identified and best characterized as 

inflammatory response miRNA that are upregulated by NF- naling pathway 40-42.

Protein regulators of Drosha processing in the miRNA biogenesis pathways such as p53 

and SMAD can also be affected during inflammatory responses43. Another Drosha 

processing regulating protein KSRP which binds to the terminal loop assists in the rapid 

increase in mature miR-155 levels seen during inflammation 44.  miRNA and 

inflammatory conditions please see the table below 43. 
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miRNA and inflammatory conditions. Table is modified from 43. PBMC, peripheral 

blood mononuclear cell; HSPC, hematopoietic stem/progenitor cell.

Disease miRNA cell 

Multiple sclerosis 
miR-155 Th1 and Th17 
miR-326 Th17 
miR-124 Myeloid 

Rheumatoid arthritis 

miR-155 B cell and Th17 
miR-223 T cells 
miR-182 T cells 
miR-146a T cells and Macs 

Systemic lupus 
erythematosus 

miR-146a T cells 
miR-182 T cells 
miR-17-92 T cells 
miR-21 T cells 
miR-155 B and T cells 

Type 1 diabetes miR-510 Tregs 
Type 2 diabetes miR-146a PBMCs 
Sjögren syndrome miR-146a Monocytes 
Atopic dermatitis miR-155 T cells 

Allergic inflammation 
let-7 T cells 
miR-126 Th2 

Inflammatory bowel disease miR-155 

IgA nephropathy 
miR-155 Extracellular 
miR-146a Extracellular 

Endotoxemia 
miR-146a Myeloid 
miR-155 Myeloid 

Bacterial infection  miR-155 Myeloid, B, T cells

Myeloproliferative disorders
miR-125b HSPCs 
miR-155 HSPCs 
miR-146a 
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miRNAs in innate immunity

The innate immune response is a cellular response, the first line of defense against 

pathogens and the initiator of inflammatory responses. The cells involved in innate 

immune response including: 1) Granulocytes. 2) Monocyte/Macrophages. 3) Dendritic

cells. The Toll-like receptors (TLR) on the membrane of macrophages and dendritic 

cells recognize and bind to specific microbial products called pathogen-associated 

molecular patterns (PAMPs), such as TLR2 can recognizes lipoteichoic acid from

Gram-positive bacteria and TLR4 can recognizes lipopolysaccharide from Gram-

negative bacteria, then trigger downstream signaling pathway to initiate inflammatory 

responses. The relationship between TLR and miR-21, miR-146a and miR-155 have 

been extensively studied and used as bovine mastitis biomarkers in our work (Chapter 

2). miR-155 downregulates SHIP1 and SOCS1, the important genes in controlling 

inflammatory response, result in AKT and IFN response gene expression upregulated, 

and promote the immune response 45, 46. Immune responses are decreased in miR-155 

deficient mice, whereas miR-155-overexpressing mice develop a myeloproliferation 

similar to chronic inflammation and hematopoietic cancers 47-50. miR-146a and miR-21

are the negative regulators of the immune response. miR-146a inhibits TRAF6 and 

IRAK1 that are involved in TLR signaling transduction and lead to NF- . 

miR-146a reduces pro-inflammatory mediators such as IL-6 and TNF- 41, 
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51, 52. miR-21 targeting PDCD4 decreases NF- and IL-10 production, and 

thus switch to anti-inflammatory response 53. miRNA, TLR and their signaling 

molecular please see the table below 54. 

miRNA, TLR and their signaling molecular. Table is modified from 54. ND: not 

determined. 

miRNA TLR Signaling molecular 
Upregulated 
miR-155 TLR2, TLR3, TLR4, TLR9 MYD88, TRIF, JNK, AP1, NF-
miR-146 TLR2, TLR3, TLR4, TLR5 MYD88, NF-
miR-132 TLR4, TLR9 ND 
miR-21 TLR4 MYD88, TRIF, NF-
miR-223 TLR4 ND 
miR-147 TLR2, TLR3, TLR4 MYD88, TRIF, NF-
miR-9 TLR2, TLR4, TLR7, TLR8 MYD88, NF-
miR-125b TLR4 NF-
let-7e TLR4 AKT1 
miR-27b TLR4 NF-
Downregulated 
miR-125b TLR4 NF-
let-7i TLR4 NF-
miR-98 TLR4 ND 

 Other important miRNA which regulate innate immunity including miR-223, 

-A and E2F1, leads 

to granulocytes differentiation enhanced 55, 56. miR-223 also acts as a negative regulator 

of granulocyte differentiation in miR-223 knockout mice by targeting  mef2c 57. The
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granulocytes in miR-223 mutant mice are hyperactivated, lead to inflammatory lung 

pathology and exhibit exaggerated tissue destruction after endotoxin challenge 57. The 

expression of miR-223 was increased in mastitis milk, suggesting that mastitis is related 

to neutrophils (Chapter 3). 

 miR-17-5p, miR-20a, and miR-106a regulate monocyte-derived macrophages 

production, their expression is decreased during monocytopoiesis, which in turns

upregulated target gene AML-1 to promote macrophage colony-stimulating factor 

receptor (M-CSFR) expression 58. Another microRNA miR-424 enhances monocyte 

differentiation by NFIA repression, which also led to M-CSFR activation 59.

miRNAs in adaptive immunity 

 T and B lymphocytes are the major cells in adaptive immunity. The development 

of T and B lymphocytes is impaired by disruption of miRNA biogenesis in lymphocyte 

progenitors. Deletion of Dicer in early T lymphocytes impaired T cell development and 

aberrant T helper cell differentiation and cytokine production 60, 61. Deletion of Dicer in 

early B lymphocytes affects antibody diversity and led to an arrest of development at 

the pro-B cell stage; miR-17-92 target, the proapoptotic molecule BIM, was highly 

upregulated 62. miR-17-92 are also involved in managing T cell survival by repressing 

BIM and PTEN 63. miR-155 regulates T and B cells upon activation and maintains
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lymphocyte homeostasis and normal immune function. miR-155. miR-155 knockout 

mice have abnormal Th1/Th2 differentiation ratio with Th2 polarization and cytokine 

production increased, regulatory T cells, plasma cells and memory cells reduced, and 

decreased germinal center responses 42, 64-66. miR-181a is another important miRNA in 

T and B cell development. miR-181 is preferentially expressed in the B-lymphoid cells 

of mouse bone marrow, and its ectopic expression in hematopoietic stem/progenitor 

cells led to an increased fraction of B-lineage cells in both tissue-culture differentiation 

assays and adult mice 67. Increasing miR-181a expression in mature T cells augments 

the sensitivity to peptide antigens, while inhibiting miR-181a expression in the 

immature T cells reduces sensitivity and impairs positive and negative selection 68. miR-

150 is highly up-regulated during the development of mature T and B cells, and sharply 

up-regulated at the immature B cell stage. Premature expression of miR-150 blocked 

the transition from the pro-B to the pre-B stage 69. miR-150 controls B cell 

differentiation by targeting the transcription factor c-Myb 70. 

 T cell activation is suppressed by regulatory T cells (Tregs) to maintain immune 

system homeostasis and self-antigen tolerance 71. miR-155, miR-146a, miR-31 and 

miR-21 have been shown to regulate Treg development 66, 72-74. Numbers of Tregs in 

the thymus and periphery are reduced in miR-155 deficient mice without suppress their 

function, suggesting that miR-155 contributes to Treg development 66. miR-155 
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inhibition in CD4+ Th cells for Treg mediated suppression. miR-146a is highly 

expressed in Treg, and a certain optimal range of Stat1 activation maintained by miR-

146a is important for Treg-mediated control of Th1 responses 73. miR-31 and miR-21 

regulate Treg development by regulating FOXP3 expression negatively and positively, 

respectively 74. 

 miR-326 and miR-155 are associated with the Th17 differentiation and induction 

of IL-17, a neutrophilic inflammation-inducing cytokine. miR-326 promote Th17 

differentiation by targeting Ets-1, a negative regulator of Th17 differentiation 75. miR-

155 functions in the hematopoietic compartment to promote the development of Th17

cells 49. miR-155 is also required for optimum dendritic cell production of cytokines 

that promoted Th17 cell formation 49. miR-

Th17 cells during autoimmune inflammation 49.
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Chapter 1 

Housekeeping Gene for Bovine Mastitis Related 

microRNA in Milk 
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Abstract 

Our aim was to identify suitable housekeeping gene for bovine mastitis milk

microRNA (miRNA) analysis by real time PCR. We chose miR-92a, miR-375 and let-

7g as housekeeping gene candidates on the basis of previous Solexa sequencing results.

CT values of miR-92a, miR-375, and let-7g were not changed between normal and 

mastitis milk. NormFinder software identified miR-92a as the most stable single 

housekeeping gene. The suitability of housekeeping gene candidates was evaluated by 

the expression levels of inflammation related gene miR-146a. The level of significance 

across normal and mastitis milk was the highest when using miR-92a as a housekeeping 

gene. These results suggested that miR-92a is suitable as a housekeeping gene for 

bovine mastitis milk microRNA analysis. 
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Introduction 

To characterize the expression patterns of miRNAs, different methodologies have 

been applied. Low throughput techniques including quantitative real-time PCR (qPCR)

and northern blotting, in situ hybridization; high throughput techniques including 

microarray, nCounter® nanoString technology and next generation sequencing. The 

expression data generated from the techniques above usually needs normalization to 

accurately determine the level of miRNAs. Different normalization methods or genes 

used among studies may lead to biases, misleading results and conclusions, and thus

impair comparison and reproducibility between studies. In recent years, qPCR is the 

most commonly used technic for miRNA expression quantification.

 Commonly used normalization methods including using endogenous reference 

genes, exogenous reference genes, standard curves, total RNA and global mean 

normalization. All of the miRNA relative expression values were normalized to 

reference gene and calculated by 2-  in this thesis. The 2-  method is extensively 

used as a relative quantification strategy for qPCR data with assumes a uniform PCR 

amplification efficiency of 100% across all samples. In brief, CT is the difference in 

threshold cycle between the target and reference genes. 
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 (a target sample)  (a reference sample) 

sample, thus the formula can be modified as  

 (a target sample)  (mean value of all samples) 

 Endogenous reference gene is originated from total RNA library in the samples 

with low variation and diseases do not affect the gene expression. Stably expressed 

endogenous reference gene can reflect the total miRNA quality or concentration in the 

samples. Thus normalize to endogenous reference gene can reduce the differences due 

to sampling and quality of the samples. Small nuclear RNA (snRNA), small nucleolar 

RNA (snoRNA) and ribosomal RNA (rRNA) can be used as internal control gene for 

miRNA RT-qPCR data analysis. However non-coding RNAs other than miRNAs do

not reflect the biochemical properties of miRNA, the extraction, reverse transcription, 

and PCR amplification efficiency of other non-coding RNAs may differ from that of 
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miRNAs. Previous studies suggesting that cell lines have a lower miRNA content per 

total RNA than tissue samples 76, 77. When the overall abundance of miRNAs varies, in 

experiments affecting the miRNA processing machinery, or in comparisons involving 

multiple tissues or combinations of tissues and cell lines, the effect of using non-miRNA 

reference genes for qPCR normalization is pronounced. It has been argued that it is best 

to normalize genes with reference genes belonging to the same RNA class, thus miRNA 

qPCR needs to normalize to miRNA control genes 78. 

 Endogenous reference gene selection might be varying from studies. The 

document of TaqMan® MicroRNA Assays recommend endogenous controls for human

by investigate the expression profile of endogenous control genes across 38 normal 

human tissues and 59 NCI-60 cell lines, including snRNA: RNU6B; snoRNA: RNU48, 

RNU44 and U47; miRNA: miR-26b, miR-92, miR-92N, miR-423, miR-374 and miR-

16 79. The most frequently used reference genes are snRNA RNU6 and microRNA miR-

16. Usually, non-miRNA small RNAs such as snRNAs or snoRNAs are not stably 

present in serum or other body fluids. Previous studies also demonstrated that 

expression levels of RNU6B and other snoRNA have a high variability among 

individual serum samples 80-83. miR-16 is highly expressed and relatively invariant 

across various samples and can be used as a endogenous reference gene; however, miR-

16 and miR-451 are red blood cell enriched miRNA, and the levels of miR-16 and miR-
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451 vary depending on the degree of hemolysis 84-89. The level of hemolysis in 

serum/plasma samples might be necessary to be assessed by spectrophotometry before 

miR-16 used as a control. For detailed experimental data and discussion, please refer to 

the Additional experiment section of chapter 2. In addition to hemolysis issue, miR-16 

has been described to be deregulated in different diseases by several other studies 90-

95.Thus, at the beginning of experiments, it is important to develop an ideal reference 

gene system based on the research needs.  

Approaches to find stably expressed reference genes 

 Several approaches to find stably expressed reference genes has been proposed 96-

102. Most popular algorithms are GeNorm 78, NormFinder 100, and BestKeeper 97. 

RefFinder is a web-based tool (http://leonxie.esy.es/RefFinder/) which integrates 

GeNorm, NormFinder, BestKeeper and the comparative delta-Ct method 103.

NormFinder (https://moma.dk/normfinder-software) and BestKeeper 

(http://www.labtools.us/bestkeeper/) are excel-based tools, researchers can get free 

access in their website. GeNorm is the most famous algorithm among them with more 

than 12000 times citation; however since 2010, the new version of GeNorm module is 

integrated in the qbase+ software (https://genorm.cmgg.be/) and available for 299 EUR. 

For this reason, NormFinder was used to analyze best reference miRNA in this study.  
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Aim of this study

 To date, there is no suitable gene (especially miRNA) for normalizing the mastitis 

milk. Our aim was to identify suitable housekeeping genes for bovine mastitis milk

microRNA analysis using qPCR. 
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Results 

Identification of suitable candidates 

 A previous study systematically screened miRNA expression in mature milk and 

colostrum using Solexa sequencing 104. We used 2 criteria to identify candidate 

housekeeping miRNA from these data: (1) we included miRNA with Solexa reads in 

mature milk and colostrum of between 3,000 and 30,000 and (2) we included only 

miRNA for which the difference in reads between mature milk and colostrum was less 

than 15%. Based on these criteria, we selected let-7g, miR-375, and miR-92a for further 

evaluation 104 (Table 1-1). 

Table 1-1 miRNA expression in mature milk and colostrum using Solexa sequencing 

results in a previous study. 

Name Mature milk Colostrum Difference (%)
let-7g 8804 9903 11.10
miR-375 8526 8658 1.52
miR-92a 16014 18731 14.51

 Milk samples from 10 mastitis-affected Holstein cows (including 11 mastitis-

affected quarter samples) and 10 healthy controls were included in the qPCR candidate 

housekeeping gene expression validation study. The threshold cycle (CT) values for 

miR-92a, miR-375, and let-7g did not differ between milk from control cows and milk 
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from mastitis-affected cows (Figure 1-1 and Appendix 1-1 for detail CT values). We 

also examined miR-26b in the same experiment; its CT values were significantly lower 

in milk from mastitis-affected cows. The stability of the 3 candidate housekeeping

genes was analyzed using NormFinder (MOMA, Aarhus, Denmark) as previously 

described 100 (Figure 1-2). NormFinder identified miR-92a as the most stably gene; 

miR-92a and miR-375 as the best combination housekeeping genes. 

Figure 1-1 Threshold cycle (CT) values for candidate housekeeping genes in control 

and mastitis-affected groups. 



29 

Figure 1-2 NormFinder stability values for candidate housekeeping genes. 

Verification the suitability of housekeeping gene by inflammation related miR-

146a

 To confirm the suitability of the selected housekeeping gene candidates, we 

conducted a second experiment including 15 control cows (including 19 separate 

quarter samples from 6 cows and 9 mixed milk samples) and 14 mastitis-affected cows 

(including 17 mastitis affected quarter samples. miR-146a expression levels are 

significantly increased in bovine mammary tissues infected with subclinical, clinical, 

and experimental mastitis 105. Therefore, miR-146a is a good inflammation indicator, 

and we used it in our study as a target gene. We used let-7g, miR-375, and miR-92a as 

housekeeping genes alone and in combination to evaluate their suitability. Regardless 
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of the housekeeping gene candidates used for normalization, relative expression levels 

of miR-146a in mastitis-affected samples were significantly higher than in control 

samples (P < 0.05). However, normalization with miR-92a alone (P = 0.0001) and in 

combination with miR-375 (P = 0.0004) generated higher significance levels for this 

difference than normalization with let-7g and miR-375 alone or combined (P < 0.05 to 

0.01; Figure 1-3). Detailed miR-146a CT and normalized relative expression values 

please refer to Appendix 1-2.  

Figure 1-3 Relative expression levels of miR-146a normalized to housekeeping gene 

candidates. Error bars indicate SE (*P < 0.05; **P < 0.01; ***P < 0.001).
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Discussion 

A previous study suggested that a combination of more than one reference gene 

may increase normalization accuracy 78. However, the significance level obtained when 

a single gene, miR-92a, was used for normalization was similar to those obtained when 

multiple housekeeping genes were used in our study. We recommend miR-92a as the 

best choice of normalization gene. Particularly when using miRNA as biomarkers for 

mastitis in large-scale screenings of cows and in clinical diagnosis, the absolute stability 

of the housekeeping gene may not be the only consideration; using a single 

normalization gene reduces costs. Using multiple housekeeping genes also means that 

screening or diagnosis takes longer to complete. The biological function regarding the 

miR-92a is mainly reported as oncomiR. The miR-17/92 cluster is

the first discovered oncogene and is also known as oncomiR-1 106. Aberrant expression 

of miR-92a can be observed in many kinds of tumors such as lung, breast, stomach, 

prostate, colon, pancreas, liver, and kidney tumors 107. In addition, miR-92a is one of 

the most highly expressed miRNA in cow milk fractions including milk fat, whey, and 

cells 108. It is also abundant in the human milk 109 and human milk derived exosomes 

110. miR-92a is present in normal breast ducts and lobules and downregulated in a 

fraction of breast cancer 111. This evidence suggested that miR-92a plays a physiological

role in normal breast tissue and milk. As such, all of these support the potential of miR-
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92a as a housekeeping gene for its constant expression in different milk components 

across different species.

 This is the first study to demonstrate that miR-146a expression is upregulated in 

milk from mastitis-affected dairy cows. This result shows the potential of miRNA in 

milk for use as a biomarker for mastitis. To establish good biomarkers for bovine 

mastitis, further experiments evaluating an increased number of miRNA are necessary.

 In summary, housekeeping genes play an important role in qPCR studies of 

miRNA gene expression. We recommend using miR-92a as a housekeeping gene for 

studying miRNA expression in mastitis-affected bovine milk samples. 
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Materials and Methods 

Milk sample preparation

 All of the milk samples were taken from milking Holstein-Friesian cows. The 

cows were kept in free-stall barn or tie-stall and pasture without grazing systems; 

milked twice a day. The animals were fed twice daily, and water was available ad 

libitum. Milk samples (approximately 5 10 ml) were collected and immediately 

screened in the field using a modified California Mastitis Test (CMT) with a 

commercial tester ("PL Tester", Nippon Zenyaku Kogyo) as previously described 112.

Cows with no CMT+ result for any quarter were defined as the normal group; cows 

with a CMT+ result for at least one quarter were defined as the mastitis-affected group. 

On the basis of the CMT results, each quarter of the mastitis-affected group was defined 

were collected from the farms of four different locations in Japan (Kagoshima, 

Miyazaki, and Hiroshima prefectures). The samples were stored at 4 °C after collection 

and transported to the laboratory, then centrifuged at 3000 × g for 15 min at room 

temperature to remove cell debris and fat. The supernatant was recovered and further 

centrifuged at 15000 × g for 15 min at 4°C. The milk whey was recovered and stored 
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RNA isolation

Total RNA was extracted from milk whey using a mirVana PARIS kit (Thermo 

Fisher Scientific) according to the manufa

Quantification of miRNA by qPCR 

 Equal volumes of RNA (1.25 microliter) were reverse transcribed to cDNA using 

protocol. qPCR was performed using a TaqMan Fast Advanced Master Mix kit and a 

StepOne Plus Real Time PCR system (Thermo Fisher Scientific). Thermal cycling was 

protocol, and all experiments 

were performed in duplicate. miR-92a was used as an internal control for miR-146a 

expriment and expression level was determined using the 2 CT method. qPCR

reactions of undetermined CT were assigned CT = 40. The TaqMan MicroRNA Assays 

used in qPCR of this study and their IDs are as follows: let-7g (ID: 002282), miR-375 

(ID: 007627_mat), miR-92a (ID: 000431), and miR-146a (ID: 000431). 

Statistical Analysis 

 Data analysis was performed using GraphPad Prism 6 (GraphPad Software Inc., 

San Diego, CA). Data were analyzed using a parametric unpaired t test, and P < 0.05 

was considered statistically significant.
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Chapter 2 

MicroRNA as Biomarkers for Bovine Mastitis in Milk 
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Abstract 

miRNA in tissue and liquid samples have been shown to be associated with many 

diseases including inflammation. This study aimed to identify inflammation-related 

miRNA expression level in the bovine mastitis milk. Expression level of inflammation-

related miRNA in milk from mastitis-affected and normal cows was analyzed using 

qPCR. We found that expression level of miR-21, miR-146a, miR-155, miR-222, and 

miR-383 was significantly upregulated in California mastitis test positive (CMT+) milk. 

We further analyzed these miRNA using a chip-based QuantStudio Digital PCR System. 

The digital PCR results correlated with those of qPCR, demonstrating upregulation of 

miR-21, miR-146a, miR-155, miR-222, and miR-383 in CMT+ milk. In conclusion, we 

identified miRNA that are upregulated in CMT+ milk. These miRNA exhibited 

sensitivity and specificity greater than 80% for differentiating between CMT+ milk and 

normal milk. Our findings suggest that inflammation-related miRNA expression level 

in the bovine milk was affected by mastitis, and miRNA in milk have potential for use 

as biomarkers of bovine mastitis. 
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Introduction 

California mastitis test (CMT)

 California Mastitis Test (CMT) is the cowside test to estimate somatic cell count 

range on dairy farm with the advantages of quick, cheap and simple. CMT reagent 

disrupt the cells in milk sample and react with the DNA in those cells. After reaction, 

color changes of the reagent and rennet reaction are recorded to estimate somatic cell 

number range, indicating the severity of the inflammation. However, the interpretation 

can be subjective, and this might result in false positives and negatives. A sensitivity of 

66.7% and specificity of 54.8% using the CMT to detect mastitis has been reported in 

fresh cows 113. Because all of the samples we studied were clinical samples, modified 

California Mastitis Test (CMT) with a commercial tester ("PL Tester", Nippon Zenyaku 

Kogyo) was used in these studies 112.  

 Wisconsin Mastitis Test (WMT) uses the same reagent as the CMT but measured 

by gel height in a tube, providing objectivity results. 

Stability of miRNA 

 Stability is one of the important characteristics of biomarker. miRNAs in 

serum/plasma are protected against degradation by being packaged in lipid vesicles 

such as exosomes, microvesicles (MVs), or apoptotic bodies, or by being associated 
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with high-density lipoproteins or bound to RNA-binding proteins such as Ago2 114. 

With these protection, miRNAs own high stability and resistance to storage handling. 

By stability test in harsh conditions such as boiling (digested with RNase A for 3 hours 

or overnight at 37 °C), low/high pH (pH=1 or 13), extended storage, 10 freeze-thaw 

cycles, a previous study has shown the stability of miRNA in serum 115. miR-145 can 

be efficiently extracted and amplified from serum in archived 10-year-old human serum 

samples 116, and miR-16, miR-21 and miR-223 can be detected in unrefrigerated dried 

serum blots 117. 

miRNA as biomarkers

 In 2008, Lawrie et al. reported the elevated levels of tumor-associated microRNAs 

miR-155, miR-210 and miR-21 in serum of patients with diffuse large B-cell lymphoma 

118, human realized the diagnostic and prognostic potential of miRNAs as cancer 

biomarkers. The communication between organs and cells is not only limited to soluble 

molecular such as hormone. miRNA are packaged into vesicles, export to blood stream, 

and leading to widespread consequences within the cells at a distance from the 

-like effects 83. As such, 

it reminds us in 1889, Stephen Paget suggested a seed and soil hypothesis for organ-

specific metastasis, and a previous study showed that tumor-derived exosomes uptaken 
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by organ-specific cells prepare the pre-metastatic niche 119. Because miRNA are also 

possibly delivered to the metastasis sites, it is not surprising that circulating miRNAs 

in plasma/serum of patients can be used as biomarkers to their diagnosis and prognosis. 

Indeed, miRNAs can be used as biomarkers for various type of cancers such as breast 

cancer, cervical cancer, colorectal cancer, gastric cancer, hepatocellular carcinoma, lung 

cancer, hematopoietic cancer, melanoma, esophageal cancer, prostate cancer. Other 

diseases including infectious diseases, nervous system disorders, cardiovascular 

disorders, and diabetes 83, 120-122. 

miRNA in milk 

 miRNA have been identified in 12 different body fluids from normal individuals, 

including plasma, saliva, tears, urine, amniotic fluid, colostrum, breast milk, bronchial 

lavage, cerebrospinal fluid, peritoneal fluid, pleural fluid, and seminal fluid 28. miRNA 

have been identified in the milk from other animals such as cows 104, 123, pigs 124, goats 

125, rats 126, mice127, giant panda 128 and yaks 129. Kosaka et al. used microarray to profile 

miRNA expression in human breast milk and detected high expression levels of 

immune related miRNAs in the first 6 months of lactation. These miRNA molecules 

are stable in very acidic conditions, indicating that breast milk allows dietary intake of 

miRNAs by infants 109; however a mice study in 2015 suggests that milk miRNA are 
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not taken up into murine offspring tissues or blood but are rapid degradation by 

intestinal fluid 127. Whether maternal milk miRNA are taken up by offspring may still 

need further studies, because this experiment measured whether miRNA expression 

increased in miRNA knockout mice after milk feeding instead of label the maternal 

exosome or miRNA. Without the data of maternal miRNA kinetics, 

the samples from day 3 or 14 of birth are appropriate for maternal milk-derived taken 

up experiment. Izumi et al. investigated miRNA in bovine colostrum and mature milk, 

immune- and development-related miRNA are highly expressed in colostrum than in 

mature milk, and naturally existing miRNA in raw milk are resistant to acidic conditions 

and RNase treatment 123. Immune-related miRNA are also present in the milk-derived 

microvesicles and exosomes 110, 130. miRNA can be detected in the commercial products 

such as fluid milk and powdered formula milk from Japan and China markets 123, 131. 

Chen et al. suggested that expression profile milk-specific miRNA can serve as ideal 

biomarkers for discriminating poor-

and quality control of commercial milk products 131. After identified that miR-92a can 

be used as a housekeeping gene in milk, we also measured miR-92a in commercial fluid 

milk products (Figure 2-1). We found that miR-92a was hard to be detected but existed 

(average CT value = 33.1) in commercial fluid milk products compare to raw milk, 

suggesting that milk processing leaded to miRNA degradation. Schanzenbach et al. 
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failed to use miRNAs in milk as biomarkers for detection of bovine pregnancy 132.

Figure 2-4 miRNA CT values of five different brands of commercial fluid milk 

products and raw cow milk. The raw milk samples are shown in hollow circles.  

miRNA target selection in this study 

 In the preliminary study, we select several inflammation related miRNA. miR-21 

regulates proinflammatory protein PDCD4 expression level after lipopolysaccharide 

(LPS) stimulation 53. miR-26 regulates inflammation through down-regulating IL-6 

production 133, and miR-26b participates in the inflammatory response of LPS 

stimulated bovine alveolar macrophages by enhancing the NF-

134. miR-29b is repressed by NF- 135, and miR-29b can represses TNFAIP3, 
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a negative regulator of NF- 136. LPS induced inflammation increases blood 

levels of miR-122 137; serum miR-122 also correlates with mortality in human sepsis 

patients 138, 139. miR-125b is down-regulated in bovine CD14+ monocytes stimulated 

with Staphylococcus aureus enterotoxin B 140 and activate the NF-

targeting TNFAIP3 141. miR-204 mediates vascular inflammation in high fat diet mice 

142, and plays a role in the regulation of inflammation process through promoting the 

expression level of SIRT1 and attenuating of inflammatory factors 143, 144. miR-205, 

which expression level is upregulated upon NF-kB activation, reduces COMMD1 

expression level. The miR-205-COMMD1-NF-

response 145. miR-222 is involved in the pathogenesis of inflammatory diseases, such 

as rheumatoid arthritis, atherosclerosis and obesity-related inflammation 146, 147. The 

mechanisms associate with adhesion and infiltration of inflammatory cells into the 

endothelial space 148. miR-383 expression level is upregulated in LPS induced 

macrophage cell line RAW264.7 149. Among these miRNA, miR-26b, miR-29b, miR-

122, and miR-205 are differentially expressed in the serum of cow with metritis 150. We 

included miR-146a and miR-155 in the second phase of this study. miR-146a and miR-

155 are the well characterized and first reported inflammation-related miRNA 41. miR-

146a and miR-155 expression level are induced by expose human acute monocytic 

leukemia cell line THP-1 to LPS 41. miR-146a expression levels are significantly 
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increased in bovine mammary tissues infected with subclinical, clinical and 

experimental mastitis 151.

Application of Digital PCR in miRNA 

 The conception of digital PCR has been described in 1992, which is an end point 

PCR method for absolute quantification 152. The samples are split into thousands of 

separated reaction chambers, which contain one or no copies of the gene, following 

PCR s distribution model analysis, the results will be generated by the 

counting of binomial positive or negative events. There are two types of digital PCR: 

chips based and droplets based digital PCR. In this study, we used chips based 

QuantStudio 3D Digital PCR for the absolute quantification of miRNAs. Digital PCR 

provides a sensitive method for the direct measure gene expression and absolute 

quantitate the gene expression without the need for a standard curve. The droplets based 

digital PCR assay has a significantly higher degree of sensitivity compared to the qPCR 

assay 153-155. Thus QuantStudio 3D Digital PCR was used for novel miRNA detection 

in chapter 3. 

 In miRNA research application, droplets based digital PCR has been used to 

quantitate plasma and sputum miRNAs from cancer-free subjects and non-small-cell 

lung cancer patients, combined quantification of miR-21-5p and miR-335-3p in plasma 
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provided 71.8% sensitivity and 80.6% specificity 156; combined quantification of miR-

31 and miR-210 in sputum provided 65.71 % sensitivity and 85.00 % specificity 157.

The chip-based QuantStudio 3D digital PCR has been used to measure miR-16-5p, 

miR-21-5p, miR-126-3p, miR-486-5p and miR-660-5p expression in plasma, tissue and 

cells 158. 

Aim of this study

 In this study, we used qPCR and QuantStudio 3D Digital PCR to investigate 

differences in inflammation-related miRNA expression level in three groups of milk 

samples: milk from normal cows; and milk from California mastitis test-negative 

-positive (CMT+) quarters of mastitis-affected cows. We identified that 

miR-21, miR-146a, miR-155, miR-222, and miR-383 were significantly upregulated in 

CMT+ milk. These miRNA had sensitivity and specificity greater than 80% for 

differentiating between CMT+ milk and milk from normal cows. Our findings suggest 

that inflammation-related miRNA expression level in the bovine milk was affected by 

mastitis, and miRNA in milk have potential for use as biomarkers of bovine mastitis. 
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Results 

Identification of miRNA with altered expression level in milk from mastitis-

affected cows and CMT+ milk 

 We included six cows without mastitis (n=22) and three mastitis-affected cows 

(n=9; two mastitis-affected cows (n=7) for miR-21) in the preliminary study. We 

analyzed the expression levels of nine inflammation-related miRNA in milk by qPCR 

and normalized the values obtained to the expression level of miR-92a 159. Six miRNA 

(miR-21, miR-122, miR-125b, miR-205, miR-222, and miR-383) were significantly 

upregulated and two miRNA (miR-26b and miR-29b) were significantly downregulated 

in milk from mastitis-affected cows, as compared with that from normal cows (Figure 

2-2). The preliminary study suggests that bovine milk contains inflammation-related 

miRNA which expression level may affected by mastitis. Detailed CT and normalized 

relative expression values please refer to Appendix 2-1, Appendix 2-2 and Appendix 2-

3. 

 To confirm and further assess the expression level of inflammation-related miRNA, 

we increased the number of samples and analyzed selected miRNA. We selected miR-

21, miR-122, miR-222, and miR-383, which were highly upregulated in milk from 

mastitis-affected cows in the preliminary study. Additionally, we included miR-146a 

and miR-155, which are known to be related to inflammation 41, as candidates in the 
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second phase experiment. The second study included milk from 18 normal cows (n=42) 

and 14 mastitis-affected cows. To investigate if miRNA expression level in the CMT

quarters would be implicated by mastitis, we separated the milk from mastitis-affected 

cows into CMT  (n=18) and CMT+ (n=17) groups. The expression levels of five 

miRNA (miR-21, miR-146a, miR-155, miR-222, and miR-383) were significantly 

upregulated in the CMT+ 

There was no significant difference in miR-122 levels among the three groups, so this 

miRNA was excluded from further study (Figure 2-3). Detailed and normalized relative 

expression values please refer to Appendix 2-4. 

Receiver operating characteristic analysis 

 Receiver operating characteristic curve analysis of relative expression levels of 

five miRNA was performed to evaluate the ability of the miRNA to distinguish between 

the CMT+ and normal groups (Figure 2-4). Area under the curve analysis and the 

Youden index were applied to determine the optimal cut-off point, sensitivity and 

specificity of each miRNA 160. We found that miR-146a, miR-155 and miR-222 had 

high predictive values (0.9 < AUC < 1); and miR-21 and miR-383 had moderate 

predictive values (0.7 < AUC < 0.9). miR-21, miR-146a, miR-155, miR-222, and miR-
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383 had sensitivity of 82%, 88%, 94%, 94%, and 88%, and specificity of 89%, 100%, 

90%, 93%, and 83% in differentiating CMT+ milk from normal milk, respectively.

Analysis of miRNA with altered expression level in CMT+ milk by digital PCR 

 We selected the miRNA that were significantly upregulated in the CMT+ group 

(miR-21, miR-146a, miR-155, miR-222, and miR-383) for QuantStudio 3D Digital 

PCR System analysis. We analyzed milk from five normal cows and five mastitis-

affected cows (including five quarters and five CMT+ quarters) in this 

validation study. The expression levels of the five miRNA were significantly higher in 

the CMT+ group than in the normal group. The miRNA were also significantly 

upregulated in the CMT+ group compared with the CMT  group, except for miR-146a 

(P = 0.0509). The expression 

normal groups (Figure 2-5  was applied to assess the 

relationship between the qPCR and digital PCR results. We found a strong negative 

correlation between the Ct values obtained via qPCR and the values for copies/µL

obtained via digital PCR (the Pearson r values for miR-21, miR-146a, miR-155, miR-

222, and miR-383 were 0.8433, 0.7853, 0.8849, 0.9256, and 0.8008, 

respectively)(Figure 2-6), and a strong positive correlation between relative expression 

levels obtained via qPCR and the values for copies/µL obtained via digital PCR (the 
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Pearson r values for miR-21, miR-146a, miR-155, miR-222, and miR-383 were 0.7897, 

0.9047, 0.7660, 0.9536, and 0.7676, respectively)(Figure 2-7). These results suggest 

that chip-based QuantStudio 3D Digital PCR System could be a tool for quantification 

of miRNA in milk. 
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Discussion 

Dysregulation of miRNA expression level has been shown to play a role in 

inflammatory diseases 161. Previous studies have demonstrated that miRNA expression 

level in mastitis-affected cows is altered in mammary epithelial cells 162-164, monocytes 

165, milk exosome 166, and mammary gland tissue 151, 167. Our study showed that 

expression level of miRNA was altered in CMT+ milk, suggesting that miRNA may 

play a role in bovine mastitis. Our findings suggest the potential for development of 

molecular biology-based biomarkers for bovine mastitis-affected milk. We further 

verified the miRNA upregulation using a QuantStudio 3D Digital PCR System, and 

obtained reproducible results. To the best of our knowledge, this is the first report to 

compare miRNA in milk from mastitis-affected and normal cows. 

 Liquid biopsy allows diagnosis of diseases in noninvasive, safe, and fast way using 

biomarkers isolated from body fluids, such as blood and urine 28. Circulating miRNA 

have been proposed to have either diagnostic or prognostic value in various types of 

human cancer 120. We evaluated the suitability of miRNA in milk as liquid biopsy 

biomarkers using receiver operating characteristic analysis. Our results showed that 

several miRNA had high predictive values (AUC greater than 0.83) and sensitivity and 

specificity greater than 80% in differentiating CMT+ milk from normal cow milk. 

These results demonstrate the potential of miRNA in milk for use as a liquid biopsy 
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biomarker for mastitis.

Previous studies have demonstrated that droplet digital PCR can measure

expression level of miRNA in body fluids, and that these miRNA can serve as 

diagnostic biomarkers. For example, miRNA in serum can be used as a biomarker in 

breast cancer diagnosis 168, and miRNA in sputum and plasma can be used for lung 

cancer diagnosis 156, 157. We used a QuantStudio 3D Digital PCR System to measure 

miRNA expression levels in milk, and compared the results with those of qPCR. Direct 

comparison of miRNA expression levels and CT values obtained via qPCR with copy 

numbers obtained via digital PCR for the same sample set demonstrated a strong 

correlation between the two methods. A previous study also indicated high correlation 

between copy numbers obtained via digital PCR and expression levels determined by 

qPCR across serially diluted samples 157. In this study, we demonstrated that the results 

of qPCR were reproducible using QuantStudio 3D Digital PCR. Therefore, the chip-

based QuantStudio 3D Digital PCR System could be a tool for quantification of miRNA 

in milk for diagnosis of bovine mastitis. 

 There are some of limitations to our study. First, further evaluation in large cohorts 

of the miRNA identified in this study is required before they could be used as robust 

biomarkers. Second, we used the California mastitis test (CMT), which is based on the 

somatic cell count of milk to detect mastitis. In addition to inflammation, there are many 
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other factors that could influence milk somatic cell count, such as seasonal effects and 

physiological or environmental stress 169, 170.

 In conclusion, miR-21, miR-146a, miR-155, miR-222, and miR-383 expression 

levels were significantly upregulated in the CMT+ milk. Our findings suggest that 

inflammation-related miRNA expression level in the bovine milk was affected by 

mastitis, and miRNA in milk have potential for use as biomarkers of bovine mastitis. 
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Materials and Methods 

Milk sample preparation

 All of the milk samples were taken from milking Holstein-Friesian cows. The 

cows were kept in free-stall barn or tie-stall and pasture without grazing systems; 

milked twice a day. The animals were fed twice daily, and water was available ad 

libitum. Milk samples (approximately 5 10 ml) were collected and immediately 

screened in the field using a modified California Mastitis Test (CMT) with a 

commercial tester ("PL Tester", Nippon Zenyaku Kogyo) as previously described 112. 

Cows with no CMT+ result for any quarter were defined as the normal group; cows 

with a CMT+ result for at least one quarter were defined as the mastitis-affected group. 

On the basis of the CMT results, each quarter of the mastitis-affected group was defined 

were collected from the farms of four different locations in Japan (Kagoshima, 

Miyazaki, and Hiroshima prefectures). The samples were stored at 4 °C after collection 

and transported to the laboratory, then centrifuged at 3000 × g for 15 min at room 

temperature to remove cell debris and fat. The supernatant was recovered and further 

centrifuged at 15000 × g for 15 min at 4°C. The milk whey was recovered and stored 
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Total RNA extraction

Total RNA was extracted from 300 µL milk using a mirVana PARIS kit (Thermo 

assessed using the Small RNA kit in combination with the 2100 Bioanalyzer System 

(Agilent). 

Quantification of miRNA by qPCR 

 qPCR was performed as chapter 1 described. Equal volumes of RNA (1.25 

microliter) were reverse transcribed to cDNA using TaqMan MicroRNA Assays 

performed using a TaqMan Fast Advanced Master Mix kit and a StepOne Plus Real 

Time PCR system (Thermo Fisher Scientific). Thermal cycling was conducted 

according to the manu protocol, and all experiments were 

performed in duplicate. miR-92a was used as an internal control and expression level 

was determined using the 2 CT method. qPCR reactions of undetermined CT were 

assigned CT = 40. The TaqMan MicroRNA Assays used in qPCR of this study and their 

IDs are as follows: miR-21 (ID: 000397), miR-29b (ID: 000413), miR-92a (ID: 

000431), miR-122 (ID: 002245), miR-125b (ID: 000449), miR-146a (ID: 005896_mat), 

miR-155 (ID: 002623), miR-204 (ID: 000508), miR-205 (ID: 000509), miR-222 (ID: 
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002276), and miR-383 (ID: 000573).

Quantification of miRNA by digital PCR 

 Digital PCR was performed using the QuantStudio 3D Digital PCR System 

(Thermo Fisher Scientific)  protocol. In brief, 3 µL

cDNA of miR-146a, miR-155, miR-222, and miR-383 were combined with 

QuantStudio 3D Digital PCR Master Mix and TaqMan Assay. The cDNA of miR-21 

was diluted 1:30 with RNase-free water before being combined with the reagent 

because miR-21 was highly expressed and exceeded the instrument detection range. 

The samples were loaded onto chips using QuantStudio 3D Digital PCR Chip Loader 

 thermal 

cycling protocol was used. After PCR, the fluorescence data from the chips were 

collected using a QuantStudio 3D Digital PCR Instrument and uploaded to QuantStudio 

3D Analysis Suite Cloud Software for further analysis. 

Statistics 

 Data analysis was performed using GraphPad Prism 6 (GraphPad Software Inc., 

San Diego, CA). Data were compared using a parametric unpaired t-test, or one-way 
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be significant at P < 0.05. The area under the curve (AUC), cut-off point, sensitivity, 

and specificity were analyzed by receiver operating characteristic curve. Cut-off points 

were determined by the Youden index 160. Correlation analysis was performed using 

 coefficient. 
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Figure 2-5 Relative expression levels of nine miRNA in milk from mastitis-affected 

cows and normal cows using qPCR. Boxes indicate the median, and 25th and 75th 

quartiles. Whiskers extend from the edge of the box to 1.5 times the interquartile range, 

and dots indicate data points outside this range. The y-axes represent relative miRNA 

expression levels in arbitrary units (parametric unpaired t-test, *P < 0.05, **P < 0.01, 

***P <0.001, ****P <0.0001)
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Figure 2-6 Relative expression levels of six miRNA in milk from normal cows, and from CMT  and CMT+ quarters using qPCR. Boxes indicate the median, 

and 25th and 75th quartiles. Whiskers extend from the edge of the box to 1.5 times the interquartile range, and dots indicate data points outside this range. The 

y-axes represent relative miRNA expression levels in arbitrary units (One- 5, **P < 0.01, ****P <0.0001).
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Figure 2-7 Mastitis diagnostic values of miRNA in milk quantified using qPCR. The Youden index was applied to determine the optimal cut-off point, 
sensitivity and specificity. AUC: area under the curve. 
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Figure 2-8 Digital PCR system quantification of expression levels of five miRNA in milk. Lower bars indicate mean values with vertical 

standard deviation bars. The y-axes represent copies/µL assessed by digital PCR (One-way ANOVA followed by Tukey's test, *P < 0.05, 

**P < 0.01, ****P <0.0001).
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Figure 2-9 Relationship between copies/µL obtained via digital PCR and relative expression value obtained via qPCR.
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Figure 2-10 Relationship between copies/µL obtained via digital PCR and CT value obtained via qPCR.
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Additional Experiment: Can Inflammation-related microRNA Expression 

Level in The Mastitis Cow Serum Be Affected by Mastitis?

 miR-21, miR-146a, miR-155, miR-222 and miR-383 in milk can be bovine mastitis 

biomarkers. In this additional experiment, we investigated the expression level of these miRNA 

in serum from mastitis cows.  

The whole blood was collected and centrifuged to recover serum from normal and mastitis 

cows. RNA isolation and PCR procedures were the same as mastitis milk miRNA experiment, 

however we added exogenous control 25 fmol of synthetic cel-miR-39 as our reference gene 

because we did not investigate the suitable housekeeping genes for miRNA analysis as milk 

did.  

Exogenous and endogenous control genes 

miR-16 is frequently used as an internal control gene for serum and plasma miRNA 

analysis, as it is highly expressed and relatively invariant across various samples 171. However, 

miR-16 is highly abundant miRNA in red blood cells, hemolysis leads red blood cells release 

miR-16 to serum, and therefore concentration of miR-16 in serum increased substantially, 

which raising some concerns to use as a reference miRNA in serum or plasma studies 84-89, 172. 
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As humans, we found that hemolysis significantly altered cow serum miR-16 expression

(Figure 2-8, Mann-Whitney test p = 0.0001). The exogenous control cel-miR-39 expression 

was stable (standard deviation = 0.51, Figure 2-8). However exogenous control may not always 

reflect true sample condition, because it was added artificially and represents only the 

efficiency of RNA extraction. We found that total RNA concentration might be low in one of 

sample (high CT value in most of miRNA), and endogenous miR-16 reflected this issue; 

however exogenous cel-miR-39 expression could not distinguish from other samples and can 

lead to normalization error (Figure 2-9). This sample was ignored for further analysis. 

Figure 2-11 CT values of cel-miR-39 and miR-16. The CT values of miR-16 in suspected 

hemolytic samples are shown in red star symbol. The bars indicate median values. 
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Only miR-21 was significantly upregulated in serum from mastitis cow 

Eleven normal and fifteen mastitis cows were included in the serum study. The expression 

levels normalized to cel-miR-39 among five miRNAs (miR-21, miR-146a, miR-155, miR-222, 

and miR-383), only miR-21 expression level was significantly upregulated in serum from 

mastitis cows (p = 0.036) compared to that of normal cows (Figure 2-10). We also used miR-

16 as a control. The result was similar as cel-miR-39 to be used as a control, miR-21 had a 

trend to be increased (p = 0.097) in mastitis cow serum, other miRNAs were not significantly 

changed between normal and mastitis cows (Figure 2-11). Detailed CT values please refer to 

Appendix 2-5; relative expression values normalized to cel-miR-39 and miR-16, please refer 

to Appendix 2-6. 
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Figure 2-12 CT value distribution of all serum RNA samples. The CT values of one of low 

miRNA expressed sample is shown in black star. The endogenous miR-16 reflected that the 

black star position was high in other miRNA compared to other samples, however in the cel-

miR-39 results, the black star was located near the mean value. Some of samples were not 

included in the analysis of this study (n = 43).
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Figure 2-13 Serum miRNA relative expression normalized to cel-miR-39 (Mann-Whitney test, *p = 0.036). The bars indicate median 

values.  
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Figure 2-14 Serum miRNA relative expression normalized to miR-16 (Mann-Whitney test). The bars indicate median values. The bars 

indicate median values.
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A previous study investigate whole blood from Holstein cows with Staphylococcus 

aureus-caused mastitis by Solexa sequencing also shows the patterns of miRNA

expression differed significantly between healthy and mastitis Holstein cattles 173.

However only one library was constructed without any replicates in both healthy and 

mastitis groups in this study might lead their conclusions with very limited reliability. 

The significant differentially expressed miRNA in this study may be due to biological 

variation, and the expression patterns may be specific to the individual instead of 

mastitis cows 174.  

 In accordance with the previous study, we found that miR-21 was 1.63 fold 

increases in mastitis cow. In a biological perspective, we demonstrated that mastitis can 

cause systemically impaction because circulating serum miRNA expression was 

changed. However, compared to milk miRNA, 1.63 fold upregulation was relatively a 

small change, and other inflammation related miRNA such as miR-146a and miR-155 

were not changed in mastitis cow serum. In a biomarker and diagnostic tool perspective, 

milk samples might be superior to serum samples because: 1) Inflammation related 

miRNAs were changed much clearly in mastitis affected milk samples. 2) Milk samples 

can be took without invasive venipuncture and blood taking technique, thereby 

increases the sample accessibility. 3) Hemolysis that impact miRNA expression and 

endogenous gene usability never happens in milk sample. 4) Milk samples can
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recognize specific mastitis affected quarters which is impossible for serum samples.

In conclusion, we found that miR-21 expression was increased in mastitis cow 

serum, suggesting that focal mastitis can cause molecular biological mechanisms 

changed systemically.
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Chapter 3 

Transcriptome Analysis for Bovine Mastitis Related 

microRNA in Milk 
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Abstract 

We present a genome-wide miRNA study in California mastitis test positive 

(CMT+) bovine mastitis milk and normal milk. ive miRNA were differentially 

expressed, with 23 miRNA being upregulated and 2 downregulated in bovine mastitis 

relative to the normal milk. The upregulated mature miR-1246 was likely derived from 

U2 small nuclear RNA instead of miR-1246 precursor. The significantly upregulated 

miRNA precursors and RNU2 were significantly enriched in the bovine chromosome 

19 which homologous to human chromosome 17. Gene ontology analysis of 

significantly upregulated miRNA putative mRNA targets showed that the upregulated 

miRNA were involved in bind to target mRNA transcripts and regulate target gene 

expression, while KEGG pathway analysis showed that upregulated miRNA were 

mainly related to cancer and immune system pathways. Three of novel miRNA were 

related with bovine mastitis and relatively highly expressed in milk. We further verified 

that one of the mastitis related novel miRNA was significantly upregulated using a 

digital PCR system. The differentially expressed miRNA are known to involve in 

human cancer, infection and immune related diseases. The genome-wide views of 

miRNA profiles in this study provide insights into bovine mastitis and inflammatory 

diseases. 
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Introduction 

Next Generation Sequencing

 The next generation sequencing technologies generates millions of nucleotide 

short reads in parallel, faster, high throughput reduced cost, and without electrophoresis

processes. The major secondary generation sequencing platform including Roche 454, 

Illumina Solexa, ABI SOLiD, and Ion torrent. The principles of secondary generation 

sequencing are as following: ligate the adapter sequences to fragmented DNA (include 

cDNA) for library construction. Library is amplified on a solid surface, beads or and 

DNA nanoball generation. Nucleotide incorporation is monitored by luminescence 

detection or electrical charge changes 175, 176. In Illumina Solexa sequencing, DNAs are 

immobilized on a glass surface and bridge amplification to form clusters which contains 

clonal DNA using four differently colored fluorescently labeled chain terminators. The 

newly incorporated nucleotides are detected by fluorescence color imaging. The 

fluorophore and blocking group can then be removed and start a new cycle. Illumina 

provides a wide range of instruments with different throughputs suitable for industrial-

level or laboratory use, including MiniSeq, MiSeq, NextSeq, HiSeq, and HiSeq X series. 

The industrial-level sequencing machines can produces up to 6 billion, which is more 

than needed for a single study, thus the libraries are indexed, normalized and combined 

to be run on a single flow cell in practice. Compared with 454 and SOLiD, Illumina 
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Solexa is cheap in sequencing ($0.07 / million bases), it is also the most successful 

sequencing system with a claimed > 70% dominance of the market 175. We also used 

Illumina Solexa sequencing in this study. 

Brief introduction of miRNA sequencing data processing and bioinformatic 

analysis 177

 The miRNA sequence processing can be mainly divided into: 1) Sequences 

processing, 2) Align sequences to reference, and 3) Differential expression analysis.In 

sequences processing step, we can remove low quality, ambiguous, specified number 

of bases at either 3' or 5' end, shorter or longer than a specified threshold, and sample-

specific tag (barcode or index) sequences. The most important process for miRNA 

sequences is removing the adapter. Aligning the sequences with 3' adapter to the 

reference can impacts on the results severely. Please see the table below.  

Table 3-2 Sequencing results of dog liver miRNA. Comparing the annotated and 

With adaptor Without adaptor 
Sequences Percent Sequences Percent 

Total 34482309 100.00% 33732947 100.00%
Unannotated 34440413 99.88% 2411923 7.15%
miRNA 26717 0.08% 28651229 84.94%
others 15179 0.04% 2669795 7.91%
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Most of the sequences with be annotated to miRNA; 

however, 85% of sequences could be annotated to 

adaptor must be removed when performing miRNA analysis. 

 The goal of mapping miRNA sequences to reference is to annotate the original 

source of miRNA. We used CLC Genomics Workbench 10.1.1 to map the processed 

miRNA to the reference downloaded from miRBase. A common mapping processes are 

introduced below: 

 1. Select preprocessed reads between 18-30 bp and map to the reference genome 

with allowing 1-3 bp mismatches to detect isomiRs. Discard the reads cannot map to 

reference genome.  

 2. Map the sequences to database of small RNA other than miRNA, such as Rfam 

or Genebank, and discard rRNA, tRNA, snRNA and snoRNA, coding and non-coding 

RNAs except miRNA. 

 3. Map the sequences to miRBase to identify known miRNAs. 

 For the study to investigate differential expression, genomic mapping step can be 

totally skipped, because known miRNA must be located somewhere in the genome. In 

our differential expression part of study, we ignored genomic mapping step. However 

genome location is important to confirm the sequences origin in novel miRNA 
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investigation study. The second step might be necessary to the 

because these small RNAs are not belong to miRNA category which can be 

confounding factors of pure miRNA study. Most of studies calculate the proportion of 

these fragments in the library, make a pie chart and ignore from further investigation. 

However accumulating evidences suggest that RNA fragments derived from other types 

of non-coding RNA are not just random degradation products but rather stable entities, 

which may have biological function 178. In this study, we focus on the small nuclear 

RNA (snRNA) derived small RNA, and we found that RNU2 derived small RNA were 

increased in mastitis milk.

 We used empirical analysis of DGE implemented in CLC workbench for 

differential expression analysis. Once differential expression miRNAs are obtained, 

downstream analysis could be performed to insight into gene regulation and function, 

such as miRNA-mRNA network, gene ontology, and pathway enrichment.

miRNA and mRNA network 177

 A miRNA can target hundreds of mRNAs, thus the miRNA-mRNA network can 

be investigated to know the regulatory function of different expressed miRNAs. On the 

other hand, mRNA list is necessary for gene ontology and KEGG pathway analysis. 

 The list of target gene can be predicted using target prediction tools. The 
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commonly used features of these tools including 179: 1) Seed match; several canonical 

types of seed region matches that can be considered by algorithm. 2) Conservation; the 

maintenance of a sequence across species. 3) Free energy; the stability of miRNA 

binding to a candidate target mRNA and 4) Site accessibility; measure if miRNA can 

locate and hybridize with an mRNA target. miRNA target prediction analysis methods 

can be mainly categorized as: 1) Computational prediction method, 2) Artificial 

intelligence methods. Computational prediction method rely on the guidelines above, 

provide a basis to score the potential target, users can choose thresholds for targets in 

the trade-off between sensitivity and specificity. Artificial intelligence methods 

including support vector machine (SVM) and self-organizing map (SOM). Support 

vector machines (SVM) is a popular method in miRNA target prediction. In SVM, 

features such as commonly used in computational prediction method are mapped into 

multi-dimensional space. SVM allows to separate them into two classes by constructing 

a linear boundary in a large, transformed version of the feature space. SVM classifier 

needs to train by positive and negative examples, like miRNAs that downregulated and 

nonregulated mRNAs from a microarray experiment, respectively. SVM study results 

can be used to develop a web browser tool.  

 Commonly used miRNA target prediction tools are miRanda 180 and TargetScan 

181. This study use TargetScan as a tool for mRNA target prediction. TargetScan is easy 
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to use and actively maintained. The new version TargetScan 7.1 released in June 2016.

It also includes more species than other programs. Analyzing can be done by click and 

enter miRNA or mRNA symbol. For advanced users, the code of TargetScan can be 

downloaded and run the program locally. 

Gene ontology and KEGG pathway analysis 

 With a list of target mRNAs, we can perform enrichment analysis to understand 

the biological themes behind the large mRNA list indirectly. Gene ontology analysis 

provides defined terms representing gene properties and functions covering cellular 

components, molecular function, and biological processes. Some genes in disease could 

be imbalanced in biological pathways, and some pathways are even comprise only up- 

or downregulated genes in a particular disease 182. Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) pathways is a database resource to integrate functions and utilities 

of biological systems from molecular-level information 175. GO enrichment analysis 

can be performed in CLC workbench platform. The Ingenuity Pathway Analysis plugin 

of CLC workbench allows to perform Ingenuity Pathway Analysis (IPA) of genes and 

expression data directly from CLC Workbench. However CLC workbench did not 

provide KEGG pathway analysis function. In this study we used DAVID, which is an 

online graphical user interface based tool. GO terms and KEGG pathways can be 
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analyzed by paste gene list to the website. GOseq is also applicable to KEGG pathway

analysis.

Novel miRNA prediction 

 Novel miRNA can be predicted in the NGS small RNA reads that could not map 

to the miRBase. Map to the genome can confirm the origin of the unmapped small RNA 

sequences; the sequence reads which cannot map to genome are discarded, and then 

filtered the small RNA derived from known non-miRNA annotation. The remaining 

sequence reads are possible derived from undiscovered miRNA, to predict the novel 

miRNA, they should conform to some of canonical miRNA characteristics, such as their 

precursors can be folded as a hairpin structure, the hairpin structure do not contain large 

bulges and should be energetically stable. The putative hairpin duplex should be base 

paired and the small RNA derived from their putative precursors should correspond to 

guide strand, passenger strand, terminal loop, or even to the miRNA-offset RNA (moR).  

 miRDeep 183, 184 and miReap (https://sourceforge.net/projects/mireap/) are the 

most popular tools used in bovine novel miRNA prediction. This study uses miRDeep2 

for novel miRNA prediction. miRDeep system is the one of most wildly accepted tools 

in NGS and novel miRNA prediction field. miRDeep2 is also able to count known 

miRNA reads for downstream differential expression analysis. Latest released version 
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is miRDeep2.0.0.8 on May 2016. Overall, performance of miRdeep family including 

first and second version in novel miRNA prediction are good. The accuracy levels of 

simulated data set are at 80.4 and 75.4% for miRDeep and miRDeep2, respectively 185. 

miRDeep also listed as best two recommended software in predicting novel nematode 

(Caenorhabditis elegans), vertebrate (Gallus gallus) and mammal (Homo sapiens) 

miRNAs 186. In another study, miRDeep2 demonstrates a high specificity in H.sapiens

(94 ( 2.7) % in 23 datasets), M.musculus (98.6 ( 2) % in 21 datasets), and D.rerio (89.7 

( 1.3) % in 2 datasets) miRNA prediction. The putative miRNA can be validated by 

common wet lab RNA technics including qPCR, Northern blot, and Knock-down 

experiment. In this study, we use PCR based QuantStudio 3D Digital PCR System to 

verify the existence and expression between normal and mastitis milk of novel miRNA. 

miRNA and human disease databases 

 Deregulation of miRNA is associated with diseases, by analysis of deregulated 

miRNA list using database with miRNA associated diseases, researchers can investigate 

the relationship between miRNA and diseases. We used miRWalk 2.0 187 and HMDD 

2.0 188 for miRNA enrichment analysis in this study. miRWalk2.0 supplies predicted 

and experimentally verified miRNA-target interactions. It also incorporates the 

experimentally verified information on miRNAs linked with genes, diseases, pathways, 
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ontologies, cell lines and organs. Testing phase of the miRWalk 3 is started in May, 

2017 (http://129.206.7.150/). HMDD (Human microRNA Disease Database) is a 

database that curated experiment-supported evidence for human miRNA and disease 

associations. Currently, HMDD collected 10368 entries that include 572 miRNA genes, 

378 diseases from 3511 papers. The miRNA enrichment analysis of miRWalk 2.0 and 

HMDD 2.0 have been implemented in the miRNA Enrichment Analysis and Annotation 

tool (miEAA). MiEAA is a web-based, graphical user interface tool offers over-

representation analysis (ORA) and Gene Set Enrichment Analysis (GSEA) statistical 

tests. MiEAA includes over 14 000 miRNA set of pathways, diseases, organs and target 

genes. 

miRNA sequencing application in bovine mastitis 

 Previous studies can mainly categorized into milk/mammary gland miRNA study 

and circulating miRNA study. J Pu et al. collected mammary gland tissues from dairy 

cows with Streptococcus agalactiae-induced mastitis to identify differentially 

expressed miRNAs related to mastitis 189. They found 10 up-regulated miRNAs and 25 

down-regulated miRNAs. Of these miRNAs, miR-223 exhibited the highest degree of 

up-regulation whereas miR-26a exhibited the most decreased expression level. J Sun et 

al. purified milk exosomes from control and S. aureus infected cows 166. miRNA 
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expression from milk exosomes produced in response to infection supporting a role for 

delivery into milk of specific miRNA involved in immune responses. In particular, bta-

miR-142-5p, and miR-223 are potential biomarkers for early detection of bacterial 

infection of the mammary gland. Additionally, 22 mammary-expressed genes involved 

in immune process regulation and response to inflammation are identified as potential 

binding targets of the differentially expressed miRNAs. N Lawless et al. reported a 

profile of mRNA and miRNA expression at multiple time points (0, 12, 24, 36 and 48 

hr) in milk and blood FACS-isolated CD14+ monocytes from animals infected in vivo

with Streptococcus uberis 165. 26 miRNA are differentially expressed in milk-isolated 

monocytes and three are differentially expressed in blood-isolated monocytes. Pathway 

analysis reveals that predicted targets of downregulated miRNA are highly enriched for 

roles in innate immunity, particularly TLR signaling, whereas upregulated miRNA are 

preferentially targeted genes involved in metabolism. The authors concluded that 

during S. uberis infection, miRNA are key amplifiers of monocyte inflammatory 

response networks and repressors of several metabolic pathways. Another paper from 

N Lawless et al. reported the miRNA expression in primary bovine mammary epithelial 

cells at 1, 2, 4 and 6 hours postinfection with Streptococcus uberis 164. 21 miRNAs were 

identified as significantly differentially expressed post-infection with S. uberis, and 

several of them are known to have roles in the immune system of other species. miRNA 
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response to the Gram-positive S. uberis is markedly different to lipopolysaccharide 

(LPS), the major component of the outer membrane of Gram-negative bacteria, induced 

miRNA expression. Down-regulated miRNA in bovine mammary epithelial cells 

following S. uberis infection are statistically enriched for roles in innate immunity. This 

study suggests that miRNA may significantly regulate the sentinel capacity of 

mammary epithelial cells to mobilise the innate immune system. W Jin et al. reported 

global expression of miRNA in bovine mammary epithelial cells challenged with and 

without heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) 

bacteria at 0, 6, 12, 24, and 48 hr 162. 17 miRNA were differentially regulated by the 

presence of E. coli, and E. coli initiated an earlier regulation of miRNA while S. aureus

presented a delayed response. Differentially expressed of bta-miR-184, miR-24-3p, 

miR-148, miR-486 and let-7a-5p are unique to E. coli, while bta-miR-2339, miR-499, 

miR-23a and miR-99b are unique to S. aureus. This study provided a further 

confirmation of the involvement of mammary epithelia cells in contributing to the 

immune response to infecting pathogens. R Li et al. administer S. aureus to the 

mammary gland. A total of 77 miRNA in the S. aureus group are significant differences 

compared to that in the control group 167. Z Li et al. reported differentially expressed 

miRNA in peripheral blood from healthy and mastitis Holstein cattle. 173 unique 

miRNA were significant differential expression between healthy and mastitis Holstein 
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cattle. Most differentially expressed miRNA belong to the chemokine signaling 

pathway involved in the immune responses 173.

Aim of this study

 In this study, we characterized miRNA sequences of normal milk and clinical 

mastitis milk whey samples through next-generation sequencing (NGS) technology, 

and aimed to investigate the miRNA involved in the molecular level pathogenesis of 

mastitis and the regulatory role of miRNAome in inflammatory diseases. 
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Results 

miRNA profiles by next-generation sequencing in CMT+ group were different 

from that in Normal and CMT  groups 

 To study the miRNA differentiation in bovine mastitis milk, fifteen small RNA 

libraries were constructed from cow milk samples (including five samples from five 

 five CMT+ samples from five mastitis-affected cows) 

and subjected to Illumina small RNA sequencing. The sequencing generated total 116.1 

million, 121.1 million and 103.2 million raw reads (including forward and reverse 

direction paired 

respectively (Table 3-1). To investigate the overlapping rate of paired end reads, we 

performed two-step trimming processes. In the first trimming step, we aimed to remove 

(> 29 nt) reads, then merge the paired end reads. 94.2%, 93.8% and 93.2% paired end 

Table 3-1). 

In the second trimming step, we aimed to remove the contamination sequences 

tor sequences 190, 13.6 million, 8.7 million, and 8.1 

er 

small RNA analysis, respectively (Table 3-1). The length distribution of small RNA 

was consistent among three groups, the most common reads were ranged between 20-
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groups were located within this range corresponds to the length of mature miRNA, 

respectively (Figure 3-1). The 82.4%, 73.1%, and 69.5% of clean reads were annotated 

to miRBase 191 or Ensembl cow non-coding RNA (ncRNA) databases 192, respectively 

(Figure 3-2A). 

more than 90% of annotated small RNA belonged to miRNA (Figure 3-2B). 

Interestingly, the remaining ncRNA classes were increased in CMT+ group, of which, 

small nucleolar RNA (snoRNA) and small nuclear RNA (snRNA) were relatively 

increased. At present, the functions of snoRNA and snRNA derived small RNA were 

largely unknown compared to miRNA. These small RNA were much less abundant than 

miRNA (account for ~2.5% of annotated small RNA in the CMT+ group), nevertheless 

they may played a role in bovine mastitis (Figure 3-2C). 

libraries (Figure 3-3). The top ten unique miRNA accounted for ~70% of the total 

miRNA reads mapped to miRBase (Figure 3-3). The top eight miRNA were overlapped 

among three groups (miR-148a, miR-22-3p, miR-26a, miR-30a, miR-141, miR-186, 

miR-27b, and miR-21-5p) (Figure 3-3). Five of these miRNA (miR-148a, miR-26a, 

miR-30a, miR-21-5p, and miR-186) were corresponded to the top expressed miRNA 

share among milk fat, whey, cells, and mammary gland tissue in previous study 108, 
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suggesting that these miRNA were common components in cow milk. The ranking 

order of top 

ranked third and fifth (miR-26a and miR-141) were different between normal and 

and CMT+ groups, suggesting that the composition of highly expressed miRNA could 

be affected by mastitis (Figure 3-3). The ranking of miR-21-5p shifted from eighth in 

normal group to be fourth in CMT+ group, was the most obviously moved up abundant 

miRNA in ranking order. miR-21-5p has been studied as one of bovine mastitis 

biomarkers and upregulated in CMT+ group in our previous work 193. The principal 

component analysis (PCA) also indicated a separation of normal and CM

from CMT+ group (Figure 3-4). Based on these results, we concluded that miRNA 

we analyzed the differentially expressed miRNA in normal and CMT+ groups. 

Differentially expressed miRNA in mastitis milk 

 Twenty-three miRNA were up-regulated and two miRNA were down-regulated in 

mastitis milk (Empirical analysis of DGE FDR < 0.05, and miRNA mean read counts 

in either normal or CMT+ groups > 50)(Figure 3-5 and Table 3-3). Among these 

miRNA, miR-146a and miR-222 have been studied as mastitis biomarkers in our 
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previous work 193. Hierarchical clustering revealed the separation of the normal, CMT 

2+, and CMT 4+ groups, suggesting that miRNA expression was correlated to severity 

of inflammation. Seven miRNA were further validated using qRT-PCR (Normal n = 55, 

CMT  n = 42, and CMT+ n = 41). miR-142-5p, miR-221 and miR-2284w were 

statistically highly significant (FDR <10-5). miR-6529a has been reported as the most 

common non-human miRNA discovered in plasma-derived exosomes 194, 195. miR-15a 

forms a miRNA cluster with miR-16-1 and involve in human chronic lymphocytic 

leukemia 22. miR-23b-3p was one of the two downregulated miRNA. miR-1246 was 

statistically highly significant (FDR =1.76 × 10-7) and has been reported as the fragment 

derived from RNU2-1 snRNA in human 196; interestingly, snRNA population was 

increased in CMT+ group (Figure 3-2B). RNU2 derived small RNA was the most 

abundant in snRNA population in both normal and CMT+ libraries, it accounted for 

68.9% and 82.4% of total snRNA, respectively (Table 3-5). The small RNA derived 

from some of RNU2 were also significantly upregulated in CMT+ group (Table 3-6). 

Querying the read count distribution of miR-1246 and RNU2 derived small RNA in 

cow milk, we investigated the canonical miR-  and 

5

CMT+ libraries (Figure 3-6). The canonical RNU2 derived small RNA was considered 

the one with the most reads. Total read counts of canonical RNU2 derived small RNA 
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were much abundant than that of miR-1246 (15183 and 269 counts, respectively) 

(Figure 3-6). Compared to miR-1246 was almost lack 

were highly expressed and the read count distribution of isomiR was nearly normal 

(Figure 3-6), which is consistent with the results of a previous study that the typical size 

distribution of isomiR was nearly normal, especially for highly expressed miRNA 197. 

-1246 was not a dominant isomiR, the 

read counts of miR-

more than that of miR-1246 (Figure 3-7), suggesting that bovine miR-1246 may be a 

pseudo miRNA or small RNA fragment. The RNU2 isomiR were unlikely the degraded 

or damaged RNA and entire miR-1246 sequence was comprised within the canonical 

RNU2 derived small RNA sequence in cow and human 196, therefore we analyzed 

canonical RNU2 derived small RNA by the Custom TaqMan® Gene Expression Assay. 

 Consistent with the deep sequencing results, the relative expression of six 

upregulated miRNA was significantly higher in the CMT+ group than in the normal 

and CMT  groups (Figure 3-5B). However, miR-2284w had relative low read counts 

in deep sequencing results (on average 3.4 and 102.6 reads in normal and CMT+ 

libraries, respectively; Table 3-3) was also hardly detectable with qPCR. Using qPCR, 

miR-2284w was below the limit of detection (threshold cycle (Ct) value >40) in 78% 

of normal samples; 46% of CMT+ samples had high Ct values (35 < Ct < 40) and 5% 



89 

of samples were below the limit of detection. miR-23b-3p expression level had a trend 

to be downregulated in CMT+ group and significantly downregulated in group, 

compared with in the normal group (Figure 3-5B). Detailed CT and normalized relative 

expression values please refer to Appendix 3-2. 

Bovine chromosome 19 was a hotspot containing bovine mastitis-related miRNA

 The differentially expressed miRNA in mastitis milk were tended to be 

upregulated, and RNU2 were also significantly upregulated, we examined the genomic 

distribution of upregulated miRNA and snRNA precursors separately. Half of the 

miRNA precursors were located in the chromosome 19 and X (Figure 3-8).The 

upregulated miRNA precursors were significantly enriched in the chromosome 19 as 

compared to the background genome distribution of upregulated miRNA precursors in 

other chromosomes (p = 0. Hochberg 

correction; Table 3-7). Interestingly, the upregulated snRNA precursors were also 

significantly enriched in the chromosome 19 as compared to the background genome 

with Benjamini Hochberg correction; Table 3-8 and Figure 3-9), and significantly 

upregulated RNU2 were significantly enriched in the chromosome 19 (p = 0.0081, 

 derived small RNA were 
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located in the tandemly repeated RNU2 locus in the upstream and close proximity to 

the BRCA1 gene 198 (Figure 3-9). We concluded that bovine chromosome 19 was a 

hotspot containing bovine mastitis-related miRNA. 

 network, gene ontology and KEGG pathway analysis 

 To investigate the global biological functions of miRNA, we used the TargetScan 

7.1 algorithm 181 to predict mRNA targets of significantly different expressed miRNA. 

1189 putative target mRNA, 250 of them were immune-related genes which included 

in the ImmPort comprehensive list of immune related genes 199 (Table 3-9), 18 of 

immune-related genes co-regulated by more than one miRNA (Table 3-10). The 

miRNA and immune-related mRNA interaction network are summarized in Figure 3-10. 

 We used upregulated miRNA targets for gene ontology (GO) and KEGG pathway 

analysis, because significantly different expressed miRNA were mainly upregulated. 

The significantly upregulated miRNA had 1092 putative target mRNA genes. GO 

analysis of these ge

categories were significantly enriched for terms related to various gene binding and 

expression regulation processes (Table 3-11). Protein modification process was also 

Table 3-11). These terms 
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were correspond to the common functions of miRNA, including bind to target mRNA 

transcripts, regulate target gene expression, and down-regulate protein expression by 

inhibiting target mRNA translation or induce rapid decay of target mRNA 200. KEGG 

pathway analysis showed that the predicted mRNA target genes were mainly related to 

cancer and immune system pathways, including proteoglycans in cancer, microRNAs 

in cancer, FoxO, PI3K-Akt, ErbB, and MAPK signaling pathways (Table 3-11). 

Identification of novel and bovine mastitis related miRNA in bovine milk 

 Using a miRDeep2 score cut-off point of 5 yielded a signal-to-noise ratio of 8.3 

and corresponded to a true positive prediction percentage of 88 ± 3%. A total of 104 

novel potential novel miRNA precursor coordinates were predicted, which generated 

98 unique mature novel miRNA. Nine of predicted novel miRNA had mean read counts 

> 50 in either normal or CMT+ groups (Table 3-12 and Figure 3-11). Eighteen of 

predicted unique novel miRNA were significantly different expressed (FDR < 0.05) in 

CMT+ group when compared to normal group (Table 3-13), three of them were relative 

highly expressed novel miRNA (with mean read counts > 50 in CMT+ group)(Figure 

3-11). The miRNA precursors chr26_14095, chr26_14097, chr26_14099 and 

chr26_14101 were located within an adjacent region (<10kb) of the introns of protein 

coding gene DMBT1 (Ensembl Gene ID: ENSBTAG00000022715) on chromosome 26 
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(Figure 3-12). RNA sequence alignment of these novel miRNA precursors showed a 

highly similarity with 90% (53/59) nucleotides were identical, chr26_14099 and 

chr26_14101 were perfectly identical sequences (Figure 3-12). The chr26_14095 and 

chr26_14099_14101 precursors generated the same mature miRNA; the mature novel 

miRNA chr26_14095, 14097, 14099, 14101 might be a miRNA family, because they 

had only one nucleotide mismatch (95% (20/21) nucleotides were identical) and shared 

the same seed region at positions 2-8, suggesting that they were functionally identical 

miRNA (Figure 3-12). Six genes including BCL6 were predicted as targets of these 

miRNA by TargetScan algorithm, suggesting that the ability of these miRNA to 

regulate immune responses mediated by BCL6 201, 202. These two mature miRNA have 

not been annotated in miRBase 21 for any species. We further verified the expression 

of mature chr26_14097, because it was the most significantly different expressed novel 

miRNA (Empirical analysis of DGE FDR =7.9E  05), and had been discovered by 

previous studies (Figure 3-13A and Table 3-12 and Table 3-13) 165, 203, 204. We used 

digital PCR methods to improve detection sensitivity for the low expression level of 

novel miRNA. The expression level of the mature chr26_14097 was significantly 

higher in the CMT+ group than in the normal group (p = 0.0006) (Figure 3-13B). The 

limit of detection (LoD) 205 of mature chr26_14097 Custom TaqMan® Gene 

Expression Assay was 3.55 copies/µL in QuantStudio 3D Digital PCR System (Refer 
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to method section for detail). Ten (71.4%) of normal milk samples (n = 14) expression 

was below the LoD, whereas all of the CMT+ milk samples (n = 10) expression was 

above the LoD (Figure 3-13B). These results suggest that the mature chr26_14097 

existed in bovine milk and related with bovine mastitis. 

Human disease enrichment analysis of mastitis-related miRNA 

 To identify human diseases that are related to the differentially expressed miRNA 

in bovine mastitis, 19 of 32 differentially expressed miRNA with human homologues 

were analyzed using miRWalk 2.0 187 and Human microRNA Disease Database 

(HMDD v2.0) 188. The complete results of the miRWalk 2.0 and HMDD 2.0 are shown 

in Table 3-14 and Table 3-15, respectively. The mature miRNA analyzed by miRWalk 

2.0 were related to 5 human disease terms which can be mainly categorized into cancer, 

infection and immune related diseases (Figure 3-14A). The miRNA precursors 

analyzed by HMDD 2.0 were related to 50 human disease terms, 37 terms can be 

categorized into cancer, infection and immune related diseases (Figure 3-14B). We 

found these miRNA were annotated to B cell related leukemia, breast and liver cancers 

in the cancer category, to human immunodeficiency virus (HIV), hepatitis E virus (HEV) 

and sepsis in the infection category, and to inflammation and hepatitis B in the immune 

category (Figure 3-14C, refer to ). It 
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suggested that bovine mastitis related miRNA identified in milk were related to cancer,

B cell function, and modulate infection and inflammation responses in human.
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Discussion 

We have shown that miR-92a is suitable for use as a housekeeping gene for 

analysis of bovine mastitis-related microRNA in milk 159, and miRNA in milk could be 

used as liquid biopsy biomarkers for bovine mastitis 193 in chapeter 1 and 2. In the 

present study, we comprehensively profiled genome-wide miRNA expression in bovine 

mastitis milk. By relative abundance of miRNA and ncRNA, top ten unique miRNA 

and PCA analysis, we revealed that the small RNA expression profiles of inflammation-

affected (CMT+) milk samples were different from that of inflammation-unaffected 

aberrant in inflammation condition.  

 NGS has been widely used in small RNA transcriptome bovine mastitis related 

studies, the common experimental designs are artificial bacterial challenge to an in Vivo

or in Vitro model and investigate the different expressed miRNA 105, 162, 164-167, 173, 189. In 

contrast to the bacterial challenge experiments, we used the milk samples from naturally 

infected cattle. Compared to the previous studies, our results were most similar to the 

transcriptome miRNA profile of bovine mammary glands infected with Staphylococcus 

aureus 167, 44% of significantly different expressed miRNA in our results were shared 

with this study, including miR-1246, miR-223, miR-142-3p, miR-142-5p, miR-21-3p, 
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miR-6529, miR-2284aa, miR-2284w, miR-132 and miR-130b are upregulated, miR-

23b-3p is downregulated; however, miR-874 is downregulated in this study. miR-10a, 

miR-146a, miR-146b, miR-221, and miR-223 are associated with regulation of innate 

immunity and mammary epithelial cell function in tissue challenged with Streptococcus 

uberis 163. miR-146b, miR-223 and miR-338 are upregulated after Streptococcus uberis

infection in milk-isolated and blood-isolated monocytes 165. miR-30 family including 

miR-30f is significantly decreased; miR-222 is significantly correlated with somatic 

cell counts and suggests utility of miR-222 as mastitis indicators in the study using the 

milk samples contain fat and somatic cells (without centrifugation process) 206. miR-

301a can activate NF- -regulated in blood of 

mastitis cows 207. miR-2284 and miR-2285 are bovine specific families without 

homologs in human or mouse 208. Although the family members have been discovered 

in different bovine organs including liver, rumen, jejunum 209, 210 mammary gland 167, 

210, milk components 166, 211 and serum 212, their precise functions still remain largely 

unknown. 

 To the best of our knowledge, this is the first study to describe miR-147 and miR-

505 were related to bovine mastitis. A previous study demonstrates a negative-feedback 

loop in which toll-like receptor stimulation induces miR-147 to prevent excessive 

inflammatory responses 213. miR-505 is a tumor suppressive miRNA and inhibits 
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human mammary carcinoma cell proliferation by inducing apoptosis 214. miR-505 also 

express in basal human and mouse mammary tumors 215, and significantly overexpress 

in plasma of patients with breast cancer and decrease after treatment 216. 

 We found that upregulated bovine mastitis-related miRNA were enriched on 

chromosome 19. Bovine chromosome 19 is highly conserved with human chromosome 

17 217-219. Some of well-known human breast cancer related oncogenes and tumor 

suppressor genes such as HER2, p53 and BRCA1 are located on chromosome 17 220. 

Molecular genetic abnormality events of human chromosome 17 including monosomy 

or polysomy can be observed in human breast cancers 220, chromosome 17 and the locus 

for HER2 are the most frequently involved in chromothripsis-like patterns in human 

breast cancer 221. BRCA1 mutations associate with worse overall survival in women 

with breast cancer 222. BRCA1 also effects on bovine mastitis resistance 223. miR-1246 

has been found to be upregulated in response to Staphylococcus aureus infection of 

bovine mammary gland and milk exosomes 166, 167. However, miR-1246 is likely a 

pseudo miRNA derived from U2 snRNA fragments being the result of false mapping in 

human 196. We found that total read counts of canonical and isomiR of RNU2 derived 

small RNA were much abundant than that of miR-1246 in bovine milk, and the read 

count distribution of RNU2 isomiR was also similar to the true miRNA. In 5

isomiR analysis, the sequence read counts of RNU2 derived small RNA with deletion 
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in positions 1-3 (sequence: AAATGGATTTTTGGAGCAGGGA to 

TGGATTTTTGGAGCAGGGA) and miR-1246 without 5 adenine nucleotides 

decreased substantially (Figure 3-7 -

sequences which without canonical offset 6-mer site match to position 3-8 were almost 

not expressed in milk. A General rules for functional miRNA targeting study has shown 

that third nucleotide position is the margin of matching starting point; miRNA-mRNA 

interactions without any matches at positions 1-3 has not been discovered 224. The 

sequence read counts of RNU2 with one nucleotide, and miR-1246 with two 

decreased substantially (Figure 3-7); the 

read counts of sequences started with thymine decreased substantially, suggesting that 

adenines in positions 1-3 may played an important role in RNU2 mature small RNA 

biogenesis processing (Figure 3-7). The patterns of miRNA processing suggesting that 

RNU2 derived small RNA may have biologically relevant roles instead of degradation 

fragments or sequencing error. Our isomiR analysis results were also corresponded to 

the results of RNU2 derived small RNA in human lung tissue as well as in serum from 

lung cancer patients 225. miR-1246 (RNU2 derived small RNA) expression in ductal 

lavages originate from donors that had epithelial atypia and atypical ductal hyperplasia 

on biopsy is higher than the milk from normal donors, suggesting that miR-1246 

concentrations are indicative of the presence of abnormal cells in the mammary gland 
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226, we infer that RNU2 derived small RNA are associated with the pathogenic 

mechanisms in mammary epithelial cells, such as tumor or inflammation. RNU2

derived small RNA were significantly upregulated in mastitis milk and enriched in 

chromosome 19, the tandemly repeated RNU2 locus close proximity to a major cancer 

susceptibility gene BRCA1. Copy number variations (CNV) could influence the 

expression of genes in their vicinity and extends up to half a megabase 227, thus the 

proximity of RNU2 CNV repeat unit to the BRCA1 raise a possibility that it could be 

involved in human breast cancer 198 and bovine mastitis 223 susceptibility. Based on the 

previous studies and our results, we inferred that human chromosome 17 and bovine 

chromosome 19 play an important role in breast-related diseases including breast cancer 

and mastitis. 

 Eighteen of putative unique novel miRNA were bovine mastitis related miRNA; 

however, only three of them fulfilled the expression criterion of mean read counts in 

either normal or CMT+ groups > 50. We further investigated the mature novel miRNA 

designated as chr26_14097 by miRDeep2 in this study. Chr26_14097 has been 

discovered in different bovine specimens of previous studies, including milk-isolated 

monocytes of the cows infected in vivo with Streptococcus uberis via the teat canal 165, 

alveolar macrophage response to Mycobacterium bovis infection 203, Onchocerca 

ochengi (a filarial parasite of cattle) infected cow (Bos indicus) plasma 228, whole blood 
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229 and gut tissues of calves (30 min after delivery, 7, 21, and 42-day-old) 230, suggesting 

that chr26_14097 is present in cells of the immune system and may regulates immune 

functions. Indeed, chr26_14097 was significantly upregulated in the CMT+ group in 

our sequencing data and verified by digital PCR. Among these previous studies, 

chr26_14095, 14097, 14099, and 14101 miRNA family has been discovered in alveolar 

macrophage, whole blood and gut tissues of calves 203, 229, 230. While it was predicted to 

regulate expression of BCL6, a transcription factor essential for T-follicular helper cell 

differentiation and regulates inflammatory signaling in macrophages 201, 202, further 

investigation is warranted to elucidate the biological functions of these novel miRNA 

in bovine immunity. 

 Differentially expressed miRNA in mastitis milk were mainly related with cancer, 

infection and immune system in KEGG pathway, and human related disease enrichment 

analysis. We reasoned that cancer has complex relationship with nutrition, 

immunological and inflammatory reactions and pathogen infection 231-233. 

Inflammation and cancer share the similar pathways of cell survival, proliferation and 

angiogenesis. Various types of inflammatory cells are infiltrated to cancer tissues, and 

inflammation impacts every single step of tumorigenesis, from initiation through 

promotion, malignant conversion, invasion, and metastasis 232, 233. In the cancer 

category of human disease enrichment analysis, mastitis-related miRNA were enriched 
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in B cell related leukemia and breast neoplasms. Bovine leukemia virus (BLV) is 

prevalent and causes B-cell leukemia/lymphoma in cattle globally. Recent studies have 

suggested that BLV DNA was present in the breast tissues from the US and Australian 

women with breast cancer 234-236, and raise a concern that BLV may be a risk factor for 

human breast cancer 237-239. BLV miRNA mediate the expression of genes involved in 

cell cancer and immunity, essential to induce B-cell tumors and promote efficient viral 

replication 240, BLV miRNA B4 share identical seed sequences with human miR-29, 

suggesting that both viral and human miRNA has a role in orchestrating zoonotic-

induced oncogenesis 240. The cows repeated immunization with immunogens that 

antigenically mimic the HIV envelope glycoprotein elicit neutralizing antibodies to 

HIV in colostrum 241, 242 and serum 243. Interestingly, these categories contained liver 

diseases (hepatocellular carcinoma in the cancer category, HEV in the infection 

category, and hepatitis B in the immune category). Gene expression profiling of liver 

tissue from dairy cows treated intra-mammary with Escherichia coli (E. coli) or 

lipopolysaccharide LPS verify that liver plays a major role in the acute phase response 

of E. coli mastitis 244-247; hepatic failure can be caused by mastitis or metritis 248, 

suggesting a potential of crosstalk between liver and mastitic mammary gland. HEV is 

the causative agent of hepatitis E, and anti-HEV antibodies can be detected in humans, 

domestic and wild animals 249. As a food borne disease, a recent study discovers that 
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infectious HEV can excrete into milk, and HEV contaminated cow milk is a new 

zoonotic source that has a high risk of human transmission 250. The immunologic 

function and importance of the homologues miRNA in zoonoses and the disease 

characteristics either same or similar between humans and animals deserve further 

intensive study. 

 In summary, we identified 25 different expressed miRNA and RNU2 derived small 

RNA in the CMT+ milk, these different expressed small RNA were enriched on bovine 

chromosome 19. The different expressed miRNA were primarily correlated with cancer, 

infection and immune system, and may contribute to mastitis through the regulation of 

gene expression. Our study provides genome-wide views of miRNA profiles in bovine 

mastitis milk, and a potential to study the roles of miRNA in inflammatory diseases. 

With mastitis related novel miRNA, we also provide several miRNA as potential bovine 

mastitis biomarkers. 



103 

Materials and Methods 

Milk sample preparation

 Milk samples were prepared as chapter 1 described. All of the milk samples were 

taken from milking Holstein-Friesian cows. The cows were kept in free-stall barn or 

tie-stall and pasture without grazing systems; milked twice a day. The animals were fed 

twice daily, and water was available ad libitum. Milk samples (approximately 5 10 ml) 

were collected and immediately screened in the field using a modified California 

Mastitis Test (CMT) with a commercial tester ("PL Tester", Nippon Zenyaku Kogyo) 

as previously described 112. Cows with no CMT+ result for any quarter were defined as 

the normal group; cows with a CMT+ result for at least one quarter were defined as the 

mastitis-affected group. On the basis of the CMT results, each quarter of the mastitis-

quarter bias, the samples were collected from the farms of four different locations in 

Japan (Kagoshima, Miyazaki, Hiroshima and Hokkaido prefectures). The samples were 

stored at 4 °C after collection and transported to the laboratory, then centrifuged at 3000 

× g for 15 min at room temperature to remove cell debris and fat. The supernatant was 

recovered and further centrifuged at 15000 × g for 15 min at 4°C. The milk whey was 
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RNA isolation, Library construction and Small RNA sequencing

Total RNA was extracted from milk whey using a mirVana PARIS kit (Thermo 

preparation and sequencing was performed by Hokkaido System Science Co., Ltd. 

Concentration of total RNA was measured using the NanoDrop Spectrophotmeter 

(Thermo Fisher Scientific)(Appendix 3-1), and quality of RNA was assessed using the 

Small RNA kit in combination with the 2100 Bioanalyzer System (Agilent) (Appendix 

3-1). Small RNA libraries were constructed by 1 µg of total RNA using the TruSeq 

Small RNA Library Preparation Kit (Illumina) following the manufactu

The libraries were subjected to 100 bp paired end sequencing on an Illumina HiSeq 

2500 system (Illumina). All miRNAseq files were submitted to the sequence read 

archive (SRA) with the BioProject number: PRJNA421075, and SRA Study number: 

SRP126134. 

Small RNA sequencing data processing 

 CLC Genomics Workbench 10.1.1 (CLC bio) was used to processing and analysis 

small RNA sequencing. To investigate the overlapping rate of paired end reads, we 

performed two-step trimming processes. In the first trimming step, low quality 

sequences (Trim using quality scores limit = 0.05), ambiguous nucleotides (maximal 
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were removed using trim sequences tool (Action frame: discard when not found. 

Alignment scores costs frame: mismatch cost = 2; gap cost = 3. Match thresholds frame: 

Allowing internal matches with a minimum score = 10; Allowing end match with a 

minimum score = 4), the sequence length shorter than 15 or longer than 29 nucleotides 

were discarded. The overlapping paired forward and reverse reads were merged using 

merge overlapping pairs tool (Alignment scores: mismatch cost = 2; gap cost = 3; max 

unaligned end mismatches = 0; Minimum score = 8). In the second trimming step, stop 

trimming parameters were same as the first trimming step. The clean reads were 

191, 

Ensembl cow ncRNA database (release 85) 192, and novel miRNA precursors predicted 

by miRDeep2 algorithm (Refer to novel miRNA prediction section) 184 with the default 

parameters (additional upstream bases, additional downstream bases, missing upstream 

bases, missing downstream bases and maximum mismatches = 2 with strand specific 

prioritized over the additional annotation resource.  
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Novel miRNA prediction

Clean reads were annotated to miRBase (release 21) 191 and Ensembl cow ncRNA 

database (release 85) 192 using the same parameters de

unannotated small RNA reads 

were pooled and used the miRDeep2 algorithm (version 2.0.0.8) to predict potential 

novel miRNA 184 with the default parameters. The targets of mature novel miRNA were 

predicted by TargetScan 5.2 custom algorithm. 

Differential expression analysis of small RNA 

 The differentially expressed small RNA between normal and CMT+ groups were 

identified by Empirical analysis of DGE tool 251 in CLC Genomics Workbench 10.1.1 

(CLC bio) using raw small RNA counts with the default parameters (Total count filter 

cut-off = 5.0 with estimate tag-wise dispersions). The sequences annotated to known 

mature miRNA and ncRNA/novel miRNA precursors without known miRNA were 

analyzed separately. Differences were considered to be significant at FDR < 0.05, and 

mean read counts in either normal or CMT+ groups > 50. 

Quantification of miRNA by qPCR 

 qPCR was performed as chapter 1 described. Equal volumes of RNA (1.25 
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microliter) were reverse transcribed to cDNA using TaqMan MicroRNA Assays 

performed using a TaqMan Fast Advanced Master Mix kit and a StepOne Plus Real 

Time PCR system (Thermo Fisher Scientific). Thermal cycling was conducted 

protocol, and all experiments were 

performed in duplicate. miR-92a was used as an internal control and expression level 

was determined using the 2 CT method. qPCR reactions of undetermined CT were 

assigned CT = 40. The TaqMan MicroRNA Assays used in qPCR of this study and their 

IDs are as follows: miR-15a (ID: 005892_mat), miR-23b-3p (ID: 245306_mat), miR-

142-5p (ID: 000465), miR-92a (ID: 000431), miR-221 (ID: 001134), miR-2284w (ID: 

465051_mat), miR-6529a (ID: 476810_mat); the Custom TaqMan® Gene Expression 

Assay RNU2 sequence: AAATGGATTTTTGGAGCAGGGA. 

Target gene prediction, Gene Ontology (GO) term and KEGG pathway analysis

 The TargetScan 7.1 was used to predict the gene targets of different expressed 

miRNA 181  were 

selected as putative targets. GO term and KEGG pathway enrichment analysis for the 

predicted gene targets was performed using the Annotation, Visualization and 

Integrated Discovery (DAVID) v6.8 252, 253. The GOTERM_BP_FAT and 

GOTERM_MF_FAT parameters were used for biological process and molecular 



108 

function terms analysis, respectively.

miRNA and immune related genes interaction network analysis 

 The immune related genes were defined by the target mRNA which cross-

referenced with ImmPort comprehensive list of immune-related genes 199. The miRNA 

and immune related genes interaction network was visualized using Cytoscape (version 

3.4.0) 254. 

Quantification of novel miRNA by digital PCR 

 Digital PCR was performed as previously described 193. In brief, using the 

QuantStudio 3D Digital PCR System (Thermo Fisher Scientific) according to the 

 protocol. 3 µL cDNA of were combined with QuantStudio 3D Digital 

PCR Master Mix and TaqMan Assay. The samples were loaded onto chips using 

QuantStudio 3D Digital PCR Chip Loader (Thermo Fisher Scientific). The 

PCR, the fluorescence data from the chips were collected using a QuantStudio 3D 

Digital PCR Instrument. The Custom TaqMan® Gene Expression Assay chr26_14097 

sequence: CCGAGCCUGACAGAUCACACA. The limit of detection (LoD) of assay 

was established according to previous study: limit of blank (LoB) is estimated by 
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measuring replicates of a blank sample and calculating the mean result and the standard 

deviation (SD) 205.

LoB = mean blank + 1.645 (SD blank) 

 The RNA solvent Elution Solution provided by mirVana PARIS kit (Thermo 

Fisher Scientific) was used as a blank sample and five replicates were measured. 0.692, 

1.274, 1.799, 0.835, and 2.186 copies/µL were generated, LoB was 2.40 copies/µL in 

which mean and standard deviation of blank were 1.357 and 0.6333 copies/µL, 

respectively. 

 LoD is determined by LoB and test replicates of a sample known to contain a low 

concentration of analyte. The mean and SD of the low concentration sample is then 

calculated 205.  

LoD = LoB + 1.645 (SD low concentration sample) 

 The sample known to contain a low concentration of analyte was selected from a 

normal milk sample which concentration was measured by a pilot screening study. Five 

replicates were measured and generated 1.067, 2.323, 2.041, 0.776, and 2.151 
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copies/µL, LoD was 3.55 copies/µL in which standard deviation of low concentration 

sample was 0.6997 copies/µL.

Human disease enrichment analysis

 miRWalk 2.0 187 and Human microRNA Disease Database (HMDD v2.0) 188 were 

used to identify human diseases that are related to the differentially expressed miRNA 

using miRNA Enrichment Analysis and Annotation tool (miEAA) 255 over-

representation analysis with threshold level = 2. FDR adjustment was used for p-value 

calculations, a significant enrichment was considered to be at FDR < 0.05. 

Statistics 

 Data analysis was performed using GraphPad Prism 7 (GraphPad Software Inc.). 

qPCR data were compared using an unpaired, two-tailed Mann-Whitney test, or one-

enrichment analysis data were compared using two-

without Benjamini Hochberg correction where appropriate, differences were 

considered to be significant at P or Benjamini Hochberg corrected P value < 0.05.
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Figure 3-15

CMT+ libraries.
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Figure 3-16 Small RNA annotation analysis. (A) Portions of the annotated and 

unannotated small RNA clean reads. The number in bar graphs indicates percentage of 

unannotated reads. (B) 

and CMT+ groups. The number in pie charts indicates percentage of miRNA. (C)

CMT+ groups. The numbers indicate percentage of ncRNA in figure 2B. snoRNA: 

small nucleolar RNA, snRNA: small nuclear RNA, Mt_tRNA: transfer RNA located in 

the mitochondrial genome, rRNA: ribosomal RNA, miscRNA: miscellaneous other 

RNA.
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Figure 3-17 with red color represent top ten unique miRNA. 

The number under each bar graph indicates accumulative percentage of the top ten unique miRNA in total read counts of all unique miRNA. The numbers in 

the white cells indicate total unique miRNA numbers. The top eight miRNA were overlapped among three groups and labeled with English alphabet symbols. 
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Figure 3-18

libraries. The mapped miRNA read counts were normalized to reads per million 

mapped (RPMM) and log (RPMM + 1) transformed before PCA. The pink ellipse 

indicates distribution area of CMT+ libraries, and the ellipse with black border 

indicates distribution area of norm
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Figure 3-19 Differentially expressed miRNA analysis. (A) Heatmap of the 

differentially expressed miRNA in mastitis milk based on log (RPMM + 1) transformed 

values (Table 3-4). Hierarchical clustering revealed the separation of the normal, CMT 

2+, and CMT 4+ groups and indicated under the heatmap. (B) qRT-PCR relative 

expression of seven miRNA selected from differentially expressed miRNA of 

sequencing results. The y-axes represent relative miRNA expression levels normalized 

to miR-92a (Normal n = 55, CMT  n = 42, and CMT+ n = 41; One-way ANOVA 

.0001).
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Figure 3-20 miR- -mir-1246 precursor sequence was downloaded 

from miRBase, RNU2 precursor (ENSBTAT00000063731.1) sequence was downloaded from Ensembl cow non-coding RNA (ncRNA) database. The canonical 

mature miR-1246 and RNU2 derived small RNA sequences were highlighted with pink. Sequence mismatches between bta-mir-1246 and RNU2 were marked 

with asterisks. The numbers represent read counts in each group. The bar graph represents the percentage of each isomer in total
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Figure 3-21 miR- bta-mir-1246 precursor sequence was downloaded 

from miRBase, RNU2 precursor (ENSBTAT00000063731.1) sequence was downloaded from Ensembl cow non-coding RNA (ncRNA) database. The canonical 

mature miR-1246 and RNU2 derived small RNA sequences were highlighted with pink. Sequence mismatches between bta-mir-1246 and RNU2 were marked 

1, 2 and 3 nucleotid -

thymine decreased substantially, suggesting that adenines in positions 1-3 may played an important role in RNU2 mature small RNA biogenesis processing.
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Figure 3-22 Distribution of the significantly upregulated miRNA precursors in cow chromosome ideogram. The characters at the above of 

chromosome schematic bars indicate the chromosome names. The red numbers in the chromosome schematic bars indicate the amount of 

significantly upregulated miRNA precursor numbers in each chromosome. Red arrows at the right of the chromosomes indicate the location of 

upregulated miRNA precursors in chromosomes. 
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Figure 3-23 Distribution of the significantly upregulated snRNA in cow chromosome ideogram. The characters at the above of chromosome schematic bars 

indicate the chromosome names. The red numbers in the chromosome schematic bars indicate the amount of significantly upregulated snRNA precursor numbers 

in each chromosome. Red arrows at the right of the chromosomes indicate the location of upregulated snRNA precursors in chromosomes. The figure at the 

bottom of the chromosome schematic bars indicates the location of upregulated U2 were located in the tandemly repeated RNU2 locus as shown in the Ensembl 

browser. RNU2 locus was close proximity to the BRCA1 gene which highlighted with green color.
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Figure 3-24 Summary of miRNA and immune-related mRNA interaction network. 

miRNA are shown in triangle, immune-related mRNA are shown in oval. Immune-

related mRNA co-regulated by more than one miRNA are shown in diamond and 

highlighted with yellow. 
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Figure 3-25 Analysis of bovine mastitis related novel miRNA. The secondary structures of nine novel miRNA had mean read counts > 50 in either normal or 

CMT+ groups. The name of three bovine mastitis related novel miRNA which significantly different expressed (FDR < 0.05) were marked in red. The Sequences 

were highlighted according to mature (pink) and star (pale blue).
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Figure 3-26 Analysis of a bovine mastitis related novel miRNA family. Conservation of four significantly different expressed novel miRNA 

precursors located on chromosome 26. Asterisk indicates conserved sequence. The sequences were highlighted according to mature (pink) 

and star (pale blue). The gene names under asterisk line were predicted targets of mature miRNA seed regions.
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Figure 3-27 Validation of novel miRNA chr26_14097. (A) Total sequencing reads of mature chr26_14097 among normal and CMT+ libraries. (B) 

Digital PCR system quantification of expression level of mature chr26_14467 in normal (n = 14) and CMT+ milk (n = 10) samples (LoD: limit of 

detection; Mann-Whitney test, ***p = 0.0006).
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Figure 3-28 Human disease enrichment analysis of differentially expressed bovine mastitis related miRNA. (A) Analysis results of miRWalk 2.0. 

The terms in the pie chart indicate disease categories, and the terms out of the pie chart indicate the annotated diseases by miRWalk 2.0. (B)

Analysis results of HMDD 2.0. The terms indicate disease categories, and the numbers were the number of diseases annotated to the category by 

HMDD 2.0. (C) Bar plot of the partial diseases from cancer, infection and immune categories of HMDD 2.0 results.
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Table 3-3 The first trimming 

15 nt) or long (> 29 nt) reads, then merge the 

ptor sequences. 

The value in brackets indicates the number of discarded reads.

Step 1
Normal  CMT+ 

Raw reads 116,102,702 121,131,414 103,228,956 
Removal of low quality sequences 6,636,202 6,804,210 5,982,143 
Removal of ambiguous nucleotides 17,968 (613) 18,377 (684) 15,955 (564) 
Removal of adapter sequences 50,507,034 (65,595,055) 45,103,255 (76,030,475) 47,151,069 (56,077,323)
Keep 15-29 nucleotide reads 31,490,856 (19,016,178) 22,401,262 (22,701,933) 20,025,082 (21,725,987)
Overlappable reads 30,500,582 20,931,114 18,962,722 
Paired end overlapping rate 94.2% 93.8% 93.2% 

Step 2
Overlapped reads 14,364,499 9,811,910 8,835,714 
Removal of low quality sequences 311,908 220,037 206,448 
Removal of ambiguous nucleotides 56 (6) 42 (3) 32 (3)
Removal of contamination sequences (681,791) (1,075,978) (728,680)
15-29 nucleotide reads (Clean reads) 13,626,099 8,689,205 8,059,195
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Table 3-4 Differentially expressed miRNA in read counts of each library of normal and CMT+ groups. The miRNA with mean read counts < 50 

in both groups were ignored. Fold change and FDR were computed by Empirical analysis of DGE based on tagwise dispersions using CLC 

Genomics Workbench 10. N: Normal; P: CMT+; FC: fold change; Avg: Mean read counts. 

miRNA FC FDR N1 N2 N3 N4 N5 Avg P1 P2 P3 P4 P5 Avg 

miR-221 56.971 3.8E-11 87 113 19 14 9 48.4 693 5977 437 3602 4219 2985.6

miR-1246 43.830 1.8E-07 9 6 17 2 6 8 110 1932 25 385 195 529.4

miR-146a 31.316 3.8E-07 64 335 18 12 5 86.8 1309 5037 157 2383 1450 2067.2

miR-10a 38.821 4.8E-07 14 138 28 11 13 40.8 82 4590 63 1181 1914 1566

miR-142-3p 37.520 6.6E-07 34 116 3 1 12 33.2 456 3490 131 1128 1155 1272

miR-142-5p 63.429 6.6E-07 257 1863 96 60 7 456.6 1111 68222 1690 32715 15792 23906

miR-222 26.397 3.3E-06 13 19 3 3 0 7.6 28 630 20 345 182 241

miR-2284w 27.629 5.4E-06 7 9 1 0 0 3.4 14 284 20 93 102 102.6

miR-146b 7.838 1.3E-05 57 980 964 96 47 428.8 810 5044 530 2463 2208 2211

miR-130b 7.305 2.1E-05 27 90 79 15 6 43.4 54 553 58 333 334 266.4

miR-2285b 18.362 2.6E-05 1 10 12 0 4 5.4 26 165 10 110 136 89.4

miR-223 132.236 2.6E-05 13 343 1 2 0 71.8 229 17952 202 4430 7404 6043.4

miR-147 12.536 1.2E-04 19 8 2 3 7 7.8 105 301 31 145 135 143.4

miR-21-3p 5.395 6.0E-04 250 211 285 42 34 164.4 340 2366 293 557 842 879.6

miR-132 10.335 1.4E-03 5 15 3 3 0 5.2 7 226 10 53 21 63.4
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miRNA FC FDR N1 N2 N3 N4 N5 Avg P1 P2 P3 P4 P5 Avg 

miR-301a 6.881 2.3E-03 24 93 91 16 3 45.4 23 1014 25 234 182 295.6

miR-505 4.472 3.3E-03 6 38 36 8 3 18.2 25 170 18 66 61 68

miR-2284aa 3.757 4.7E-03 67 152 115 26 17 75.4 64 424 84 370 325 253.4

miR-2285p 7.897 4.7E-03 2 8 19 1 6 7.2 43 107 4 65 53 54.4

miR-874 4.238 2.5E-02 15 38 43 11 16 24.6 87 305 15 82 91 116

miR-338 3.951 2.7E-02 37 107 107 18 66 67 147 739 86 416 340 345.6

miR-30f -2.924 3.3E-02 1498 9448 10913 1573 359 4758.2 485 1108 761 2082 617 1010.6

miR-15a 3.682 3.6E-02 488 1846 1626 390 38 877.6 225 6151 563 3628 2932 2699.8

miR-23b -3.117 3.6E-02 495 3667 3104 410 127 1560.6 129 391 316 530 104 294

miR-6529a 2.990 4.2E-02 237 251 227 87 76 175.6 380 925 250 447 664 533.2
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Table 3-5 Differentially expressed miRNA in log (RPMM + 1) transformed values of each library of normal and CMT+ groups. N: 

Normal; P: CMT+. 

miRNA N1 N2 N3 N4 N5 P1 P2 P3 P4 P5 
miR-221 2.02 1.54 0.8 1.41 1.43 3.09 3.69 2.91 3.47 3.89

miR-1246 1.07 0.44 0.76 0.66 1.26 2.29 3.2 1.67 2.5 2.56

miR-146a 1.89 2 0.78 1.35 1.19 3.36 3.61 2.46 3.29 3.43

miR-10a 1.25 1.62 0.95 1.31 1.59 2.16 3.57 2.07 2.99 3.55

miR-142-3p 1.62 1.55 0.26 0.44 1.55 2.9 3.45 2.39 2.97 3.33

miR-142-5p 2.49 2.74 1.45 2.03 1.33 3.29 4.74 3.49 4.43 4.46

miR-222 1.22 0.82 0.26 0.8 0 1.7 2.71 1.58 2.45 2.53

miR-2284w 0.97 0.56 0.11 0 0 1.41 2.37 1.58 1.89 2.28

miR-146b 1.84 2.46 2.43 2.23 2.14 3.15 3.61 2.99 3.3 3.61

miR-130b 1.52 1.44 1.36 1.44 1.26 1.98 2.65 2.03 2.44 2.79

miR-2285b 0.34 0.6 0.64 0 1.1 1.67 2.13 1.29 1.96 2.4

miR-223 1.22 2.01 0.11 0.66 0 2.61 4.17 2.57 3.56 4.13

miR-147 1.37 0.53 0.19 0.8 1.33 2.27 2.39 1.77 2.08 2.4

miR-21-3p 2.48 1.8 1.91 1.88 2 2.78 3.29 2.73 2.66 3.19

miR-132 0.84 0.73 0.26 0.8 0 1.12 2.27 1.29 1.65 1.6

miR-301a 1.47 1.45 1.42 1.47 0.99 1.62 2.92 1.67 2.28 2.53

miR-505 0.91 1.09 1.04 1.18 0.99 1.65 2.14 1.53 1.74 2.05

miR-2284aa 1.91 1.66 1.52 1.67 1.7 2.06 2.54 2.19 2.48 2.78

miR-2285p 0.53 0.53 0.8 0.44 1.26 1.88 1.95 0.92 1.73 1.99
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miRNA N1 N2 N3 N4 N5 P1 P2 P3 P4 P5 
miR-874 1.28 1.09 1.12 1.31 1.67 2.19 2.4 1.46 1.83 2.23

miR-338 1.65 1.51 1.49 1.52 2.28 2.41 2.78 2.2 2.53 2.8

miR-30f 3.25 3.45 3.49 3.45 3.02 2.93 2.96 3.15 3.23 3.06

miR-15a 2.77 2.74 2.66 2.84 2.05 2.6 3.7 3.02 3.47 3.73

miR-23b 2.77 3.03 2.94 2.86 2.57 2.36 2.5 2.77 2.64 2.28

miR-6529a 2.45 1.88 1.81 2.19 2.34 2.83 2.88 2.67 2.56 3.09
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Table 3-6 snRNA derived small RNA profiles in normal and CMT+ groups.

snRNA Normal percentage CMT+ percentage
U1 671 14.98% 6533 7.74%

U11 48 1.07% 605 0.72%

U12 72 1.61% 437 0.52%

U2 3084 68.84% 69610 82.42%

U4 43 0.96% 2479 2.94%

U4atac 5 0.11% 63 0.07%

U5 352 7.86% 4009 4.75%

U6 161 3.59% 329 0.39%

U6atac 16 0.36% 64 0.08%

U7 28 0.63% 329 0.39%
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Table 3-7 Differentially expressed (FDR < 0.05) RNU2 transcript ID and read counts of each library of normal and CMT+ groups. Fold 

change and FDR were computed by Empirical analysis of DGE based on tagwise dispersions using CLC Genomics Workbench 10. N: 

Normal; P: CMT+; FC: fold change; Avg: Mean read counts. 

Transcript ID FC FDR N1 N2 N3 N4 N5 Avg P1 P2 P3 P4 P5 Avg 
ENSBTAT00000051125.1 24.27 7.26E-07 6 12 21 1 2 8.4 77 1058 49 513 332 405.8

ENSBTAT00000055683.2 13.48 3.86E-05 46 51 114 5 10 45.2 209 2909 117 1525 1035 1159

ENSBTAT00000060635.1 12.89 3.86E-05 44 41 113 7 13 43.6 197 2812 112 1484 1000 1121

ENSBTAT00000064337.1 12.35 3.86E-05 42 49 127 8 13 47.8 201 2907 120 1526 1042 1159.2

ENSBTAT00000065942.1 12.57 3.86E-05 45 57 116 8 10 47.2 196 2900 119 1514 1051 1156

ENSBTAT00000066208.1 12.38 3.86E-05 52 56 115 7 12 48.4 207 2945 119 1533 1061 1173

ENSBTAT00000066262.1 13.05 3.86E-05 42 51 124 5 13 47 203 2926 120 1528 1055 1166.4

ENSBTAT00000042796.2 12.69 4.03E-05 3 14 11 1 3 6.4 28 402 19 182 197 165.6

ENSBTAT00000056314.2 12.90 4.03E-05 45 56 121 4 13 47.8 203 2903 123 1515 1050 1158.8

ENSBTAT00000040476.1 11.52 4.10E-05 48 61 124 10 12 51 204 2922 123 1532 1047 1165.6

ENSBTAT00000060864.1 14.03 4.28E-05 43 41 122 5 7 43.6 198 2875 116 1506 1038 1146.6

ENSBTAT00000064993.1 14.11 4.74E-05 28 21 71 3 6 25.8 120 1930 68 1016 477 722.2

ENSBTAT00000063731.1 12.34 6.36E-05 49 46 128 9 8 48 202 2920 116 1524 1048 1162

ENSBTAT00000051458.1 7.63 1.19E-03 3 3 1 0 1 1.6 26 48 5 23 29 26.2

ENSBTAT00000048223.1 9.66 4.06E-03 8 11 28 1 2 10 17 669 7 132 178 200.6

ENSBTAT00000066043.1 6.98 6.49E-03 4 8 7 3 2 4.8 8 185 10 91 100 78.8
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Transcript ID FC FDR N1 N2 N3 N4 N5 Avg P1 P2 P3 P4 P5 Avg 
ENSBTAT00000051159.1 8.18 1.03E-02 4 22 35 3 1 13 15 700 11 143 202 214.2

ENSBTAT00000060739.1 7.48 1.29E-02 5 25 33 3 2 13.6 16 694 8 137 191 209.2

ENSBTAT00000051509.1 3.45 2.96E-02 8 11 11 1 5 7.2 75 80 7 33 55 50

ENSBTAT00000062479.1 13.13 4.32E-02 0 0 0 0 1 0.2 3 22 1 7 9 8.4
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Table 3-8 Statistical analysis results of significantly upregulated miRNA precursors 

chromosomal distribution. P value FDR was 

obtained by P value with Benjamini Hochberg correction. The values lower than 0.05 

were highlighted with color. Chr., chromosome. 

Chr. p value FDR Chr. p value FDR 
1 0.1774 1 16 1 1
2 1 1 17 0.3893 1
3 0.5912 1 18 1 1
4 0.6188 1 19 0.0002 0.0061
5 0.4003 1 20 1 1
6 1 1 21 0.1626 1
7 0.3287 1 22 1 1
8 0.6208 1 23 1 1
9 0.3893 1 24 1 1

10 0.3893 1 25 1 1
11 0.5164 1 26 0.4092 1
12 0.5912 1 27 1 1
13 0.5478 1 28 1 1
14 1 1 29 1 1
15 1 1 X 0.0392 0.5968
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Table 3-9 Statistical analysis results of significantly upregulated snRNA precursors 

chromosomal distribution. P FDR was 

obtained by P value with Benjamini Hochberg correction. The values lower than 0.05 

were highlighted with color. Chr., chromosome. 

Chr. p value FDR Chr. p value FDR 
1 0.7643 1 16 0.6685 1
2 1 1 17 0.4497 1
3 0.0771 0.771 18 1 1
4 1 1 19 0.0001 0.003
5 1 1 20 1 1
6 1 1 21 0.4288 1
7 0.7202 1 22 0.4003 1
8 0.4424 1 23 0.1681 1
9 1 1 24 0.6621 1

10 0.5251 1 25 0.6195 1
11 0.4996 1 26 1 1
12 1 1 27 1 1
13 0.395 1 28 1 1
14 1 1 29 0.0279 0.419
15 0.395 1 X 0.25 1
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Table 3-10 Significantly different expressed miRNA and their immune-related target 

mRNA. The immune related genes were defined by the putative target mRNA which 

cross-referenced with ImmPort comprehensive list of immune-related genes.

miRNA Immune-related target mRNA 
miR-221/222 CDKN1B, PVRL1, NTF3, BTG2, KIT, TSC22D3, ZFP36, 

DDIT4, ERBB4, ZFYVE16, PPP3R1, PIK3R1, IRF2, BBC3, 
FOS, PCDHA1, GNAI3, PDCD10, TOX 

miR-1246 SPARCL1, VIM, C1R, CD83, CLLU1, CHAC1, ROPN1B, 
PCBP2, AOC3, FOXD4L6, SKIL, KCNMB2, FOXD4L3 

miR-146a NRAS, IRAK1, IGSF1, PSMA4, TRAF6, CD3G, KLF4 

miR-10a BDNF, TFRC, HOXA3, GATA6, CRLF3, RORA, CADM2, 
CAMK2B, MAP3K7, GRIN2B 

miR-142-5p HERPUD1, ZFPM2, CCL1, UBE2D1, RALB 
miR-142-3p CNTNAP3B, KRIT1, LPP, TNR, GADD45A, SRR, VNN1, 

PAX3, KCNJ8, EGR1, EREG, IRG1, GNAQ, RTN3
miR-2284w TREML1, TRIAP1, FASLG, ROPN1B, CLEC9A, IL36G, CCR5, 

CD9, EXOSC3, KIF20A, ANGPTL1, HRG, TAL2, CLLU1 

miR-130b MDM4, ACVR1, IGF1, HPRT1, KLHL20, NPNT, DLL1, 
PRKAA2, FAM19A1, SPHK2 

miR-2284aa LPP, DEFB103A, CCL15, CCL23, UBE2B 
miR-2285p NRARP, GADD45A, FKBP1A, AGTR2, SMAD6, XCL1
miR-2285b TM2D1, DAD1, IRF6 
miR-21-3p ECT2, MX2, PMAIP1, ATP2B1, CIDEC, CTSS, C2, G2E3, 

NDRG2, CPLX4, GIPC1, NCK1, TRADD, IL27RA, BBC3, 
NR4A1, WNT8A, BVES, BCL7A 

miR-23b-3p ACVR1C, TFRC, PKP4, ERBB2IP, YES1, TOP1, PNMA1, 
IGSF8, SLC1A1, HMGB2, SATB1, CCM2, CNN2, NEK6, 
BLCAP, PMAIP1, FBN2, MRC1, PPIF, TRAT1, NRGN, 
PRKRIR 

miR-301a IRF1, BTG1, FRZB, FOSL1, SOS2, KALRN, ZNF3, HIVEP2, 
ARID5B, FASTK, SNX2, ADAM12 
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miR-505 CD97, NCK2, ADAT2, CYSLTR1, BCAP29, ATG12, PBX3
mir-874 CCL28, ZDHHC16, AQP3, PAAF1
mir-6529a CTAGE1, IGJ, NOS3
mir-147
mir-132 RASA1, FKBP2, SPAST, CALU, SIRT1 
mir-15a BCL2L2, CCNE1, WNT7A, PTH, WNT3A, IL7R, UBE2V1, 

OMG, GNAI3, PLD1, DLEU7, MKNK1, CCND1, FGF7, LRIG2, 
TRADD, SMAD7, RBCK1, VEGFA, POLR3F, ARL3, 
CDC42SE2, RAB35, IKBKB, BICD1, KIF23, MAP2K1, 
SH3GL2, PPAP2A, INSR, EDNRA, TNFSF13B, PCDHA1, 
TSC22D3, SYNRG, PRKAB2, FNBP1L, SOCS6, CARM1, 
RFX3, RNF144B, SLIT2, CDK5R1, ISLR, NDP, PLEKHA1, 
RNF125, PDCD4, RAF1, FNTA, RPS6KA3, SGK1, UBE4B, 
NISCH, PCDHA5, PCDHA12, NRP2, FERMT2, BDNF, ADRB2, 
ITGA10, RYBP, EYA1, VPS4A, CHAC1, GHR, SLA2, 
SMURF2, MAPK8, MIB1, BMPR1A, HSPG2, IHH, SERBP1 

mir-338 FKBP1A, ETS1, STAT1, NRP1, TRIM33, APEX1, KCNMB2, 
GNAQ 

mir-30f RAD23B 
mir-223 DDIT4, IL6ST, ECT2, CYTIP, ACVR2A, HHEX, SP3
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Table 3-11 Immune-related mRNA co-regulated by more than one miRNA.

mRNA miRNA
TSC22D3 miR-221/222, miR-15
DDIT4 miR-221/222, miR-223 
BBC3 miR-221/222, miR-21-3p 
PCDHA1 miR-221/222, miR-15 
GNAI3 miR-221/222, miR-15 
CLLU1 miR-1246, miR-2284w 
CHAC1 miR-1246, miR-15 
ROPN1B miR-1246, miR-2284w 
KCNMB2 miR-1246, miR-338 
BDNF miR-10a, miR-15 
TFRC miR-10a, miR-23b-3p 
LPP miR-142-3p, miR-2284aa
GADD45A miR-142-3p, miR-2285p 
GNAQ miR-142-3p, miR-338 
FKBP1A miR-2285p, miR-338 
ECT2 miR-21-3p, miR-223 
PMAIP1 miR-21-3p, miR-23b-3p 
TRADD miR-21-3p, miR-15a 
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Table 3-12 Gene ontology (GO) and KEGG Pathway analysis. The fifteen most 

significantly (FDR < 0.05) enriched GO terms in biological process category were 

listed; all of the significantly enriched GO terms in molecular function category and 

KEGG Pathway were listed.

Term Count % FDR 

Gene Ontology (Biological Process) 
Regulation of Nitrogen Compound Metabolic Process 206 22.8 4E-06

Regulation of Gene Expression 201 22.3 3E-05

Regulation of Cellular Macromolecule Biosynthetic Process 186 20.6 4E-05

Regulation of RNA Metabolic Process 176 19.5 4E-05

Positive Regulation of Nitrogen Compound Metabolic Process 103 11.4 7E-05

Positive Regulation of Macromolecule Metabolic Process 153 17 7E-05

Regulation of Nucleobase-containing Compound Metabolic Process 190 21.1 7E-05

Protein Modification Process 186 20.6 0.0001

Cellular Protein Modification Process 186 20.6 0.0001

Positive Regulation of RNA Metabolic Process 87 9.6 0.0001

Regulation of RNA Biosynthetic Process 168 18.6 0.0001

Positive Regulation of Metabolic Process 159 17.6 0.0001

Regulation of Macromolecule Biosynthetic Process 188 20.8 0.0002

Regulation of Nucleic Acid-templated Transcription 167 18.5 0.0002

Positive Regulation of Gene Expression 98 10.9 0.0002

Gene Ontology (Molecular Function) 
Heterocyclic Compound Binding 303 33.6 0.0003

Organic Cyclic Compound Binding 304 33.7 0.0008

Regulatory Region DNA Binding 65 7.2 0.0011

Regulatory Region Nucleic Acid Binding 65 7.2 0.0011

Nucleic Acid Binding Transcription Factor Activity 78 8.6 0.0018

Transcription Factor Activity, Sequence-specific DNA Binding 78 8.6 0.0018

Transcription Regulatory Region DNA Binding 63 7 0.0039

Sequence-specific DNA Binding 76 8.4 0.0054

Kinase Activity 62 6.9 0.044

KEGG Pathway 
FoxO Signaling Pathway 26 2.9 7E-07

Progesterone-mediated Oocyte Maturation 17 1.9 0.0018
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Term Count % FDR 

Oocyte Meiosis 19 2.1 0.0026

Proteoglycans in Cancer 26 2.9 0.0045

KEGG Pathway 
PI3K-Akt Signaling Pathway 36 4 0.0057

ErbB Signaling Pathway 16 1.8 0.0066

MicroRNAs in Cancer 28 3.1 0.019

Prolactin Signaling Pathway 14 1.6 0.026

MAPK Signaling Pathway 28 3.1 0.036

Cell Cycle 18 2 0.048
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Table 3-13  50. Read counts were computed using CLC Genomics 

Workbench 10. N: Normal; Ne: ; P: CMT+; Avg: Mean read counts. 

Name sequence N1 N2 N3 N4 N5 Avg Ne1 Ne2 Ne3 Ne4 Ne5 Avg P1 P2 P3 P4 P5 Avg 

chr17_7049 gcggcggcggcgccggggc 22 57 31 9 31 30 107 85 46 31 51 64 58 116 39 27 143 77 

chr1_306 ggccgcgccgggccgcgcc 42 186 73 26 53 76 183 118 102 81 22 101 85 216 102 87 169 132

chr20_10561 uuuuccaaugaguuaguccuuu 114 1243 1278 168 29 566 8 338 266 665 0 255 56 141 114 319 75 141

chr26_14041 ccaaaccaguugugccuguaga 437 1216 1457 184 137 686 114 737 775 898 0 505 261 153 374 401 114 261

chr26_14097 ccgagccugacagaucacaca 1 17 2 1 1 4 0 5 3 4 0 2 5 868 15 547 307 348

chr2_9851 acucuucccucccucggccggc 51 97 66 33 43 58 27 42 59 109 5 48 33 6 58 41 10 30 

chr4_17024 aaggaggagaaggggggu 472 799 1549 190 1043 811 1705 2414 483 3446 2296 2069 1907 4941 889 2886 9622 4049 

chr4_17403 cucuccaaucgcgacggguaucucu 6151 2490 479 354 939 2083 22560 2126 2085 2659 2376 6361 35839 4199 9788 5393 12820 13608

chr8_21934 ccggcggcggcggcgacu 27 134 46 29 44 56 163 144 100 56 73 107 70 138 68 51 179 101
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Table 3-14 The significantly different expressed (FDR < 0.05) novel miRNA. Three of them had the same sequences. FDR analysis by Empirical 

analysis of DGE based on tagwise dispersions were computed using CLC Genomics Workbench 10. FDR of novel miRNA was analyzed with 

ncRNA (did not include known miRNA). N: Normal; P: CMT+; Avg: Mean read counts. 

Name FDR sequence N1 N2 N3 N4 N5 Avg P1 P2 P3 P4 P5 Avg

chr15_5392 0.01255 aacuuugaagacugaagu 5 21 15 3 22 13 11 2 2 5 1 4 

chr15_5413 0.00213 aaguuuaaagaagucugccuug 0 0 0 0 0 0 1 31 1 23 20 15 

chr15_5866 0.00711 aaguuuaaagaagucugccuug 0 1 0 0 0 0 1 28 1 20 18 14 

chr15_5890 0.00239 ucacggagaggagaaacugcgaa 0 0 0 0 0 0 6 19 2 5 11 9 

chr17_7169 0.01601 cggcuccgugacucguccgugg 2 5 4 4 4 4 2 1 0 1 2 1 

chr18_7790 0.02743 aggagaggcacugucagagcug 0 0 0 0 0 0 2 11 0 6 3 4 

chr19_8664 0.02775 ugcagggugguaggcugugggcu 33 57 50 8 25 35 17 2 23 6 3 10 

chr19_8860 0.03187 gucuggaauccugaagagu 1 4 6 6 5 4 1 0 0 5 1 1 

chr19_8907 0.04169 uuggcuagggaggaaugcugaacu 4 6 10 1 8 6 0 3 3 4 0 2

chr20_10561 0.01177 uuuuccaaugaguuaguccuuu 114 1243 1278 168 29 566 56 141 114 319 75 141

chr21_11091 0.02381 cccguuucucucgcgcgccggcu 23 18 18 13 19 18 5 10 15 10 3 9 

chr22_11977 0.04545 gaacgaaauccaagcgcagcug 11 25 37 5 11 18 4 10 13 11 7 9

chr26_14041 0.02726 ccaaaccaguugugccuguaga 437 1216 1457 184 137 686 261 153 374 401 114 261
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Name FDR sequence N1 N2 N3 N4 N5 Avg P1 P2 P3 P4 P5 Avg

chr26_14095 0.03653 ucgagccugacagaucacaca 1 0 0 0 0 0 1 18 1 12 6 8 

chr26_14097 7.9E-05 ccgagccugacagaucacaca 1 17 2 1 1 4 5 868 15 547 307 348

chr26_14099 0.02031 ucgagccugacagaucacaca 0 0 0 0 0 0 0 22 1 11 6 8 

chr26_14101 0.01553 ucgagccugacagaucacaca 0 0 0 0 0 0 0 18 0 10 7 7 

chr29_15404 0.03117 aggaaggggcuucugagc 0 0 0 0 0 0 2 13 0 7 8 6 

chr3_16229 0.00046 aaaaaccugaaugacccuuuugg 0 3 3 0 0 1 8 106 2 54 43 43 

chr7_19975 0.0282 uuagauaacuaauaaaaaccug 0 3 0 0 0 1 3 48 0 8 17 15 

chr7_20570 0.01275 acaccaggacuugucuccccaga 4 8 6 4 1 5 1 0 2 1 0 1 



146 

Table 3-15 Analysis results of the miRWalk 2.0. 

Subcategory p-value miRNA 
Carcinoma Non-Small-Cell 
Lung 

0.040 hsa-miR-221-3p; hsa-miR-222-3p; hsa-miR-15a-5p 

Infection 0.040 hsa-miR-221-3p; hsa-miR-146a-5p; hsa-miR-222-3p; hsa-miR-15a-5p 

Inflammation 0.040 hsa-miR-221-3p; hsa-miR-146a-5p; hsa-miR-10a-5p; hsa-miR-146b-5p; hsa-miR-223-3p 

Leukemia 0.040 hsa-miR-221-3p; hsa-miR-10a-5p; hsa-miR-222-3p; hsa-miR-130b-3p; hsa-miR-223-3p; hsa-

miR-15a-5p 

Leukemia Myelogenous 
Chronic BCR-ABL Positive 

0.040 hsa-miR-221-3p; hsa-miR-10a-5p; hsa-miR-222-3p 
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Table 3-16 Analysis results of the HMDD 2.0.

Subcategory p-value miRNA precursor 
Arthritis, Rheumatoid 0.013 hsa-mir-146a; hsa-mir-223; hsa-mir-15a; hsa-mir-132 

Atherosclerosis 0.002 hsa-mir-221; hsa-mir-146a; hsa-mir-10a; hsa-mir-222; hsa-mir-146b; hsa-mir-21 

Autistic Disorder 0.006 hsa-mir-146a; hsa-mir-146b; hsa-mir-21; hsa-mir-15a; hsa-mir-23b; hsa-mir-132 

Breast Neoplasms 0.005 hsa-mir-221; hsa-mir-146a; hsa-mir-10a; hsa-mir-222; hsa-mir-146b; hsa-mir-223; hsa-mir-147a; hsa-mir-21; 

hsa-mir-301a; hsa-mir-874; hsa-mir-338; hsa-mir-15a; hsa-mir-23b; hsa-mir-132; hsa-mir-505 

Carcinoma 0.011 hsa-mir-221; hsa-mir-10a; hsa-mir-142; hsa-mir-222; hsa-mir-146b; hsa-mir-21 

Carcinoma, Hepatocellular 0.043 hsa-mir-221; hsa-mir-146a; hsa-mir-10a; hsa-mir-142; hsa-mir-222; hsa-mir-146b; hsa-mir-130b; hsa-mir-223; 

hsa-mir-147a; hsa-mir-21; hsa-mir-301a; hsa-mir-338; hsa-mir-15a 

Carcinoma, Non-Small-Cell 
Lung 

0.048 hsa-mir-221; hsa-mir-146a; hsa-mir-10a; hsa-mir-222; hsa-mir-146b; hsa-mir-223; hsa-mir-21; hsa-mir-15a 

Carcinoma, Squamous Cell 0.018 hsa-mir-146a; hsa-mir-10a; hsa-mir-142; hsa-mir-222; hsa-mir-223; hsa-mir-21; hsa-mir-874; hsa-mir-15a

Carotid Artery Diseases 0.007 hsa-mir-221; hsa-mir-222 

Cholesteatoma 0.035 hsa-mir-221; hsa-mir-21 

Colonic Neoplasms 0.016 hsa-mir-221; hsa-mir-146a; hsa-mir-142; hsa-mir-223; hsa-mir-21; hsa-mir-15a; hsa-mir-23b; hsa-mir-132

Cryptosporidium 0.024 hsa-mir-21; hsa-mir-23b

Demyelinating Diseases 0.015 hsa-mir-21; hsa-mir-301a

Diabetes Mellitus 0.011 hsa-mir-146a; hsa-mir-21; hsa-mir-301a

Diabetes Mellitus, Type 2 0.011 hsa-mir-146a; hsa-mir-223; hsa-mir-21; hsa-mir-15a

Eclampsia 0.035 hsa-mir-222; hsa-mir-21

Eosinophilic Esophagitis 0.002 hsa-mir-146a; hsa-mir-142; hsa-mir-222; hsa-mir-146b; hsa-mir-223; hsa-mir-21; hsa-mir-132
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Subcategory p-value miRNA precursor 
Gastrointestinal Neoplasms 0.011 hsa-mir-221; hsa-mir-146a; hsa-mir-142; hsa-mir-222; hsa-mir-338 

Glioblastoma 0.021 hsa-mir-221; hsa-mir-146a; hsa-mir-10a; hsa-mir-142; hsa-mir-222; hsa-mir-146b; hsa-mir-21; hsa-mir-15a; hsa-

mir-23b 

HEV 0.007 hsa-mir-221; hsa-mir-222 

HIV 0.004 hsa-mir-221; hsa-mir-222; hsa-mir-223; hsa-mir-21 

Head and Neck Neoplasms 0.026 hsa-mir-221; hsa-mir-142; hsa-mir-146b; hsa-mir-130b; hsa-mir-223; hsa-mir-21; hsa-mir-15a 

Hepatitis B 0.005 hsa-mir-221; hsa-mir-146a; hsa-mir-338; hsa-mir-15a; hsa-mir-23b; hsa-mir-132 

Inflammation 0.004 hsa-mir-221; hsa-mir-146a; hsa-mir-222; hsa-mir-21; hsa-mir-23b; hsa-mir-132 

Kidney Neoplasms 0.007 hsa-mir-21; hsa-mir-15a; hsa-mir-23b 

Leukemia, Lymphocytic, 
Chronic, B-Cell 

0.002 hsa-mir-221; hsa-mir-146a; hsa-mir-222; hsa-mir-146b; hsa-mir-223; hsa-mir-21; hsa-mir-15a; hsa-mir-23b

Leukemia, Myeloid, Acute 0.024 hsa-mir-221; hsa-mir-146a; hsa-mir-10a; hsa-mir-142; hsa-mir-222; hsa-mir-223; hsa-mir-15a 

Lung Neoplasms 0.036 hsa-mir-221; hsa-mir-146a; hsa-mir-142; hsa-mir-222; hsa-mir-146b; hsa-mir-223; hsa-mir-21; hsa-mir-301a; 

hsa-mir-338; hsa-mir-132 

Lymphoma, Large B-Cell, 
Diffuse 

0.009 hsa-mir-221; hsa-mir-223; hsa-mir-21 

Marek Disease 0.003 hsa-mir-221; hsa-mir-222; hsa-mir-223

Multiple Myeloma 0.005 hsa-mir-221; hsa-mir-222; hsa-mir-130b; hsa-mir-223; hsa-mir-21; hsa-mir-15a

Multiple Sclerosis 0.007 hsa-mir-146a; hsa-mir-146b; hsa-mir-21; hsa-mir-338; hsa-mir-15a

Muscular Disorders, Atrophic 0.006 hsa-mir-221; hsa-mir-146a; hsa-mir-222; hsa-mir-146b; hsa-mir-223; hsa-mir-21; hsa-mir-132

Myelodysplastic Syndromes 0.029 hsa-mir-221; hsa-mir-146a; hsa-mir-222; hsa-mir-21; hsa-mir-15a
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Subcategory p-value miRNA precursor 
Myocardial Reperfusion 
Injury 

0.007 hsa-mir-146a; hsa-mir-21 

Neoplasms, Squamous Cell 0.002 hsa-mir-221; hsa-mir-222; hsa-mir-146b; hsa-mir-21; hsa-mir-874; hsa-mir-338; hsa-mir-23b 

Obesity 0.002 hsa-mir-221; hsa-mir-146b; hsa-mir-21; hsa-mir-132 

Pancreatic Neoplasms 0.003 hsa-mir-221; hsa-mir-146a; hsa-mir-10a; hsa-mir-142; hsa-mir-222; hsa-mir-146b; hsa-mir-223; hsa-mir-21; 

hsa-mir-338; hsa-mir-15a; hsa-mir-132 

Papilary thyroid carcinoma 0.007 hsa-mir-221; hsa-mir-222 

Periodontal Diseases 0.035 hsa-mir-146a; hsa-mir-146b 

Polycythemia Vera 0.018 hsa-mir-221; hsa-mir-222; hsa-mir-21 

Prostatic Neoplasms 0.006 hsa-mir-221; hsa-mir-146a; hsa-mir-222; hsa-mir-146b; hsa-mir-130b; hsa-mir-223; hsa-mir-21; hsa-mir-301a; 

hsa-mir-15a; hsa-mir-23b; hsa-mir-132 

Psoriasis 0.002 hsa-mir-146a; hsa-mir-142; hsa-mir-146b; hsa-mir-223; hsa-mir-21 

Reperfusion Injury 0.006 hsa-mir-146a; hsa-mir-223; hsa-mir-21; hsa-mir-15a 

Scleroderma, Systemic 0.007 hsa-mir-146a; hsa-mir-142; hsa-mir-146b; hsa-mir-21 

Sepsis 0.043 hsa-mir-146a; hsa-mir-223; hsa-mir-15a 

Sjogrens Syndrome 0.007 hsa-mir-146a; hsa-mir-146b 

Tuberculosis, Pulmonary 0.011 hsa-mir-146a; hsa-mir-130b; hsa-mir-223; hsa-mir-147a; hsa-mir-21

Uterine Cervical Neoplasms 0.029 hsa-mir-221; hsa-mir-146a; hsa-mir-10a; hsa-mir-21; hsa-mir-338; hsa-mir-23b
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Conclusion 

 Comparing miR-92a, miR-375, and let-7g, we find that miR-92a is suitable as a 

housekeeping gene for bovine mastitis milk miRNA analysis. The expression level miR-

21, miR-146a, miR-155, miR-222 and miR-383 was significantly upregulated in CMT+ 

milk. These miRNA have a potential to be used as biomarkers for bovine mastitis. These 

miRNA are also increased in digital PCR analysis, suggesting that digital PCR can be a 

tool for mastitis milk miRNA analysis. miR-21 expression is also increased in mastitis 

cow serum, suggesting that focal mastitis can cause molecular biological mechanisms 

changed systemically. Milk samples are superior to serum samples as biomarker and 

diagnostic tools, because inflammation related miRNA are changed much clearly in 

mastitis affected milk samples and milk samples have better accessibility. In genome-

wide miRNA study by Illumina small RNA sequencing technic, we find 23 miRNA 

being upregulated and 2 downregulated in mastitis milk. U2 small nuclear RNA is 

upregulated in mastitis milk, and the significantly increased miR-1246 is likely derived 

from U2 small nuclear RNA. Bovine chromosome 19, which is highly conserved with 

human chromosome 17, is a hotspot of upregulated small RNA source. Human breast 

cancer related oncogenes and tumor suppressor genes such as HER2, p53 and BRCA1 

are located on chromosome 17, suggesting bovine chromosome 19 might play a role in 
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breast related diseases. Gene ontology analysis of significantly upregulated miRNA 

putative mRNA targets show that the upregulated miRNA are involved in regulate target 

gene expression, while KEGG pathway analysis shows that upregulated miRNA are 

mainly related to cancer and immune system pathways. Three of novel miRNA are 

related with bovine mastitis. One of the highly expressed mastitis related novel miRNA 

is significantly upregulated in milk using a digital PCR system. The genome-wide study 

provides insights into bovine mastitis and inflammatory diseases. We have shown that 

the miRNA play a role in bovine mastitis. The functions of individual miRNA or it 

caused by released from dead somatic cells into cow milk needs further study. Other 

RNA derived small RNA might also play a role in inflammation and disease conditions, 

especially RNU2 (miR-1246), their functions and mechanisms are also an interesting 

research field in the future.  
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Appendix 1-1 Sample name, sample type and CT values of housekeeping gene 

candidates. CT values shown as the mean values of duplicated experiment.

Name Type miR-375 miR-92a let-7g

528 Normal 25.57  27.41  27.35 

1 Normal 23.09  25.33  25.10 

3 Normal 22.43  25.33  25.78 

4 Normal 24.19  26.28  26.63 

5 Normal 24.07  25.83  27.18 

550M CMT 4+ 23.65  25.12  25.17 

585M CMT 3+ 23.56  26.08  26.19 

593M Normal 23.55  26.14  27.54 

601M CMT 2+ 23.65  26.06  27.41 

603M CMT 2+ 24.68  26.20  28.21 

604M CMT 4+ 23.57  25.73  28.11 

605M Normal 23.58  25.67  27.95 

617M Normal 23.57  25.55  27.70 

620M Normal 23.94  25.92  29.17 

622M Normal 24.01  26.15  28.58 

420 CMT 3+ 23.56  26.51  27.34 

458 CMT + 24.51  26.26  28.34 

458 CMT 3+ 26.04  27.02  27.31 

473 CMT + 24.17  26.80  28.09 

505 CMT 3+ 24.60  27.92  27.44 

511 CMT 2+ 24.02  26.86  29.15 
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Appendix 1-2 Sample name, sample type, miR-146a CT values and their relative 

expression values normalized to housekeeping gene candidates. CT values shown as the 

mean values of duplicated experiment. 

Sample CT value Housekeeping gene normalized expression

Name Type miR-146a miR-92a miR-375 let-7g
miR-92a+

miR-375 

miR-92a+

let-7g 

let-7g+

miR-375

170A Normal 32.98 0.53 0.45 0.47 0.49 0.50 0.46

170B Normal 34.50 0.18 0.17 0.18 0.18 0.18 0.18

170C Normal 36.45 0.04 0.04 0.05 0.04 0.05 0.05

170D Normal 33.11 0.40 0.49 0.50 0.44 0.45 0.49

534A Normal 30.13 3.39 2.92 2.14 3.15 2.69 2.50

534B Normal 31.87 1.43 0.96 0.81 1.17 1.07 0.88

534C Normal 32.84 0.82 0.49 0.42 0.64 0.59 0.45

534D Normal 31.59 2.07 1.21 1.08 1.59 1.49 1.14

566A Normal 33.00 0.54 0.38 0.39 0.45 0.46 0.38

566B Normal 31.25 1.70 2.34 1.43 1.99 1.56 1.83

566C Normal 31.96 0.75 0.65 0.91 0.70 0.82 0.77

566D Normal 32.55 0.65 0.41 0.63 0.52 0.64 0.51

574D Normal 33.19 0.49 1.09 2.95 0.73 1.21 1.79

594A Normal 32.18 0.90 0.62 1.19 0.75 1.04 0.86

594B Normal 32.40 0.62 0.41 0.87 0.50 0.73 0.60

594C Normal 32.06 0.79 0.62 0.79 0.70 0.79 0.70

594D Normal 34.78 0.17 0.12 0.18 0.14 0.18 0.14

609A Normal 33.21 0.52 1.51 1.00 0.88 0.72 1.23

609B Normal 30.99 2.72 2.13 1.64 2.41 2.11 1.87

609C Normal 31.46 1.33 1.21 1.25 1.27 1.29 1.23

609D Normal 32.71 0.81 0.61 0.49 0.70 0.63 0.55

12/26D CMT 1+ 30.55 6.42 5.36 2.04 5.87 3.62 3.31

305 CMT 3+ 25.54 29.13 25.62 28.48 27.32 28.80 27.02

305 CMT 4+ 23.46 53.70 220.10 193.53 108.72 101.95 206.39

513 CMT 3+ 28.00 9.59 4.23 4.99 6.37 6.92 4.60

514 CMT 3+ 26.70 12.19 29.49 6.96 18.96 9.21 14.33

514 CMT 3+ 26.03 19.09 62.83 10.70 34.63 14.29 25.93

528 Normal 40.00 0.00 0.01 0.01 0.00 0.01 0.01

528 Normal 38.51 0.02 0.02 0.01 0.02 0.01 0.01
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Sample CT value Housekeeping gene normalized expression

Name Type miR-146a miR-92a miR-375 let-7g
miR-92a+

miR-375 

miR-92a+

let-7g 

let-7g+

miR-375

1 Normal 32.07 0.33 0.32 0.12 0.32 0.20 0.20

3 Normal 33.56 0.12 0.07 0.07 0.09 0.09 0.07

4 Normal 34.16 0.15 0.16 0.08 0.16 0.11 0.11

5 Normal 32.92 0.26 0.35 0.28 0.30 0.27 0.31

550M CMT 4+ 27.39 7.29 12.10 3.25 9.39 4.87 6.28

585M CMT 3+ 28.89 5.00 4.01 2.32 4.48 3.41 3.05

593M Normal 33.83 0.17 0.13 0.19 0.15 0.18 0.16

601M CMT 2+ 29.25 3.85 3.33 4.21 3.58 4.02 3.75

603M CMT 2+ 29.89 2.73 4.38 4.70 3.45 3.58 4.54

604M CMT 4+ 29.43 2.70 2.78 6.04 2.74 4.04 4.10

605M Normal 34.26 0.09 0.10 0.19 0.09 0.13 0.14

617M Normal 34.31 0.08 0.10 0.15 0.09 0.11 0.12

620M Normal 33.54 0.18 0.21 0.73 0.19 0.36 0.39

622M Normal 33.76 0.18 0.19 0.42 0.18 0.27 0.28

420 CMT 3+ 26.75 29.79 17.75 22.75 22.99 26.03 20.10

458 CMT + 30.84 1.48 2.01 2.68 1.73 1.99 2.33

458 CMT 3+ 27.92 18.83 44.06 9.91 28.80 13.66 20.90

473 CMT + 30.09 3.59 2.68 3.78 3.10 3.68 3.18

505 CMT 3+ 26.82 75.47 34.82 23.32 51.26 41.95 28.50

511 CMT 2+ 29.86 4.41 2.83 9.24 3.53 6.38 5.11
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Appendix 2-1 CT values of miRNA in normal and mastitis cows. CT values shown as the mean values of 

duplicated experiment.

Sample Type miR-26b miR-29b miR-92a miR-122 miR-125b miR-222 miR-204 miR-205 miR-383

1 Normal 25.60 30.85 25.24 30.24 27.65 33.02 35.61 33.69 36.07 

2 Normal 26.39 31.57 25.97 31.02 27.94 33.46 36.14 34.35 35.66 

3 Normal 26.18 31.61 25.45 30.26 28.05 32.49 35.26 34.73 36.47 

4 Normal 26.28 32.63 25.92 30.21 28.50 33.42 36.05 34.38 35.79 

5 Normal 25.27 30.02 25.64 35.89 27.07 28.09 35.32 34.66 36.23 

6 Normal 25.37 29.33 25.68 40.00 27.30 27.42 35.00 34.15 35.81 

7 Normal 25.39 29.31 25.63 40.00 27.29 32.64 35.79 34.34 35.12 

8 Normal 25.39 29.87 25.43 40.00 27.17 30.11 35.18 34.52 34.29 

9 Normal 24.58 29.60 24.99 40.00 27.01 33.52 38.29 33.96 34.20 

10 Normal 25.13 29.69 24.81 40.00 26.76 30.25 35.55 34.17 35.24 

11 Normal 24.87 29.48 25.30 35.24 27.34 34.17 36.99 34.89 35.44 

12 Normal 24.99 29.76 25.38 40.00 27.78 35.42 36.71 35.42 36.78 

13 Normal 25.26 30.41 25.43 36.64 27.58 35.54 38.63 35.00 36.86 

14 Normal 25.74 30.18 25.83 40.00 27.93 34.96 36.66 34.55 35.77 

15 Normal 25.17 29.33 25.20 40.00 27.59 31.66 36.19 33.40 36.15 

16 Normal 25.09 29.58 25.31 35.75 27.60 31.66 35.29 32.30 36.10 

17 Normal 25.01 29.18 25.13 34.45 27.46 32.04 38.87 32.27 37.03 

18 Normal 25.66 30.15 25.56 38.67 28.15 32.98 36.14 33.81 35.66 

19 Normal 25.18 29.85 25.06 40.00 27.34 33.35 35.56 34.30 35.73 

20 Normal 25.63 30.46 25.57 34.66 27.76 29.58 36.78 34.30 36.50 

21 Normal 25.02 29.57 25.47 40.00 27.11 29.28 35.85 34.74 35.89 

22 Normal 25.24 31.36 25.08 34.49 27.52 31.73 35.51 33.87 34.18 

23 Mastitis 27.68 33.77 25.58 30.12 26.45 30.95 36.62 34.13 33.98 

24 Mastitis 25.87 32.04 25.78 30.32 25.89 27.73 34.75 32.25 30.82 

25 Mastitis 25.35 32.43 25.66 29.70 25.74 27.98 34.89 32.95 32.80 

26 Mastitis 27.69 31.62 25.21 29.16 26.18 32.22 36.58 34.36 33.58 

27 Mastitis 27.58 31.52 25.94 29.03 25.99 27.97 34.90 34.37 34.01 

28 Mastitis 26.43 31.29 25.94 28.95 26.20 27.75 36.70 33.43 32.11 

29 Mastitis 29.12 32.34 26.60 29.56 26.25 28.01 37.62 34.58 33.63 

30 Mastitis 26.14 29.52 25.16 29.92 27.31 32.28 35.81 32.76 35.78 

31 Mastitis 24.04 29.78 25.06 28.48 26.85 24.28 36.13 31.19 31.00 
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Appendix 2-2 miRNA relative expression normalized to miR-92a in normal and mastitis cows.

Sample Type miR-26b miR-29b miR-122 miR-125b miR-222 miR-204 miR-205 miR-383

1 Normal 0.94 0.70 17.44 0.61 0.23 1.25 1.00 0.40 

2 Normal 0.90 0.71 16.79 0.83 0.29 1.44 1.05 0.88 

3 Normal 0.73 0.48 19.80 0.53 0.39 1.84 0.56 0.35 

4 Normal 0.94 0.33 28.54 0.55 0.28 1.48 0.99 0.78 

5 Normal 1.56 1.64 0.45 1.20 9.36 2.01 0.67 0.47 

6 Normal 1.50 2.75 0.03 1.06 15.43 2.59 0.98 0.65 

7 Normal 1.42 2.67 0.03 1.03 0.40 1.44 0.83 1.01 

8 Normal 1.24 1.58 0.02 0.97 1.99 1.92 0.64 1.55 

9 Normal 1.60 1.41 0.02 0.80 0.14 0.16 0.69 1.22 

10 Normal 0.97 1.17 0.01 0.84 1.18 0.97 0.53 0.53 

11 Normal 1.63 1.90 0.57 0.79 0.11 0.50 0.45 0.64 

12 Normal 1.58 1.64 0.02 0.61 0.05 0.64 0.33 0.27 

13 Normal 1.36 1.09 0.24 0.74 0.05 0.18 0.46 0.26 

14 Normal 1.28 1.69 0.03 0.76 0.09 0.91 0.82 0.74 

15 Normal 1.23 1.96 0.02 0.62 0.59 0.81 1.19 0.37 

16 Normal 1.41 1.78 0.40 0.66 0.63 1.63 2.74 0.41 

17 Normal 1.31 2.07 0.87 0.65 0.43 0.12 2.46 0.19 

18 Normal 1.13 1.42 0.06 0.54 0.30 1.08 1.15 0.66 

19 Normal 1.11 1.24 0.02 0.67 0.16 1.14 0.58 0.45 

20 Normal 1.15 1.16 1.02 0.71 3.17 0.70 0.82 0.37 

21 Normal 1.64 2.00 0.02 1.04 3.65 1.24 0.56 0.53 

22 Normal 1.08 0.44 0.82 0.60 0.51 1.20 0.78 1.32 

23 Mastitis 0.28 0.12 23.83 1.78 1.24 0.79 0.92 2.14 

24 Mastitis 1.14 0.45 23.94 3.01 13.26 3.30 3.94 22.13

25 Mastitis 1.50 0.31 33.69 3.07 10.23 2.75 2.21 5.12 

26 Mastitis 0.22 0.40 35.90 1.66 0.40 0.62 0.61 2.18 

27 Mastitis 0.39 0.72 65.40 3.13 12.55 3.32 1.01 2.70 

28 Mastitis 0.86 0.84 69.17 2.71 14.64 0.96 1.93 10.06

29 Mastitis 0.21 0.64 71.65 4.17 19.40 0.80 1.37 5.55 

30 Mastitis 0.61 1.67 20.50 0.73 0.37 1.03 1.79 0.46 

31 Mastitis 2.45 1.30 51.82 0.94 88.12 0.77 4.96 11.81
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Appendix 2-3 CT values of miR-21-5p and miR-92a in normal and mastitis cows, and 

miRNA relative expression normalized to miR-92a in normal and mastitis cows. CT 

values shown as the mean values of duplicated experiment. 

CT Expression

Sample Type miR-92a miR-21-5p miR-21-5p 

1 Normal 25.80 23.51 0.77

2 Normal 25.75 23.70 0.65

3 Normal 25.70 23.98 0.52

4 Normal 25.53 24.37 0.35

5 Normal 26.30 23.21 1.34

6 Normal 26.38 23.07 1.56

7 Normal 25.85 23.15 1.02

8 Normal 25.75 22.86 1.17

9 Normal 25.28 22.71 0.93

10 Normal 25.66 22.58 1.33

11 Normal 26.48 24.61 0.57

12 Normal 26.14 24.14 0.63

13 Normal 26.36 24.13 0.74

14 Normal 25.91 23.72 0.72

15 Normal 25.77 23.05 1.03

16 Normal 25.44 23.09 0.80

17 Normal 25.46 23.03 0.85

18 Normal 25.98 23.62 0.81

19 Normal 25.99 23.30 1.02

20 Normal 26.17 22.86 1.56

21 Normal 25.61 22.84 1.08

22 Normal 26.14 23.00 1.39

23 Mastitis 29.54 26.53 1.27

24 Mastitis 30.33 24.20 10.94

25 Mastitis 26.97 23.98 1.25

26 Mastitis 27.10 26.03 0.33

27 Mastitis 28.64 25.41 1.48

28 Mastitis 28.48 24.09 3.28

29 Mastitis 28.68 26.94 0.53
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Appendix 2-4 CT values and relative expression normalized to miR-  CT: CT 

value; Exp: relative expression. CT values shown as the mean values of duplicated experiment. 

Sample Type miR-92a miR-21-5p miR-122 miR-146a miR-155 miR-222 miR-383 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp

1 normal 25.80 23.51 0.80 29.53 131.25 32.98 0.84 32.76 0.57 30.83 0.45 35.20 0.53

2 normal 25.75 23.70 0.68 30.31 74.14 34.50 0.28 32.96 0.48 30.95 0.40 34.47 0.85

3 normal 25.70 23.98 0.54 30.83 50.08 36.45 0.07 32.55 0.62 30.68 0.47 35.21 0.49

4 normal 25.53 24.37 0.37 31.09 37.14 33.11 0.64 33.34 0.32 30.87 0.37 34.64 0.65

5 normal 26.30 23.21 1.46 37.88 0.54 32.84 5.40 31.96 2.28 28.90 5.15 34.09 0.43

6 normal 26.38 23.07 1.33 36.84 0.28 31.59 2.28 32.07 1.73 28.65 2.78 34.39 1.09

7 normal 25.85 23.15 1.39 34.09 0.57 33.00 1.31 32.69 1.41 30.82 2.44 34.47 1.61

8 normal 25.75 22.86 1.62 40.00 1.24 31.25 3.29 31.99 1.39 30.03 3.06 35.28 1.38

9 normal 25.28 22.71 1.06 40.00 5.75 31.96 0.86 32.18 0.62 30.58 0.47 34.57 0.91

10 normal 25.66 22.58 1.22 40.00 0.09 32.55 2.70 32.39 0.95 30.59 0.77 34.56 0.48

11 normal 26.48 24.61 0.97 40.00 0.06 33.45 1.19 33.09 0.60 30.81 0.38 35.18 0.57

12 normal 26.14 24.14 1.38 40.00 0.08 35.32 1.03 32.84 0.67 30.92 0.49 34.59 0.75

13 normal 26.36 24.13 0.60 40.00 0.15 33.97 0.98 33.46 0.73 30.85 0.74 34.75 0.86

14 normal 25.91 23.72 0.65 38.04 0.12 33.19 0.21 33.43 0.69 31.14 0.54 34.96 1.03

15 normal 25.77 23.05 0.77 36.72 0.14 32.18 0.62 31.53 0.52 30.56 0.66 34.10 1.06

16 normal 25.44 23.09 0.75 37.84 0.39 32.40 0.79 32.31 0.39 30.73 0.40 33.55 0.68
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Sample Type miR-92a miR-21-5p miR-122 miR-146a miR-155 miR-222 miR-383 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp

17 normal 25.46 23.03 1.08 40.00 0.88 32.06 1.43 31.81 1.32 30.57 0.53 35.31 1.11

18 normal 25.98 23.62 0.84 37.65 0.32 34.78 0.98 32.54 0.61 30.89 0.38 35.76 1.30

19 normal 25.99 23.30 0.88 37.46 0.07 33.21 1.26 32.98 0.88 30.72 0.43 34.40 0.39

20 normal 26.17 22.86 0.84 37.31 0.54 30.99 0.27 32.12 0.76 29.70 0.49 33.09 0.41

21 normal 25.61 22.84 1.06 37.76 0.62 31.46 0.82 32.31 0.56 29.74 0.56 35.18 1.05

22 normal 26.14 23.00 1.63 37.99 0.77 32.71 4.33 33.07 1.16 30.67 1.28 35.50 2.96

32 normal 25.64 22.48 1.12 37.28 0.39 30.13 2.12 30.61 0.69 27.16 0.85 35.34 0.47

33 normal 26.13 23.11 1.44 38.74 0.47 31.87 1.28 31.50 0.59 28.55 0.64 34.49 0.54

34 29.42 28.20 0.89 40.00 7.08 40.00 1.47 30.18 1.24 30.71 0.43 34.87 1.31

35  26.40 24.11 0.40 40.00 143.72 36.23 0.94 34.75 0.95 30.82 0.36 35.08 0.89

36 CMT3+ 26.61 24.16 2.36 40.00 5.74 35.55 46.34 34.55 6.16 31.25 12.67 34.96 7.44

37 CMT3+ 26.76 24.41 3.65 40.00 14.04 40.00 85.44 35.80 10.43 31.89 22.85 35.02 5.86

38 25.97 24.55 1.27 40.00 0.28 40.00 1.56 31.32 0.48 30.88 0.54 35.86 0.96

39  28.47 22.62 0.85 40.00 29.56 40.00 1.56 35.24 0.67 33.84 0.49 34.75 0.54

40 27.40 21.48 0.77 40.00 0.63 38.51 0.86 34.41 0.37 30.53 0.40 35.40 0.49

41 CMT3+ 28.88 23.53 1.55 40.00 12.56 40.00 15.25 35.19 2.32 32.25 3.61 34.77 1.53

42 CMT3+ 25.31 18.80 2.96 32.46 3.97 32.07 19.40 30.84 10.17 29.19 15.29 35.70 3.36

43  28.58 23.78 1.17 35.46 0.08 40.00 0.59 33.84 0.91 31.78 1.29 33.85 0.94

44 CMT3+ 25.32 19.91 2.69 30.10 2.23 33.56 30.37 31.24 14.43 33.82 15.92 33.98 2.02

45  26.28 19.80 0.78 36.26 0.09 34.16 0.09 31.29 0.35 28.79 0.93 33.18 0.79

46 normal 25.83 20.00 0.38 40.00 1.14 32.92 0.08 32.38 42.27 31.67 6.09 33.86 8.22

47 normal 26.14 20.87 0.80 33.75 0.14 33.83 0.13 32.62 0.22 35.90 0.69 32.81 0.88
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Sample Type miR-92a miR-21-5p miR-122 miR-146a miR-155 miR-222 miR-383 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp

48 normal 25.67 19.48 0.90 36.77 0.16 34.26 0.25 33.28 0.29 34.29 0.60 33.12 1.10

49 normal 25.54 19.50 0.84 40.00 0.18 34.31 0.01 32.96 0.14 34.64 0.42 33.10 1.17

50 normal 25.92 19.84 0.44 36.61 0.10 33.54 0.01 32.65 1.76 33.10 0.49 33.72 0.38

51 normal 26.14 20.50 0.72 39.32 0.15 33.76 0.03 33.26 0.32 34.60 0.58 33.00 1.18

52 normal 25.23 22.79 0.75 33.18 0.07 31.61 0.03 31.09 0.27 30.34 2.75 33.33 0.36

53 normal 25.34 24.05 0.51 28.94 0.19 32.36 0.03 31.58 0.45 30.70 2.31 34.00 1.55

54 normal 25.85 22.89 1.13 38.47 3.01 32.13 0.70 33.05 0.76 30.62 1.63 34.39 0.07

55 normal 25.59 23.21 0.35 31.48 3.63 31.88 0.03 32.33 0.93 30.52 2.60 34.95 2.39

56 normal 25.40 23.16 0.53 36.84 15.63 32.56 0.25 33.00 0.58 30.62 0.07 34.92 0.23

57 normal 25.63 22.79 1.11 40.00 0.42 33.31 0.32 31.93 1.10 29.15 4.19 34.19 0.77

58 normal 25.76 23.51 0.71 40.00 0.02 36.16 0.56 33.44 0.37 29.76 0.42 34.57 0.35

59  25.22 19.84 0.52 35.86 0.27 32.31 0.56 31.23 0.55 32.45 0.16 32.28 0.69

60 CMT4+ 25.76 19.65 1.86 31.07 3.73 33.50 15.72 31.95 2.69 30.12 13.66 32.11 7.21

61  25.98 20.22 0.86 34.72 10.75 32.72 0.36 32.11 0.48 33.54 1.17 32.74 1.12

62 CMT3+ 25.52 20.24 1.80 33.97 1.48 33.90 10.80 32.64 2.89 35.42 11.77 33.43 6.36

63 Normal 25.84 19.72 0.48 34.75 2.18 32.17 0.37 31.94 0.39 32.87 0.03 32.82 0.90

64 25.68 19.41 0.67 34.76 0.99 32.54 0.71 29.41 0.50 31.41 0.13 33.27 0.84

65 CMT2+ 25.86 20.54 1.81 33.15 1.79 32.24 8.30 31.12 1.99 30.61 3.99 32.70 3.90

66 CMT2+ 25.87 19.88 1.20 37.39 4.88 33.37 5.88 31.83 2.22 32.26 3.21 33.04 3.72

67  27.22 19.08 0.48 33.26 1.22 29.62 0.23 29.61 0.25 27.22 0.02 32.72 0.38

68 24.78 19.93 0.87 34.21 0.89 34.32 0.95 31.63 0.51 36.59 0.18 35.51 0.73

69 CMT4+ 26.03 20.52 1.71 37.48 3.20 32.22 5.84 31.88 1.64 31.84 8.93 33.81 5.21
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Sample Type miR-92a miR-21-5p miR-122 miR-146a miR-155 miR-222 miR-383 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp

70 Normal 24.14 20.29 0.91 32.39 0.19 25.54 0.20 27.68 0.18 24.37 0.06 29.73 0.52

71 Normal 22.95 18.47 0.82 29.91 0.02 23.46 0.18 25.73 0.21 22.33 0.04 28.88 0.49

72 Normal 25.00 21.75 0.84 32.12 0.26 28.00 0.39 29.94 0.33 27.04 0.16 32.87 0.41

73 Normal 24.04 19.87 0.62 32.82 0.05 26.70 0.39 26.86 0.25 24.00 0.07 30.78 0.79

74 24.02 19.98 0.96 33.64 0.79 26.03 0.66 26.33 2.65 23.92 0.45 31.49 0.48

75 CMT3+ 25.11 17.89 3.04 31.96 10.41 27.39 64.35 28.83 7.54 25.92 20.18 28.78 6.41

76 26.08 18.90 0.49 34.25 2.73 28.89 0.91 29.68 0.92 27.10 0.89 29.93 0.80

77 CMT+ 26.05 18.87 0.83 33.95 4.91 29.25 3.19 30.20 1.17 28.64 7.04 30.61 1.84

78 26.20 19.61 0.79 32.65 0.15 29.89 0.42 30.19 0.57 29.10 0.29 30.82 0.64

79 CMT3+ 25.73 18.63 8.67 32.79 4.24 29.43 40.62 30.16 23.67 27.15 203.17 29.87 8.12

80 CMT+ 26.51 18.58 2.43 31.87 9.69 26.75 7.75 28.74 1.95 26.76 7.22 30.35 1.19

81  26.26 20.20 3.51 32.70 6.49 30.84 14.43 31.17 6.75 28.02 23.95 31.90 2.02

82 CMT3+ 27.01 17.57 10.95 33.67 10.53 27.92 162.45 27.59 25.80 23.93 184.99 30.51 9.00

83  26.79 19.18 0.36 32.26 0.62 30.09 0.10 30.97 0.31 28.52 0.01 33.06 0.05

84 CMT2+ 27.91 18.13 2.55 33.25 5.09 26.82 9.49 28.36 2.90 24.96 5.74 31.26 0.81

85  26.86 19.17 0.56 33.25 0.15 29.86 1.04 30.46 0.61 28.92 0.43 33.69 0.42

86 CMT2+ 25.68 21.54 0.22 36.02 0.33 33.50 0.34 29.58 2.36 32.68 0.19 33.68 0.36
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Appendix 2-5 CT values of miRNA in bovine mastitis serum. CT values shown as the mean values of 

duplicated experiment.

Sample Type cel-miR-39 miR-16 miR-146a miR-155 miR-21 miR-222 miR-383

1 Normal 16.75 23.45 31.13 33.06 30.58 29.48 34.50

2 Normal 17.09 22.84 30.54 33.02 30.59 29.25 34.66

3 Normal 17.03 27.49 32.84 33.69 31.00 30.61 35.39

4 Normal 17.72 27.50 35.62 33.52 30.49 30.45 34.25

5 Normal 17.36 23.86 31.46 33.40 31.20 28.96 34.58

6 Normal 15.91 24.20 31.99 33.59 31.49 29.43 35.49

7 Normal 16.70 25.60 37.23 33.98 30.70 30.29 35.70

8 Normal 16.33 25.51 33.66 33.27 30.81 29.96 34.04

9 Normal 16.92 24.45 31.82 32.17 30.18 28.73 32.69

10 Normal 17.30 26.22 33.21 33.07 30.39 29.97 33.59

11 Normal 17.43 24.03 31.78 32.36 30.05 28.61 33.66

12 Mastitis 16.94 24.00 32.09 33.82 30.01 29.17 35.28

13 Mastitis 16.30 25.92 31.70 33.91 32.00 30.61 33.59

14 Mastitis 17.61 26.04 33.15 33.36 30.26 29.15 33.70

15 Mastitis 17.29 26.69 33.17 32.42 29.05 29.48 35.47

16 Mastitis 17.00 24.85 32.77 32.03 29.47 28.97 35.94

17 Mastitis 17.44 26.16 38.18 33.62 30.65 30.01 35.22

18 Mastitis 17.42 24.31 32.54 32.99 29.83 29.14 34.64

19 Mastitis 16.87 25.11 32.02 33.43 30.39 29.55 34.65

20 Mastitis 17.48 25.08 31.33 34.18 30.50 29.74 35.10

21 Mastitis 18.08 25.78 33.26 33.29 29.89 28.64 34.09

22 Mastitis 16.26 26.64 32.59 33.02 29.94 29.80 33.62

23 Mastitis 16.98 27.26 35.51 33.68 30.05 30.29 34.31

24 Mastitis 16.80 23.64 34.24 32.68 29.49 29.03 34.53

25 Mastitis 17.32 26.42 33.61 34.12 31.31 30.72 34.80

26 Mastitis 17.25 26.08 33.43 32.93 30.12 29.61 33.90
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Appendix 2-6 Relative expression values normalized to cel-miR-39 and miR-16. CT values shown as the 

mean values of duplicated experiment. cel-39: cel-miR-39.

Sample Type miR-146a miR-155 miR-21 miR-222 miR-383 

cel-39 miR-16 cel-39 miR-16 cel-39 miR-16 cel-39 miR-16 cel-39 miR-16

1 Normal 3.46 1.03 0.88 0.26 0.67 0.20 0.83 0.25 0.77 0.23 

2 Normal 6.57 1.01 1.15 0.18 0.84 0.13 1.24 0.19 0.88 0.13 

3 Normal 1.29 5.18 0.69 2.81 0.61 2.46 0.47 1.87 0.51 2.05 

4 Normal 0.30 0.76 1.25 3.17 1.39 3.52 0.84 2.10 1.80 4.53 

5 Normal 4.22 1.09 1.07 0.28 0.66 0.17 1.83 0.47 1.12 0.29 

6 Normal 1.07 0.95 0.34 0.31 0.20 0.18 0.49 0.43 0.22 0.19 

7 Normal 0.05 0.07 0.45 0.62 0.59 0.82 0.46 0.63 0.32 0.44 

8 Normal 0.45 0.74 0.57 0.96 0.43 0.72 0.45 0.74 0.80 1.32 

9 Normal 2.42 1.28 1.85 0.98 1.00 0.53 1.58 0.84 3.05 1.61 

10 Normal 1.20 1.67 1.28 1.80 1.12 1.56 0.87 1.21 2.12 2.95 

11 Normal 3.54 0.98 2.30 0.64 1.55 0.43 2.45 0.68 2.22 0.61 

12 Mastitis 2.02 0.77 0.60 0.23 1.14 0.44 1.18 0.45 0.51 0.20 

13 Mastitis 1.70 3.83 0.36 0.81 0.18 0.42 0.28 0.63 1.07 2.40 

14 Mastitis 1.55 1.53 1.31 1.30 1.51 1.50 1.91 1.89 2.45 2.42 

15 Mastitis 1.22 2.36 2.00 3.90 2.81 5.48 1.21 2.35 0.57 1.11

16 Mastitis 1.32 0.87 2.15 1.43 1.72 1.14 1.42 0.94 0.34 0.22 

17 Mastitis 0.04 0.05 0.97 1.17 1.03 1.25 0.94 1.12 0.76 0.91 

18 Mastitis 2.07 0.70 1.48 0.50 1.79 0.61 1.68 0.57 1.12 0.38 

19 Mastitis 2.02 1.75 0.74 0.65 0.83 0.72 0.86 0.75 0.76 0.66 

20 Mastitis 4.97 2.76 0.67 0.38 1.17 0.65 1.16 0.64 0.84 0.47 

21 Mastitis 1.98 1.18 1.88 1.13 2.70 1.63 3.74 2.23 2.58 1.54 

22 Mastitis 0.89 3.41 0.64 2.48 0.74 2.86 0.48 1.82 1.01 3.88 

23 Mastitis 0.19 0.69 0.67 2.41 1.14 4.06 0.56 1.99 1.04 3.69 

24 Mastitis 0.41 0.14 1.19 0.39 1.48 0.48 1.19 0.39 0.78 0.26 

25 Mastitis 0.92 1.45 0.63 0.99 0.60 0.95 0.53 0.83 0.93 1.47 

26 Mastitis 0.99 1.30 1.37 1.80 1.30 1.71 1.08 1.41 1.66 2.17 
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Appendix 3-1 NanoDrop Spectrophotmeter and 2100 Bioanalyzer System results. Analysis and the report were provided by Hokkaido 

System Science Co., Ltd.

No. Sample 
Nanodrop 

A260/A280 A260/A230
1 618 Normal 1 1.39 0.29 134.6
2 626 Normal 2 1.35 0.22 105.2
3 629 Normal 3 1.43 0.26 129.9
4 632 Normal 4 1.29 0.25 124.5
5 633 Normal 5 1.35 0.33 155.7
6 601 1.07 0.34 133.9
7 603 1.22 0.23 110.4
8 608 1.33 0.2 96.2
9 620 1.13 0.4 128.6
10 634 1.23 0.27 137.2
11 601 CMT+ 1 1.39 0.78 318.6
12 603 CMT+ 2 1.54 0.5 252.6
13 608 CMT+ 3 1.37 1.13 207.5
14 620 CMT+ 4 1.45 0.61 266.4
15 634 CMT+ 5 1.45 0.51 264.1
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618 _Normal 1           626 _Normal 2 

629 _Normal 3 632 _Normal 4
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633 _Normal 5           601 _

603 _ 608 _
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620 _             634 _

601 _CMT+ 1 603 _CMT+ 2
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608  CMT+ 3            620  CMT+ 4 

634 CMT+ 5
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Appendix 3-2 CT values and relative expression normalized to miR-

value; Exp: relative expression. 

Sample Type miR-92a miR-142-5p miR-221 miR-15a miR-23b-3p miR-2284w miR-6529a U2 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp 

1 normal 25.80 33.73 0.10 31.39 0.43 28.10 0.87 26.40 4.50 40.00 0.24 33.35 0.27 23.45 0.35 

2 normal 25.75 34.45 0.06 32.17 0.25 28.60 0.60 26.92 3.04 40.00 0.23 34.06 0.16 24.84 0.13 

3 normal 25.70 33.60 0.10 31.45 0.39 28.34 0.69 27.22 2.38 40.00 0.22 33.38 0.25 23.54 0.30 

4 normal 25.53 33.71 0.08 31.42 0.35 28.23 0.67 26.76 2.91 40.00 0.20 34.87 0.08 23.83 0.22 

5 normal 25.85 33.93 0.09 30.94 0.61 28.15 0.87 26.38 4.72 40.00 0.25 32.71 0.43 22.07 0.93 

6 normal 25.75 30.84 0.69 28.00 4.42 27.89 0.98 26.86 3.17 38.37 0.71 32.41 0.50 20.54 2.53 

7 normal 25.28 33.72 0.07 30.88 0.43 27.59 0.87 25.85 4.58 40.00 0.17 31.62 0.62 21.34 1.04 

8 normal 25.66 31.36 0.45 28.73 2.49 27.47 1.23 25.85 5.96 40.00 0.22 32.41 0.47 20.92 1.81 

9 normal 26.48 34.79 0.07 32.37 0.35 28.15 1.35 26.20 8.29 40.00 0.38 32.54 0.75 23.21 0.65 

10 normal 26.14 34.48 0.07 32.51 0.25 27.99 1.20 25.85 8.36 40.00 0.30 34.11 0.20 22.65 0.76 

11 normal 26.36 33.61 0.15 32.96 0.22 27.77 1.62 25.87 9.59 40.00 0.35 33.06 0.48 23.56 0.47 

12 normal 25.91 35.60 0.03 32.20 0.27 27.89 1.09 25.83 7.22 40.00 0.26 33.55 0.25 22.76 0.60 

13 normal 25.46 32.65 0.16 30.23 0.77 27.76 0.88 25.88 5.11 40.00 0.19 32.42 0.40 22.18 0.66 

14 normal 25.98 33.31 0.15 31.20 0.56 28.13 0.97 26.31 5.42 40.00 0.27 33.82 0.22 24.09 0.25 

15 normal 25.99 33.68 0.11 31.58 0.44 27.32 1.72 25.61 8.89 40.00 0.27 32.39 0.60 23.72 0.33 

16 normal 26.17 29.03 3.26 27.56 8.00 27.11 2.25 25.93 8.07 38.17 1.10 32.32 0.71 21.29 2.00 

17 normal 25.61 28.79 2.61 27.70 4.95 27.37 1.28 26.37 4.05 38.48 0.60 32.61 0.39 21.38 1.28 
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Sample Type miR-92a miR-142-5p miR-221 miR-15a miR-23b-3p miR-2284w miR-6529a U2 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp 

18 normal 26.14 32.34 0.32 29.85 1.61 28.93 0.62 26.10 7.02 40.00 0.30 33.40 0.33 23.03 0.59 

19 25.23 32.75 0.13 29.47 1.11 27.01 1.26 25.53 5.57 40.00 0.16 31.22 0.79 20.57 1.72 

20  25.34 35.39 0.02 31.29 0.34 27.88 0.74 25.66 5.47 40.00 0.17 32.50 0.35 21.72 0.83 

21 CMT3+ 24.14 23.46 37.67 19.97 376.79 22.65 12.09 26.48 1.35 30.92 40.76 25.17 24.58 13.84 85.70 

22 CMT4+ 22.95 20.71 111.48 18.54 445.38 20.81 19.08 26.99 0.41 28.75 80.62 23.68 30.29 13.02 66.13 

23 25.85 35.49 0.03 31.44 0.44 28.56 0.66 27.12 2.82 40.00 0.25 32.96 0.36 22.86 0.54 

24  25.59 33.61 0.09 30.60 0.65 28.78 0.47 26.68 3.22 40.00 0.21 33.20 0.26 21.92 0.87 

25 25.40 34.38 0.05 32.09 0.20 28.61 0.47 28.05 1.09 40.00 0.18 32.34 0.41 23.53 0.25 

26 CMT3+ 25.00 25.49 16.84 27.44 3.88 27.69 0.67 27.95 0.88 37.71 0.67 31.94 0.41 18.72 5.30 

27 CMT3+ 24.04 23.31 39.16 21.08 163.41 23.75 5.30 25.27 2.93 30.75 43.01 25.69 16.01 13.95 74.24 

28  25.63 27.83 5.13 29.53 1.40 29.94 0.22 27.84 1.47 39.46 0.31 32.24 0.51 21.82 0.95 

29 CMT3+ 24.02 22.27 79.29 20.86 187.49 23.27 7.26 24.99 3.48 30.61 46.63 25.63 16.53 14.99 35.68 

30  25.76 29.71 1.52 31.08 0.53 29.07 0.44 26.88 3.14 40.00 0.23 33.17 0.29 22.17 0.82 

31 normal 29.42 36.86 0.14 35.76 0.26 35.46 0.07 35.80 0.08 40.00 2.94 35.23 0.90 26.46 0.53 

32 normal 26.40 33.39 0.19 32.43 0.32 28.34 1.13 28.09 2.13 40.00 0.36 33.80 0.30 23.20 0.63 

33 normal 26.61 32.15 0.51 33.52 0.17 30.37 0.32 31.27 0.27 40.00 0.42 36.33 0.06 23.91 0.44 

34 normal 26.76 33.60 0.21 35.96 0.04 31.85 0.13 30.60 0.48 40.00 0.46 36.60 0.05 23.79 0.53 

35 normal 25.97 35.27 0.04 33.89 0.09 36.23 0.00 33.05 0.05 40.00 0.27 36.11 0.04 27.02 0.03 

36 normal 28.47 34.44 0.38 36.24 0.10 28.83 3.38 26.99 19.13 40.00 1.52 33.67 1.37 24.31 1.22 

37 normal 27.40 32.84 0.54 32.13 0.79 26.05 11.01 25.94 18.81 40.00 0.72 33.62 0.67 24.21 0.62 

38 normal 28.88 32.18 2.40 35.87 0.17 30.00 1.99 28.92 6.63 40.00 2.01 35.96 0.37 24.62 1.30 

39 normal 25.31 29.45 1.34 28.62 2.12 24.94 5.59 24.51 11.91 35.31 4.39 29.02 3.86 20.04 2.64 
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Sample Type miR-92a miR-142-5p miR-221 miR-15a miR-23b-3p miR-2284w miR-6529a U2 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp 

40 normal 28.58 32.01 2.19 34.45 0.36 30.51 1.13 29.25 4.28 40.00 1.64 37.60 0.10 24.78 0.95 

41 normal 25.32 33.54 0.08 32.42 0.15 26.74 1.61 28.91 0.57 40.00 0.17 32.98 0.25 24.11 0.16 

42 normal 26.28 28.41 5.40 28.19 5.57 26.25 4.42 27.90 2.22 34.16 18.98 29.80 4.37 19.99 5.32 

43 normal 25.83 31.02 0.64 31.08 0.55 25.96 3.93 26.16 5.40 40.00 0.24 31.74 0.83 22.76 0.57 

44  25.22 30.79 0.50 30.49 0.54 25.94 2.62 27.15 1.79 37.35 1.00 30.71 1.12 21.88 0.69 

45 CMT4+ 25.11 24.73 30.81 24.52 31.63 23.43 13.88 27.28 1.52 32.01 37.60 26.34 21.44 16.01 37.47 

46  25.76 29.98 1.26 29.43 1.65 26.06 3.51 27.05 2.78 36.95 1.92 30.26 2.21 20.95 1.90 

47 CMT3+ 26.08 26.95 12.87 25.63 28.53 24.46 13.21 26.43 5.35 36.62 3.00 27.44 19.54 16.02 72.18 

48 Normal 26.14 35.63 0.03 34.57 0.06 26.42 3.56 27.89 2.03 40.00 0.30 31.77 1.01 24.94 0.16 

49 25.98 32.01 0.36 31.75 0.38 27.07 2.02 29.54 0.58 40.00 0.27 31.35 1.21 23.21 0.46 

50 CMT2+ 26.05 26.68 15.34 25.49 31.04 24.02 17.66 29.00 0.88 36.98 2.30 27.81 14.88 16.61 47.43 

51 CMT2+ 26.20 27.04 13.20 25.98 24.40 24.83 11.13 30.03 0.48 36.23 4.27 28.23 12.33 17.23 33.98 

52  25.52 34.79 0.04 34.44 0.04 26.99 1.56 28.17 1.08 40.00 0.20 32.00 0.56 23.71 0.24 

53 25.84 32.86 0.18 31.14 0.53 26.02 3.83 27.03 2.99 40.00 0.25 30.46 2.04 20.42 2.92 

54 CMT4+ 25.73 26.22 16.85 25.25 29.18 23.73 17.31 27.85 1.57 33.56 19.74 26.93 21.92 17.09 27.11

55 Normal 25.67 34.92 0.04 34.19 0.06 26.32 2.75 26.45 3.95 40.00 0.22 31.47 0.90 24.53 0.15 

56 Normal 25.54 34.13 0.06 33.73 0.07 26.95 1.63 27.42 1.85 40.00 0.20 32.62 0.37 23.22 0.34 

57 Normal 25.92 33.00 0.17 32.45 0.23 26.03 3.99 26.04 6.27 40.00 0.26 31.29 1.21 23.44 0.38 

58 Normal 26.14 34.09 0.10 33.12 0.17 26.96 2.46 28.45 1.38 40.00 0.30 31.92 0.91 23.80 0.34 

59 25.68 32.35 0.23 30.17 0.93 26.88 1.87 28.37 1.06 40.00 0.22 31.53 0.87 22.13 0.80 

60 CMT3+ 26.51 25.94 35.10 25.00 59.72 23.62 31.98 26.98 4.92 34.77 14.66 27.98 18.16 14.90 213.00

61 25.86 31.18 0.59 29.67 1.49 25.77 4.57 25.42 9.25 35.50 5.60 30.27 2.35 20.61 2.58 
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Sample Type miR-92a miR-142-5p miR-221 miR-15a miR-23b-3p miR-2284w miR-6529a U2 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp 

62 CMT+ 26.26 28.49 5.02 27.04 12.19 25.68 6.44 26.44 6.01 34.64 13.49 28.74 8.99 18.56 14.07 

63 25.87 32.44 0.25 31.56 0.41 27.10 1.84 26.32 5.00 40.00 0.25 30.45 2.10 22.07 0.95 

64 CMT3+ 27.01 23.79 220.39 23.34 267.29 22.54 95.80 25.95 14.30 32.02 139.24 25.46 147.01 15.21 243.05

65 CMT+ 26.79 26.73 24.69 26.64 23.41 25.43 11.08 28.21 2.56 40.00 0.47 28.89 11.73 17.90 32.30 

66  27.22 27.20 23.96 26.94 25.43 25.37 15.59 26.54 10.94 35.21 17.63 28.36 22.76 17.97 41.32 

67 CMT3+ 27.91 24.27 294.39 22.98 638.39 22.60 171.08 26.94 13.36 33.53 91.22 25.81 215.00 14.47 757.07

68  24.78 36.38 0.01 33.72 0.04 27.50 0.66 30.19 0.16 40.00 0.12 32.96 0.17 22.78 0.27 

69 CMT2+ 26.86 28.36 8.34 27.24 16.02 26.00 7.82 29.20 1.34 40.00 0.50 29.65 7.26 17.72 38.35 

70 CMT3+ 24.60 28.05 2.16 26.67 4.98 24.39 4.99 25.11 4.77 37.37 0.64 27.77 5.57 16.90 14.07 

71 CMT2+ 24.86 27.98 2.70 26.92 5.00 24.07 7.42 25.94 3.21 34.69 4.91 28.76 3.35 16.74 18.83 

72 CMT2+ 24.91 26.71 6.79 25.96 10.14 23.76 9.61 26.60 2.12 36.16 1.85 27.98 5.98 16.80 18.81 

73 CMT3+ 25.03 29.18 1.34 28.60 1.77 25.70 2.72 26.52 2.43 35.71 2.75 29.56 2.18 19.88 2.42 

74 CMT3+ 24.19 27.24 2.86 26.12 5.52 23.70 6.05 26.09 1.83 35.49 1.78 26.98 7.28 16.59 13.23 

75 24.81 26.47 7.48 28.00 2.30 27.98 0.48 30.34 0.15 40.00 0.12 32.43 0.25 23.35 0.19 

76  24.55 30.11 0.50 30.64 0.31 27.73 0.48 30.05 0.15 38.13 0.37 33.59 0.10 24.08 0.09 

77 24.25 27.98 1.77 29.96 0.40 27.32 0.51 28.71 0.31 40.00 0.08 33.37 0.09 23.29 0.13 

78  24.23 31.27 0.18 30.69 0.24 27.91 0.34 30.37 0.10 40.00 0.08 34.25 0.05 22.77 0.19 

79 23.76 31.41 0.12 32.56 0.05 26.64 0.59 25.83 1.62 37.95 0.24 31.47 0.24 21.72 0.28 

80  24.41 27.63 2.53 29.22 0.74 26.35 1.12 27.69 0.70 35.52 2.02 31.15 0.47 21.95 0.37 

81 CMT2+ 26.14 33.05 0.20 31.48 0.52 38.50 0.00 35.04 0.01 38.18 1.06 33.19 0.38 29.53 0.01 

82 CMT1+ 25.56 31.37 0.42 30.89 0.52 35.42 0.00 36.20 0.00 37.78 0.94 33.68 0.18 29.08 0.01 

83 CMT1+ 24.76 29.25 1.05 29.20 0.97 30.66 0.07 33.42 0.02 37.60 0.61 32.20 0.29 23.95 0.12 
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Sample Type miR-92a miR-142-5p miR-221 miR-15a miR-23b-3p miR-2284w miR-6529a U2 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp 

84 CMT2+ 24.04 26.09 5.70 28.22 1.15 25.75 1.32 25.68 2.19 33.99 4.53 28.83 1.82 18.82 2.54 

85 CMT2+ 24.20 25.84 7.55 27.51 2.12 26.93 0.65 29.85 0.14 34.76 2.97 28.81 2.05 21.84 0.35 

86 CMT1+ 24.63 25.21 15.78 27.89 2.19 25.98 1.70 27.85 0.73 33.85 7.56 29.07 2.32 21.04 0.82 

87 CMT2+ 24.24 26.75 4.14 28.75 0.92 27.43 0.47 30.51 0.09 35.53 1.79 30.52 0.65 23.09 0.15 

88 Normal 23.51 27.55 1.44 28.99 0.47 24.68 1.91 24.41 3.66 33.58 4.18 28.85 1.24 17.89 3.34 

89 Normal 23.96 29.21 0.62 30.16 0.29 25.25 1.77 25.00 3.32 33.74 5.12 30.02 0.75 19.01 2.10 

90 Normal 25.03 31.55 0.26 33.04 0.08 28.55 0.38 30.03 0.21 40.00 0.14 32.67 0.25 23.38 0.21 

91 Normal 25.05 31.36 0.30 33.13 0.08 28.15 0.50 30.31 0.18 40.00 0.14 32.27 0.34 24.47 0.10 

92 Normal 25.58 32.52 0.19 34.30 0.05 27.67 1.01 28.35 1.00 37.57 1.10 33.26 0.25 24.83 0.11 

93 Normal 25.24 32.82 0.12 33.56 0.07 28.18 0.56 30.39 0.19 38.20 0.56 35.70 0.04 26.42 0.03 

94 Normal 25.50 32.85 0.14 33.97 0.06 28.95 0.39 31.52 0.10 40.00 0.19 35.07 0.07 26.82 0.03 

95 Normal 24.96 32.87 0.10 34.13 0.04 27.26 0.88 28.67 0.52 40.00 0.13 34.85 0.05 25.23 0.06 

96 Normal 25.19 34.38 0.04 34.94 0.02 27.86 0.68 29.83 0.27 40.00 0.16 33.72 0.14 26.50 0.03 

97 24.65 28.77 1.36 29.88 0.56 28.77 0.25 31.47 0.06 39.67 0.13 31.76 0.36 24.16 0.10 

98  24.37 26.65 4.87 28.85 0.94 26.30 1.13 26.47 1.59 35.75 1.68 29.53 1.40 20.05 1.36 

99 CMT2+ 26.30 27.54 9.99 28.10 6.00 28.85 0.74 31.82 0.15 33.75 25.58 30.17 3.42 21.64 1.72 

100  24.41 32.06 0.12 33.12 0.05 28.25 0.30 31.57 0.05 40.00 0.09 32.47 0.19 25.72 0.03 

101 CMT2+ 29.35 30.82 8.50 31.32 5.32 36.53 0.03 34.51 0.19 35.63 57.73 30.04 31.00 22.31 8.92 

102  23.98 30.64 0.23 32.26 0.07 26.40 0.81 27.83 0.47 38.10 0.25 30.54 0.53 23.27 0.11 

103 24.72 28.47 1.76 30.05 0.52 28.55 0.30 31.06 0.08 38.01 0.45 31.27 0.54 24.08 0.11 

104 Normal 30.82 36.06 0.62 35.71 0.71 38.15 0.03 36.52 0.13 40.00 7.70 36.97 0.70 29.00 0.24 

105 24.87 30.26 0.56 31.49 0.21 26.28 1.62 26.55 2.13 40.00 0.13 30.62 0.93 20.68 1.25 



176 

Sample Type miR-92a miR-142-5p miR-221 miR-15a miR-23b-3p miR-2284w miR-6529a U2 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp 

106  25.24 29.19 1.53 31.03 0.38 26.91 1.36 28.40 0.76 38.56 0.44 32.52 0.32 22.90 0.34 

107 25.46 31.62 0.33 31.58 0.30 28.41 0.56 31.53 0.10 40.00 0.19 33.30 0.22 24.39 0.14 

108 CMT2+ 27.84 29.89 5.70 32.32 0.94 33.71 0.07 33.49 0.14 34.90 33.60 31.01 5.56 22.96 1.99 

109 24.58 28.65 1.41 31.79 0.14 26.01 1.61 25.84 2.85 40.00 0.10 29.78 1.37 22.11 0.38 

110 CMT2+ 25.40 26.33 12.33 29.76 1.02 26.62 1.85 28.25 0.94 35.54 3.97 30.02 2.05 21.37 1.11 

111 25.31 23.70 72.44 26.38 9.99 25.59 3.56 29.26 0.44 34.40 8.25 28.30 6.34 20.04 2.63 

112 CMT1+ 24.77 26.76 5.96 29.22 0.96 26.59 1.23 26.68 1.82 38.38 0.36 29.66 1.70 21.00 0.93 

113 27.90 31.01 2.72 31.10 2.27 36.43 0.01 35.10 0.05 35.77 19.10 32.20 2.55 27.11 0.12 

114  26.55 30.62 1.40 30.02 1.89 31.25 0.17 33.84 0.04 36.41 4.82 31.86 1.27 25.78 0.12 

115 26.00 32.00 0.37 32.35 0.26 31.86 0.07 34.03 0.03 39.59 0.36 33.05 0.38 26.41 0.05 

116 CMT2+ 26.86 25.95 44.28 28.76 5.62 27.48 2.80 30.07 0.74 35.34 12.53 29.16 10.18 17.96 32.37 

117 CMT+ 26.63 27.02 17.99 28.16 7.25 28.15 1.50 28.84 1.48 38.03 1.65 29.92 5.14 18.71 16.41 

118 CMT2+ 26.48 25.61 43.02 28.72 4.43 28.60 0.99 30.17 0.53 37.31 2.46 28.76 10.31 19.60 8.01 

119 25.27 28.83 2.00 31.04 0.39 27.54 0.90 29.15 0.46 38.15 0.59 30.25 1.59 21.53 0.90 

120 CMT4+ 24.17 20.93 221.42 23.51 33.07 23.12 8.90 26.19 1.68 31.78 22.86 25.42 21.08 14.70 48.10 

121 23.58 26.93 2.31 29.78 0.29 25.23 1.38 24.64 3.28 37.24 0.35 28.57 1.58 20.05 0.79 

122  24.77 24.62 26.07 27.60 2.93 26.46 1.34 25.40 4.39 34.61 4.90 28.61 3.50 14.88 64.33 

123 CMT+ 25.15 26.27 10.88 26.33 9.28 26.55 1.64 26.92 2.01 36.98 1.23 28.83 3.93 18.27 8.01 

124  24.52 30.82 0.30 30.94 0.25 26.71 0.94 26.23 2.08 40.00 0.10 31.01 0.56 21.62 0.51 

125 CMT2+ 24.93 27.28 4.64 27.28 4.12 26.49 1.46 27.16 1.46 34.41 6.29 29.79 1.74 20.09 1.95 

126 Normal 25.99 33.26 0.15 33.36 0.13 30.35 0.21 31.63 0.14 40.00 0.27 33.12 0.36 23.47 0.39 

127 Normal 25.07 28.72 1.87 29.10 1.28 28.28 0.47 28.41 0.67 37.87 0.63 30.49 1.17 21.25 0.96 
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Sample Type miR-92a miR-142-5p miR-221 miR-15a miR-23b-3p miR-2284w miR-6529a U2 

CT CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp CT Exp 

128  24.92 30.17 0.62 29.85 0.69 26.93 1.07 26.41 2.43 38.76 0.31 30.35 1.17 20.98 1.05 

129 CMT4+ 25.51 24.94 35.02 24.77 35.04 26.35 2.42 28.48 0.87 33.76 14.78 29.08 4.23 18.18 10.93 

130 Normal 26.91 31.38 1.07 31.74 0.74 31.81 0.14 31.67 0.25 40.00 0.52 35.47 0.13 26.05 0.12 

131 Normal 26.02 31.59 0.50 32.16 0.30 29.71 0.33 29.15 0.78 40.00 0.28 32.19 0.69 24.68 0.17 

132 Normal 26.80 34.82 0.09 33.65 0.18 30.81 0.27 30.74 0.44 40.00 0.48 33.91 0.36 25.13 0.22 

133 Normal 26.40 32.26 0.40 32.35 0.34 32.44 0.07 32.16 0.13 37.74 1.73 31.67 1.30 23.63 0.46 

134 Normal 25.98 33.11 0.17 32.80 0.19 30.26 0.22 32.05 0.10 40.00 0.27 34.89 0.10 25.87 0.07 

135 Normal 27.20 35.21 0.09 35.76 0.06 35.45 0.01 35.46 0.02 40.00 0.63 35.25 0.19 27.55 0.05 

136  27.94 36.97 0.05 36.76 0.05 36.73 0.01 35.99 0.03 40.00 1.05 35.97 0.19 28.93 0.03 

137 CMT4+ 28.31 26.85 64.96 25.06 199.85 31.28 0.55 32.64 0.34 34.04 84.53 29.57 21.00 20.08 20.45 

138 Normal 27.67 33.41 0.44 31.44 1.53 34.29 0.04 33.63 0.11 39.53 1.20 34.42 0.46 27.15 0.10 
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