
1.�Introduction
Radiotherapy is an essential treatment for cancer patients. An inaccurate dose of energy can 
lead to some side effects such as skin damage, hair loss, fatigue, cardiac and even fibroblast 
growth [1][2][3]. Thus, an accurate and real-time-readout radiation sensor is cruitial. 

Nowadays, there are several types of radiation sensors such as thermoluminescent crystals, 
ionization chambers, diodes and metal-oxide-semiconductor field effect transistors (MOSFETs) 
[4][5]. P-channel MOSFETs (p-MOSFETs) have gained numerous attentions as a commercial 
sensor for radiotherapy due to its advantages on non-destructive and real-time readout, memo-
rizing dose, acceptable sensitivity, simply calibration and low cost [6][7][8]. 

The fundamental of MOSFET sensing the radiation dose is based on a dependency of the 
threshold voltage (VTH) of MOSFET on radiation energy. Radiation excites the electron-hole 
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（Abstract）
　　This work reports a biasing technique of MOSFET for an accurate and real-time readout 
radiation measurement particularly during a radiation therapy given to cancer-related patients. 
The radiation beam energy induces a variation of threshold voltage (VTH) of MOSFET during being 
exposed to gamma radiation. VTH measurement of five different types of MOSFET were carried out 
in three methods by using OrCAD and MATLAB. The simulation results conclude that Method 
III is the most suitable one with high accuracy and ability to read out signal in real time process. 
Further use of this work is a prototype of a real- time readout radiation measurement using 
MOSFETs with low cost and high accuracy for patients diagnosed with cancer.
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pairs in the oxide under the gate layer. The increment of electron-hole pairs causes the shifting 
threshold voltage. The proper structure of MOSFET suitable for radiation sensors requires a 
thick oxide layer in order to have higher sensitivity and also linearity [9][10].    

Reliability of the readout VTH reflecting the radiation dose depends on its accuracy. There have 
been several configurations and biasing techniques to achieve this figure of merit. A simple 
and elegant method of biasing MOSFET with a constant current source was proposed [11]; 
however, the issue of a proper level of current biasing for different type of MOSFETs has not 
been investigated, due to the variation of threshold voltage of each commercial MOSFETs may 
require a different level of biasing current. The objective of this work reports a proper biasing 
technique of MOSFET applied as an accurate and real-time readout radiation sensor.

2.�MOSFET�Threshold�Voltage�Shift�
Electric charges inside the MOSFET follows Eq. (1):

   QG + Qox + QC = 0 (1)

where 
QG is the charge on the gate layer
Qox is the effective interface charge
QC is the charge in the semiconductor under the oxide

With the external voltage VGB applied to the gate-body terminals, the potential distribution and 
charges distribution of MOSFET are shown in Figure 1.

Figure�1.�Charges�and�potential�distribution�of�MOSFET�considering�2�terminals�model
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The effective interface charge, Qox,  is composed of interface trapped charge (Qit), fixed oxide 
charge, oxide trapped charge (Qot) and mobile oxide charge. 
The exposure of MOSFET to radiation generates the increment of electrical charges in the 
interface trapped charge (Qit) and the gate oxide trapped charge (Qot), due to the electron-hole 
pair generation in the oxide layer [12][13]. The change of both charges cause the shifting of 
threshold voltage, ∆VTH as shown in Eq.(2) and Eq.(3).

   VTH=VTH0+∆VTH (2)

   ∆VTH=∆Qot+∆Qit COX
= tox εox  (∆Qot+∆Qit) (3)

where 
COX  is the oxide capacitance per area unit
VTH0  is the threshold voltage before exposure 
∆VTH is the shifted threshold voltage after exposure

The shifted threshold voltage (∆VTH) is a function of both oxide trapped charge and interface 
trapped charge which depending on the high-energy ionizing irradiation during radiotherapy; 
thus ∆VTH can measure the gamma radiation. 

３．Materials�and�Methods
 There are several threshold voltage extraction methods in a linear region of transfer IV 
characteristic such as constant-current, match-point, linear extrapolation, second-derivative, 
third-derivative, current-to-square-root-of-the-transconductance ratio [14]. This work selected 
the linear extrapolation as our Method I due to its simplicity and the second-derivative or 
transconductance (gm) extrapolation as our Method II due to its most popularity. Finally Method 
III: constant low current source circuit due to its ability for real-time readout [15]. 

 The accuracy of voltage threshold extraction of Method I-III was carried out by using 
MATLAB R2013 for Method I-II and OrCAD 16.6 for Method III. The verification was con-
ducted on five commercial p-MOSFETs. The IV Characteristics of those five commercial p-
MOSFETs were generated by using OrCAD PSpice with their SPICE models; and the thresh-
old voltage extraction of Method I and II were calculated from the simulated IV characteristic 
data set using MATLAB as shown in Figure 2 and Figure 3 while the threshold voltage real-
time readout of Method III was done by using OrCAD Capture as shown in Figure 4.
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Method I and II Procedure:
1.  OrCAD PSpice generated IV characteristic data set in text file.
2.   MATLAB imported the file and calculated the maximum slope point on the IV 

characteristic.
3.   MATLAB generated the second-derivative data (transconductance, gm) of the imported 

text file 1 and then calculated the maximum slope point of the the second-derivative data. 
(this step is only for Method II)

4.  Generate the linear equation based on 2 (Method I) or 3 (Method II). 
5.  Extrapolating the linear equation to calculate the extracted threshold voltage.
6.   The reference threshold voltage is obtained from the SPICE model of those five 

p-MOSFETs

Figure�4�Method�III:�Real�time�threshold�voltage�readout�circuit�with�a�low�current�source

Figure�2��Method�I:�Extrapolation�in�Linear�Region�
[14]�

Figure�3�Method�II:��Transconductance�Extrapolation�
[14]
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Method III Procedure:
1.   Composed the circuit configuration shown in Figure 4 with OrCAD Capture using SPICE 

model of those five p-MOSFETs.
2.   Biasing p-MOSFET under saturation region (VSD>(VSG－|VTH|)) with a small drain current  
3.   ** Sweeping the range of current source in order to find the suitable range of current bias-

ing for each p-MOSFET **
4.   Set the value of a small drain current source within the range obtained in Step 3 and read 

the value of VSD which is approximately close to VTH due to the drain current in saturation 
region is given by Eq.(4)

     iD = Kp (VSG－|VTH|)2 (4)

     VSG = iD Kp
 + |VTH|

     VSG = VSD ≅ |VTH| with small iD (5)

   Where iD is the drain current, Kp is a constant ( 1 2  μp cOX
W L ) and VSG is the source-gate 

voltage
5.   Comparing the readout voltage with the reference threshold voltage obtained from the 

SPICE model of those five p-MOSFETs.

  The simulation of Method III were conducted on OrCAD; and the additional investigation 
on the different level of the SPICE model of each p-MOSFETs were also studied. The simula-
tion with three different levels (Level 1, Level 3, Level 7) of p-MOSFETs were carried out on 
the same sheet of schematic using a current mirror to control the level of proper biasing cur-
rent of each type of p-MOSFETs as shown in Figure 5.

Figure�5.��Real� time�threshold�voltage� readout�circuit�with�a� low�current�source�and�current�mirror� for�3�
levels�of�pMOSFET�models
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  The proper level of current biasing were obtained from Step 3 of Method III Procedure. 
The level of current were controlled by using current mirror with different width/length (W/L) 
ratio of MOSFETs.  

4.�Results�and�Discussions
  The deviation of the extracted threshold voltage with the reference threshold voltage of 5 
different type of p-MOSFETs using Method I and II were listed on Table I and II respectively. 

Table�I:�Error�Table�of�Method�I:�

p-MOS
Reference 

Vth
Extracted 

Vth
Error 
(%)

1st 1.5680 1.5730 0.3182
2nd 1.7652 1.7702 0.2832
3rd 1.8690 1.8740 0.2664
4th 2.0421 2.0471 0.2434
5th 3.3800 3.3849 0.1450

Table�II:�Error�Table�of�Method�II:�

p-MOS
Reference 

Vth
Extracted 

Vth
Error 
(%)

1st 1.5680 1.5700 0.1269
2nd 1.7652 1.7680 0.1586
3rd 1.8690 1.8710 0.1059
4th 2.0421 2.0450 0.1405
5th 3.3800 3.3820 0.0592

  The error of both methods are rather insignificant; nevertheless, the results on Table I 
and II clearly show the second-derivative or transconductance (gm) extrapolation provides less 
error than that of Method I. However, both methods are suitable for the threshold extraction of 
the unknown SPICE parameters of MOSFETs by using the transfer IV characteristic through 
the real measurements. Both methods cannot extract the threshold voltage in real-time. 
Method III offers this function. Table III displayed the value of real-time readout threshold 
voltage of p-MOSFETs with 3 different levels of SPICE model. Moreover, Method III with our 
proposed proper biasing technique by sweeping the level of current source in order to allocate 
the suitable range of current source which controlling by using the current mirror as shown in 
Figure 5 and its results in Table III clearly display the superior of Method III with even lower 
error than Method I and II for three levels of SPICE model.

Table�III:�Error�Table�of�Method�III:�

p-MOS Level
Reference 

Vth
Real-time 

Readout Vth
Error 
(%)

1 1.5875 1.5890 0.093
3 0.8583 0.8572 0.128
7 0.8446 0.8440 0.079

  Further simulation of Method III that can verify its superiority in a real-time readout 
threshold voltage during radiation energy exposure causing the voltage shifting can be ex-
plained below.
  The threshold voltage of MOSFET is governed by Eq.(6).
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   VTH = VTH0 +γ  2φ + VSB－γ   2φ (6)

  Where VTH0 is the threshold voltage without the substrate biasing (VSB = 0), γ is the body 
effect (substrate-bias) coefficient, VSB is the source-body voltage. The change in VSB can cause 
the shifting of the threshold voltage (∆VTH) . This function was used to demonstrate the ability 
to apply p-MOSFET as a real-time sensor for radiotherapy as shown in Figure 6.

Figure�6.��Simulation�of�the�shifted�threshold�voltage�(∆VTH)�due�to�the�external�radiation�energy�by�using�
VSB

Figure�7.�Readout�threshold�voltage�using�Method�III�vs�Theory

  VSB was swept from -0.25 volt to +0.25 volt in order to imitate the change of threshold volt-
age due to the radiation energy exposure; and the readout threshold voltage of p-MOSFET 
were monitored and plotted in Figure 7. The change of threshold voltage based on the theory 
governed by Eq.(6) was the reference. The results in Figure 7 show a good agreement between 
the readout threshold voltage using Method III and the theory.
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