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We discuss on the worldwide famous Sudoku by
using mathematical approach. This paper is the 7th
paper in our series, so we use the same notations
and terminologies in [1] without any descriptions.

11. Latin squares and coordinate transforma—
tions.

A map f:J, X J,—J;is a Latin square map
provieded that it satisfies the following condition:

(LSM) f | b:b— ], is bijective for each be7OW U cOL.

Here vOW is the set of all rows and cOL is the set of
all columns of J; X J,, respectively.

Let Ly be a subset of J; X J, and f,: Ly—/J; be a map.
A map f:J; X J,—J; is a Latin square solution map
of f, provided that it satisfies the following condi—
tion:

(SOL) f is a Latain square map with f | Ly= f,.

Proposition 56.

Let f:J; X J,—J; bea Latin square map. Then we
have the unique maps g: J;X J,—J, and h: J1 X Js— ],
with the following conditions:

(i) flg(B),j)="F for each B=(k,j)EJ3X J>.

(ii) fli,h(7))=Fk for each T=(L,kh) e J, X J;.

Proof. Takeany B=(k,j)eJ;X J,. We put
c;={i,j) s ie J;}ecOL. Since c;C J; X J,, by (LSM) we
have that

1) fl¢jic;—J5is bijective.
By (1), there exists the unique i, J; such that
2) (ipj)ec; and
flio))=k.
Thus, we can define a map g: J3X J,—J; by g(8)=1,.
Therefore, by (3) we have that

4) flg(Bhi)=F

(4) means the condition (i).

Next, we consider the uniqueness of g.
Let g, g’:J3X J,—J, be maps with the condition (i).
Thus, we have that
(5) flg(B),j)=Fk for each B=
6) fg"(B),j)="Fk for each B=(

k] E]3X127
k,] E]ngz.

* Emeritus professor, Yamaguchi University,Yamaguchi City,
753, Japan.

By (1), (5) and (6) we have that
(7) g(B)=g’(B).

Therefore, we have that g=g¢’. Hence we have the
uniquness of g.

By similar ways we can show (ii. Hence we have
Proposition 56.

The maps g and % in Proposition 56 are induced by
f,thus, we put g=w3(f) and k= w4 3( f), respective

—ly.

Proposition 57.

Let f:J, X J,—J; be a Latin square map. Then g
=wq3( ) JsX > iand h=wq5(f): 1 X Js— ], are
also Latain square maps.

Proof. We show the following Claims:

Claim 1.
g | ¢;:c;— ], is bijective for each je J,and
c;={kj):k=12,.,91C J3X J,.

Claim 2.
g | ,:7,—J; is bijective for each k€ J; and

7'k: {( k,])]: 1,2,...,9}Cj3 X]z.

Proof of Claim 1.
Take any je J,. First, weshow thatg|c;:c,—~J, s
surjective.
Takeanyie/;.
1) k= fl,)E Js,
(2) B=(kjlec;CJsX Ji.
By (i) of Prop051t10n 56
3) flg(B)j)=F.
By (1), (3 )we have
)
(

We put

4) fli,5)=fg(B)j).
By (LSM ) of ffor columns and (4) we have that
6) g9(B)=

Thus, by( , g | ¢;ic;— ], is surjective.

Next, take any je J,, We show thatg | ¢;:ic;—/; is

injective.
Take any B,=(k1,)), Ba=(ky,j)=c; such that
6) 9(B1)=9(B2).

By (i) of Proposition 56 we have
(1) f(g(B1),1) =y,
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( ) F(9(B2),J) = k.

By (6),(7),(8) we have
9) ky=k,.
By (9) we have
(10) B1=5,.
Hence, by (10) g | ¢;:¢;— ], is injective.
Therefore, we have Claim 1.

Proof of Claim 2.
Take any k€ J;, We show that g | 7,:7,— ], is
surjective.
Take any ie J,. By (LSM) of f for rows, there exists
a joeJ,such that
(A1) f(i,jo) =k.
We put
(12) Bs=(k,jo) €7, CJ3X [,
By (i) of Proposition 56, we have that
(13) f(g(Bs),jo) = k.
By (11), (13) and (LSM) of f for columns, we have that
(14) g(B3) =1.
By (14) we have that g | #,:7,—J, is surjective.

Next, take any ke /..
we show that g | »,:7,—~/; is injective.
Take any B,=(k,/s), Bs=(k,j5)€7,C J3 X J, such that
(15) g(Bs)=9(Bs)=1.
By (i) of Proposition 56, we have that
(16) f(9(B4)js) =P,
(A7) f(9(Bs),js)=k.

By (15) (16), (1 )We have that
Slivjs) =
(11,]5):
By (LSM) f f for rows, and (18), (19) we have that
(20) jy= Jjs-
By (20) we have that 8,=(%,7,) =(k,j5) = Bs, 1.€.,
(21) B4=Bs.

Thus, by (21) we have that g | »,:7,— ], is injective.
Therefore, we have Claim 2.

By Claim 1 and Claim 2, g=w5(/):JsX J,— ],
forms a Latin square map.

By similar ways, we can show that
h=wy3(f):J1X Js:—], forms a Latin square map.
Hence, we have Proposition 57.

By Proposition 57, g=w3(f):J3X J,— /], formsa
Latin square map. Thus also we have the Latin
square map @ 3(9): J1 X J;—J 5

In these Latin square maps we have the following

Proposition.

Proposition 58.

Let f: J;X J,—J5; be a Latin square map. Then we
have that

(1) oqs(@as(f)=

(i) @ p3(@ o s3( f))=f

Proof. We show (i).

We put g=w3(f) and f"=w3(g). Thus by (i) of
Proposition 56, we have that

(1) f(g(B),j)=Fk for each B=(k,j)EJ5X ],

2) 9(f*(a), =i for eacha=(i,))e J, X J,.
(i,j)eJ1X J,. We put
—f( )=k.

. Thus by (1) we have that

Take any a=
(3) fli,))
We put 8=
4) f(g(ﬂ),J) —k.
By (LSM) for the column ¢;,(3),(4) we have that
(5) glk,j)=g(B)=1i.
By Proposition 57, g is a Latin square map. Thus, g
satisfies the condition (LSM). Then by (2), (5) and
(LSM) for g, we have that
6) fa)=rF.
By (3),(6) we have that
(7)) fla)= fa)=k.
By (7) we have that
@ f=sr
Hence, by (8) we have (i).
By similar ways, we can show (ii).
Therefore, we have Proposition 58.

Let f:J;X J,—J; be a Latin square map. Nowwe
make a new map f':J,X J;—J; as follows:
fU(5,0) = fli,j) for each (j,i)e J, X J;.
And we put fi=w (/).

Proposition 59.

Let f:J,X J,—J; be a Latin square map. We have
the followings:

(1) fl=wqa(N:Jyx Ji—Jsis also a Latin square map.

(ii) @@ (f) =1

(iil) @ 3(f) = 19(@ g 3(®12(f)).

(iV) @ p3(f) = 19(®q5(@02(f).

Proof. We can easily show (i) and (ii) by using the
definition of f*.

We show (iii). Let hy= @ ,3(f"): J,X Js—J; and
(h)'=wq4(hy): J3X J;—J1. By Proposition 56, we have

<1> ft<j1h<1 )) E]ZXJS
By (1) we have that for each (%,j)e J;X /s,

k for each(j,k
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A(h)(kj)g) = F1G(h) (kD)= 5,k k) =k, ie.,
2) ()" kyd)sd) = k)€ JsX Js.
Let g=w3(f):J3X J,— 1. By Proposition 56 we
have that
By (2), (3) and the uniquenss of Proposition 56, we
have that
4) g=(hy)".
Thus, by (4), we have
03 l=9=M)'=0q,(h)=
=012 3( @02 f) i€,
() @3 f) = 2(@e3(®a2(f)-
By (5) we have (iii).

k for each (

k for each (

wq,z)(w(z,s)(ft))

We show (iv).

Since we have (iii), we use (iii) for @ »( f). Thus we
have

6) @03(® ()= @2 @e3(@q2(@a())-
By (ii) and (6) we have that

(7) @q3(@02(f) =@ (@3 f).
By (7) we have that

(8) ®2(@03(@a2(f)=015(@02(003())-
By (ii) and (8) we have that

9) a2 @as(@aq(f)=4us(f)
By (9) we have (iv).

Therefore, we have Proposition 59.

(i1)
) @
(
)
(i
)

Remark 60.

(a) Every sudoku map is a Latinsquare map.
However, we have many Latin square maps which
are not sudoku maps.

(b) If fis a sudoku map, then @ ,( f)isalsoa
sudoku map.

(c) There are many sudoku maps f, but 3(f) and
®»3( f) are not sudoku maps.

12. Sudoku matrices and coordinate trans—
formations.

Let ¢:{1,2,3}—{1,2,3} be a bijective map. Usually, we
say that ¢ is a permutation on theset {1,2,3}]. Also ¢ is

1,2,3
denoted as o= .
<0(1),a(2>,0(3>>

Let 7:{1,2,3}—{1,2,3} be an another bijective map.
Then 7o is defined by (zo)(7)=
Then 7o is also bijective.

1,2,3
a(2),0(3)
{1,2,3). we define a transformation

T2 i X JaX J3=Jey X Joy X oz bY

For each permutation ¢ :( " > of the set
U b

t(o(1)) for eachie(1,2,3].

To(X1,%5%3) = (X o1 X o2 % 0(3)
for any (xy,x5x5)€J1 X Jo X T
Special cases, usually, we use the notations as

follows:

12,3 12,3 12,3
( >=<1,3>,< >=<2,3>,< >=<1,2>
32,1 13,2 213

and so on.

Thus we can also use the notations :
Tap: J1X o X Js= T X 11X T3
Tag: J1X JoX T T3 X JoX T4
Toa: J1X JoX Js=J1X J3X T,
are defined as follows:

Tooi,5k) =(ji,k)
T 3(i,5,k)=(k,j,i)
To3(i,5,k) =(i,k,])

for each (i, ,k)e J1 X J2X J;.

We can easily show Proposition 61.

Proposition 61.
We have the following:
(i) T.T,=T., for each permutations ¢ and .

1,2,3
(i) T, =1 for 00:< >:
0 12,3

For a map ¥: X—Y we define the graph
GRH(r) of ¥ as follows:
GRH(¥) ={(x,%(x)): x€ X} C XX Y.

For Latin square maps f,g,/# in Proposition 56
and f' in Proposition 59 we have graphs as follows:

GRHf_{ f Niae 1 X J}CJiX JaX T3
GRH(g {( ﬁefssz}cfsxfzij
GRH(h {( Tefles}chxfsxfzy
GRH(f")={(8,/10): d€J,x J}C T, X J1X Js.

Proposition 62.
Let f:J1X J,—J; be a Latin square map.
(a) For each 0€{(1,2),(1,3),(2,3)},
To: 1 X JoX Js—= oy X Jaa X Jag)
induces an map
t/=T, | GRP(f):GRP(f)>GRP(»
(b) For each o<{(1,2),(1,3),(2,3)},
t]:GRP(f)>GRP(» , f)) andtf”m:GRP(w A )—=GRP(f)
satisfy that
t2 Yot =1 and tfot? =1.
(c) t7is bijective.
Proof. Take any (a,f(@))
(1) a=(injo)€J1X ], and

o).

eGRP(f). We put
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(2) ko= fla)= f(ig,Jo) € J5-

Claim 1.
(a) holds for ¢ =(1,3).
By definitions, we have that
(3) Tzl fla)=Tqs(ioioko)=(Rojoto)s
@) g=oq3(N):TsX T
By Proposition 58 we have
©) f[=oas(9): JiX T
By Proposition 56 for g and (5) we have that
6) g(fli,),j)=i for each(ij)e]J X [,
By (2), (6) we have that
(7) g(kosjo) = g(f(i0:40)sJ0) = L.
Thus, we put 8=(kg,jo)EJ3X J, and by (7)
8) g(B)=1,.
By (8) we have that
9) (koyjmio)=(B,9(B))EGRP(g).
By (3),(9) we have that
(10) Ty 5(a,fla)) =(B,9(B)EGRP(g).
Thus, by (10), we have that
(11) T(Ls)(GRP(f))CGRP(g)-
By (11), T3 induces a map
(12) t45:GRP(f)>GRP(g).
Hence, we have Claim 1.

Claim 2.
(b) and (c) hold for ¢ =(1,3).
We can apply Claim 1 for the Latin square
map g=wg3(f). Thatis,
T,(GRH(g)CGRH(® ,(g)).
Thus T, induces a map
(13) t%4:GRH(9)>GRH(® 3(g)).
By Proposition 58 and (4), we have that
(14) @4 3(9) =0 3(@03(f) = 1.
Then, by (13),(14) we have that
(15) t85:GRP(g)—GRP!( f).
By Proposition 61, we have that
(16) TosTay=Tazas= Tao =1.
Since the maps ¢/ 3 and ¢4 5 are induced by T, 5, by
(12) and (13), (16) we have that
(17) thgethy=1and thzotfs=1.
By (17) we can easily show that
(18) t# 5 and ¢34 are bijective.
Thus, by (17), (18) we have Claim 2.

By Claim 1 and Claim 2, we have (a), (b), (c) for
o=(1,3).

By similar ways we can easily show (a), (b), (c)for
other 0 {(1,2),(2,3)}. Hence we have Proposition 62.

Remark 63.

1,2,3
L)L @o)=7 and

S={0(1,2),1,3),2,3)}. By Proposition 62, we have

maps to"”:GRP(o ( f))—>GRP(f) and
t/:GRP(f)—>GRP(w_(f)) for each ¢,c&S. Then we

have t{ot,"”: GRP(o (f))~>GRP(w [ f)) which is

induced by T.oT,=T.,. Hence, t{t2"” is bijective.

We put 00=<

Let f:J;X J,—J;isa Latin square map. Let
K=(K,)aej,xs, be a Latin square matrix associated

with f provided that it satisfies the conditions:
(LMTX) fla)e K,C J;for eachae J; X J,.

Let LMTX(f)be the set of all Latin square matrices

K associated with f.

AsetUcC ], X J,X J;isa neighborhood of f provided
that it satisfies the condition
(NBH) GRP(f)cU.
Let NBH(f)={U: Uis a neighborhood of f}.

We define maps 9, LMTX(f)>NBH(f)and
0, NBH(f)»>LMTX(f)as follows:
For each K=(K)acj,x;, ELMTX(f), we put

nAK)=UK) ={(i,ik)E] X [, X J: ke K, ;).

For each Ue NBH(f), we put § \U)=K(U),
K(U)= (U acy,x;, and U, ={k: (i,jk)€U} for each

a=(,j)e ] X ],

We easily show that the maps»,and 6 ,are well—
defined. And we can easily show the following:

Proposition 64.

Let K,Le LMTX(f)andUVeNBH(f). We have the
followings:

(@) 9 LMTX(f)»NBH(f)and
0, NBH(f)>LMTX(f)are well—defined.

(b) Oron;=1andn0 ,=1.

(i) 0 rand 5 are bijective.
(c) If L<K, then pAL)CnAK).
(d) If VcU, then 6 {V)<6 AU).

In the proof of Proposition 62 we show that for
eacho€lo, (1,2),(1,3),2,3)},
To:JiX JoX J3=J oy X Joy X J oz
induces
T,(GRP(f))=GRP(» , f)).
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Hence, we can define Ko {Ka—{ko} forae R(A)—C(B)
T.(f):NBH(f)>NBH(o,f)) by “|K. forae ], x J,—(R(A)—C(B))
T AU)=T,(U) for eachUes NBH(f).
(CR) K*=(K2)acs,xs, ELMTX(f). Here
Ko,—{ko) foraeCB)— R(A)
{Ka forae ] X J,—(C(B)— R(A))

Since T,T,=1, we can easily show the following:

a

Proposition 65.
Let 0 €{0,(1,2),(1,3),2,3)} and U Ve NBH(f).

. . Let iye/J,, jo€J, We consider the following
()T f):NBH(f)>NBH (o, f)) is well—defined.

conditions for K:

(B) TH @) Tof)=1,THfleTyw,f)=1. (CNSF) | K(A X {70)) | =] A|
(1) T5(f), TH(w(f)) are bijective. (RNSF) | K({i)xB)| = | B].

(¢) If VU, then To( /)V)C TSN Here, K(S)= U{K,:a€S} for each SC J; X J,.

Now, for each o {0, (1,2),(1,3),(2,3)}, we can define Proposition 67.
MX,(f): LMTX(f)»LMTX(,(f)) by Let K =(K.)acj,x;, ELMTX(f). We have that
MX,(/)=0,,p°Tif)eon,: (a) (CI) implies (RC).
LMTX(f)>NBH(f)>NBH (o, f)—>LMTX(®, f)) (b) (RI) implies (CR).

By Proposition 64 and Proposition 65 we have the Proof. We show (a).

following. Claim 1.

Proposition 66. fla)xk, for eachasC(B)— R(A).

For eacho€l0,,1,2),(1,3),(2,3)}, each Latin square Since K& LMTX(f),

map f:J; X J,—J5 induces the bijective map (1) fle)e K, for eacha& J X J».

MXa(f)LMTX(f)_)LMTX<wa<f>) By (CI) we have that
and it satisfies the followings: (2) k&K, for each a€C(B)— R(A).

@) MX,(0,f)°MX,(f)=1, By (Lii%) we have that
MX,(f)o MX,(0,(f)=1. (3) fla)xk, for eachaeC(B)— R(A).

(b) Let K, K’e LTMX(f). 1f K'<K, then MX,(f( k") Hence wehaveClaim 1.

SMX,(f)IK). Let g=w3(f):J3X J,—J,. Wedefine a map
We recall intersectable n —systems, which are 9r,t S 1 DY

called by n—igeta systems. (4) 9i(7)=g(kyj) for each j& J,.
We recall the notations as follows: Claim 2.

For eachie ],, r;={i,j):je JjC J1 X J, isthe i—th g:(B)CA.

row and for each j€ J,, ¢;={(i,j):i€JijCJixX ]y isthe e assume that Claim 2 does not hold. Thus, we

j—th column. have that
() joEB
Let » be an integer, 1< n<9. 6) glkgjo) s A.
Let A={i1iprin} CJ1s B={J1rjzreerin} © Jor ko€ T We put
RA)=U{r;iecA)=AX],, (7) ig=glkojo) & A.

CQB)=U{c;:jeB}=]1 X B. By definition of g, we have that
Thus, REA)NCB)=AXB. (8) f(glk,j)j)=Fk for each (k,j)E JsX ;.
Then we have

Let K= (Keoc s, SLMTXLS). (9) F(g(koni)f) = ko for each j€ Iy

We consider the following conditions for K: Thus, by (9) we have
(CI) koK, for each aeC(B)— R(A). (10) f(g(kosdo)sio) = ko-
(RI) ky& K, for each ae R(A)—C(B). By (7),(10) we have
(RO) K*=(K})acs,xj, ELMTX(f). Here (1) f(io,70) = ko
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By (5),(7) we have

(12) (igjo)EC(B)— R(A).
(11) and (12) contradict to Claim 1.
Hence we have Claim 2.

Claim 3.

g, (B)=A.

By Proposition 57, g is a Latin square map. Thus
we have that

(13) g,, is bijective.

By (13) we have that

(149 n=|B| =1g,,(B) |
By Claim 2 we have that
15 g Bl<lAl=n
By (14), (15) and Claim 2 we have that
(16) g, (B)=A.
By (16) we have Claim 3.
Claim 4.

f(B)xk, for each B R(A)—C(B).
We assume that Claim 5 does not hold. Thus, we
have some B8; such that
(17) B1=(i1,j1)ER(A)—
(18) f(ilyjl):.ﬂ:sl):ko-
By (17) we have
(19) ;€A and j;&B.
By (19), Claim 3 we have
(20) j,eBand
21) iy= gk(,(jZ):g(kO:jZ)-
By (8) we have that
(22) f(g(kosJ2)ss2) = ko
By (21), (22) we have that
(23) flir,72) = F(9(Ro,72)s2) = ko
By (18), (23) we have
(24) flir51)=Fliv2) = k.
Since fis a Latin square map,
(25) f | 7, :7; =] is bijective.
Here, ; ={(i1,j): j€ J,} is the i;—th row. By (24), (25)

C(B), and

we have that
(26) j1=Js-
By (19),(20),(26)
27) h1&B3j,=j.
By (27) we have a contradiction.
Hence, we have Claim 4.

Since Ke LMTX(f), we have that
28) fla)e K, for eachae J; X J,.
By Claim 4, (28) we have that
(29) K5 —{ko}> f(B) for each B R(A)—C(B).

By (29) we can easily show (RC).
Hence, we have (a).

By similar ways we can show (b).. Thus we have
Proposition 67.

Proposition 68.
Let f:J;X J,—J; be a Latin square map and
g=wg3(f). Let KeLMTX(f)and
Lyy=MXq3\K)eLMTX(g). Let AcJ,, BCJ,,
| Al = | B| =n and kyc J,
Then the following (a) and (b) are equivalent:
(a) K satisfies the condition (CI) :
(CI) kys K, for each aeC(B)— R(A).
(b) Ly 3 satisfies the conditin (RNSF):
(RNSF) Lja({ko}x B)=A.
Proof. We put K=(Ku)acs,xs,s Las=

A = {ilin:-“:in} C]l and B:

=(Lg)seryxs,s
{]1)]2:"-:]11} CjZ‘

We show that (a)—(b).
By definitions we can show that
(1) Lg={ie];:keK,;} for each B=(k,j)eJ3X J;.
Let S={(ky,j): je B} ={ko} X BC{ko} X ],

Claim 1.

Lsc A for each BeS.

Take any 8eS and put 8=
ieL; By (l)wehave that

(2) ki€ K, and ag=(i,j,).
We show that

(ko,jy),jseB. Takeany

(3) ie A.
We assume that
4) isA.
By (4) and j,€ B, we have that
()ao_( ,)€C(B)—R(A).
By (a) and (5), we have that
(6) koS K,

Since (6) contradicts to (2), we have(3)ie., L;C A.
Hence, we have Claim 1.

Claim 2.
U{Ls:BeS)=A
By Claim 1 we have that
(7) U{Ls:BeS)CA.
Since L; € LMTX(g), we have that
(8) g(B)eLgfor each e J3X J,.
Then we have that
9) g(S)c U{Ls:BES).
Thus, by (7), (9) we have that
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(10) g(S)c U{Ls:BeS}c A
Since g: J;X J,— ], is a Latin square map by
Proposition 57, we have that
(11) g | {ko} X Jo:{ko} X J;— ], is bijective.
Since S={(kg,j):j€ B} ={ko} X BC{ko} X J, by (11)
(12) g | S:S—J, is injective.
By (12) we have that

13) 1 gS) I =1S|=n.
By definitions, we have that
14) |S|=|B|l=1A]| =n.

By (10), (13), (14) we have that
(15) ¢(S)= U[Ly:f<S) = A.
Hence, by (15) we have Claim 2.

Since L 3({ko} X B)=U{L4z: €S}, by Claim 2
we have

(16) L3 ({ky) X B)=A.
By (16) we have (b).

We show that (b)—(a).

By Proposition 57

(17) g=w3(f). g:J3X Jo—J; is aLatin square map.
By (b), Ly 3 LMTX(g) has

(18) A= Lys({ko) X B)= U{Lg: B (o} x B).

By (17) we can put M 3=MX13(9)(La3) and
also put M 3=(Mo)ac s xj, ELMT X(®13(g)).

By the definitions we have that
(19) M,={ke];: i€ L, ;)
for each a=(i,j)€ J; X J,.

Claim 3.
ks M, for each aeC(B)— R(A).
We assume that Claim 3 does not hold. Then, there
isan a,eC(B)— R(A) such that
(20) koe M, , ayeC(B)—R(A).
We put ay=(iyj,). Since ayeC(B)— R(A), then
(21) iy& A and j,eB.
By (19), (20) we have that
(22) iy€ L jy) -
Since j,€ B by (21),
(23) Bo=(kosjo) E{ko} X B.
By (18), (22), (23) we have that
(24) ipeLs,Cc U{Ls:BE(ko) X Bj=A.
Thus, (24) contradicts to (21).
Hence, we have Claim 3.

By Proposition 58 and Proposition 66, we have that

(25) f=wqs(g)and K= M.
By (25) and Claim 3 we have that

Claim 4.
ks K, for each a=C(B)— R(A).

By Claim 4 we have (a).
Therefore, (a)and (b) are equivalent. Hence
we have Proposition 68.

By the similar way as Proposition 68 we can show
the following Proposition 69.

Proposition 69.

Let f:J;X J,—J; be a Latin square map and %
=3 f). Let KeLMTX(f)and Ly
=MX,3( N K)ELMTX(h). Let AcJ,, B J,, | Al
= | B| =n and kye J; Then the following (a)and (b)
are equivalent:

(a) K satisfies the condition (RI):

(RI) ky& K, for each a= R(A)—C(B).

(b) L satisfies the condition (CNSF) :

(CNSF) L 3(AX{k))=B.

By the same way as Proposition 5, we can easily
show the following Proposition 70.

Proposition 70.

Let f:J;X J,—J; be a Latin square map. Let
KE={Kac)x;,ELMTX(f). Let SCcbC J; X ], be a set
with

(NSF) |K(S)| =1S]I.

If b isa row or a column, then
K*={K§}QEJIXJZELMTX(/‘). Here,
K,—K(S) foraeb—S

“ 1K, forac ], X J,—(b—S)

Proposition 71.

Let f:J;X J,—J; be a Latin square map and
g=wu3(f). Let AcJ,BcJ, | A| =| B| =n and
ko€ Js Let K={K Jac),x;,€ELMTX(f) and

L(1,3) :MX(1,3)<f)(K)ELMTX<g>, L(1,3) :{Lﬂ}/gEfgxfg' If K

satisfies the condition (CI), then we have the
followings:

(@) K*=(K2)aes,x;, ELTMX(f) with

. K,—{ky forasR(A)—CB)

_{Ka foraeJ,X J,—(R(A)—C(B))
(b) Lig=(L})scsxs,ELTMX(g) with
L*:{Lﬁ—A for BElky X (J;—B)

"TlLy  for BeJsx Jo—({k X (J,— B))

a
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(€) K*=MX5(9)Liys), Lig=MXq3(/NK).

Proof.

By Proposition 67, we have (RC). Hence we
have (a).

By Proposition 68, L 3 satisfies (RNSF). Thus,
by Proposition 70, we have (b).

Proof of (c).
Now, we continue our arguments by using
same notations in the proof of Proposition 68.
By the definition, we have that
(26) Lig=Lqy.
By (b) we can put
M y=MXq3(9)(La3) ELTMX(w3(9)),
M y=MX,5(9)(Li3)ELTMX (o 4(9)) and
My =(M%)acs xr,
By (26) and Proposition 66, we have that
27) M 5=Mgyg.
By (25), (27) we have that
(28) My 3=K.
By definitions, we have that
(29) Mi={ke Js:icL},;}
for each a=(i,j)eJ, X J,.
Since LyC Ly for each B J3X ], by (26), by (19),
(29) we have that

Claim 5.
MicM,for eachaes J; X J,.

Next, we show that

Claim 6.

koM for eachasR(A)—C(B).

We assume that Claim 6 does not hold. That
is,

(30) koe M, for somea,€ R(A)—C(B).

Put a,=(i,,j,)eR(A)—C(B). Then we have
31) i,e A and j, & B.
By (29) we have
32) M, ={keJ5:i,EL; )} -
By (30), (32) we have that
(33) 1,ELY, ;. -
By (31) we have that
(34) (koyj)Elko} X Jo—{ko} X B={ko} X J.—S.
By (b), (33), (34) we have that

(35) iueLko):L%ju)—A .
Thus, by (35) we have that
(36) i, 5 A.
(36) contradicts to (31). Hence, we have Claim 6.

Claim 7.
Mau—{ko}cM’;u for each a,e R(A)—C(B).
We assume that Claim 7 does not hold. Then
we have
@7 M, —{k}S M,
for some a,=(i,,j,)€R(A)—C(B).
By (37) we have that
(38) i, A and j,= B.
By (37) there exists a k£, J; with
(39) k,eM, —{ko} and k, &M, .
Since k,eM, —{ko} by (39), by (19) we have
(40) quLUeu,ju) and kuiko
Since k,&M; by (41), by (31) we have that
(41) 1, &L, -
Since k,>k, by (40), we have that
(42) (ki) & {ko} X Jo—S.
By (b), (42) we have that
(43) L= Likis -
By (41), (43) we have that
(44) l.uELEkku,ju):L(k

(44) contradicts to (40). Hence, we have Claim 7.

n’ju> .

Claim 8.
M, =M, —{ko for eacha,e R(A)—C(B).
Takeany a,e R(A)—C(B), by Claim 5 we
have taht
(45) M, cM, .
By (45) we have that
(46) M7 —{koc M, —{k.
By Claim 6 we have that
47) M, —{ko}= M, .
By (46), (47) we have that
48) M, c M, —{k}.
By Claim 7 and (48), we hae that
(49) M =M, —{ko}.
By (49) we have Claim 8.
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Claim 9.
M,DM,for eachae ], X J,—(R(A)—C(B)).
We assume that Claim 9 does not hold. Then there
isan a,=(i,,j,)€J1 X J,—(R(A)—C(B)) such that
(50) M, =M,
By (50) there exists a £, J; such that
(51) k,eM,, and
(92) k, &M, .
By (19), (51) we have that
(53) i,€L, 5, -
By (32), (52) we have that
(54) i, &L, ), -
Since a, =(i,,j,) S R(A)
(55) i,&A or
(56) i, A and j,€B.

—C(B), we have that

We have the two cases as follows:
(57) k,=k,,or
(58) k&, k.

Thus we consider the following cases:
Case 1. (57)and (55)are hold.
Case 2. (57)and (56) are hold.
Case 3. (b8) and (55) are hold.
Case 4. (58) and (56) are hold.

We consider Case 1.

Thus, we have that
(59) k,=k,and i,SA.

Now (59) divided into the cases:
60) k,=ky, i,xAand j,eB.
61) k,=ky, i, sAand j,&B.

The case (60).

By (60), we have that

(62) (ky,7,)=(ko,j,)E (ko)X B=S.
By (b), (62) we have that

63) Lz, jy=L,, -
By (53), (54), (63) we have that

64) i,€L, ;) =L, i, Rt

(64) has a contradiction. Hence, (60) does not happen.

The case (61).

By (61) we have that

(65) (Rysiy)=(ko,j,)E{ko} X Jo—
By (b), (65) we have that

66) Lz, j)=Lx,in—4 -
By (54), (66) we have that

67 i, &LG, =Lk, —A4 -
By (53), (67) we have that

(68) i,€ A.
(68) contradicts to (61).

Hence, (61) does not happen. Therefore, Case 1 does
not happen.

The case 2.
We have that
69) k,=ky,i,A and j,€B.
By (69) we have that
(70) (korio) = (korjy) E{ko} X B=S.
By (b), (70) we have that
<71)Lk Jj >_L(k )
By (53), (54), (71) we have that
(72) i,€Lu, ;) =L,i) Rty
(72) has a contradiction. Hence, case 2 does not
happen.

The case 3.

We have that

(13) kyxky, i,8A.
By (73) we have that

(T4) (kyjy) €T3 X Jo—({ko} X J2=S).
By (b),(74) we have that

(75) Lfkwm:l«kwm :
By (53), (54), (75) we have that

(76) 1, €L, ;) =Lk, Rty
(76) has a contradiction. Hence, the case 3 does not
happen.

The case 4.

We have that

(17) k,xk,,i,€Aandj,eB.
By (77) we have that

(78) (kysjn)ETsX Jo—({ko} X J2—9).
By (b), (78) we have that

79) Lix,iy=Lie,s,) -
By (53), (54), (79) we have that

(80) wELu, iy =L, Rty
(80) has a contradiction. Hence, case 4 does not
happen.

Hence, all cases 1—4 do not happen. Therefore we
have Claim 9.

By Claim 5 and Claim 9 we have that

Claim 10.

My,=M, for eachae J; X J,—(R(A)—C(B)).
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Since Lys=MX3(/)(K) and
M<1y3> = MX<113)< g)(Ldyg)), by PrOpOSition 66, we
have that

Claim 11.
K=M<1’3), i.e., KazMa for each a’E]l X]Z

By Claim 8, Claim 10 and Claim 11 we have

Claim 12.
K*=Mj, ie, K= MX<1,3><9><L?1,3>) .

By Claim 12, Proposition 66 we have
MX<1,3><f)(K*) = MX(1,3><f)°MX<1,3>(g><L71,3>)
= 1<L2k1,3>> =L
Thus we have (c).
Hence, we have Proposition 71.

Proposition 72.

Let f:J; X J,—J; be a Latin square map and
h=wq,4(f). Let AcJ,Bc]J, | Al =1|B| =nand
ko€ Js Let K={(K)oesx;,€ELMTX(f) and

Los=MX,3(/\K)ELMTX(h), L<2,3>:{Lﬂ}ﬂehx]3~ IfK

satisfies the condition (RI), then we have the
followings:
(@) K*=(K3)acs,x7, ELTMX(f) with

. [Ka—1ke} foraeC(B)—R(A)

a={Ka forae ] x J,—(C(B)— R(A))
(b) Liyy=(Lp)ses,xs,ELTMX(h) with

L*:{Lﬂ—B for Be(J1—A)X (k)
? L, for Be 1 X Js—((J1—A) X ko))
(C) K*=MX(2,3)<h)<L?2,3)) ’ L?2,3>=MX(2,3>(f><K*>'

By the similar ways as Proposition 71 we can show
Proposition 72.

Proposition 73.

Proposition 70 implies Proposition 67.

Proof. First, we consider (a) in Proposition 67. Thus
Ke LMTX(f) has the condition (CI). By Proposition
68, L3 =MX,3(f)(K) satisfies the condition (RNSF).

By Proposition 70, L}, € LMTX(g), g=®3(f).
Hence,L{}; satisfies (b) of Proposition 71.

By the proof of (c) in Proposition 71, we showed
Claim 12 in the proof of Proposition 71. That is,
M y=MX,5(9)Lls) ELMTX(f)and M}, =K".
Hence, K*'e LMTX(f), i.e., we have (RC). Thus, we
have (a).

By similar way we can show (b) in Proposition 67.
Hence, we have Proposition 73.

Proposition 74.

(a) The following conditions are equivalent:
(CI) ky& K, for each acC(B)— R(A).

(RI) kys K, for each aeR(J,— A)—C(J,— B).

(b) The following conditions are equivalent:
(RI) k&K, for each a€ R(A)—C(B).

(CI) koK, for each acC(J,— B)—R(J,— A).

Proof. We show (a).

We have that

1) AB)—R(A)=],XB—AX ],
=/1XxB—AX],n],XB
=1 XxB—AXB=(J],—A)XB.

2) R(J,—A)—C(J.— B)
=(Ji—=A)X J,— 1 X (J,—B)
=(/1—A)X o= (1 X(J:— B)N((J1—A) X J2)
=(1—A)X J,—(J1—A)X(],— B)
=(/1i—A)X(J;—(J.—B))=(]1—A)X B.

By (1), (2) we have
(3) OB)—R(A)=R(J:—A)—CJ;— B).
By (3) we have (a).
By the same way we show (b).
Hence, we have Proposition 74.

Remark 75.

(1) By Proposition 73 we can say that
n—koku—domei Theorem (Proposition 70)
implies n —igeta Theorem (Proposition 67).

(2) When we observe n —igeta Theorem, by
Proposition 73, we investigate only n —igeta
Theorem for n=1,2,3,4.
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