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Abstract

Software needs to adapt to new function, thus upgrade and patches are required. As programmers
apply patches and upgrades to its source code, new version is released based on its product
line. Hence, when releasing new version, it is important to verify if the software follows the
specification in the product line. Managing product line is important in software evolution;
major and minor upgrades are frequently applied to meet requirements for adding new functions,
improve performance or strengthen security features. In conventional software development, a
program is developed through many stages which we call as the stage of evolution. Throughout
each cycles of software release, software becomes larger and complex. However, in order to
satisfy product line where certain functions must be preserved, we must verify the backward
compatibility. In conventional ways, backward compatibility is verified by looking at the source
code or running the program. This approach consumes a lot of time and effort because backward
compatibility must be verified for each release. One formal analysis approach is by analyzing
the program’s behavior by model checking. However, model checking approach enumerates all
states which is intractable for large and complex software. This is due to well-known state space
explosion problem. Moreover, conventional development approach do not consider to preserve

the backward compatibility in software evolution.

In this paper, we proposed a model-driven development in software evolution. The thesis is
organized as follows:
In Chap. 1, we gave the background, motivation and objective of the research. We also stated the
position of the research by discussing the related work.

In Chap. 2, we introduced the fundamentals knowledge of software evolution, Petri nets and
other important properties and theory.

In Chap. 3, we introduced the real world concept of software evolution. As an example, we
take a smart refrigerator derivative development where we upgrade the functions and improve the
performance of the embedded software. Then we gave the problem in software evolution known

as backward compatibility. For a software X, does the newer version software Y preserve impor-
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iv Abstract

tant functions in software X? We formalized the problem and proposed a theorem for the relation
of backward compatibility and behavioral inheritance. Then, we proposed two conditions that

satisfies backward compatibility known as behavioral inheritance and response property.

In Chap. 4, we proposed a solution for the development that preserves backward compatibil-
ity throughout the evolution. We utilized Petri net for the approach. First, we reverse engineer
a progam into Petri net model. Then, we can modify a program based on its model or verify
whether backward compatibility is preserved or not. Then, we proposed a backward compati-
bility verification that checks behavioral inheritance and response property. We showed that our
method avoids state space explosion. We only need to verify the Petri net’s structure and we
utilized a tree representation called as process tree as the solution. We showed that we can verify
behavioral inheritance to verify backward compatibility for minor version upgrade and response

property analysis for major version upgrade.

In Chap. 5, we showed the tool development by showing an application example of software
evolution.

In Chap. 6, we gave the conclusion and future works of the development method in the

software evolution.
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Chapter 1

Introduction

1.1 Background and Motivation of the Thesis

Nowadays, software development method is rapidly changing. There are many software de-
velopment methodologies introduced such as waterfall development, agile development, spiral
development and scrum development [1]. In this development processes, throughout the soft-
ware life-cycle, product family line management is important. Software is developed based on
the requirements and new releases always include new functionalities, extensions or interfaces.
In this situation, the newer version of the software depends on the scale of the changes that are
affected by minor or major upgrades. Despite of minor or major upgrade in new software re-
leases, the underlying program code changes. Hence, the software itself can derailed from its

product family line specifications. This can cause confusion to the software users and vendor.

When releasing new version, it is important to verify the core functionality of the old version
in the new version. In conventional software development, a program evolves as developers
make changes to its source code. In order to verify the product family line, the developers need
to verify the code and execute the program themselves. This validation process is repeated at
each development stages. The problem is that the process costs a lot of time and effort for large
and complex program. This situation applies to large scale embedded program where derivative

development takes place [2, 3].

A program is developed through many stages which we call as the stage of evolution [4].
During the development stage, we need to write, compile and debug a program based on its
design diagram i.e. UML [5] and flowchart. Generally, the program should follow its design
diagram that defines its behavior. Nowadays, most compilers are made to identify grammatical
and syntax errors before compilation. Although the program passes the compilation, it depends

on the programmer to verify the behavior of the program. For example, for a grammatically
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4 1 Introduction

correct program that passed a compiler check with statement A, B and C, we need to verify
whether (i) statement A are executed in sequence with B and C; and (ii) B and C are executed
in parallel. In this case, although compiler does not displays any grammatical or syntax errors, a
programmer still needs to check for correctness of the executions between statements. Does the
behavior of the program satisfy its design model? In conventional ways, verification by looking
at the source code or running the program consumes a lot of time and effort. One formal analysis
approach is by analyzing the program’s state space. However, state space explosion may occur

for large and complex programs.

1.2 Research Objective

The objective of this research is to propose two key methods to support model-driven develop-
ment [6]; (i) translation of program into Petri net method; and (ii) behavioral analysis method.
In the beginning of development we need to convert program into Petri net models so it can be
used for behavioral analysis. Then, we can analyse the converted Petri net with our behavioral
analysis method. We utilize a representational bias called as process tree. Our approach enables
conversion from source code to Petri net model. Then the model can be used for verification of
execution sequence that should be preserved since the original model was developed. For exam-
ple, we have a software model of version 1. The model is then being developed into a program.
Let us say that we need to develop an upgraded version the program, but we need to preserve
some important parts. First, we upgrade or patch the program into a version 2. After modifying
the original source code, we can verify the program’s important structures by translating it into
the model of version 2 and compare it to the model of version 1. Our methods play an important
role in the translation and verification procedure. We will explain the details of our approach in

the next section.
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Figure 1.1: Development stages in software evolution.

1.3 Related Work

There are several approaches proposed for the design and verification of program in order to
follow the product family line specifications. An example of an implementation of a program
specification is security protocol. Designing new protocol implementation is a very challenging
task which has high probability of generating errors. Recently, new techniques have been intro-
duced to improve specification implementation such as protection profile for operating systems
[7] and software-defined specifications for mobile systems [8]. These techniques require valida-
tion on the implementation of their specifications. Moreover, the method of patchwork approach
is adopted to adapt to evolution and revolution of technology growth due to features and security

requirements in software and systems [9].

Therefore, formal verifications for security protocols is very important. One of the approach
for verification of security protocols is based on high-label abstract formal model analysis [10].
Approaches that apply the high-level abstract model involves extracting the security model from
the program which was implemented from formal protocol description. Moffet et al. [11] pro-
posed a verification on software behavior using model checking by state space exploration of the
software. Fu et al. [12] proposed a model-based formal verification by extending the Input/Out-
put Label Transition System (IOLTS for short). They defined a non-negligible security properties

as the part of the transition system and analysed the probable transition sequence of the IOLTS.
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Another work was done by modeling security protocol with UML. Smith et al. [13] proposed a
method to design security protocol with abstract model UML?2 and its verification procedures to
detect potential security flaws. Similar work was also done by Goubault-Larrecq et al. [14] and
Chaki et al. [15]. In these methods, however, there was no method which to confirm whether the
security protocols are implemented into a program based on its specifications. The approaches
are only limited to vulnerability analysis of security properties in the specifications but not on
the successful implementations of the protocol itself.

It is hardly known that whether we can verify the protocol implementation inside the software
itself. Petri net [16] is a graphical and mathematical analysis tool for the analysis of software
behavior. Generally, Petri net can represent program structure. Rana et al. [17] proposed a
method for performance analysis of Java program using object-oriented Petri net. In order to
apply Petri net analysis techniques, we need to translate programs into Petri nets. Voron et al.
[18] stated that translating a program to Petri net in a large scale requires a lot of effort and time.
So a tool to automatically translate a program to Petri net is needed. Voron et al. proposed a
translation tool called as Evinrude [19] but the resulting Petri net is a general Petri net where

perspectives must be specified which are for particular program only.

Once a program is translated in Petri net model, we can analyze its behavior. A well-known
method for behavioral analysis of Petri net is by using model checking tool [20, 21]. Model
checking approach is exhaustive. However, exhaustive approach costs a lot of computation time
because we need to enumerate all behavioral states. Another model checking approach for large
systems is by slicing Petri nets into subnets and run the model checking processes in parallel
[22]. However, the slicing technique is restricted to certain subclasses of Petri net only. Other
than model checking approach, an algorithm utilizing representational bias called as process tree
[23] to avoid state space explosion was proposed. We proposed a convertibility check [24] and
state number calculation problem based on process tree [25]. In this research, we utilize process

tree in our software analysis approach.

As for related work regarding to software evolution, Erdweg et al. [26] proposed the usage of
extensible languages Sugar]J into source code to check the partial behavior changes in programs.
Oyetoyan et al. [27] proposed a detection method of component dependencies during software
evolution. Toyoshima et al. [28] proposed the application of refactorization method for changing
software code that preserved its behavior. We proposed a security protocol implementation veri-
fication method in software evolution [29]. The method utilized behavioral inheritance notion to

verify backward compatibility of programs.
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1.4 Novelty and Effectiveness

The novelty of this research are, we propose a model-driven development approach based on
Petri net to tackle backward compatibility problem in software evolution. We proposed two
major methods; (i) Reverse engineering method for translation of parallel structured program
into Petri net; and (ii) We propose model-driven verification method two verify two important
properties for backward compatibility problem; (i) Behavioral inheritance problem for minor
upgrade and (i1) Response property analysis for major upgrade. We also propose two tools to
support the model-driven development in software evolution. Our first tool is C2PNML which
reverse engineer parallel structured program into Petri net. The output Petri net model can be
used for analysis. Our second tool is Process Tree Analysis Tool to analyze process tree for the

purpose of state number calculation and response property analysis.

The effectiveness of this research is we can verify backward compatibility of programs with
behavioral inheritance and response property. The method verify and guarantee if behavioral
inheritance and response property is preserved, then the backward compatibility is preserved in
the evolution. Our method is polynomial and can avoid state space explosion problem and be
run in practical time compared to model checking. Our method simply analyze the structure of
Petri net called as handles to verify the behavioral inheritance and use process tree to fast check
statements execution with tree search algorithm. Therefore, state space explosion can be avoided
without enumerating all states in the program. Our method support overall program behavior

analysis compared to the previous work.

1.5 Organization of the Thesis

This thesis is organized as follows:

In Chap. 1, we gave the background, motivation and objective of the research. We also stated

the position of the research by discussing the previous work.

In Chap. 2, we introduce the fundamentals knowledge of software evolution, Petri nets and

other important properties.

In Chap. 3, we introduce the real world concept of software evolution, its problem and real
world example. Then, we show the overview of our approach. We show that in order to analyze
software evolution, we need to model the program into Petri net. In this chapter, we proposed a
reverse engineering method by translating a software program into a Petri net model. We propose

an algorithm to translate C program into Petri net model and revealed the class of Petri net that
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can represent general program structure.

In Chap. 4, we proposed a model-driven verification method by proposing program analysis
with state number calculation, behavioral inheritance and process tree. The proposed method
can be used to verify backward compatibility of program in software evolutions. We proposed

polynomial time solution for all methods and show the application to real world example.

In Chap. 5, we showed the tool development and application example of software evolution.
we proposed a tool for process tree analysis and evaluated the tool. We showed an application

example using the developed tool.

In Chap. 6, we give the conclusion and future work of the development method in the soft-

ware evolution.



Chapter 2

Preliminary

First, we give the definition of Software Evolution, Petri net, workflow net and process tree.

2.1 Software Evolution

Software evolution [30] is a process of developing software and updating it repetitively for var-
ious reasons such as improving the performance and security of the software. In some cases,
the process involves applying patches or security fixes to the software. During the software
development life-cycle, program code changes repetitively to adapt to new requirements and

improvements.

In this paper, we focus on the behavioral changes in software throughout its evolution. During
the implementation of the software specifications, upgrades or patches are applied to its source
code. Changes of software’s behavior are expected after the modifications. In other words, the
behavior of the software also evolves during the modification process. In this case, behavioral

analysis needs to be done repetitively at every development cycle.

2.2 Petri Net

Petri nets [31, 32, 33] are a mathematical and graphical modeling tool applicable to many sys-
tems. They are promising tool for describing and studying information processing systems
that are characterizes as being concurrent, asynchronous, distributed, parallel, non-deterministic,

and/or stochastic. We give the definition of petri net as follows:

Definition 2.1 Petri net is a three tuple N=(P,T,A), where P, T, and A (S(PXT)U(TxP)) are

finite sets of places, transitions, and arcs, respectively. O

9



10 2 Preliminary

Let x be a node of N. ex and xe respectively denote {y|(y, x)€A} and {y|(x, y)eA}. A marking
(or a state) is a mapping M: P—N. We represent M as a bag over P: M=[p"P)|peP, M(p)>0]. A
transition ¢ is said to be firable in M if M>et. Firing t in M results in a new marking M’ (=M Ute—
gt). This is denoted by M[N, t)M’. A marking M, is said to be reachable from a marking M, if
there exists a transition sequence tf, - - - t, such that My[N, t;)M|N, t,)M, - - - [N, t,)M,,. The set
of all markings reachable from M, in (N, M) is denoted by R(N, M,). The tree representation of
the markings in R(N, M) is called the reachability tree.

2.3 Workflow Net

Petri net can model workflow procedures and have typical properties. First of all they always
have two special places; the source place p; and the sink place po. The places corresponds to the
beginning and termination of the processing of a case respectively. Secondly, for each transition
t (place p) there should be directed path from the source place to the sink place. A Petri net
which satisfies this requirements is called as a Workflow Net (WF-net) [34]. Figure 2.1 illustrate

the structure of a WF-net. WF-net can be defined as follows:

Definition 2.2 N is said to be a WF-net if (i) N has a single source place p; and a single sink
place po; and (ii) every node is on a path from p; to po, and (iii) there is no dead transition in
N. m]

Sink place Source place

Figure 2.1: The structure of WF-net.

There is a particular subclass of WE-nets: Well-Structured (WS for short). A structural char-
acterization of good workflows is that two paths initiated by a transition (a place) should not be
joined by a place (a transition). WS is derived from this structural characterization. To give the
formal definition of WS, we introduce some notations. We make N strongly connected by con-
necting po to p; via an additional transition *. The resulting Petri net is called the short-circuited
net of N, and is denoted by N (=(P, Tu{r}, AU{(po, t"), (", pr)})). Let ¢ be a circuit in N. A path

P = X1X3- X, (n>2) is called a handle [53] of c if p shares exactly two nodes, x; and x,, with c.
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A path p is called a bridge between c¢ and its handle 4 if each of ¢ and A shares exactly one node,
X1 or x,, with p. A path b = x1x,- - -x,, (n>2) is a bridge between ¢ and a handle of ¢ if each of &

and c shares exactly one node, x; or x,, with b.

A handle (a bridge) from a node x to another node y is denoted by a X'Y-handle (a XY-bridge),
where if xeP then X is P, otherwise X is T; if yeP then Y is P, otherwise Y is T. A handle (a
bridge) from a place to another place is called a PP-handle (a PP-bridge). A handle (a bridge)
from a place to a transition is called a PT-handle (a PT-bridge). A handle (a bridge) from a
transition to a place is called a TP-handle (a TP-bridge). A handle (a bridge) from a transition
to another transition is called a TT-handle (a TT-bridge). A WF-net N is said to be WS if there
are neither TP-handles nor PT-handles of any circuit in N. We can decide in polynomial time
whether a given WF-net is WS by applying a modified version of the max-flow min-cut technique
[34].

Adding some constraints to the graph structure of WF-nets, we can obtain the subclasses of

WEFE-nets. There are the following major subclasses:

(1) State Machine (SM) WF-net: A WF-net is State Machine iff each transition has exactly

one input place and one output place (Vz, |et|=|re|=1).

(ii) Marked Graph( MG) WF-net: A WF-net is Marked Graph iff each transition has exactly

one input transition and one output transition (Vp, |ep|=|pe|=1).

(i11) Well-Structured (WS) WF-net: A WF-net is Well-Structured iff the short-circuited net has
neither TP-handle nor PT-handle.

(iv) Free Choice ( FC) WF-net: A WF-net is Free Choice iff each transition has exactly one
input transition and one output transition (¥ py, p>, preNp,e#0 = |p,e|=|p,e|=1). and one

output transition (Vpy, pa, preNp,e+0 = pe=p,e).

2.4 ST-net

Van Hee et al. [38] proved that WF-nets which is constructed by state machines and cycle-free
marked graph is sound, serialisable and split-separable. We call this nets as ST-nets. These nets
are constructed by means of refinement. In many case, modeling problems can be solved by

(provably correct) ST-nets. The definition is given in Def. 2.3.

Definition 2.3 The set N of ST-nets is the smallest set of nets N defined as follows: - if N is an
acyclic MG WF-net, then N € N.



12 2 Preliminary

acyclic WF-nets

acyclic acyclic

SM WF-nets MG WF-nets

Figure 2.2: Petri net classes.

- if N is an SM WF-net, then N € N.
-ifNeN,seSyand M € N is an sWF-net, then N ;MN.
-if Ne N,teTyand M € N is an tWF-net, then N,MN.

2.5 Soundness

Soundness [34] is a criterion of correctness for workflow definitions.

Definition 2.4 A WF-net N (=(P, T, A, {)) is said to be sound iff

(i) YMeR(N, [p;]): AM’eR(N, M): M’ >[po]; and

(ii) YMeR(N, [p1]): M=[pol=M=[pol; and

(iii) There is no dead transition in (N, [p;]).

A WF-net N is sound iff (N, [p:]) is live and bounded. O

2.6 Process Tree

A process tree is a tree representation of a process [?]. Each leaf node and each internal node re-
spectively represent an action and an operator in the process. In this paper, we use four operators
standardized by The Workflow Management Coalition (WfMC for short) [34] : sequence (=),
exclusive-choice (X), parallel (A) and loop (O).

Definition 2.5 The set I1 of process trees n is as follows:
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Figure 2.3: Translation of process tree operators to Petri net constructs

(i) If € is an action label, then € € 11
(ii) If ® is an operator and €1, (>, - - -, €, are action labels, then &y, (>, -+ ,,) € [L

(iii) If ® is an operator and my, 1y, - - -, w, € 11, then &(my, 1y, - -+ ,7,) € I |

Each operator can be translated to a part of a WF-net (see Fig. 2.3) and its equivalent process
tree formula &(my, 1o, - - - , 7,).

In the process tree, the position for each leaf node in the process tree is assigned with depth-
first search such that #?(i=1,2,--- ,n). It is shown from left to right in ascending order of each

node. For 1 and 1 in a process tree I1, the position of ¥ is on the left of ¢/ if i < j holds.
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2.7 Behavioral Inheritance

Behavioral inheritance is a relaxation of branching bisimilarity [39, 40], which is an equivalence
relation on WF-nets. Branching bisimilarity allows some transitions not to be observed. Such
transitions are denoted by a designated label 7. Intuitively, branching bisimilarity equates WF-

nets whose observable behaviors are the same.

Definition 2.6 (Branching Bisimilarity) Let Gy, and Gy, be respectively the reachability graphs
of a WF-net (Ny, [py]) and another WF-net (Ny, [p} ]). A binary relation R (CR(Ny, [py1)XR(Ny, [p}]))

is branching bisimulation iff

(i) If MxRMy and Mx|Nx, a)My’, then AMy’, My" €R(Ny, [p}/]):MY[NY’ TYMy"”, My”| Ny, (@))My/,
MXyMY”, and MX,RMY,;

(ii) If MxRMy and My[Ny, a)My’, then AMx’, Mx" €R(N¥, [p;(]):MX[NX, TO)Mx"”, Mx"[Nx, (@))Mx’,
MX”iRMy, MX,SRMY,; and

(iii) If MxRMy then (MXZ[P}O(] = My[Ny, T*>[Pg]) and (MYZ[Pf)] = Mx[Ny, T*>[P}(§])-

(Ny, [py1) and (Ny, [p} 1) are said to be branching bisimilar, denoted by (Nx, [p}1)~»(Ny, [p} 1),

iff there exists a branching bisimulation R between Gy, and Gy, . m|

See the illustration of branching bisimilarity in Fig. 2.4. There exists the same observable

marking in both Gy, and Gy, .

Definition 2.7 (Life-cycle Inheritance) To give the formal definition of life-cycle inheritance
[34], we use two operators: (i) encapsulation and (ii) abstraction. (i) For any H(C A), the
encapsulation operator dy is a function that removes all transitions with a label in H from N.
Formally, 0y : N — (P, T',A’,{")suchthat 7" = {te T | {(t) ¢ H},A' = AN((PXT")U(T’ X P)),
and ¢’ = {N(T" X (AU{t}). (i1) For any I(C A), the abstraction operator 7; renames all transition
labels in I to 7. Formally, 7, : N — (P,T,A,{’) and for any t € T, {(t) € I implies {'(t) = 7
and €(r) ¢ I implies ¢'(t) = {(t). For any £(C A), using that operator, we give the definition of
life-cycle inheritance: Ny is a subclass under life-cycle inheritance of Ny iff there is an I(C A)
and an H(C A) such that INH=¢ and 7;0(u(Nx), [p{]) ~» (Ny, [p}]). If Ny is a subclass of Ny

under life-cycle inheritance, then Ny is said to inherits the behavior of Ny.
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Figure 2.4: Illustration of branching bisimilarity. There exists the same observable marking in
both Gy, (left) and Gy, (right).

2.8 Backward Compatibility

A software that can work with the previous version is called as backward compatible. Backward
compatibility is an important property to ensure that newer version of software can execute the

task or function that exist in the previous version.

We can define backward compatibility as follows:

Definition 2.8 A software Y is said to be backward compatible to the older version software X

if software Y has the functions that exist in software X. O

Definition 2.8 shows the intuitive definition of backward compatibility for software. In terms
of WF-net, backward compatibility is related to behavioral inheritance. A backward compatible
software inherits the behavior of the previous version. Backward compatibility can be verified
with behavioral inheritance, however, checking the behavior of program is intractable for large

and complex programs.

Figure 2.5, shows an example of backward compatibility concept. For a software version X
which has Function A and Function B. Then once upgrade is applied on X, we obtain version
Y. Software version Y has Function A, Function B and new Function C. Version Y preserved
both Function A and Function B, therefore Y is backward compatible. As another example,
we upgrade version Y to newer version Z. Version Z has Function A, Function C and new
Function D. However, version Z do not preserve Function B. We can conclude that version Z is

not backward compatible.
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Figure 2.5: Illustration of backward compatibility.

2.9 UML Activity Diagram

Activity diagram [5] is an important diagram to describe dynamic aspect in UML. It can be used

to express execution sequence, concurrency and condition branching in a form of activity flow

chart. Activity diagram is important to capture control and object flow of a process that is very

useful in software development.



Chapter 3

Software Evolution and Petri Net
Approach

In software development, to follow product line, we must preserve certain important functions.
However, due to coding mistakes or omission of change, the development miss can lead to com-
patibility problem. However, it is hard to verify only by looking at the source code or execute

the program through the debug process.

We first need to formalize the problem in software evolution. As new software is developed, it
is harder to verify the compatibility of the software due to its increasing complexity. We propose
our approach based on Petri net model. Our approach is model-based, therefore preservation
of functions can be guaranteed. In this chapter, after the problem introduction, we show our

approach and show how we can analyze program with our model-based techniques.

3.1 Real World Concept of Software Evolution

In this section, we discuss real world problem of software evolution [41, 29]. We know that
during the evolution of software, it is important to manage and preserve the product line of the
software. As software evolves to adapt to requirements of consumer over time, the newer version

of the software tends to become more complex.

Figure 3.1 shows the relation of software development and product family line . Incremen-
tal and iterative software development process can produces new releases. The new releases of
software requires new version such as 1.0, 1.1, 1.2 and 1.3. Version 1.3 shows the software is
applied with minor upgrade. Version 1.0, 2.0 and 3.0 show that the software are applied with
major upgrade. The series of version numbering represents the product family line of the soft-

ware. Minor upgrade is an upgrade that changes the behavior of only some part of the software

17
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Version
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T PP L

Agile
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Figure 3.1: Product family line in software evolution.

such as in some extension or functions. Major upgrade is an upgrade that changes the behavior
of the software on its core functions such as its performance or main functionality in the soft-
ware. Well-known development process such as waterfall model and agile model only focus on
the process to produce new version. Our research aims to preserve the backward compatibility

in the product family line.

Software evolves as it goes through the development process and undergo new releases. The
development and upgrade process assign version number to the software to show that the software
was applied with minor or major upgrade. It is important to follow a given specifications in order

to maintain the product family line.

3.1.1 Derivative Development

Derivative development [2, 3] involves extension of product design and verification of backward
compatibility. Generally, developers are restricted only to verification of logical correctness.
Product design such as UML activity diagram only focus on attributes but not on its structure.

Therefore, backward compatibility verification is not well-considered in conventional design
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method such as with UML.

Let us take Fig. 3.2 as a simple example. We have an original product which consists of three
components with related functions between those components. In Fig. 3.2(a) we have functions
that we call as Function A, B, C and D. Function A, B and C is concurrently executed and
Function D is executed after Function C before terminating. All order in these functions are very
important as part of the component’s functionality. The order of the execution cannot be changed.
However, during new product development, a new function needs to be extended. Figure 3.2(b)
shows the extended product which was added with the execution of Function E after the parallel
execution of Function A and B. The extended product is now called the derivation of the original

product.
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(a) Original model

Component A
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N

Function B
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(b) Extended model

Figure 3.2: Example of UML activity diagrams.
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3.1.2 Real World Example

We give an example of products’ derivatives of an smart refrigerator (i-Refrigerator for short)
[43]. Figure 3.3 shows the concept of the refrigerator. Figure 3.4 shows the activity diagram
that describes the concept of i-Refrigerator before extension. The diagram shows a flow starting
with the user inserting food products into the i-Refrigerator, then concurrently sends the product
data and its expiry date through RFID reader to the touch panel and database. Let us say there
is a requirement to measure the precise weight of each product such as for using the product as
cooking recipe. So we add an electronic balance that measures and relays products’ weight data
to the touch panel and the database. Therefore, we need to verify that the extended i-Refrigerator
is a valid derivation of the original product in Fig. 3.3. Figure 3.25 shows program r of the

i-Refrigerator. Figure 3.6 of a C program m, for i-Refrigerator updateDB() function.

Concretely, let us say that a new version 2.0 was developed by the manufacturer which up-
graded the input to barcode reader to make input easier. We can say that version 2.0 is an
upgraded version of version 1.0. Finally, in version 3.0 the manufacturer developed a more ad-
vance input which use RFID. Let us say that the RFID input has satisfied the demand and to make
the i-Refrigerator more convenience, the manufacturer added an electronic balance to measure
weight of the food products. By extending a weight measurement functionality to version 3.0 that
produce version 3.1, we can say that version 3.1 is a derivative of version 3.0. This requirement
only extends the function and do not change other existing function in the i-Refrigerator. Thus,

we can say the changes is a minor upgrade.

Next, let us say there are requirement to improve the performance of the database. We need
to upgrade function updateDB() in program m,. We can change the behavior of program m, by
parallelizing the update process. Thus, we can say that it is a major upgrade for the database

function.
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Figure 3.3: An i-Refrigerator design.
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Figure 3.4: i-Refrigerator original design.
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void main(int argc, char® argv[]) {
serialNum = ReadUID();
RFIDSensorCheck();

if((pid = fork() != 0){
initDBQ);
int UID = IssueSQLQuery(serialNum, food);
if('existingInDB(UID)){
IssueNewData(UID);
StoreUID(UID, food);
}
updateDB();
}else {
usleep(10000);
RFIDSensorCheck();
serialNum=ReadUID();
if(checkExpiryDate(serialNum) ;) {
sendExpiredDateWarning();

O 00 N O VT i WN -

T e Ny S
O oo NOYYULILD WN R

}
}
if(pid == 0)
_exit(status);
else
while(kill(pid, 0));
wait(&status);
StandbyMode();
updateDB();
}

NNNDNDNDNDNDNDN
O NV WN R

food=InputData(foodName, producer, serialNum, expDate);

Figure 3.5: A C program 7 for i-Refrigerator.
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void updateDB() {

int stock = getStockNumber();
for(i=1;i<=stock;i++)
{
if(i<=(stock/2)){
1if(i%2==0){
setID("ID:XA-00%d\n",i);
type = meat’;
telse{
setID"ID:XB-00%d\n",i);
type = packed-food’;
3
}else if(i>(stock/2)+1)
{
setID("ID:XC-00%d \n",i);
type = vegetables’;
}

if(type=="A"){
storeProduct ("XA-00",1);
}else if(type=="B’){
storeProduct ("XB-00",1);
}else if(type=="C"){
storeProduct ("XC-00",1i);
3

Figure 3.6: A C program r, for i-Refrigerator updateDB() function.
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3.2 Problem in Software Evolution

We can analyze the behavior of the model using Petri net analysis technique. We know that a
program can be translated into WF-net model. Hence, we can convert the problem of protocol
implementation verification into behavioral analysis of WF-net. Concretely, we can reduce the

real world verification problem in Fig. 3.7 to the WF-net verification problem.

3.2.1 Backward Compatibility in Software Evolution

Intuitively, we can say that for a specification @, a program m implements « if 7 can do what «
do. If so, we call  as an implementation of @ [42]. All the tasks in & present in @, but in general,
m would add new tasks. Even if so, 7 must be still an implementation of @. Hence, in terms of

WF-net, we give the following definition:

Definition 3.1
For a program X and a protocol specification a, X is said to implements « iff Nx is a subclass of
N,. |

We illustrate Def. 1 in Fig. 3.8(left). To explain this situation, we say that & inherits the
protocol of « if the WF-net Ny representing program n has the same behavior as N, after blocking
the execution of any added tasks. We need only to check the behavioral inheritance between Ny
and N,.

In the software evolution perspective, the problem is reduced to backward compatibility prob-
lem. In general, Nx can evolves into a newer version Ny. We can always verify the behavior of N,
in Ny directly but by ignoring the condition that Ny is a subclass of Nx. In some cases, although
Ny inherits the behavior of N,, Ny does not always inherits the behavior of Nx. In fact, Ny that
evolves from its superclass Ny can also evolves into newer versions Ny’, Ny”, Ny””” and so on. In
our approach, by validating the backward compatibility of Ny with the previous version Ny, we
can ensure that Ny is the superclass of Ny and its newer version in the software production line.

We give the following definition on the backward compatibility of Ny to Ny.

Definition 3.2
For a program Y and its previous version X, Y is said to be backward compatible with X iff Ny

is a subclass of Nx. O

From Def. 4, we can say that Ny is backward compatible with Ny if Ny is the superclass of

Ny. We illustrate Def. 4 in Fig. 3.8(right). We can verify the behavioral inheritance between
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Figure 3.7: Illustration of our verification problem.
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Figure 3.8: Relation of implementation and backward compatibility with behavioral inheritance.

N, and Ny by verifying the backward compatibility of Ny with Ny first. Here, we introduced a
notion of behavioral inheritance called as life-cycle inheritance (See Appendix B). From Def. 4

and Def. 5, we deduce the following theorem:

Theorem 3.1
For a program X, its newer version Y and a specification «, Y implements « iff WF-net Ny is a

subclass of WF-net Ny where Ny is a subclass of N, under life-cycle inheritance. O

Proof: We first prove the “if” part. Life-cycle inheritance relation is transitive. If N, is the
superclass of a WE-net Ny then its subclass Ny and the subclasses of its subclass Ny, N/, Ny’ is

also the subclass of N, under life-cycle inheritance.

Next, we prove the “only if” part. From Def. 4, if Ny is not the subclass of N, under life-
cycle inheritance then Y does not implement @. From Def. 5, if Ny is not a subclass of Nx under
life-cycle inheritance, Y is not backward compatible with X. If Y is not backward compatible
with X, then Y does not implement a. Q.E.D.

Theorem 3.1 implies the transitive relation of behavioral inheritance in software evolution. If

Ny inherits the behavior of N,, then protocol « is implemented in program Y. From the proof,
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Figure 3.9: Conventional approach.

we only need to check the relation shown in Fig. 3.7 and Fig. 3.8. If a WF-net Ny of program
X inherits the behavior of N, then program X implements «. Then let us consider where a new
version Y derived from X. If Ny inherits the behavior of Ny then Ny also inherits the behavior of

N,. Thus we can say that Y also implements a.

3.2.2 Backward Compatibility Verification Problem

Backward compatibility should satisfies (i) behavioral inheritance and (ii) response property.
This two conditions can be used to verify backward compatibility when minor or major upgrades
are applied. Minor upgrades only changes some part of the software component such as mi-
nor functions, classes or interface in the software. On the other hand, major upgrades changes
the core functionality of the whole program in the software such as performance, processing

sequence or most structure of the program.

In conventional method, backward compatibility is always being verified as shown in Fig.
3.9. It is a repetitive process at each development stage where developer has to verify each
derivatives once upgrade is applied. Our approach reduce the repetitive process by preserving

the backward compatibility at each development stage as shown in Fig. 3.10.

Based on the condition of behavioral inheritance and response property, we can verify back-
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Figure 3.11: Conditions of backward compatibility.

ward compatibility. We summarize the conditions of backward compatibility as shown in Fig.

3.11.
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Figure 3.12: An extended i-Refrigerator design.

Problem 1 : Minor Upgrade

Behavioral inheritance is an important property to verify the behavior of the software when minor
upgrades are applied to the software. We can identify the differences of behavior in some part of
the program. Therefore, software which satisfies behavioral inheritance preserves the behavior
of its previous version. This can only be verified for small changes in certain function of classes

such as minor upgrades because it does not alter the core functions of the software.

We take an example for the design of i-Refrigerator to be extended as shown in Fig. 3.12.
The UML activity diagram is shown in Fig. 3.2.2 and Fig. 3.13. Let us say there is a requirement
to upgrade the original design model in Fig. 3.2.2 by adding the Measure Weight function as

shown in Fig. 3.13. C program 73 shows the new i-Refrigerator extended with measure weight.

In this minor upgrade, we need to analyze whether program 73 is backward compatible with

program i or not.

Problem 2 : Major Upgrade

Response property is a property for execution sequence. Response property is useful to analyze
the execution sequence within a program for major upgrades. For example, in a program x,
shown in Fig. 3.15 where statement A, B, C, D and H exists, let us say we upgraded the program
into a new program 7ig as shown in Fig. 3.16. In this case we, need to confirm whether A executes

before B and D executes in after A or not. This execution sequence is very important to verify
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Figure 3.13: UML activity diagrams of i-Refrigerator.

if there are major changes in the program. Diflference execution sequence clearly have different

behavior in the program. Response property is also related to behavioral inheritance but is limited

a specifications that we need to verify in the program.
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void main(int argc, char® argv[]) {
serialNum = ReadUID(Q);
RFIDSensorCheck();
weight = WeightMeasure(Q);
if(validateWeight (serialNum, food){
if(weight > 10000){
sendOverweightMessage();
}else{
food=InputData(foodName, producer, serialNum, expDate, weight);
}
if((pid = fork()) !'= 0){
initDB(Q);
int UID = IssueSQLQuery(serialNum, food);
if(!lexistingInDB(UID)){
IssueNewData(UID);
StoreUID(UID, food);
3
updateDB(Q);
}else {
usleep(10000);
RFIDSensorCheck();
serialNum=ReadUID();
if(checkExpiryDate(serialNum) ;) {
sendExpiredDateWarning();
}
}
if(pid == 0)
_exit(status);
else
while(kill(pid, 0));
wait(&status);
StandbyMode() ;
updateDB();
}

Figure 3.14: A C program 3 for new i-Refrigerator extended with measure weight.
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1 void main(int argc, char® argv[]) {
2 int status, pid = -2;

3 int delete = 0, save = 0;
4 A

5B

6 if((pid = fork()) !'= 0){
7 if(delete == 1){

8 C

9 }

10 D

11 3} if(pid == 0)

12 _exit(status);

13 else

14 while(kill(pid, 0));
15 wait(&status);

16 H

17 }

Figure 3.15: A C program 7,,.
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void main(int argc, char® argv[]) {
int status, pid = -2;
int delete = 0, save = 0;
A
B
if((pid = fork()) !'= 0){
if(delete == 1){
C
telse{
D
E
}

13 }else {
14 G
15 }
16 if(pid == 0)
17 _exit(status);
18 else
19 while(kill(pid, 0));
20 wait(&status);
21 H
22 }

O N O v i W N =

== =
N R, @ O

Figure 3.16: A C program 7.
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3.3 Our Approach

We propose two major methods in our validation approach; (i) translation of program to Petri
net model, and (ii) model-based security protocol verification. We reverse engineer a program
source code by translating it into a Petri net model. Then, we propose an approach to verify

security protocol implementation inside the source code. See Fig. 3.17.

In the first method, we propose our translation method with a tool called as C2PNML. A
C program can be reversed engineered to extract software model from the source code. The
software model is represented as Petri net model Ny. Then we can implement a specification
into the program. Concretely, specification is represented as Petri net model Ng. We assume
that the security protocol in the program has already been implemented. Thus we can obtain
Petri net model N¢ from the program implemented with security protocol. So we need to verify
if model N inherits the behavior of model Ny or not after the implementation. Next, we can
check whether Petri net model Np is implemented into the Petri net model N¢ by analyzing
the behavioral inheritance of the program. Finally, we can obtain the result whether model N¢

implements Ng or not.

3.4 Translation of Program Structure into Petri Net

In this section, we propose a reverse engineering method to translate a program back to its design
model so we can use it to verify its behavior. Generally, a program is constructed based on its
design model. However, the structure of the program will always change. Most compilers are
made to identify grammatical and syntax errors before compilation. Although the program passes

the compilation, it depends on the programmer to verify the behavior of the program.

There are some programs proposed to convert source code into flow chart such as Code2Flow
[44], Code Visual to Flowchart [45] and AutoFlowChart [44]. However, converting to flowchart
only help the developer to visualize the whole program structure. Therefore, we need not only
the visualization of the code but the behavioral analysis of the program itself. Existing tools also

cannot visualize parallel programs.

We propose a translation approach to convert parallel structured program into Petri net model.
Once a program is converted into Petri net model, we can analyze it with Petri net technique.
There are a lot of behavioral analysis techniques that can be applied to the Petri net model. Our

overall approach for the translation is shown in Fig. 3.18.

In this section, we propose a tool called as C2PNML to convert program source code into
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(C Program) Our first method (Petri Net Model A)

Software Translation Model of > Implementation
(C2PNML) Software
New Software
Development Model

A

P

(Petri Net Model C)
Vf/lﬂglefi B /Sec:lrity ______________________ Model of
ode Verification Specification (extension)
(Petri Net Model C) Our second method (Petri Net Model B)

Figure 3.17: Our proposed model-driven approach

void main(int arge, char* argv[) {
serialhum = ReadUID():

RFIDSensorCheck();

food=inputDita(foodhame, producer, seriaiNum, expDate);
fi{pid = fork{)) !::‘;(

int UIC = |ssueSQLQuery(serialNum, food);
g
I

(existnginDB(UID)K
ssuehewData(UID);
StoreUIB(UID, food);
}
updateDB();
it laep(10000),
us ;
RFIDSensorCheck(); —>
seriaiNum=ReadUID(): C2PNML
f{chackExpiryDate(seriaiNum))
sendExpiredDateWaming():
3
}
ifpid == 0)
_exii{status);

eise
while kil pid, 0)):
wail&status),

Source Code Petri Net Model

Figure 3.18: Our proposed translation approach

Petri net for further analysis. Generally, Petri net can be described with Petri Net Markup Lan-
guage (PNML for short). C2PNML will analyze the syntax of the program and convert the
program into Petri net by constructing place and transitions (see Fig. 3.19). Finally, C2PNML
will output the PNML file. In Fig. 3.19, there are two translation procedures. First, the user pro-
cedure is only to use C2PNML as a tool and produce the required PNML file from C program.
Second, in the developer procedure, when additional syntax or statements are required, we can
extend C2PNML by adding new expression statement and parsing table. C2PNML can convert
statements in the the whole program not including functions. We can translate a function inner
source code into Petri net and refine the Petri net of the function into the Petri net of the main

function in the program. We propose the following translation procedure:

<Program to Petri Net’s Translation>

Input: C Program
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User Procedure

C Program
Source

Source code of C2PNML

i
i
i
i
i Lex and Yace
i
i

P

Expression statement

Parsing and
Translation Table

Developer Procedure

Figure 3.19: Structure of C2PNML.

Output: Incidence Matrix A of n’s control flow and initial marking vector M,

1° Generate matrix Ne—Oppyaxsxrmax (PMAX is the maximum number of places and TMAX

PMAX
—
is the maximum number of transitions), vector L«(1,0,0,---,0), p«1 and t<1, variable

x<0, empty stack §.

2° Analyse the syntax of 7. Based on the conversion table in Table 3.1 set the value of N(p, ?).

3° Output N, as A and L., as M, and stop.

We implement C2PNML by combining the use of lexical analyser Lex and a parser generator
Yacc [47] (see Fig. 3.19). We applied ANSI C rule to the lexical and syntax rules [48]. Then, we
apply the actions in Table 3.1. Concretely, directly after expression_statement we describe
the action as N(p,t)«——1,N(p+ 1,t)«1, pe—p+ 1, t—t+ 1. Currently, C2PNML can handles (i)
if, (ii) for, (iii) while, (iv) fork, (v) semaphores P operation sem wait and (vi) V operation
sem_post. By enriching the conversion actions in Table 3.1, more syntax can be handled with
C2PNML.

The rules in Table 3.1 can convert parallel structured programs. The parallel structured pro-
gram includes sequence, parallel, choice and loop construct. The structure patterns is shown in

Fig. 3.24.

We take an example as shown in Fig. 3.25. By using the <Program to Petri Net’s Conversion

Procedure>> we convert the program m, in Fig. 3.25 into Petri net model. The example of
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Table 3.1: Conversion from C program to Petri Net
Syntax Petri Net

N(p,t)——1
N(p+1,t)«1
p—p+1
te—t+ 1

expression_statement{a} | a

N(p,t)«——1
N(p+1,1)«1
al push(p)
pe—p+1
t—t+1

N(p,t)——1
N(p+1,1)«1
22 | Xxepop()
pe—p+1
IF{al}’ (’expression’)’ t—t+1

statement{a2} push(p)

ELSE{a3}statement{a4}

N(x, t)—-—1
N(p+1,1)«1
p—p+1
t—t+ 1

a3

xe—pop()
N(p, -1
N(p+ 1,01
N(x, 1)1
N(x,t+ 1)—-1
N(p+1,t+ 1)1
p—p+1
t—r+1

a3

conversion for program m, is illustrated in Fig. 3.26. We initialize PMAX=TMAX=2000. In step
2000

1°, we generate the variables matrix N«0,000x2000 Vector Le(m) variable p«—1 and
t—1 x<0 we generate the empty stack S. In step 2°, we analyse the syntax of m, based on the
conversion table in Table 3.1 set the value of N(p,t). For example, in the program 7, in Line 4
scanf("%Llf", &x); is an expression statement we carry out N(p,1) = N(1,1) « —1,N(p +
1, =N2,1)—1,pe—p+1=2,t«—t+1=2. N(1,1) « —1 denotes connect the arc from
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#include <stdio.h>
int main()
{
Statement A
Statement B

Figure 3.20: An example of a sequence construct.

#include <stdio.h>
int main()
{
if processID == (fork () <0){
Statement A
}else Statement B
}

Figure 3.21: An example of a parallel construct.

#include <stdio.h>
int main()
if ( Condition )
Statement B
else Statement C

Figure 3.22: An example of a choice construct.

place p; to transition t;, while N(p+ 1,1) = N(2, 1) < 1 denotes connects the arc from transition
titoplace p,. p < p+1=2andt « t+ 1 = 2 denotes that the next target place to be set is p,
and t,. Finally, step 3° outputs the incidence matrix A, of N, as follows:
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#include <stdio.h>
int mainQ)
{
for/while ( Statement A ){
Statement B
}
}

Figure 3.23: An example of a loop construct.

A
A B
fork()
B
(a) Sequence (b) Parallel
B A
i< it @@@&@
C for/while(
(¢) Choice (d) Loop

Figure 3.24: The patterns for parallel structured programs.

(-1 0 0o O O 0 O 0
m|[1 -1 0 0 -1 0 0 0 O
p3/0 1 -1 0 O O O O O
ps{O 0O 1 -1 0 0 O 0 O
Ai=ps| 0 0 O 1 O O 1 -1 0
psl0 O O O 1 -1 0 0 O
p7|0 0 0 0 O -1 0
pglO O O 0 O O 1 1 -1
ppl0O 0 0 0 0 0 0 1
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1 main() {

2 double a;

3 int b;

4 scanf("%lf", &a);
5 if((int)a > a) {
6 b = (int)(a) - 1;
7}

8 else {

9 b = (int)(a);

10 }

11 printf("%d\n", b);
12 }

Figure 3.25: A simple example of a C program r,.

Initial marking M, of incidence matrix A, is as follows:

Pt P2 pP3 P+ Ps Pe P1 Ps Do
Mi= (1 0 0 0 0 0 0 0 0)

The proposed <Program to Petri Net’s Translation>> procedure enables us to reverse engi-
neer a program into Petri net model so we can grasp the structure of the program. In general,
translating the design model to source code is easy but to reverse the translation process is dif-
ficult. We reduce the effort to identify syntax in large program by proposing our tool C2PNML.
C2PNML analyzes the syntax and statements then outputs the incidence matrix that represents
the Petri net model. This significantly reduces the procedure taken to identify complex structures.
The procedure can also runs in polynomial time which only takes O(|P||T|) for the computation
time. The syntax rule shown in Table 1 is highly customizable in order to adapt to the rule of the
program. We only need to enrich the syntax rule in Table 1 in order to analyze various programs.

Thus our tool is also available for real world applications.
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(d) State after conversion at line 11 *print£("%d\n", b);’(the final state N,).

Figure 3.26: Procedure execution for program 7,.
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3.5 Representation of Program Structure with WF-net

Once we converted a program into WF-net. We can analyze its structure. First, we show the
class of WF-nets that can represent program structure. We found that program structure can be

represented with bridge-less WF-net. Therefore we give the property of bridge-less WF-net.

A Petri net can be divided into structural objects called cycles, handles, and bridges. These

objects enable us to develop methods to structurally analyze the behavior of Petri nets.

Many actual computer programs can be modeled as a subclass of Petri nets without bridges,
named bridge-less WF-nets. In 2013, Taniguchi et al. [49] have proposed a method to convert a
C program to a bridge-less WF-net. Bin Ahmadon et al. [24] also have proposed a new method
to analyze bridge-less WF-nets. This method converts a given bridge-less WF-net into a tree
representation called process tree [?], and enables us to analyze the behavior of the net through

the process tree. We, however, know little about properties on bridge-less WF-nets.
In this section, we reveal properties of bridge-less WF-nets, and give an application of bridge-
less WF-nets to software design [50].

A WE-net N is said to be bridge-less if N has no bridge. We find out properties of bridge-less
WFE-nets.

Let us first focus on acyclic WF-nets.
Property 3.1 Any acyclic bridge-less WF-net N is FC. m]

Proof: We prove the contraposition. We assume that N is not an FC WF-net. N has a structure

shown in the dotted box in Fig. 3.27. For two nodes v and u in N, vﬁm denotes that u is reachable

from v in N. There exist a node x such that plﬁxi p1 and p,ﬁxipz; and a node y such
N N N N .. . N N N N N _N N —

that 1, >y—po and t,—y—pe. This implies x—p,—tH,—y—po—t"—p;—x. So N has a cycle

X-+-paty---y---pot*pr---x and a handle x---p,t;---y. And p;t, is a bridge between them. Thus N

is not bridge-less.
Q.E.D.

Let us consider an acyclic WF-net N; shown in Fig. 3.28. If we look at p4 and ps, pf‘l N psNo1 +#0.
However, |p4N01|:1 and |p5N01|¢1, so N, isnot FC. N, has a bridge #, p4t4. Thus N is not bridge-less.

Let us consider the relation between acyclic bridge-less WF-nets and soundness.
Property 3.2 An acyclic bridge-less WF-net N is sound iff N is WS. O

Proof: The “If” part: From Property 5 in Ref. [51], any acyclic WS WF-net is sound, so N is

sound.
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Figure 3.27: Illustration of the proof of Property 3.1. If an acyclic WF-net is in a class bigger
than FC, its short-circuited net has a bridge.

Figure 3.28: An acyclic WF-net N,. N, is not bridge-less because N, has a bridge t, paty.

The “Only-if” part: Since N is bridge-less and non-WS, N has a TP-handle or a PT-handle
which has no TP-bridge. From Property 3.1, N is a strongly-connected FC Petri net. From
Theorem 4.2 in Ref. [52], if the strongly-connected FC Petri net has a TP-handle or a PT-handle
which has no TP-bridge. the net has no live and bounded marking. This means that N has no live
and bounded marking. Thus, N is not sound. Q.E.D.

This property means that soundness of acyclic bridge-less WF-nets can be decided by class.

Figure 3.29 shows the illustration of Property 3.2.

Let us consider an acyclic WF-net N, shown in Fig. 3.30. N, is bridge-less because N, has
no bridge. N, also has no TP-handle or PT-handle, so N, is WS. Thus N, is sound. Then let us
consider an acyclic WF-net N3 shown in Fig. 3.31. N; is bridge-less because N5 has no bridge.
N; has a TP-handle 11 patypa, s0 N3 is not WS but FC. Thus N5 is not sound.

Next let us consider the whole of WF-nets including ones having cycles.

Property 3.3 Any sound bridge-less WF-net is WS. O
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acyclic WF-nets
FC

bridge-less

Figure 3.29: Acyclic bridge-less WF-nets and soundness.

Figure 3.30: An acyclic WF-net N,. N, is bridge-less WS. Thus N, is sound.

Proof: We prove that a sound WF-net N is not bridge-less if N is not WS. We assume that N is a
sound non-WS WF-net. This implies that N is not a van Hee’s ST-net [38]. Intuitively, ST-nets
are constructed from SM WF-nets and acyclic MG tWF-nets ! by means of refinement. Since N
is not a ST-net, there exists a path p between a SM WF-net and an acyclic MG tWF-net in N.
The SM WF-net and the acyclic MG tWF-net are respectively denoted by Ny, and Nyg. From
the construction of N, N has a cycle through Ny, and a handle through N,,s. This implies that p
becomes a bridge between the cycle and the handle. Thus N is not bridge-less. Q.E.D.

This property means a necessary condition for bridge-less of sound WF-nets, i.e. A sound
WF-net N is not bridge-less if N is not WS.

Let us consider a cyclic WF-net NV, shown in Fig. 3.32. N, is bridge-less and sound. Thus N,
is WS.

IThe dual nets [53] of WF-nets are called tWF-nets.
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Figure 3.32: A (cyclic) WF-net N4. Ny is bridge-less and sound. Thus N, is WS.

3.5.1 Decision Method for Bridge-less of WF-nets

In this section, we tackle a problem of deciding whether a given WF-net is bridge-less. We first
give a necessary and sufficient condition on the problem. Then we construct a polynomial-time

procedure based on the condition.

3.5.2 Necessary and Sufficient Condition

We first restrict our analysis not to the whole of a WF-net but to a part between a node x and
another node y of the net. Let us consider whether there is a handle from x to y which has a
bridge b. If such a handle % exists, & and its cycle ¢ are connected through b, i.e. the two disjoint
paths corresponding to 4 and ¢ form a single connected component. This enables us to give the

following property.

Lemma 3.1 Let N be a WF-net, and (x,y) a node pair in N. Let N’ denote the Petri net obtained
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by removing the output arcs of x and the input arcs of y from N 2. There is a handle from x to y

which has a bridge in N iff the following equation holds:

—
(the number of connected components in N )

— 3.1
# (the number of disjoint paths from x toy in N) + 1. -1

Proof : The “If” part: We prove the contraposition: If there is no handle from x to y which has a
bridge in N then Eq. (3.1) does not hold. Without such a handle, each handle (disjoint path) from
X to y corresponds one-to-one to a connected component in N'. The remains of N form a single
connected component. So we have (the number of connected components in N’) = (the number
of disjoint paths from x to y)+1. Thus Eq. (3.1) does not hold.

The “Only-if” part: If there is a handle & from x to y which has a bridge b in N, h and its
cycle ¢ are connected through b. This implies that the two disjoint paths corresponding to 4 and
¢ form a single connected component. So we have (the number of connected components in N’)

< (the number of disjoint paths from x to y)+1. Thus Eq. (3.1) holds. Q.E.D.

Extending Lemma 3.1 to the whole of the given WF-net, we can obtain the following neces-

sary and sufficient condition for deciding whether the net is bridge-less.

Theorem 3.2 A WF-net N (=(P, T, A, 0)) is bridge-less iff for every node pair (x,y)e(PUT)?, the
following equation holds:

(the number of connected components in N )
# (the number of disjoint paths from xtoyin N) + 1,

- ~ . o ~
where N is the Petri net obtained by removing the output arcs of x and the input arcs of y from

N. ]

3.5.3 Polynomial-time Procedure

Based on the proposed necessary and sufficient condition, we construct a polynomial-time pro-
cedure for deciding whether a given WF-net is bridge-less.

<Decision of Bridge-less>>

Input: WFE-net N (=(P,T,A,Y))

Output: Is N bridge-less?

2For a WE-nel N (=(P, T, A, £)), N'=(P, TU(t"}, AU{(po. ), (&, pDi\[x}xxe\eyx{y}. €U, 7))
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1° Construct a flow network D isomorphic to N, where every edge of Dy has capacity 1.
2° For each node pair (x, y)e(PUT)?, do the following steps to check Eq. (3.1):

2-1° » Calculate the number n of disjoint paths from x to y.
Calculate the maximum value of the flow from x to y in Dy. The value is the same

as n.

2-2° » Calculate the number m of the connected components in the Petri net N’ obtained
by removing the output arcs of x and the input arcs of y from N.

—_ —_
Construct N, and obtain m by counting the connected components of N .

2-3° If m # n + 1 then output no and stop.

3° Output yes, and stop.

Property 3.4 The following problem can be solved in polynomial time: Given a WF-net N, to
decide whether N is bridge-less. O

Proof : Algorithm <«Decision of Bridge-less> can run in polynomial time. Step 2-1° takes
O((|P|+|T)|A]?) with Edmonds-Karp algorithm [54]. Step 2-2° takes O(|P|+|T|+|A]) with DFS.
Thus the whole of the algorithm takes O((|P|+|T|)*|A[?). Q.E.D.

3.5.4 Example

We illustrate <Decision of Bridge-less> with two examples.

The first example is for a WF-net N5 shown in Fig. 3.33. In Step 1°, we construct the flow
network Dy isomorphic to Ns, where every edge of Dy has capacity 1. In Step 2°, we check
Eq. (3.1) for each node pair of Ns. For (pi, p»), we first calculate the number n of disjoint paths
from p; to p,. We can obtain n = 2 by calculating the maximum value of the flow from p, to
p2 in D. Next we calculate the number m of the connected components in the Petri net El
obtained by removing the output arcs of p; and the input arcs of p, from Ns. FS' is shown in
Fig. 3.34. We obtain m = 3 by counting the connected components of El. Since m = 3 = n+1,
so we can say that there is no handle from p; to p, which has a bridge in Ns. In the same way,
for every node pair, we can make sure that there is no handle which has a bridge in N5. Thus

<Decision of Bridge-less>> outputs yes. In fact, Ns is bridge-less.

The second example is for a WF-net Ng shown in Fig. 3.35. In Step 1°, we construct Dy.

In Step 2°, we check Eq. (3.1) for each node pair of Ng. For (1,,1,), we first obtain n = 2 by
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Figure 3.34: The Petri net Ns obtained by removing the output arcs of place p; and the input
arcs of place p, from Ns. The number of connected components of N5 is 3.

Figure 3.35: A WF-net Ng.

calculating the maximum value of the flow from 7, to #; in Df-. Next we obtain m = 2 by
counting the connected components of ﬁ()’ shown in Fig. 3.36. Since m = 2 # n+1 = 3, so
<Decision of Bridge-less> outputs no. In fact, there exists a bridge ;3 p4t4 between a handle

1 pstypst and its cycle p;ty pitaprtspot” pr in N. Thus, Ng is not bridge-less.
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Figure 3.36: The Petri net N6 obtained by removing the output ar arcs of place 1, and the input arcs
of place #; from Ng. The number of connected components of N6 is 2.

3.6 Remarks

In this chapter, we discussed the real world problem of software evolution. We know that during
the evolution of software, it is important to manage and preserve the product line of the software.
As software evolves to adapt to requirements of consumer over time, the newer version of the
software tends to become more complex. We showed that we can analyzed software backward
compatibility with Petri net. The, we proposed a reverse engineering method to translate program
into Petri net model. We also showed that a class of Petri net can represent program structure

called as bridge-less WF-net. We revealed the property for the Petri net class.






Chapter 4

Model-Driven Development in Software
Evolution

In this chapter, after introducing our reverse engineering method in the previous chapter, we
combine the method with our second major method. We proposed a model-driven verification
method to solve conventional model checking problem in practical time. We tackle state number
calculation in model checking, behavioral inheritance check and response property problem in a

program. We utilized a representational bias called as process tree.

Figure 4.1 shows the overview of our model-driven development approach in detail. To ver-
ify whether a source code Y is backward compatible with its older version X, we first reverse
engineer the code into Petri net model as shown in the previous chapter. In conventional anal-
ysis method, we use model checking approach by enumerating all states in the Petri net model.
However, state space explosion can occur for analysis of large and complex program. Therefore,
in our approach we first grasp the state number of the Petri net model. Then, if the state number
is less than 1 million state conventional model checking approach is available. However, for
state number more than 1 million states we propose our model-driven approach. Once, we grasp
the state number we can proceed to the backward compatibility verification. For minor upgrade,
we propose behavioral inheritance analysis. For major upgrade, we propose response property
analysis. Then, our approach will output yes or no based on the verification result.

In order to be able to analyze the program in polynomial-time, we convert program into
process tree. We proposed the convertibility and conversion algorithm for the conversion of Petri
net to process tree [24]. We also show that the proposed algorithms and procedures are executable
in polynomial time. Then we show an application example for each methods to illustrate the

proposed approach.

In this chapter, we first convert a WF-net to process tree. We show how the state space can be

51
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; Our Approach
E Version :
X
7 Reverse Petri Net Model X |
: Engineering
: ; (Translation) .
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Figure 4.1: Overview in detail of our approach.

grasp with process tree such as state number calculation and then we show the details to verify
backward compatibility without enumerating all states in the program. Concretely, we propose
behavioral inheritance and response property analysis for minor and major upgrade. The verified
model will be used to develop new version. In the new version, the backward compatibility is

preserved by assuming the model is implemented properly into the new program.

4.1 Convertibility of Workflow Net to Process Tree

We can grasp the state space of a software but it is intractable but we cannot give up solving
the problem because the problem is important for analysing program behavior. We try to utilize
process trees to solve the state number calculation problem. The structure of process tree allows
us to calculate state number without enumerating all states. Unfortunately, not all WF-nets are
always convertible to process trees. For example, non-sound WFE-nets are not convertible because
the process tree itself is the representational bias of sound WF-net. Soundness is a necessary
condition but is not sufficient. It is necessary to decide whether a given WF-net is convertible to
a process tree or not. We call this problem as convertibility problem. In this section, we first give

a formal definition of convertibility problem. Then we give a necessary and sufficient condition
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on the problem.

4.1.1 Convertibility problem

We formalize convertibility problem as follows:

Definition 4.1 (Convertibility problem)
Instance : WF-net N

Question : Is N convertible to a process tree? m|

Let us consider five instances of convertibility problem for example. The first instance is a
WF-net N, shown in Fig. 4.2 (a). This WF-net can be represented as a process tree as shown
in Fig. 4.3. By looking at Fig. 4.2 (a) we found that N, is an acyclic WS WF-net and has no
bridge. The second instance is a WF-net N, shown in Fig. 4.2 (b). N, has a circuit pt, pst3 ps.
In this paper, we use no operator representing circuits. Therefore, we assume that N, is not
convertible to a process tree. The third instance is a WF-net N3 shown in Fig. 4.2 (c). N; has
a bridge pst;p4. Originally without the bridge (path pst;ps), paths patapstsps and patypatsps
construct an exclusive choice but since bridge pst7p, exists, 1, p3t7psts forms a new sequence
relation connecting the path. So actions 7, and #s have two relations, an exclusive choice and a
sequence. It is not convertible because one process tree operator can only represent one routing
relation between actions. The forth instance is a WF-net Ny shown in Fig. 4.2 (d). N, has a
path 1, potr pets psts with a handle ¢, p3t4 p7ts. There exists a path 1, p4tg pst; between the path and
its handle. Path #, p4#gpst; 1s similar to a bridge but is not exactly a bridge. We call it “pseudo-
bridge”. It is not convertible because without the pseudo-bridge, t, has a parallel relation with 73,
but since the pseudo-bridge # p4tspst; exists, a new relation exists between #; and 5. Since the
action f; has more than one relation it cannot be represented with process tree operator. In this
paper, we call a WF-net N as “bridge-less” if the short-circuited net of N includes neither bridges
nor pseudo-bridges. The fifth instance is a WF-net N5 shown in Fig. 4.2 (e). N5 has a TP-handle
t1p2taps and a PT-handle pstspet;. Since Ns is not WS and there are no operator to represent
TP-handle and PT-handle, it is not convertible. By generalizing the analysis result, we deduced

that acyclic, bridge-less and WS structure plays a core role in the convertibility problem.

4.1.2 Necessary and Sufficient Condition

We propose a necessary and sufficient condition on the convertibility problem. For this we (i)
define a subclass of WF-nets called as Process Tree Based (PTB for short) WF-net which can be
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(a) WF-net N,
t3[]
P t Pl - A{) ta
O—-O-{—O—-0
U pld Y
(b) A WF-net including a circuit (non-acyclic) N,

t3

(c) A WF-net including a bridge (non-bridge-less) N3
» to Ps  t3 m

P3 t4|_| 7

(d) A WF-net including a pseudo-bridge (non-bridge-less) N4

t5
Rt
P3 t3
tg
(e) A WF-net with a TP-handle and a PT-handle N5

Figure 4.2: Example of WF-net instances.

represented as a process tree and (ii) show the PTB WF-net is acyclic, bridge-less and WS and
(ii1) show that a WF-net is PTB, i.e. convertible to a process tree iff it is acyclic, bridge-less and
WS.

Definition 4.2 (PTB WF-net) For any process tree r, let N be the WF-net itself and N; (i=1,2,--- ,n)
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@

s T
V%
§ ¢

Figure 4.3: Process tree of N,

be the subnet in N. Each p; and py is the source place and the sink place of N, while each p;"™
and po™ is the source place and sink place of N,. See Fig. 4.18 (the broken lines illustrate the

boundaries of internal structure of WF-net N).

(i) If m is an action label, a WF-net N which consists of a transition representing the action

label and its input and output places is PTB (See Fig. 4.18 (a)).

(ii) If mis ®(ty, L2, - ,t,) then let N\, N,,--- , N, be respectively PTB WF-nets representing

action labels 11,5, - -, L.

2-1° If ® is sequence (—) then a WF-net constructed by concatenating Ni,N,,--- ,N,
which link the sink place of N; with the source place of Ni,|(1<i<n) is PTB (See Fig.
4.18 (b)).

2-2° If @ is exclusive choice (X) then a WF-net constructed by bundling Ni,N,,--- ,N,
which forms a selection of concurrent paths between their source places and sink
places is PTB (See Fig. 4.18 (c)).

2-3° If ® is parallel (N\) then a WF-net which is constructed by joining respectively all
source places with a transition t;, and sink places with a transition to of PTB WF-net
Ni,Np,--- ,N, is PTB (See Fig. 4.18 (d)).

(iii) If mis &(my, mo, -+ - ,m,) then let Ny, N,,--- , N, be respectively PTB WF-nets representing

sub-process trees my, my, - + -, .

3-1° If @ is sequence then a WF-net constructed by concatenating Ny, N,, ---, N, which
link the sink place of N; with the source place of N;,1(1<i<n) is PTB.

3-2° If @ is exclusive choice then a WF-net.
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’

(d) PTB WF-net representing A(t1,t2, -+ ,ty)

Figure 4.4: Illustration of PTB WF-net and its equivalent process tree.

3-3° If @ is parallel then a WF-net constructed by joining respectively all source places
with a transition t;, and sink places with a transition ty of PTB WF-net Ni,N,,--- , N,
is PTB. ]
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N, shown in Fig. 4.2 (a) is PTB. Let us construct N, from the process tree shown in Fig.
4.3. For —(t,,t5) we construct a WF-net composed of a path p»f, p4tsp; based on Item (ii)-a) of
Def. 4.2. For X(—(t3, 1), —(t4, 7)) we constructed a WF-net by bundling paths pst; pstsps and
P3typet7ps based on Item (iii)-b). We can obtain N; by bundling those WF-nets.

Lemma 4.1 A WF-net is PTB iff N is acyclic, bridge-less and WS. O

Proof: The proof of “if”” part: We make use of van Hee et al. [38]’s ST-net. The set S of ST-net
is the smallest set of nets N defined as follows: (i) If N is a WF-net then N € §; (ii) If N is an
acyclic MG WF-net then Ne€ §; (iii) If Ne S, pis aplace in N, and M € § is a tWF-net then
N®,M € §; (iv)If N € §, tis a transition in N, and M € §is a tWF-net then N®, M € S. We show
the following: (i) An acyclic bridge-less WS WF-net N is an ST-net. (ii) An acyclic, bridge-less
ST-net is PTB.

We first show that an acyclic bridge-less WS WF-net N is an ST-net. Intuitively, ST-nets are
constructed from SMs and MGs by means of refinement. Let N be a WF-net. Refinement of
a place p in N with a WF-net M yields a WF-net, denoted by N®, M, built as follows: p is
replaced in N by M; transitions in ’:p become input transitions of the source place of M, and
transitions in p}z become output transitions of the sink place of M. Refinement of a transition ¢
in N with a tWF-net M yields a WF-net, denoted by N®, M, built as follows: ¢ is replaced in N
by M; places in of become input places of the source transition of M, and places in fe become
output places of the sink transition of M. The dual nets [53] of WF-nets are called tWF-nets.
From the definition of WS, there are neither TP-handles nor PT-handles of any circuit in N. This
implies that N consists of a circuit ¢, PP-handles of ¢, and TT-handles of ¢. Any PP-handle
includes both terminal nodes of a TT-handle, or includes none. We can look for an SM WF-net
M as a subnet of N, which consists of PP-handles not including terminal nodes of any TT-handle.
This implies N = N®, M for some place p of a WF-net N. Similarly, any TT-handle includes
both terminal nodes of a PP-handle, or includes none. We can look for an acyclic MG tWF-net
M as a subnet of N, which consists of TT-handles not including terminal nodes of any PP-handle.
This implies N = N®, M for some transition ¢ of a WF-net N. Repeating these refinements, we

can show that N is an ST-net.

Next we show that an acyclic bridge-less ST-net N is PTB. Any acyclic bridge-less SM or
MG WF-net is obviously PTB. Let N be a PTB WF-net, ¢ a transition in N and M a acyclic
bridge-less MG tWF-net. Let M’ be a WF-net obtained by extending a place to each source
transition and sink transition in M. Since N and M’ are PTB they have process trees mn and

o N® M has a process tree by replacing transition ¢ in my with my. Therefore N®, M is PTB.
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In the similar way, N®, M is PTB.
The proof of “only if” part: If a WF-net is PTB, then it is acyclic bridge-less WS. From Item

(i1)-a) of Def. 4.2 —(ty, 12, - - - , 1,) constructs an WF-net which is a path. It is acyclic, bridge-less
and WS. From Item (ii)-b) of Def. 4.2 X(¢y,t,, - - - , ,) constructs an acyclic bridge-less SM WF-
net. It is WS. From Item (ii)-c) of Def. 4.2 A(¢y, 15, - - - , ;) constructs an acyclic bridge-less MG
WE-net. It is WS. From Item (iii) of Def. 4.2, for each operator &, &(r, 7>, - - - , 7,) constructs a
WF-net obtained by combining acyclic bridge-less WS WF-nets. Therefore the obtained WF-net
is also acyclic, bridge-less and WS. Q.E.D.

Theorem 4.1 A WF-net N is convertible to a process tree iff N is acyclic, bridge-less and WS. O

This theorem means the necessary and sufficient condition on the convertibility problem. Any
acyclic WS WF-net is sound [51], so all the acyclic bridge-less WS WF-nets are sound. This
coincides with van der Aalst’s necessary condition on convertibility. All acyclic WS WF-nets,
however, cannot always be converted to process trees because some of them have bridges. This
is the difference between van der Aalst’s necessary condition and our necessary and sufficient

condition.

By using the necessary and sufficient condition, let us decide whether N, shown in Fig. 4.2

(a) is PTB. N, is acyclic bridge-less WS. So N, is PTB i.e. convertible to a process tree.

Lemma 4.2 The following problem can be solved in polynomial time: Given a WF-net N, to
decide whether N is PTB. ]

Proof: We only have to show that each condition of Theorem 4.1 can be checked in polynomial
time. Acyclicity is obviously decidable in polynomial time (See Ref. [55]). Bridge-less property
can also be decided in polynomial time by searching for nodes connecting two parallel paths and
handles that does not split and join at the same nodes (See Ref. [50]). We can also decide in
polynomial time whether a given WF-net is WS by applying a modified version of the max-flow

min-cut technique [34]. Q.E.D.

4.1.3 Conversion Algorithm of Workflow Net to Process Tree

We can implement the given procedure with the following algorithm. The difference of the
modified DFS with regular DFES is that, if all input node en, is not finished, it will backtrack to

the node which has unfinished node(s). In regular DFS, the algorithm will proceed to the next
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unvisited node whether all its input node are visited or not. In the conversion algorithm, the input

and output node is important to decide the position of node # in the routing.

<Process Tree Conversion Algorithm>

Input: PTB WF-net, (N, [p;])

Output: Process tree formula, f;

MAKEPROCESSTREE(N, 1)
1 free¢

2 foreachne PUT
3 color(n) <« white
4 VisitNopEg(py)

5 Output f,, and stop

VisiTNoDE(n)

1 ifneT then

2 if |ne|>2 then

4 if [en|=1 and input of n is p; then
3 foe fot = C 4+ AC
4 else

5 Jo = fot 0+ NC
6  if |en|=1 and |ne|=1 then

7 p < the input node of n, g < the output node of n
8 if [pe|>2 then

9 fre ot > (C+

10 else if |eg|>2 then

11 frie fr+t W+

12 else if p=p; and g#p, then

13 e fit > (C+

14 else

15 foe fut

16 if Yu € en : color(u) is black then

17 color(n) « black

18 if |en|>2 and |ne|>2 then
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19 fr—fit )+ + > (AC
20 else if |en|>2 then

21 Jre it )+

22 else

23 if color(n) is not gray

24 color(n) « gray

25 if n € P then

26 if |ne|>2 then

27 foe fat+XC

28 if |en|=1 and |ne|=1 then

29 p < the input node of n, g « the output node of n
30 if |pe|>2 and |e¢g|=1 then

31 foefat o C

32 else if |eg|>2 and |pe|=1 then
33 e =)

34  if Yu € en : color(u) is black then
35 color(n) « black

36 if |en|>2 and |ne|>2 then

37 fr—fit) + 0+ > (XC
38 else if |en7|>2 then

39 Jo = it

40 if n=p, then

41 e ot )

42  else

43 if color(n) is not gray

44 color(n) « gray

45 if color(n) is black then

46 for each ¢ € ne then

47 VisiTNoDE(?)

This procedure can run in polynomial time because it is based on DFS, as stated in the fol-

lowing property.

Theorem 4.2 < Conversion of WF-net model to process tree> runs in polynomial time. O
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Proof : <Process Tree Conversion Algorithm> runs in polynomial time because the DFS takes
time O(|P|+|T|+|A]).

Next, an example of a conversion of PTB WF-net N to process tree f, is shown in the next

sub-section.

4.1.4 Example of Conversion

The given WF-net N; and Ny is known to be a PTB WF-net. We take both WF-nets to be

converted to process tree.
Pq

tg Pg

o, MO

Figure 4.5: PTB WF-net N,

The proposed algorithm with an application example to PTB WF-net N, is shown in Fig. 4.5.
Table 4.2 shows the table for each node visited and the process tree formula f; at certain node
progress. All nodes are recursively searched and only transition nodes is stacked into f;. The
procedure is recursively repeated until ne = (). The process tree for PTB WF-net in Fig. 4.5 can
be represented as — (t; A (—=(ta, t5), X(— (13, 1), = (14, 17)))t3). The process tree diagram is shown
in Fig. 4.3.
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Table 4.1: Algorithm execution at each nodes of N,

P | T ||Vi |I|Vol | Extend to f;
P1 0 1

Hh|1l 2 | =(HA(
P2 1 1] =

153 1 1 15)
P4 1 1

Is 1 1 Is
P 1D

Iy 2 1
P3 L] 2 | X(

£} 1 1 — (13
Ps 1 1

te 1 1 1)
Ps 2 |1

| 1 1 | >
Ps 1 1

17 1 1 t7)
Ps 2 11 1)

I3 2 1 )tg
P 1o

Conversion execution of PTB WF-net Ny is shown in Fig. 4.6 is shown in Table 4.2. The
WE-net can be represented as — (f; A (—(ta, t3)—(ty, 15, 16)t7)tgX (19, t10)t11). The process tree

diagram is shown in Fig. 4.3.

Figure 4.6: PTB WF-net N
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Table 4.2: Algorithm execution at each nodes of Ny

P | T ||Vi]||Vol | Extend to f,
D1 0 1

1 1 3 | =(HA(
P2 1 1| =(

153 1 1 153
P3 1 1

1) 1 1 1)
ps 1D

13 3 1
Ps 1 1| =

1y 1 1 14
Ps 1 1

15 1 1 |t
P17 1 1

I 1 1 tg
Ps 1 L 1)

13 3 1
P 1 1

t; 1 1 | B
P1o 1 0

13 3 1 )tg
Pl ERE

fg 1 1 19
P12 1 2

tig | 1 1|t
P> 2D

frp | 1 1|t
Pis oD

4.2 State Number Calculation

Petri net’s state number is useful for analysis method that involves behavioural analysis such
as in model checking approach. Model checking has been attracting attention as a promising
approach to analysis of Petri nets. SPIN [20], a popular model checking tool, is available only to
Petri nets with less than 1 million states, because SPIN basically enumerates all possible states
in the Petri net. We need a polynomial time solution to accurately calculate the state number of

the given Petri net before using SPIN.

In 2011, Chao et al. [56] proposed a method to calculate the number of all the possible
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(1 (1) (D

p(i) t(i) p(i)

1 1 2

Figure 4.7: Tustration of a MG; with (i+1) parallel paths. The state number is 2/+2.

states. They first transformed a given Petri net to an algebraic expression, and then calculated the
number of all the possible states by utilizing the algebraic expression. This method is, however,
available only to a simple subclass i.e. MG and State Machine (SM for short). In addition, the

computational complexity has not been discussed.

4.2.1 State Number Calculation Problem and Its Properties

In this section, we formalize a problem, named state number calculation problem [?], that cal-
culates the number of all possible states in a given Petri net. Then we reveal the solvability and
the computational complexity of the problem. The formal definition of the problem is given as

follows:

Definition 4.3 (State number calculation problem)
Instance: Petri net (N, My)

Question: How many states are there in R(N, My)? O

As an example, in the case of WF-net of MG; shown in Fig. 4.7, the problem is how many

states there are in R(IMG;, [p;]).

Let us consider the solvability of the state number calculation problem.
Property 4.1 The state number calculation problem is solvable. m]

Proof: Let (N, M,) be any Petri net. The state number calculation problem can be divided into

two cases by the boundedness of (N, M;). The boundedness problem is known to be decidable
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[52]. If (N, My) is bounded, we have only to count the nodes in the reachability tree of (N, M).
Otherwise, (if (N, My) is unbounded), we can regard |R(N, M)| as co, where VneN : co>n, co+n =
oo and co>oco. Q.E.D.

Let us consider the state number calculation problem of (MG;, [p;]) shown in Fig. 4.7. Since
(MG, p;]) 1s bounded, we can solve the problem by using its reachability tree [32]. Unfortu-
nately, (MG;, [p;]) has 2' + 2 markings. For example, to calculate the state number for the MG
with i=20, we have to count 1,048,578 markings. In general, we cannot solve the problem by

enumerating all the states in practical time.

Then, let us consider the computation complexity of the state number calculation problem.
In this paper, we assume that P and NP are not equivalent, i.e P#NP. An NP-hard problem
cannot be solved in polynomial time. We call the problem as intractable. We show that the
state number calculation problem is intractable for FC WF-nets with initial marking [p;]. To
prove the intractability, we tackle the following decision version of the state number calculation
problem: Given a Petri net (N, M), to decide whether |R(N, M)|>c0. This decision problem is
the boundedness problem. We have only to show that the boundedness problem is intractable for

FC WF-nets with initial marking [ p;].

To do so, we show that an NP-complete problem, called 3-conjunctive normal form boolean
satisfiability problem [57] (3-CNF-SAT for short), can be transformed to the complement of the

boundedness problem, i.e. the unboundedness problem of FC WF-nets with initial marking [p,].

Definition 4.4 (3-CNF-SAT [57])
Instance: Expression & of 3-conjunctive normal form that has n boolean variables and m clauses.

Question: Is there an assignment of variables satisfying E=true? ml

Lemma 4.3 The boundedness problem is co-NP-hard for FC WF-nets with initial marking [p;].
O

Proof: We prove the co-NP-hardness by a reduction from 3-CNF-SAT in a way similar to
Ref. [58]. Let & be an expression of 3-CNF-SAT which has n boolean variables x;, x,--- , x,
and m clauses ¢y, ¢;, - -+ , ¢, A literal ¢; is either a variable x; or its negation x;. Without loss of
generality, it can be assumed that & has all of x;’s and Xx;’s (i=1,2,--- ,n), and m>3 [59]. We first

construct the following Petri net Ng=(Pg, Tg, Ag).

Pg = {p1, p1, po} U Uil lgit U ULicj)
TS = {tl’ t2’ t3} U U;q:l{xi’ Yl}
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Ag = {(p1,11), (t2, P1)s (P15 13), (£3, P1)s (13, PO)}
VULt g0, (g, x0), (i, X))}
U Uy U (G, eI s the k-th literal of clause c;}
VUL (e )}

N¢g is an FC WF-net because its short-circuited net N_g is strongly connected; Places ¢, ¢;, -+ -,
¢, share only one output transition #,, and the other places share no output transition. Ng can be
constructed in polynomial time, because it consists of (n+m+3) places, (2n+3) transitions, and

(3n+4m+)5) arcs.
Let us prove that (Ng, [p/]) is unbounded iff there is an assignment of variables satisfying
E=true.

The proof of “if” part: Let o denote an assignment of variables satisfying E=true, and let

t1, 0, -+, €, be the literals mapped to true by @. By the construction of Ng, we have

[Pl [Ne,ti)[q1.92, - . qul
[Ne, Cily---C) M (> [c1,¢2, -+, cml).

We are to show that M>[cy, ¢y, -+ ,c]. Since Ng is FC, we can freely choose, at every place
gi, between letting transition .x; or X; fire. Since a satisfies &, for each clause ¢; (1<j<m), there

exists a literal ¢; (1<i<n) in c¢;. Therefore place c; is marked by firing ¢;. As a result, we have

M [Ng,t)yM’ (= M\[cy, ¢, -+, cnlUIp1])
[Ng, t3yM'U[po].

Since M'U[po] covers M’, (Ng, [p;]) is unbounded.

The proof of “only if” part: Let @ denote any assignment of variables satisfying E=false.
Since « does not satisfy &, there exists a clause ¢; (€{cy, ¢z, - , ¢,}) mapped to false by a. Let
é’{, fé, fg denote the literals in ¢;. Since the corresponding transitions 2 , fé, t’é do not fire, their
common output place, i.e. place c;, is never marked. c¢; is an input place of transition , so f, is
dead. This enables us to ignore the part following 7, in Ng. The remaining part is acyclic. Since

any acyclic Petri net is bounded, (Ng, [p,]) is bounded.
Q.E.D.

For example, let us consider the following boolean expression:

El=(x1 Vo Vi) A Vi Vi) A VXV x;)
AV X2 V) AV Vas) AV x Vi)
A1V X2V xs3)
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Figure 4.8: The FC WF-net (Ng,[p/]) corresponding to a 3-CNF-SAT expression & =
(X1 Vo Vx3) A (X1 VX Va3) A (X VX V) A (VAR Vas) A (X Ve Vas) A (X Vi Vaz) A (X Vi V).
(Ng,, [p/]) is unbounded.

&, 1s satisfiable by choosing x;=true, x,=true, x3=true. Figure 4.17 shows the Petri net Ng,

constructed from &,. (Ng,, [p/]) is unbounded, because

[Pl [Ng, t1)[q1, 92, g3]
[Ng,, x1x2x3) [€17, €27, €37, €4, €57, Co, C7]
[Ng,, ) [c1?, ¢2, €3, C5, pi ]

2
[Ng,,t3) [c17, ¢2, 3, C5, P15 PO

From Lemma 4.3, we can obtain the following theorem.

Theorem 4.3 The state number calculation problem cannot be solved in polynomial time for FC
WE-nets with initial marking [p,] if P£NP. O

Proof: The decision problem related to this problem, i.e. the boundedness problem, is co-NP-

hard. This means that the original problem is intractable. Q.E.D.
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4.2.2 Polynomial Time Procedure

In this section, we propose a polynomial time algorithm to calculate the state number by utilizing

process tree.

Lemma 4.4 Let N and & be respectively a PTB WF-net and its process tree. For each node v
of m, n(v) denotes the sub-tree of m whose root is v, N(v) denotes the subnet of N represented as

n(v), and s(v) denotes the number of possible states in N(v).

e [fvisaleaf node then

s(v) =2 4.1)
e [fvis an internal node then, let vy, v, - - -, v, be the children of v,
— Ifvis sequence (—) then )
s) = > (so) = )+ 1 4.2)
i=1
— Ifvis exclusive choice (X) then
s(v) = Zn:(s(vi) -2)+2 (4.3)
i=1
— Ifvis parallel (N) then
s(v) = ﬁ s(vi) + 2 (4.4)
i=1
O

Proof: If v is a leaf node, N(v) is a PTB WF-net which consists of one transition and its input
and output places. N(v) is illustrated in Fig. 4.18(a). (N(v), [p;]) has two states, [p;] and [po],
before and after the firing of the transition. Since |R(N(v), [p;])|=2, we have s(v) = 2 =Eq. (4.1).

If v is sequence (—), N(v) is a PTB WF-net constructed by concatenating PTB WF-nets
N(vy), N(vp), - -+ , and N(v,) so as to unite the sink place of N(v;) and the source place of N(v;;)
(1<i<n). N(v) is illustrated in Fig. 4.18(b). Let py) and p(g denote respectively the source place
and the sink place of N(v;). In N(v), [p;] (=[p'"]) is reachable to [p}’], [sz)] (=[pY1) is reachable
to [p], -+, [P (=[p%~"]) is reachable to [pY] (=[pol), because N(v1), N(v3), -+, N(v,) is
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sound. Since N(v;) and N(v;;) share only pi) (= p*"), (N(v), [p\"1) and (N(vis1), [V "]) have
different states except [pg) (= [p(”” ]). Therefore we have

1
R(N(v), [p1])
= (RN, IS DMIPY TH U -+
UR(N (1), [Py DMIPS 1) U RN (), [py"1)
IRIN), [p:))
=(RWN@), [p"DI-1) + - -
+HIRN @), [PV "DI=1) + RN ,), [P

s(v) = Z(s(vl-) ~1)+1=Eq. 4.2)
i=1

If v is exclusive choice (X), N(v) is a PTB WF-net constructed by bundling PTB WF-nets
N(vy), N(vy), - -+, and N(v,) so as to unite respectively their source places and all their sink places.
N(v) is illustrated in Fig. 4.18(c). Note that p;=p\"=p'?=-..=p" and pp=p{))=p>'=---=p{.
Since N(vy), N(v,), - - -, and N(v,) share only the source places and the sink places, (N(v;), [pgl)]),
(N(v2), [p\”]), -+, and (N(v,), [p\" 1) have different states except [p;| (=[p\"|=[p?'] = --- =

[p"]) and [po] (=[p51=[p7] = - -+ = [pV]). Therefore we have
R(N(v), [pr])

= (RN, [p"DMIP 1 [pSIH U - -
UR(N (), [P DMLP1, Lo 1) U ALl Lpol)
IRIN(), [p:])|
= (RIN@), [p"DI=2) + - --
+(R(N (), [p{"DI=2) +2

s(v) = Z(s(v,-) —2)+2 = Eq. (4.3)
i=1

If v is parallel (A), N(v) is a PTB WF-net constructed by bundling PTB WF-nets N(v;), N(vy),

-+, and N(v,) so as to have another source place and another sink place. N(v) is illustrated
in Fig. 4.18(d). p; is connected to pgl), pf,z), .-+, and p(,”) via an additional transition #;. This
means that [p;][N(v), tﬁ[pﬁ”,p?, . -,pg’”]. Since N(v;), N(vy), ---, and N(v,) share no node,

(N@), [P, (N(@2), [pP1), -+, and (N(v,), [p|”]) have different states. Therefore (N(v), [p}"

, pgz), e pg"')]) has a combination of those states. Since N(v;), N(v,), ---, and N(v,) are sound,

D @ . D @ 1 2
[pg ),p(, ), . -,pf,")] 1s reachable to [p(O),p(O), . -,p(O”)]. pg)), p(O), .-+, and pg” are connected to po

via another additional transition ¢,. This means that [p((;), pg), e pg’)][N(v), to)lpol. Therefore
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we have

R(N(v), [pr])
= RN (1), [p{"1)x: - xRN (w,), [py"DU{p1]. [pol)
IRIN (), [p:))]
= [RIN (1), [py"DI X -+ X RN (), [Py D] + 2

n

s(v) = 1_[ s(v;) + 2 = Eq. (4.4)

i=1
Q.E.D.

Based on Lemma 4.4, we propose a polynomial time algorithm to solve the problem for the
PTB WF-nets. To calculate the number of all possible states in a PTB WF-net, the proposed
algorithm utilizes its process tree. The proposed algorithm is based on Depth-First Search (DFS)
[55]. The tree traversal is in post-order. Let v be the most recently finished node' in the DFS,

s(v) is the number of state at v which is calculated. We propose the algorithm as follows:

< State Number Calculation of PTB WF-net>

Input:  Process tree m of PTB WF-net (N, [p;])
Output: State number [R(N, [p,])|

CALCULATESTATENUMBERPTBWE-NET((N, [ p;]), 7)
1 v« therootof m
2 CALCULATESTATENUMBER ()

3 Output s(v) as |R(N, [p;])], and stop

CALCULATESTATENUMBER(D)
if v is a leaf node
s(v) <« 2
ifvis ‘-’

for each child u of v

5(0) — Xchitduofo(5() = 1) + 1

1

2

3

4

5 CALCULATESTATENUMBER (14)
6

7 ifvis X’

8

for each child u of v

A node is said to be finished if all of its children nodes have been explored.
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9 CALCULATESTATENUMBER (1)
10 s(0) < Xchitduoro(s() —2) +2
11 ifovis ‘A’

12 for each child u of v

13 CALCULATESTATENUMBER (1)
14 s() < [lchitauoro S(u) +2

Theorem 4.4 The state number calculation problem can be solved in polynomial time for PTB

WF-nets with initial marking [p;]. O

Proof: Algorithm «State Number Calculation of PTB WF-net> can run in polynomial time
because it is based on DFS.
Q.E.D.

As an example, we calculate WF-net Ny shown in Fig. 4.2 (a). The process tree is [T;=A(—(1,,
15), X(—(13, 16),
—(14,17))) as shown in Fig. 4.9 (a). We apply the proposed algorithm to (Ny, [p;1]). Figure 4.9
shows the execution. For each node v, the rectangle of its right side represents s(v). (a) The
state in which v, was finished in the DFS. From equation s(v) = Y%, (s(v;) — 1) + 1 which v is
sequence (—), then we have s(v;) = (s(v3)—1) + (s(v4)—1) + 1 = 3. (b) The state in which vs was
finished. From equation s(v) = Y, ,(s(v;) — 2) + 2 which v is exclusive choice (x), then we have
s(vs) = (s(vg)—2) + (s(v9)—2) + 2 = 4. (c) The state in which v; was finished. From equation
s(v) =[], s(v;) + 2 which v is parallel (A), then we have s(v;) = s(v2)Xs(vs) + 2 = 14. Thus the
algorithm outputs 14 as [R(Ny, [p1])]-

4.2.3 Application Example

Model checking is a promising method in analysis of Petri nets. A model checking tool, SPIN
has been widely used in [60] and [61]. Yamaguchi et al. [60] utilized SPIN for the verification of
WF-net’s soundness. Hichami et al. [61] also proposed a verification method of task execution

in a process chain with SPIN.

SPIN is available to a system with less than 1 million states. Thus we apply our proposed
method so that we can decide whether we should use SPIN for a given WF-net. Figure 4.10 shows
our proposed application in model checking. Before using SPIN, we check the state number of
the input WF-net. If the state number is less than 1 million states, we can proceed to model
checking with SPIN. Otherwise, we have to use other tools or split the WF-net into parts with

less than 1 million states and proceed to model checking.
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(c) The state in which v; was finished

Figure 4.9: The execution of the proposed algorithm for the process tree of N;.
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73

State Number
Calculation

States < 1 million? No
Yes !
Use other tools
( Use SPIN ) [ or split WF-net)

End )=

Figure 4.10: Application of state number calculation.
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4.3 Behavioral Inheritance Analysis

For minor upgrade, we propose behavioral inheritance analysis. It verifies overall behavior of the
program. Based on Theorem 3.1, we construct a procedure for solving the behavioral inheritance

analysis problem.
<Backward Compatibility Verification>>
Input: Original C program m, extended C program 7n’, specification &

Output: Does n’ implement specification a?

1° Translate original program m and extended program 7" into WF-net N, and N,/ by utilizing

<Program to Petri Net’s Translation>>.

2° » N, Check if inherits the behavior of N,.
Apply the backtracking algorithm [40]. If yes, proceed to Step 3°. Otherwise, output 'no’
and stop.

3° Output yes’ and stop.

The backtrack algorithm checks the partitions of reachability tree when possible. It prunes
the search tree of partitioning (hidden partition and block partition) when possible. The algorithm
runs a fast check on those partitions based on necessary conditions that have to hold when the
WF-nets and their subnets are branching bisimilar. If the fast check fails, then they are not
branching bisimilar. As a result, the backtracking algorithm can prune the entire subtree non-
exhaustively. We can also also apply a notion called as protocol inheritance [62]. The method
can be done only by checking the structure known as handles in the Petri nets but is restricted to

acyclic extended free-choice WF-nets.
Our method is available for a wide class of Petri nets that can represent structured programs
including concurrent programs because Petri net can represents concurrent process.

As an example, let us assume there are program X and program Y. Let us consider the

behavioral inheritance of both programs. This can be formalized as Instance 6.

Instance 1
Instance : WF-net Ny (See Fig. 4.11(a)), WF-net Ny (See Fig. 4.11(b))
Question : Does Ny inherit the behavior of Ny ? O

We apply <<Backward Compatibility Verification> to program X and program Y. In Step 1°,

we first translate program X and Y into WF-net models Ny and Ny. The converted models are
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(a) WF-net Ny.
ti PI t

P) ts P: ots

(c) WF-net Ny.

Figure 4.11: WF-nets Ny, Ny and N;. Ny derived from Ny and N7 derived from Ny.

shown in Fig. 4.11(a) and (b). Next, in Step 2° we check if Ny inherits the behavior of Ny. We
apply the backtracking algorithm in Step 2-2° to check if Ny is a subclass of Nx under life-cycle
inheritance. The algorithm can traverse the reachability tree with depth-first search. Figure 4.12
shows the comparison of reachability tree R(Nx, [p}1) and R(Ny, [p;]) of Nx and Ny. The dotted
lines represent the firing sequences of the markings in the reachability tree which was added in
Ny after the evolution. R(Ny, [pf]) contains all markings and transition sequences which exist
in R(Ny, [pf,‘]). We obtained that Ny inherits the behavior of Ny because the states in Ny was

preserved in Ny. In Step 3°, the procedure outputs yes. Therefore based on Theorem 1, Ny is a
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R(Nx, [P{]) R(Nv, [P))

Figure 4.12: The comparison of reachability tree R(Ny, [pf]) and R(Ny, [pf]) of Ny and Ny.
R(Ny, [pf1]) is branching bisimilar to R(Ny, [p}]) because R(Ny, [p}]) contains all markings that
exist in R(Ny, [p¥]).

subclass of Ny under life-cycle inheritance. Therefore, Ny inherits the behavior of Ny.

Next, let us consider a new program Z where Z derived from Y. So we consider Instance 2.

Instance 2
Instance : WF-net Ny (See Fig. 4.11(b)), WF-net Nz (See Fig. 4.11(c))

Question : Does Ny inherit the behavior of Ny ? |

Similarly, we apply the procedure <«Security Protocol Compatibility Verification>. Figure
4.13 shows the comparison of reachability tree R(Ny, [pf]) and R(N,, [pf,‘]) of Ny and N,. There
exist [p{ 1[Ny, £)[pg] and [p 1[Ny, t)[pF] in R(Ny, [p]) but not in R(Nz, [p]). The procedure
outputs no because Nz is not a subclass of Ny under life-cycle inheritance. Therefore N, does

not inherit the behavior of Ny.
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R(Nv, [P R(Nz, [P))

Figure 4.13: The comparison of reachability tree R(Ny, [py]) and R(Nz, [py]) of Ny and Ng.
There exist [p} 1[Ny, £)[pF] and [p{ 1[Ny, £)[p¥] in R(Ny, [p}]) but not in R(N, [p}]).

4.4 Response Property Analysis

For major upgrade, we propose response property analysis. It verifies statement execution se-
quence. Response property [23] is a kind of liveness property that, given two transition « and g,
“whenever « is executed, then 8 has to be eventually executed afterwards”. We can generalize the
problem as if @, as, - - , @ fire, then does B4, B, - - - , B always fire? We restricted the analysis
of response property to acyclic WF-net. This restriction is reasonable because acyclic WF-nets

are applicable to analyze most actual systems.

Let £(N, My) C L(N, My) be the set of any firing sequence that transforms [p;] to any dead
marking. Note that in any acyclic WF-net N=(P, T, A), any transition can fire at most once
in a firing sequence and every marking in R(N, [p;]) eventually reaches a dead marking. For
transitions @ and S in any firing sequence, @ < 3 denotes that @ precedes 8. We assume that

every transition can fire only once. We formalize response property as follows:

Definition 4.5 (Response Property) For an acyclic WF-net N=(P,T,A), a subset Tg C T is said
to respond to a subset T, C T if V(a,B) € Ty X Tg,Yo € LIN,[p/]):a€oc=pco,a<p O

We can define a problem of deciding this property as follows:
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Price less ID Instant
$2000 Verification Acceptance

Make Order Shipping

Py
1
t; tL
Price more Manager
than $2000 Acceptance

Figure 4.14: An example workflow N; of an online ordering service.

Definition 4.6 (Response Property Problem)
Instance: WF-net N, transitions ay, @, -+ ,Qp, 81,2, , Bm Of N.

Question: Do By,5,,- - , and B, respond to a\,a;, - - , and a,? ]

Let us consider three instances of response property problem as examples. The instances is
shown in Fig. 4.14, Fig. 4.15 and Fig. 4.16. Instance in Fig. 4.14 has been considered in Sect.

1. We concretely discuss the reason in this chapter.

Instance 3
Instance: WF-net (N, [p;]), transitions t; and t; (See Fig. 4.14).

S 1 1
Question: Does t, respond to ty ? O

The answer for Instance 3 is no, because z‘é does not always fire for | p}][O', N, )[pé] because there
exists firing sequences o=t, 1, 1,15 or o=t} ¢} transforming [p;] to [pl]. Then #; does not respond
to t}. This means that Petri net structure plays an important role to the response property as

discussed in Sect. 1.

Instance 4
Instance: WF-net (N, [p%]), transitions t% and tﬁ (See Fig. 4.15).

Question: Does tf respond to t% ? O

The answer for Instance 4 is yes, because ti always fires for [p?][o; NQ)[[)%, p%, p%]. There are
firing sequences such as c=r166,13, o=111,6631; and o=115315 131: where 17 always exists in o
Then £} responds to 77. This is because the sub-marking [p3, p3] that enables 7} is reachable from

[p?]. Hence, the reachability of marking is important to the analysis of response property.
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Figure 4.16: Instance 3: WF-net Ns.

Instance 5
Instance: WF-net (N, [p?]), transitions Zf, t;’ and tg (See Fig. 4.16).

Question: Do t3 and t3 respond to t; ? O

The answer for Instance 5 is no, because 3 and ¢} only fire for [p;|[o, N2)| p3, p3, pi] when there
are firing sequences o=f;3512, o=£6,13t; and o=r1i656;. However, if 7 fires then 7] will not
fires. Then 73 and £} do not respond to #;. Note that although the marking [p3, p], p}| that enables
r; and # is reachable from [p;], it does not guarantee that 73 and £ will fire. We also need to

consider the complexity of this problem.

From the analysis result of Instances 3-5, some markings which enable the firing of the
transitions in the response property may be reachable but does not always guarantee the firing
of those transitions. Hence, we can conclude that in liveness property i.e L1-liveness [32], a
particular transition must fire at least once from any reachable markings, but in response property,

B must be guaranteed from the marking where a was fired.
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4.4.1 Decidability and Complexity of Response Property

We tackle the response property problem restricted to n=m=1, named simple response property

problem. Let us consider the decidability of the simple response property problem.
Theorem 4.5 The simple response property problem is decidable for sound WF-nets. O

Proof : Let (N, M;) be a sound WF-nets. Since the given WF-net N is sound, all markings are
reachable to [pp]. If all of the firing sequence to [pg] from a marking after @ is immediately
executed contains S, then 8 responds to . Therefore, we only need to check whether the firing
sequence to [po] from a marking after a is immediately executed contains 8 or not. Because
(N, [p;]) is bounded, we can construct the reachability tree. By using the reachability tree, it is

possible to clearly determine whether S8 exists or not. Q.E.D.

Let us consider the computation complexity of the simple response property problem. We

call the problem as intractable if it is not solvable in polynomial time.

To do so, we show that an NP-complete problem, called 3-conjunctive normal form boolean
satisfiability problem (3-CNF-SAT for short), can be transformed to the simple response property
problem of AC WF-nets.

Definition 4.7 (3-CNF-SAT)
Instance: Expression & of 3-conjunctive normal form that has n boolean variables and m clauses.

Question: Is there an assignment of variables satisfying E=true? O

Let us consider an AC WF-nets shown in Fig. 4.17. We need to check does f respond to
a? The constructed WF-nets shows that if E=true then marking [p,, p4] is reachable from [p;].
However, § will not always fires because of the conflict with . In this case, 5 does not respond

to @. We give the following theorem on the complexity:
Theorem 4.6 The simple response property problem is co-NP hard for acyclic AC WF-nets. O

Proof: We prove the NP-hardness by a reduction from 3-CNF-SAT. Let & be an expression of
3-CNF-SAT which has n boolean variables x;, x,, - - - , x,, and m clauses ¢y, ¢, -« , . A literal
¢; 1s either a variable x; or its negation x;. Without loss of generality, it can be assumed that & has
all of x;’s and x;’s (i=1,2,--- ,n), and m>3.

We construct a WF-net Ng=(Pg, Tg, Ag) with two transitions @ and B, and show that & is
satisfiable iff 8 does not respond to @ in (Ng, [p;]). Ns=(Pg, Tg, Ag) is given as follows.
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Figure 4.17: The AC WF-net (Ng,,[pi1]) corresponding to a 3-CNF-SAT expression & =
(1VxaVas) A (X1VxaVas) A (xVxVas) A (VX Vas) A (xVxaVas). & is satisfiable. 8 does
not respond to @ in (Ng, [p/])

Pg = {p1, p1> P2, P3» P1> ot VU Uiz idgit U UL e
Te = {1, 0, 13,2, 6, v} U UL {xi, X3}
Ag = {(p1, 1), (t1, p1)s (P15 22), (B3, P2), (P2, Y), (11, P3)s
(p3, @), (@, pa), (P, ), (¥, Po), (P1, B), (B, o)}
U UL i{(t2, g0, (qi> i), (qi» %))
U Uy U (G ¢l is the k-th literal of clause ¢}
UULi{(es )}

Ng, 1s an AC WF-net because its short-circuited net Ng is strongly connected; Places p, and
p4 share an output transition y while p, has another output transition g8; Places c¢i,¢, -, ¢y
share only one output transition f,, and the other places share no output transition. Ng can be
constructed in polynomial time, because it consists of (n+m-+6) places, (2n+5) transitions, and

(Bn+4m+12) arcs.

The proof of “if” part: Let u denote an assignment of variables satisfying E=true, and let

t1, 6, -+, €, be the literals mapped to true by u. By the construction of Ng,, we have

[p1]  [Ne.tit2) (g1, G2, -, Gn, P3]
[Ng, 616y ---6y) M.
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Since u satisfies &, for each clause c; (1< j<m), there exists a literal £; (1<i<n) in c¢;. Therefore

place c; is marked by firing £;i.e. M 2 [c1, ¢y, -, Cp, p3]. Let M" = M—[cy, o, -+, C, P31

M =M Ulec, ¢+, Cm p3l
[Ng, t3)M’ U [pa, p3]
[Ng, ay)M' U [po]

B is dead in (Ng, M’ U [po]). Thus, 8 does not respond to .

The proof of “only if” part: Let u denote any assignment of variables satisfying E=false.
Since p does not satisfy &, there exists a clause ¢; (€{cy, ¢z, -+ , ¢,}) mapped to false by . Let
t’{ , fé, t’é denote the literals in ¢;. Since the corresponding transitions 2 , fé, t’é do not fire, their

common output place, i.e. place c;, is never marked. c; is an input place of transition #3, so #3 is
dead. We have

[p1]  [Ne,t1) [p1, p3]
[Ne,#) [ps1UM  (YM € R(Ng, [p1])
[Ne, @) [pa] UM
[Ne, %) [psalUM"  (YM’ € R(Ng, M))
[Ne. ) [pol U M’

Thus S responds to a. Q.E.D.

For example, let us consider the following boolean expression:

E1 = (X VxVx3) A (X VX Vxs) A (X1 VX Vs)
A X1V Vx3) A (x1VxaVx3)

&, is satisfiable by choosing x,=true, x,=true, x3=true. Figure 4.17 shows the Petri net Ng,
constructed from &;. S does not respond to @, because
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[P/l [Ng,, tit2) [p1, p3l
[Ne,, x1x2x3) [c1%, €2", €3, cu, 5, p3]
[Ng,., 13) [c1. ¢3, 5%, p2, p3]
[Ne,, @) [c1, ¢, ¢5%, pa, pal

[Ng,,v) [c1,¢3, 5%, pol.

From here we can say that the decision problem related to this problem, i.e. the response
property problem is NP-hard. This means that the original problem is intractable for the class of
acyclic AC WF-nets.

4.4.2 Polynomial Time Procedure

In this section, we propose a polynomial time procedure to decide simple response property.
From Theorems 1 and 2, the response property problem is decidable but is intractable even if
it is simple. So we need a solution which can be solved in polynomial time. We utilize a
representational bias of Petri net called as process tree to solve the simple response property
problem. Process tree can be used to tackle analysis problem regarding to state space problem
[63, 25]. Compared to the abstraction method proposed in Ref. [61], process tree preserves

accurate representation of the WF-net structure.

First, let us consider the simplest form of process tree with only one parent node and »n child

nodes.

Lemma 4.5 Fora given PTB WF-net N=(P, T, A), let Ily be its process tree which has the parent
node of @ and B as a sequence operator (— ). 5 responds to « if « is on the left of B in Iy, i.e for

a=t" and p=t", i < j holds. |

Proof: If @ is —, then N is a WF-net constructed by concatenating subnet Ny, Ny, - - -, N, which

connect the sink place p! of N; with the source place p\**" of Ny, (1<k<n) (See Fig. 4.18(a)). In

Ny, Ipr] (=[p{"1) is reachable to [p}y1. [p?1 (=}, 1) is reachable to [p 1, - -, [py"1 (=[ply 1) is
reachable to [pi')')] (=lpo)), because Ny, Ns, - - -, N, is sound. i<j holds for a=1"” and =1 where

the parent node is a sequence operator. Therefore, Vo € L(N, [p;]) such that [p/][N, o)[po] and
a < B holds. Hence, g will always fire after a. Q.E.D.
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’

(d) PTB WF-net representing A(t1,t2, -+ ,ty)

Figure 4.18: Illustration of PTB WF-net and its equivalent process tree.

Lemma 4.6 For a given PTB WF-net N=(P, T, A), let 1y be its process tree and & as the parent

node of @ and B. B does not respond to a if ® is an exclusive-choice operator X. O

Proof: If @ is X, then N is a WF-net constructed by bundling Ny, N,,--- , N, which forms a

selective concurrent paths between their source places and sink places (See Fig. 4.18(b)). In
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Ny, p1= pgl): p?): cee= pﬁ") and pp= p(ol): p(oz)z cee= p(O"). Note that only one path will allow the

transition t, in N, to fires. Therefore there exists different firing sequences o, 03, - - - 0, for each
path in Ny, Ny, - - - N, for [p;]1[N,, o) po]. Hence, only either a or g will fire. Q.E.D.

Lemma 4.7 For a given PTB WF-net N=(P, T, A), let 1y be its process tree and & as the parent

node of a and B. 8 does not respond to « if @ is a parallel operator A. O

Proof: If @ is A, then N is a WF-net constructed by joining respectively all source places of
the concurrent paths with a transition #;, and sink places with a transition ¢, of PTB WF-net
Ni, Ny, -+, N, (See Fig. 4.18(c)). Since N, Ny, ---, and N, are sound, [p\", p\?, -, p\”] is
reachable to [p((;), pg), e, p((;')]. pg), p(g), -+, and p((;‘) are connected to po via another additional
transition #,. Therefore there exist partial firing sequences o=ao ;5 and o=Fo @ where o7 is all
possible firing sequences in {a,S}\T for [p(ll),p(,z), ‘.- ,pﬁ")][Nn,O')[p(Ol),pg), - ,pg”]. Hence,

based on o, 8 will not always fires after a. Q.E.D.

Based on Lemmas 1-3, we can conclude that sequence operator is important for response
property while exclusive-choice and parallel operator does not guarantee response property. The
sequence operator guarantees sequential firing of @ before 8. However, the given condition
in Lemmas 1-3 only hold for the simplest form of a process tree which is necessary but not
sufficient. Therefore, we need to consider the necessary and sufficient condition i.e when the

sequence operator is not a direct parent of & and 5.

Let us consider the following problem. Let vyca be the nearest common ancestor node of «
and S in a process tree I1 of a WF-net N where there exists the shortest path from a via vyca to
B. Does B respond to « if vyca 1S a sequence operator? We consider two case: (1) the position
of @ and 3 in the process tree; and (2) there is an exclusive-choice or a parallel operator between
the path from vyca to @ or B. Case (1): If the position of « is on the left of § in Ily, then «
will fire before g in the sequence construct in N, respectively. However, if « is on the right of g,
then B will fire before . Case (2): If there is an exclusive-choice operator or parallel operator
between vyca and @, then a will fire at least once regardless of the choice and parallel construct.
Therefore, we can ignore the operator between vyca and @. In case of the operator between vyca
and g, it is clear that in parallel construct, 8 will always fire. However, there is a case that g will

not fire in a choice construct. We can give the following theorem:

Theorem 4.7 For a given PTB WF-net N=(P, T, A) with transitions a and 3. B responds to « iff

in the process tree Iy
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(i) The nearest common ancestor vyca of @ and B is a sequence operator (—); and
(ii) The position of a is on the left of B, i.e for a=t" and p=1", i < j holds; and

(iii) There is no exclusive-choice operator (X) between the path from vycy to O

Proof: The proof of “if” part: Let us consider two cases in [1y: (1) vyca is the parent node of «
and B; and (2) vyca is a non-parent node. Case (1): If vycy is the parent node of @ and g, this
case corresponds to the precondition of Lemma 1. Case (2): Condition (i), (ii) and (iii) can be
illustrated by the process tree Iy shown in Fig. 4.19. &, denotes the ancestor nodes of « and
the descendants of vyca. @5 is defined similarly as @,. Iy can be illustrated with the WF-net N
shown in Fig. 4.20. N consists of N4, Ng and N¢. If vyca 1S a non-parent node, then @ and g is
in the different connected subnets in N. « is in N4 and § is in Np and N¢ connects Ny and Np.
t; (of Np) can always fires after @ and that S can always be enabled after #; fires since N has no

choice.

The proof of “only-if”” part: We show the proof using a process tree Iy which has a subtree

rr, with root vyca Where a and S8 are the leaf nodes.

In Condition (i), if vyca 1S not sequence (—), then vycy is either an exclusive-choice operator
X or parallel operator A. We consider two cases: (1) vyca is the parent node of @ and §; and (2)
Unca 18 a non-parent node. Case (1): If vyca is the parent node of @ and B, the proof is immediate
from Lemmas 2 and 3. Case (2): If vyca 1S @ non-parent node as illustrated in Fig. 4.19, there
exists a path from vycy via @, and @5 to a and 8. We only need to confirm the firing of 8 only
when « fires. Nevertheless, @ will fire at least once with any operator. Therefore, we can ignore
the operator of @,. We only need to consider when @=x and @z=A. If @=X, similar to Lemma
2, the firing is selective where only either transition in the subtree m, or g will fire. If ©z=A,
similar to Lemma 3, there exist partial firing sequences ao8 and fo« where there is a case when

B can fires before a.

In Condition (ii), if a is on the right of 8 then i > j. Therefore, there exists a case where 8
fires before a in N. N is acyclic, therefore the firing of each transitions is only once where there
exists no firing sequence that satisfies @ < 8 once S fires before .

In Condition (iii), if there exists an exclusive-choice operator between the path from vycy to

B such that @s=X, then £ is in an exclusive-choice construct. Therefore, there exists a case where
B will not fire. Q.E.D.
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Figure 4.19: Illustration of the proof of “only-if part” of Theorem 4.7. Theorem 4.7: In a subtree
ng of Iy, B responds to a iff (i) there are paths that lead to common ancestor node vyca= —
(dotted arrows); (ii) for @=1? and B=1", i < j holds; and (iii) @5 is not X (while @, can be any
operator).

Figure 4.20: Illustration of the proof of “if part” of Theorem 4.7.

Theorem 4.7 implies the condition to decide the response property problem. So we construct
a polynomial time procedure based on Theorem 4.7. The process tree can be traversed with
Breadth-first Search (BFS) [57]. We give the procedure as follows:
<Decision of Simple Response Property>>
Input: PTB WF-net N (=(P,T, A)), transitions o, € T.
Output: Does S respond to a?

1° Convert N into process tree IT with <<Process Tree Conversion Algorithm>>.
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2° Check Conditions (i), (ii) and (iii) of Theorem 4.7.

2-1° » Check Condition (i). Check if nearest common node vyca of @ and B is a sequence
(—) from the root of Il.
Let the p, be the path from root to & and pg be the path from root to 8. Let p¢ be the
common part of p, and pg. If the last node of p¢ is not sequence (—), then output no

and stop.

2-2° » Check Condition (ii).
Let i be the position of @ and j be the position of 5. If i > j, then output no and stop.

2-3° > Check Condition (iii).
Backtrack from S to vyca. If a visited node is exclusive-choice (X), then output no

and stop.

3° Output yes and stop.

Property 4.2 The following problem can be solved in polynomial time: Given a PTB WF-net N

with two transitions a and B, to decide whether 8 responds to . O

Proof : The «Process Tree Conversion Algorithm> takes O(|P| + |T|) and response property
check takes O(|T|) based on BFS. Q.E.D.

4.4.3 Application Example

In this section, we show an application example of our model-driven approach for software evo-
lution. We assume that we need to develop a new software based on a legacy software of the
i-Refrigerator. Some legacy software do not comply to their original design model. Thus, to
improve the software we need to regenerate the design based on its source code. The reason to
improve existing legacy software is that the users of the software are already familiar with the
interface and functions but still need to improve the performance of the software or fix it with

important security upgrades.

The program in Fig. 3.6 can be translated into Petri net with C2PNML by applying <Program
to Petri Net Translation>. The obtained Petri net is shown in Fig. 4.21. N,, represents the
control flow of program 3. Then, we implement our model-driven approach to develop a multi-
threaded program for updateDB() and at the same time preserve the same features and usability
of the program. This multi-threaded program is a requirement to improve the performance of the
updateDB() function.
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Figure 4.21: Petri net model Np,.

Based on the Petri net N,, representing program i3, the program can be divided into 4 parts
which are Block A, B, C and D. Block B and C contain the main process of the program which
includes two for blocks. These blocks run in sequence. To increase the performance of the
program, Block B and C can be rearranged to run in parallel. The program is rewritten as program
my shown in Fig. 4.22. As the result, we can obtain the model N,, as shown in Fig. 4.23. The
parallel process can be implemented with fork () statement. Statements a3, al3, al9, a20 and

a21 are important for multi-thread process in the parallel structure.

In the verification procedure, £; and X, must be satisfied. The reason why £, of 7, must be
satisfied because after thread execution of Block B in the child process, the execution must exits
properly with statement al3 of _exit(status). Then, X, must be satisfied in program m4; on
line 5 and line 23 is that after the statement a2 of scanf ("%d",&stock) ; executes, statement
al7 of setID("XC-00",1); always executes. The statements must executed according to its
original sequence as in program m3. In 73, on line 5 and line 23 is that after the statement a2
of scanf ("%d",&stock) ; executes, statement al3 of setID("XC-00",1); always executes.

We need to confirm whether the response property of m, complies with 3.
In this major upgrade, we need to check the specification shown in Fig. 4.24.

As an example, let us check if m, satisfies response properties ;. We applies <Decision of
Response Property>. In Step 1°, we check if Np, is a PTB WF-net. In Step 2°, the Petri net
model Ny, can be converted into process tree I1,. In Step 3°, we check Condition (i), (ii) and
(ii1) by traversing I1, with breadth-first search. We found that the backtrack path between a; and
ayz is path=—, A, —. There is no X in path. As the result, in Step 4°, the procedure outputs

yes. We obtained that 7, satisfies response properties X;. See Fig. 4.25 for an illustration of the
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1 void updateDB(){

2 int stock = RetrieveSQLData(); \*al*\
3 if ((pid = fork()) == 0){

4 // child process

5 for (i=1;i<=stock/2;i++)

6 {

7 if(i%2==0){

8 setID"ID: XA-00%d\n",i); \*a2*\
9 type = meat’;

10 }else{

11 setID("ID: XB-00%d\n",i); \*al®*\

12 type = packed-food’;

13}

14 usleep(300000);

15 }

16 _exit(status); \*al3*\

17 }lelse if (pid > 0){

18 // parent process

19 usleep(150000);

20 for (j=(stock/2)+1;j<=stock;j++){
21 setID("ID:XC--00%d \n",j);
22 type = vegetable’;

23 usleep(300000);

24 }

25 // wait for all child process

26 while(kill(pid,®));

27 wait(&status);

28 }

29 return 0;

30 }

Figure 4.22: A C program m4 for extended i-Refrigerator.

procedure. We can do the same for X,.

We also tested the approach to some programs that implement popular algorithms such as
backpropagation algorithm in neural network, dynamic programming such as knapsack problem
and sorting program. The program with the most statements has around 1,200 statements and
when translated to Petri net model will have 1,400 nodes. In our verification procedure, the
process tree of the Petri net model has lesser nodes which is around 670 nodes. Moreover, our
model-driven procedure for the execution sequence verification utilizes breadth-first algorithm

to the process tree which has only computational cost of O(|V| + |E]).
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Block A

Figure 4.23: Petri net model N,,.

Block D

2 : If al executes, then al3 also executes.
%, : If a2 executes, then al7 always executes.

Figure 4.24: A specification « for verifying response property.

Figure 4.25: Process tree of N,,. An example to check X;.



92 4 Model-Driven Development in Software Evolution

4.5 Remarks

In this chapter, we proposed the whole model-driven development for software evolution in de-
tails. We first gave the conversion method of Petri net to a representation bias called as process
tree. Process tree is a powerful tool to analyze Petri net which can solve state space explotion
problem. We showed that the convertibility of WF-net to process tree can be solved in polyno-
mial time. Then, we proposed the convertibility check procedure and discuss its computation
complexity. We also proposed a solution to the conversion of WF-net to process tree based on
the necessary and sufficient condition where a program structure is a bridge-less well-structure
WF-net.

Next, we proposed state number calculation to grasp the scale of a program. It is very im-
portant for analysis of software state number analysis. We shows that it is intractable for FC
WE-nets and classes bigger than FC. Then we proposed a process tree based state number calcu-
lation method for PTB WF-net. The method can be solved in polynomial time. We also proposed
a developed tools and evaluated the method. We can calculate more than 9 million states in just

a few seconds.

Then, we proposed the method to check behavioral inheritance with Petri net. We can check
whether a new program Y is backward compatible with a program Y or not by checking its
inheritance. Next, we propose response property analysis method to check execution sequence
in a program. Behavioral inheritance check is for minor upgrade and response property check is

for major upgrade.



Chapter 5

Other Application and Evaluation

5.1 Security Protocol Implementation and Its Verification

Our model-driven approach for software evolution can be applied to security protocol implemen-
tation [29, 42]. As an example, let us take an instance to concretely illustrate the application of
a security program that can be embedded to the i-Refrigerator. We take an example of a server
program in a cloud environment to gather food data from many i-Refrigerator as the clients. The
food data then can be used to automatically order ingredients that are running out or near expiry

date.

In this program, security protocol implementation plays an important role. Therefore, we

show the application for security protocol implementation in this chapter.

Instance 6
Instance : Security protocol specification a, (See Fig. 5.1), program mt; (See Fig. 5.2), program
" (See Fig. 5.3)

Question : Is a, implemented in program m," ? m|

Let us consider Instance 6. Is @ implemented in program m;"? m; is a program for a server
to listen and accept connection from multiple clients. A specification @; (See Fig. 5.1) is im-
plemented into program m; (See Fig. 5.2). Specification «a, tells the server program to listens to
any client that needs to establish a connection. Then it authenticates the connection. Once the
connection is accepted, the protocol requires the server to send an access token to its client so
a secure session can be created. Next, the server will handle the connection with the client and

closes the connection socket after the session finish. The server can also handle multiple clients.

We illustrate our software evolution as shown in Fig. 1.1. In the Operation stage let us say a

security consideration was made to a program ; after several test operations, the session autho-

93



94 5 Other Application and Evaluation

a; : Create TCP server socket
a, : Authenticate connection.
as : Accept TCP connection.

a4 - Send access token.

as : Handle TCP client.

ae . Terminate connection.

Figure 5.1: A security protocol specification a;.

rization for the clients to start network sessions was not implemented. Moreover, after sessions
are finished or failed to initiate, the program could not handle errors or terminate the connection
properly. In this case, some connections with the clients that are failed or finished with their
sessions are not terminated thus leaving open ports on the server. Hence, in the Specification
stage we specify an upgrade a; as shown in Fig. 5.1. Next, in the Implementation stage, we
enhanced the program m; with the new specification a;. The new program ;" is shown in Fig.
5.3. Then, we proceed to the Verification stage. It is important to verify whether the specification

a; 1s preserved or not in program ;.

We apply «<Backward Compatibility Verification> to program m; and m;” given in Fig. 5.2
and Fig. 5.3. In Step 1°, we first translate program ; and ;" into WF-net models N,, and N, .
The converted models are shown in Fig. 5.5(a)(b). Figure 5.4 shows N, which is already im-
plemented in N,,. Next, in Step 2° we check if N’ inherits the behavior of N,,. We apply the
backtracking algorithm in Step 2-2° to check if N,,’ is a subclass of N,, under life-cycle inheri-
tance. The algorithm traverses the reachability tree with depth-first search. Figure 5.6 shows the
comparison of reachability tree R(N,,, [p;‘]) and R(N,,’, [pf ) of N, and N,,’. The dotted lines
represent the firing sequences of the markings in the reachability tree which was added in N,,’
after the evolution. R(N,,’, [p;]) contains all markings and transition sequences which exist in
R(Ny,, [pf,(]). We obtained that N,,” inherits the behavior of N, because the states in N,, was
preserved in N,,’. In Step 3°, the procedure outputs yes. We obtained that &, implements a.

Then, finally the procedure outputs ‘yes’ and stop.

Another security software development also includes intrusion detection system develop-
ment [64, 65, 66]. The security software requires accurate implementation of security software.
Therefore, besides verifying the security protocol logical correctness, the security protocol im-

plementation is also important.
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#include <sys/wait.h>

int main(int argc, char *argv[]) {
int servSock, clntSock;

unsigned short echoServPort;

pid_t processID;

unsigned int childProcCount=0;

printf("Server Started...\n");
if(argc '= 2){
fprintf(stderr, "Port:%s\n",argv[0]);
exit(1);
3
servSock=CreateTCPSocket(atoi(argv[1]);/*al*/
AuthConn(servSock) ;/*a2*/

while(1) {
clntSock=AcceptTCPConn(servSock);/*a3*/
if ((processID=fork()) < 0) {
DieWithError ("fork() failed.");
}else if (processID=0) {
if(servsock>0){
close(servSock);
HandleTCPClient (clntSock,TOKEN);/*a4,a5*/
}
exit(0); /*a6*/
3
}
}

Figure 5.2: A program 7, implemented with security protocol a;.
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#include <sys/wait.h>
int main(int argc, char *argv[]) {
int servSock, clntSock;
unsigned short echoServPort;
pid_t processID;
unsigned int childProcCount = 0;
printf("Server Started...\n");
if(argc !'= 3){
fprintf(stderr, "Port:%s\n", argv[0]);
exit(1l);
3
servSock=CreateTCPSocket(atoi(argv[1])); /*al*/
if(AuthConn(servSock)==ADMINSOCK) { /*a2*/
printf("Admin machine connected...");
else if(SESSION_EXPIRED)close(servSock);
while(1l) {
clntSock = AcceptTCPConn(servSock); /*a3*/
if ((processID= fork()) < 0) {
DieWithError ("fork() failed.");
}else if (processID=0) {
if(servsock > 0){
close(servSock) ;
char* token=encrypt(TOKEN); /*a4*/
if(!HandleTCPClient (clntSock, token)){ /*a5*/
exit(0);
}
}else{
printf("Connection terminated...");
3
exit(0); /*a6*/
}
close(clntSock);
childProcCount++;
while(childProcCount) {
processID = waitpid((pid_t)-1,NULL,WHOANG);
if(processID < 0O)DieWithError("...");
else if(processID == 0) break;
else childProcCount--;
3
3
}

Figure 5.3: An extended program ;" of program ;.
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Figure 5.5: The translated model N,, and N,,’. Does N, inherits the behavior of N,,?
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Figure 5.6: Comparison of reachability tree of N, (above) and N,’ (below) (See Fig. 5.5).
R(N,,’, [pf]) contains all markings and transition sequences which exist in R(N,, [pf]). Thus
N,,” inherits the behavior of N,,.
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5.2 Process Tree Analysis Tool

We evaluate our algorithm with a tool we had developed named Process Tree Analysis Tool
(ProTAT) version 2.0 (See Ref. [24]). We can convert a given WF-net to a process tree, then
calculate the state number. The tool was developed with Java and Processing 2.0 and is a multi-

platform tool.

ProTAT can read Petri Net Markup Language (PTML for short). Fig. 5.7 shows the screen-
shot when reading PNML file. Then it can convert PNML file into Process Tree Markup Lan-
guage (PTML for short). The conversion from PNML to PTML converts Petri net model into
process tree as shown in Fig. 5.8. Before the conversion, a convertibility check will verify the
class of the Petri net model. If the Petri net model is PTB WF-net, then it converts the model into

process tree. Then, we can calculate the state number of the model with ProTAT [63].

We took PTB WF-nets PTB; (i=1,2,--- ,20) as experiment data (See Table 5.1). Figure 5.9
shows PTB,. PTB,,, was constructed by replacing a place of PTB; with PTB, by refinement [38]
to increase the number of parallel paths. For example, place p; in PTB; can be replaced with
PTB, itself to produce PTB,, then PTB, can be refinemented with PTB, again to produce PTB;.
The evaluation result is shown in Table 1. Based on ProTAT result, the calculation took about 32

seconds for PTB,, with over 9 million states.

The experiment was done on Ubuntu Linux with Intel Xeon 2.4 GHz processor and 4 GB

memory. Note that calculation time also includes convertibility check time and conversion time.
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Figure 5.7: Process Tree Analysis Tool version 1.0: Reading Petri net file.

Table 5.1: Size and computation time for PTB WF-net.

WF-net | |P| | |T| | |P|+|T| | State Number | Time [s]
PTB, 8 7 15 10 0.021
PTB, 15 | 14 29 28 0.041
PTBg | 43 | 42 85 568 0.246
PTBg 57 | 56 113 2,296 0.526
PTB,, | 85 | 84 169 36,856 3.333
PTBy; | 99 | 98 197 147,448 6.571
PTBg | 127 | 126 | 253 2,359,288 21.205
PTBy, | 141 | 140 | 281 9,437,176 32.319
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Figure 5.8: Process Tree Analysis Tool version 1.0: Conversion to process tree.

Figure 5.9: PTB WF-net PTB;.
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5.3 Remarks

In this section, we showed another application for our model-driven development method. We
whosed that security protocol implementation throughout the evolution with our backward com-
patibility check.

We also proposed a tool called as Process Tree Analysis Tool that can convert a Petri net
into process tree and calculate the state number. We showed the result to calculate more than 9

million states where state space explosion can occur. The tool can run in practical time.



Chapter 6

Conclusion

In software evolution, software changes through repetitive development stages. This cause vali-
dation and management of product family line to be difficult. Therefore, we proposed a model-

driven development method for software evolution that preserve the product family line.

Petri nets have been widely used for analysis of software. Once we model a system as a Petri
net, we can simulate the behavior of the system by using tokens on the Petri net. We can also
analyze the behavior of the system exhaustively by enumerating all possible token distributions
(states). Unfortunately, the number of all the possible states is of exponential order in the size
of the Petri net. We called the problem as state space explosion. In conventional ways, if we
enumerate all possible markings, it is intractable to count the number of nodes in the reachability
tree. In software development, we need a method to analyze any properties in a program such as

state number and response property. So we proposed the utilization of process tree.

In Chap. 2 we introduced software evolution, backward compatibility and the definition
of Petri net, workflow net, ST-net and process tree. We also gave an example and diagram of
workflow net and process tree. We introduced our study for software evolution which focus
on the backward compatibility of software in the evolution. We also introduced the backward
compatibility and its definition. Backward compatibility is also related to behavioral inheritance
where we gave the formal definition of behavioral definition such as life-cycle inheritance in the
preliminary.

Then, in Chap. 3 we discuss real world problem of software evolution. We know that during
the evolution of software, it is important to manage and preserve the product line of the software.
As software evolves to adapt to requirements of consumer over time, the newer version of the
software tends to become more complex. We showed that we can analyzed software backward
compatibility with Petri net. The, we proposed a reverse engineering method to translate program

into Petri net model. We also showed that a class of Petri net can represent program structure
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called as bridge-less WF-net. We revealed the property for the Petri net class.

Next, in Chap. 4 we proposed the whole model-driven development for software evolution in
details. We first gave the conversion method of Petri net to a representation bias called as process
tree. Process tree is a powerful tool to analyze Petri net which can solve state space explosion
problem. We showed that the convertibility of WF-net to process tree can be solved in polyno-
mial time. Then, we proposed the convertibility check procedure and discuss its computation
complexity. We also proposed a solution to the conversion of WF-net to process tree based on
the necessary and sufficient condition where a program structure is a bridge-less well-structure
WFE-net. This shows that our converted program is represented as sound WF-net where there are

many analysis techiques available for program analysis.

Next, we proposed state number calculation to grasp the scale of program. It is very important
for analysis of software state number analysis. We shows that it is intractable for FC WF-nets
and classes bigger than FC. Then we proposed a process tree based state number calculation
method for PTB WF-net. The method can be solved in polynomial time. We also proposed a
developed tools and evaluated the method. We can calculate more than 9 million states in just a

few seconds. We showed that we can avoid state space explosion with out method.

Then, we proposed the method to check backward compatibility with Petri net. We utilize a
model-based algorithm to check whether a new program Y inherits the behavior of program Y
or not. Next, we propose response property analysis method to check execution sequence in a
program. Behavioral inheritance check is for minor upgrade and response property check is for

major upgrade.

In Chap. 5 we proposed another application of process tree in security protocol implementa-
tion. Security protocol implementation is very important for the development of secure program
particularly related to embedded program that shares data on the network. We showed the exam-
ple for the security program of the i-refrigerator. Then, we showed our developed tool called as

Process Tree Analysis Tool and evaluated the tool.

As the future work, we would like to apply the method to various software development
including web programs, embedded programs and security software development. Also, we

would like to extend the research work to another property such as forward compatibility.
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