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Summaries

In the maritime country such us Indonesia, bathymetry data in coastal areas
is important for nautical information, coastal area zoning, conservation, and
scientific studies. Manual bathymetry survey methods use a boat and a single- or
multiple-beam echo sounder. This technique is time-consuming and becomes
hazardous in coastal areas, especially in coral reefs, creating the need for a safe and
practical method for extracting bathymetry information from these areas. As an
alternative, Multispectral Satellite Derived Bathymetry is a remote sensing
approach for mapping shallow-water depth; compared with conventional manual
survey methods, bathymetry data can be derived more quickly, cheaply, safely, and
often at a higher spatial resolution (depending on the spatial resolution of the
image).

The primary objective of this thesis was to develop a practical method to
estimate the water depth of Indonesia coral reef areas with a small number of the
in-situ measurement. The practical method was using Lyzenga’s Multispectral
Bathymetry (hear after call as “Lyzenga’s”) SDB Formula and applicable for
Worldview-2 image. In order to achieve an accurate estimation, three following
steps was performed. First, an investigation for the best atmospheric correction for
water depth estimation. Second, an evaluation of Lyzenga’s Multispectral
Bathymetry under a variety of optical conditions and bottom types. Last, build the
water depth estimation formula based on simulated-derived coefficients then test
the performance of ten coral reef sites in Indonesia.

The atmospheric noise for multispectral images plays an importance rule for
achieving an accurate Bathymetry map. The first part of this study was comparing
the effects of three common atmospheric correction methods (i.e: 6S based: Second
Simulation of a Satellite Signal in the Solar Spectrum, DOS (Dark Object Subtraction),
and Lyzenga et al., 2006 (hear after call as “Lyzenga06”)) on the accuracy of
Lyzenga’s SDB formula using WorldView-2 images of coral reef sites. It was found
that the method using radiative transfer simulation (6S) had little effect on accuracy,

whereas Dark Object Subtraction had no effect whatsoever because a homogenous
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atmosphere was assumed. Pixel-wise correction using near-infrared bands
(Lyzenga06) was the only method influencing accuracy, but it significantly reduced
the number of valid pixels. In the application, this study recommends the usage of
non-correction and Lyzenga06 correction method for each target image. Then, a
statistical accuracy comparison can be conducted for each image by using cross-
validation, as in this study.

As the second part of this study, a noiseless dataset of above-water remote
sensing reflectance from WorldView-2 images over Case-1 shallow coral reef water
was simulated using a radiative transfer model. The simulation-based assessment
showed that Lyzenga’s SDB formula performed robustly, with adequate generality
and good accuracy under a range of conditions. As expected, the influence of bottom
type on depth estimation accuracy was far greater than the influence of the other
optical parameters, namely, chlorophyll-a concentration and solar zenith angle.
Further, the Lyzenga’s SDB formula, based on the simulation dataset, estimates
depth when the bottom type is unknown almost as accurately as when the bottom
type is known. Finally, the results of this study give a better understanding on
Lyzenga’s multispectral bathymetry formula under various optical conditions and a
number of bottom types.

Attribute to the good result of Lyzenga’s SDB formula on evaluation test. A
set of coefficient from simulated dataset fitting (hear after call as “simulated-derived
coefficient”) was extracted to build the proposed depth estimation formula. Then,
the formula was validated using real Worldview-2 images from ten shallow coral
reef sites. Two pixels with known depth is needed to convert the relative depth into
absolute. The best accuracy was achieved in six sites: Panggang Islands, Gili Mantra
Islands, Badi Island, Sarappo Keke Island, Sarappo Lompo, Luwu lulu Islands, and
Badi Island. In the shallow areas, the depth estimation was fairly accurate (RMSE
0.45 - 1.66 m), but the error gradually increased with depth. For other sites, the
formula was failed (RMSE > 2 meter at any depth). This poor performance might
indicate that out zero noise assumption on simulated dataset could not represent
the actual condition. Even the tested image has pass atmospheric and surface

correction but there was an opportunity that some noise still remain. To test this
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suspicion, the simulated database was modified by added an additive noise that
represents some actual condition. Then the same procedure of extraction of a set of
a simulated-derived coefficient and the application to ten validation sites were also
performed. The estimated depth from noisy assumption formula shows better
accuracy for all the sites with 0.22- 1.96 m RMSE but the accuracy in the deeper
areas (> 5m) still unsatisfactory (RMSE 1.16-10.84 m). In conclusion, the proposed
noisy assumed simulated-derived coefficient was applicable for mapping a shallow
water area (depth < 5m) and useful for minimizing the risk in bathymetry survey in

a hazardous shallow coral reef.
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Chapter 1. Introduction

1.1. Background and Motivation

In recent years, Indonesia’s coral reef ecosystems have experienced an increase in
anthropogenic activities, some of which can have a significant impact on the physical
condition of the ecosystem. The number and magnitude of anthropogenic activities
in coastal and shallow-water areas have become a serious problem regarding the
preservation of coral reef ecosystems. By knowing the biogeochemical contents,
water clarity, bathymetry, and distribution of benthic habitats within an area, I can
estimate and analyze many aspects of the coral reef system, such as changes in
bottom type in shallow-water coral reef habitats, the accounting of natural resources,
and coastal area zoning, also known as protected marine areas. Sustainable regional
planning is required in regions with coral reefs in order to preserve coral reef

ecosystems.

Figure 1-1 Map Index of National Ocean Environment (LLN in bahasa) and Indonesia
Coastal Environment (LPI in Bahasa) (Source: BIG, 2015). LLN scale 1:500.000 (Orange
rectangle), LLN scale 1:250.000 (Cyan rectangle), LLN scale 1:25.000 (Purple rectangle),

LPI scale 1:250.000 (Blue rectangle), LPI scale 1:50.000 (Red rectangle), and LPI scale

1:25.000 (Green rectangle)



Bathymetric or water depth information is a crucial need in Indonesia as an
archipelago states. To date, a lack of bathymetry information became the main
obstacle in providing the National Ocean Environment (LLN in bahasa) and
Indonesia Coastal Environment (LPI in Bahasa) of Indonesia water. Figure 1.1 shows
the availability of those map until September 2015, where the detail map (LPI scale
1:25.000) was only cover 10 per cent of the mapping area. Indonesia’s government
has obtained their bathymetry data from survey measurements (echo sounding)
and airborne Light Detection and Ranging (LIDAR). Both methods are time-
consuming, expensive, and rely on vessel availability. Furthermore, the government
was also facing issues to access remote coral reef areas, which resulted in the
acquisition of sparse and few measurements. In these conditions, it is hard to apply
the conventional depth estimation methods that require extensive measurement
data to build an accurate model. Provide an alternative method that not required a
massive field survey data could be a solution for Indonesian Government to map the
bathymetry of their large coral reef areas. Satellite-derived bathymetry (SDB),
which maps the depth of clear shallow waters (e.g., coral reefs) using a image taken
from above and a small amount of in-situ soundings, is an efficient alternative to
conventional techniques.

Satellite-derived bathymetry (SDB) is a remote sensing approach for
estimating water depth based on the relationships between image pixel values and
corresponding depth measurements in analytical or empirical way. The SDB method
is a powerful tool for mapping shallow-water depth as, compared with conventional
manual survey methods, the bathymetry can be derived at a greater speed, lower
cost, and often at a higher spatial resolution (depending on the spatial resolution of
the remote image). These techniques are especially suitable for remote areas or
hazardous coastal areas (e.g., with high surf) where ship operations are logistically
problematic. The obvious advantages over conventional echo sounding methods
include the wide data availability, synoptic surface coverage, and high spatial
resolution. The only caveat is that remotely sensed images need to be carefully
calibrated to ensure the accuracy of extracted depth information.

The feasibility of deriving bathymetric estimates from remote sensing



imagery was first demonstrated using aerial photographs over clear shallow water
(Lyzenga 1978). The technique has been expanded to include the use of passive
optical multi-spectral satellite imagery including Landsat (Benny and Dawson 1983;
Jupp et al. 1985; Lyzenga 1981; 1985), IKONOS (Stumpf, 2003). Moreover, the ready
availability of multispectral images has made this method even more feasible. Due
to the large surface of areas (Indonesia coral reef) to map, an approach involving
multispectral remote sensing seems like an efficient and feasible way to map the
bathymetry of the Indonesian coral reef.

Over the past three decades, several empirical methods for deriving
bathymetry data from multispectral imagery have been proposed and investigated
intensively (Paredes and Spero, 1983; Lyzenga, 1985; Clark et al., 1987; Spitzer and
Dirks, 1987; Philpot, 1989; Jupp, 1989; Stumpf et al.,, 2003; Leckie et al., 2005;
Lyzenga et al.,, 2006; Daniell, 2008; Ribeiro et al., 2008; Su et al., 2008; Su et al., 2013;
Vinayaraj et al., 2016). The empirical SDB methods that utilize multispectral data
can be categorized into four main techniques: First, the stratified genetic algorithm
(SGA) is a development of the depth-of-precision (DOP) model proposed by Jupp
(1988). Second, Stumpf et al. (2003) proposed a nonlinear inversion model, which
has been modified by Sue et al. (2008) to include automated parameter calibration.
Third, in a further modification of the previous method, Sue et al. (2013) combined
nonlinear and Geographically Adaptive Inversion models; Vinayaraj et al. (2016)
combined linear and Adaptive Geographically Weighted Regression models. Both
groups aimed to handle the effects of geographic variation. Finally, the most popular
method for use in coral reef environments has been the multiple linear regression
method from Lyzenga et al. (2006) (hereinafter referred to as Lyzenga’s), which was
developed from previously proposed methods (Paredes and Spero, 1983; Lyzenga,
1985; Clark et al., 1987).

The Lyzenga method is based on the simple assumption of a linear relation
between water depth and surface reflectance. This method only requires several
pixels with known depth, reducing excessive survey work. Combining multiple
linearized (i.e., logarithm of radiance or reflectance values) visible bands and known

depth pixels into a linear formula for depth estimation, Lyzenga’s multispectral



bathymetry model has been widely used and has been successful in many
applications (Liceaga-Correa and Euan-Avila, 2002; Flener et al., 2012; Yuzugullu
and Aksoy, 2014; Pacheco et al., 2014; Manessa et al., 2016; and Vinayaraj et al,,
2016). The application of multiple combinations of bands is done to reduce the
negative effects of optical conditions, such as bottom type (i.e. green, brown, or
coralline algae species; Montipora species; Enhalus species; bright sand; rock; and
ect.) and water quality, on the estimated depth values. Despite this mitigating step,
Lyzenga (2006) posited that this method is only effective when the water quality is
less heterogeneous and the number of bottom types is less than the number of bands
used as input, which is unrealistic, especially in coral reef environments. Therefore,
the generality of this method and its robustness under varying conditions
(especially bottom types) is still an essential question.

In general way, the coefficient of the Lyzenga’s SDB formula was estimated
for each image independently using a number of in-situ measurement, as the same
ways with other SDB method (Stumpf, 2003). However, the lack availability of
number of in-situ measurement was became a limitation of generating an accurate
formula (predictor). To answer the problems, Lyzenga et al. (2006) and Kanno and
Tanaka (2012, 2013) demonstrated the application of single set of coefficient to
several different image without calibration and with fairly good accuracy. This
modification method was labelled as a generalized water depth estimation formula
or generalized formula based on Lyzenga’s SDB formula.

In this study I used different approach to build the generalized water depth
estimation. Despite using an image of a site or multiple sites like the previous study
(Lyzenga, 2006, Kanno et al. 2011, and Kanno et al. 2013), a simulated database
based method was used to extract a set of coefficient then build the generalized
formula. A simulated dataset was build based on radiative transfer theory that
represent the Indonesia coral reef environment as our study site. This simulated
dataset combined the spectral properties of a number of archived coral reef field
reflectance measurements, along with various depths and various modeled Inherent
Optical Properties (IOPs) of Case-1 coral reef water scenarios. That could cover all

the possibility of surface reflectance that might reflected from Indonesia coral reef



environment.

The multispectral image that used in this study was WorldView-2. It has eight
bands centered at 427, 478, 546, 608, 659, 724, 833 and 947 nm, which can be used
for the analysis of shallow-water coral reef ecosystems. The Worldview-2 sensor has
six visible bands, which provide higher spectral resolution than other common
multispectral imagers (e.g., GeoEye-1, WorldView-1, QuickBird, IKONOS, SPOT-5,
LANDSAT and ASTER). Common multispectral imagers with three visible bands are
less effective in identifying water depth because of the less information in the
spectral signatures. By applying the higher spectral resolution available from
WorldView-2 imagery, this research intends to estimate water depth more

accurately.

1.2. The Study Sites

The Indonesia Archipelago is touched on the Indian and Pacific Oceans as well as
many seas, including the Andaman, Java, South China, Sulawesi, Banda, and Arafura
Seas (Figure 1-1). A discontinues reef taking the shelf edge separated a large lagoon
with many patch reef from open marine settings. The total area of coral reefs in
Indonesia is about 85,707 km?, which consist of 14,542 km? fringing reefs, 50,223
km? barrier reefs, 1,402 km? oceanic platform reefs, and 19,540 km? atolls. Made
Indonesia as the largest coral reef nation in the world, which is a potential natural
resource. The large scale of this coral reef is possible because of the suitable
environmental conditions: warm temperatures, year-round sunshine, rich nutrient
supply, and clear water (Allen, 2008).

The study area, shown in is located in Indonesia. Based on geographic
boundary, our ten validation data: Gili mantra islands, Menjangan island, Gondol
Beach, Panggang Island, Badi Island, Sarapo Keke Island, Barang Lompo Islands,
Pamanggangan island, Luwu luwu Island and Sorong Island were set into five
geographic area, Seribu Islands Archipelago, North Bali Water, Gili Mantra Islands,
Spermonde Archipelago, and Papua Coastal. Each geographical area, might consist

of one until four coral reef sites, a single image was belong for each site.
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Figure 1-2 Map of Indonesia. The red circle with number indicate the location of five
geographic area used as a study site: 1. Seribu Islands, 2. North Bali Coast, 3. Gili Mantra

Islands, 4. Spermonde Islands, and 5. Papua Coast.

First, Seribu Islands are located in North of Jakarta (the capital city of
Indonesia) or Java Sea (5°24’ - 5°45’ South and 106°25" - 106°40’ East), which
consist of 110 islands. These islands are remote areas where the distance of the
nature reserve zone from Jakarta is approximately 37 nautical miles, and the nearest
island (Bidadari Island) is only nine nautical miles away. As a representative of this
location Panggang Islands (Figure 1-2) was chosen. Panggang Island is a high dense
populated island that focuses on supporting the tourism activities. Due to the
beautifulness of coral reef area, this Island became one of destination for marine
tourism in Jakarta.

Second, North Bali is the driest area in Bali Islands, due to low rainfall
intensity. This condition became a perfect condition for a coral reef to grow.
Menjangan Island and Gondol Beach (Figure 1-3) is taken as the sample of the site
that represent North Bali coral reef area. First, the Menjangan Island is a small island
(about 1.75 km2) near the western edge of Bali Island. This island is a part of 190.23
km?2 West Bali Nature Reserve area (114°26’-114°35’ East and 8°5’-8°13" South),
which conserves animal and vegetation of lowland rain forest. Second, the Gondol
Beach is high economic marine areas that been utilized for marine product

cultivation such us pearl, and grouper.



Third, the Gili Mantra Islands located on the off the coast of Lombok Island.
Geographically, it spans 116°00°-116°08’ East and 8°20-8°23’ South, encompassing
an area to the northwest of Lombok Island. The Gili Mantra Marine Natural Park
includes three islands: Gili Trawangan, Gili Meno, and Gili Air (Figure 1-4). Tourism
is the dominant economic activity in the islands, and more than 80 percent of
families are employed by tourism in some form (Graci, 2007).

Four, the Papua coast is one of the largest coral reef areas in Indonesia. It has
the marine natural resources that give it significant potential as a tourist area.
However, there are disturbing signs of degradation, primarily as a result of
destructive fishing practices (McKenna, 2002). Sorong coastal (Figure 1-5) is the
representative of Papua coral reef areas, that plan to be built as one of the
connecting port in Papua. Since this year, rapid development in sorong beach have
started begin, that can disturbing the coral reef area.

Last, the Spermonde Archipelago (locally also known as Sangkarang
Archipelago) is located on a submerged shelf along the west coast of South-West
Sulawesi, Indonesia. The coral reef based livelihoods the Spermonde Archipelago in
Southern Sulawesi can be seen as representative of many Indonesian and other
southeast Asian island groups (Glaeser, 2012). Local communities living in the area
have been parts of large trading networks for centuries, which, in combination with
a recent rapid population growth, contributed to the overexploitation of marine
resources (Ferse et al. 2012). An intensive coral reef destruction has been reported
since the past decade, creating a large area of dead coral and rubble in many of the
island (personal experience). Five islands (Figure 1-6) in Spermonde Archipelago is
used as study site represent the coral reef areas of the center-east of Indonesia
especially in Sulawesi area, namely, Badi Island, Sarappo Keke Island, Sarapo Lompo
I[slands, Pamanggangan island, and Luwu luwu Island. Beside Badi Island, the other

four of the islands are a dense habitat island.
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Figure 1-3 Worldview-2 image of Menjangan Island (upper) and Gondol Beach (Middle)
and Gondol Beach (lower) in North Bali, Bali. The red mark shows bathymetry

measurement location
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Figure 1-5 Worldview-2 image of Gili Trawangan Island, Gili Meno, Gili Air (West to East:)

in Gili Mantra Islands, Lombok. The red mark shows bathymetry measurement location.
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Figure 1-4 Worldview-2 image of Sorong Beach in Papua Coast, Papua

Barat. The red mark shows bathymetry measurement location.
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Figure 1-6 Worldview-2 image of Badi Islands (a),Luwu-luwu Island (b),Pamanggangan
Islands (c), Sarappo Lompo (d), and Sarappo Keke (e) in Spermonde Islands, Sulawesi. The

red mark shows bathymetry measurement location.
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1.3. Objectives and Outline of the Thesis

The primary objective of this thesis was to develop a practical method to
estimate the water depth of Indonesia coral reef areas that not require an intensive
in-situ measurement. The practical method was using Lyzenga’s SDB formula and
applicable for the Wolrdview-2 image. In order to achieve an accurate estimation,
three following steps was performed. First, an investigation for the best atmospheric
correction for water depth estimation. Second, an evaluation of Lyzenga’s SDB
formula under a robust optical condition. Last, build a depth estimation formula
based on fix coefficient derived from simulation dataset and Lyzenga’s SDB formula
then test the performance on ten coral reef site in Indonesia.

Lyzenga’s SDB formula is the most popular method among researchers due
to its practicality, and it became the reason why this study used this method as the
base of the developed method. The basic theory of Lyzenga’s SDB formula is
importance to be explained. Moreover, three major data was used in this study: In-
situ Bathymetry, Multispectral Image, and Simulation dataset. The detail of the data
and methodology used in this study described in Chapter 2.

It has often been suspected that the atmospheric noise influences the
performance of multispectral SDB. However, atmospheric correction performances
have rarely been quantified, especially for SDB study. Using ten WV2 images from
different coral reef sites, three common atmospheric corrections was compared. The
analysis on the influence on SDB was then analyze. The result of this comparison
study is described and discussed in Chapter 3. Moreover, since this study used WV2
images with six visible bands, then an analysis on the best pairs for SDB was left as
aresearch gap. Then, a 63 bands pair combination was tested to identify the pair for
SDB. An additional work was also done, including the analysis of bottom type
classification using the Lyzenga’s water column correction and supervised
classification. This work was done because the linearity from the Lyzenga’s SDB
formula as the main topic and the importance of knowing the effect of atmospheric
correction and spectral band improvement on bottom type classification.

The simulated based analysis was conducted to evaluate the Lyzenga’s SDB

formula that been doubt the performance using a simulated dataset of coral reef
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environment just above surface reflectance. The simulated dataset is used for three
analyses: First, Lyzenga’s SDB formula is tested on a simulated dataset that
represents a coral reef environment to determine whether Lyzenga’s assumptions
were unrealistic. In real-world data, the number of bottom types tended to exhibit
higher levels of variation than the water quality did. Second, the effect of the
quantity of bottom types present at a site is tested, representing the full range of
bottom-type diversity that might appear in coral reef environments. Third,
Lyzenga’s SDB formula is tested in the case in which the bottom type is unknown.
Ideally, the pixels with known depth used as input in Lyzenga’s SDB formula should
represent the whole range of depths and bottom types in the targeted area. However,
it difficult to obtain representative input, because of the large area or varied bottom
types of coral reef environments. Thus, this analysis becomes importance for
evaluating the performance of Lyzenga’s SDB formula. Chapter 4 describe the
ability of Lyzenga’s SDB formula under robust optical condition.

After evaluating the Lyzenga’s SDB formula, a set coefficients was extracted
from the Lyzenga’s regression model of a simulated dataset. This simulated-based
coefficient used to build a water depth estimated formula of Indonesia coral reef
environment. Thus, ten coral reef sites that represent Indonesia coral reef was used
to test the performance of simulated-derived coefficient. Chapter 5 describes the
application of simulation-derived coefficients for multispectral bathymetry
estimation formula on Indonesia coral reefs.

Chapter 6 begins with a synthesis which summarizes the most important
findings of the previous chapters. Then followed by a general discussion which aims
to put the results in the context of existing paradigms and to identify future

strategies.

1.4. Publications

Some parts of the thesis are either published or in the process of being published.
Where there are multiple authors, the thesis only contains the portion of these
works that were written by the author of this thesis. Moreover, several achieved

publication was not included in the thesis because of unrelated content.
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Chapter 2. Methodology

2.1. Lyzenga’s Multispectral Bathymetry

The theory of Lyzenga’s SDB formula is described as follows [13]. In the case of
shallow water, the radiance observed by the satellite using a visible light sensor
consists of four components: atmospheric scattering, surface reflection, in-water

volume scattering, and bottom reflection as shown in Figure 2-1.

N W Gyrface

- Bottom

Figure 2-1 Schematic view of radiance components observed by the visible sensor over

optically shallow water (Kanno, 2011).

Radiance at TOA

= Bottom Reflection + In — Water Scattering

+ Surface Reflection + Atmospheric Scattering

. . Equation 2-1
Or simply written as a symbols as
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LTOA=B+V+S+A

Then the observed spectral radiance (L) or reflectance (R) at the top of atmosphere
(TOA) is a function of the wavelength A and can be expressed as:

Lroa=(V+B=V)e *™TE+S+ 4 Equation 2-2

S A
Rroa=(V+ (B=V)e™™)T + T E Equation 2-3
where V is the in-water volume scattering reflectance at infinite depth, B is the
bottom reflectance, k is the effective attenuation coefficient, h is water depth, T is
the round-trip transmittance through the atmosphere and water surface, V is the
down-welling irradiance at the top of the atmosphere, S is the surface reflection
component, and A is the path radiance. With the exception of h, all the terms in all
equation are functions of A; however, for notational convenience then it was omitted.

Lyzenga used a simple algorithm to explain bottom reflectance in relation to
water depth and the physical properties of light. Several optical assumptions
underlying the Lyzenga's method, in particular, it assumes no large changes in water
quality and number of bottom types is less than the number of bands use as an input.
The prediction formula is an algorithm based on linear regression. Then Lyzenga
(1978) proposed a transformation to linearize approximately the relationship

between the transformed radiances and the water depth. As following

X = log(Rroa = Rroa,) Equation 2-4

At infinitive depth, the exponential function (Eq. 2-2 and 2-3) is negligible then can

be written as

S A
RTOAoo =VT + E + E Equation 2-5

Substitute Eq 2-2 and 2-5 to Equation 2-4 then following equation obtain

_ —kh
X =log (((B —V)e ) T) Equation 2-6
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Simplified into
X =—-kh+log(B-V)T

Or Equation 2-7

X=-kh+C

Where C is a term dependent on the bottom reflectance, an apparent reflectance of
deep water due to in-water scattering, round-trip transmittance through the
atmosphere and water surface, and downwelling irradiance at the top of the
atmosphere. In the case of multispectral image with m band, the variable X, k and C
are define as

X=(X;.. Xp) Equation 2-8

k=(ky.. kp) Equation 2-9

C = (log(By —=V)Ti ... log(By — Vin)m) Equation 2-10

Lyzenga’s (2006) proposed the propose a depth algorithm of the form

h= Bo+BiXy + ..+ BuXn Equation 2-11

where £, fo, --- , Bo are coefficients estimated by the least-square method using

pixels with known depth. Necessary and sufficient condition for 7 in equation 2-11 to

satisfy equation 2-10 are as follows:

M
Z Bik; = -1
i=1

M
Bo + Z Cipi=0
i—1

Equation 2-12

Ifk, V and T are homogeneous for pixel &, there exist a B that satisfies equation 2-
12, provide the number of bottom types is no greater than M. Above algebra
explanation about Lyzenga Multispectral Bathymetry was adapted from Lyzenga et

al. (2006), and Kanno and Tanaka (2011, 2012).
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In application the method was apply as following steps. The first step, above
water surface reflectance is corrected by subtracting the remote sensing reflectance

of deep water:

ReOT — R9P Equation 2-13

rs i—Rrsi_ rs |

where i is the specific WorldView-2 band. Second, the corrected surface reflectance

is linearized by taking a natural logarithm to yield X,;:

eri = lOg(ngrl.) Equation 2-14

Finally, a multiple linear regression analysis is conducted with depth (h) as
the dependent variable and the linearized surface reflectance (X,s,) as the
independent variable. X, is an image-derived variable that theoretically has a
linear relationship with depth (Paredes et al.,, 1983; Lyzenga et al., 1985). The
coefficients 8; (i=0,1,-:+,6) in Eq. (11) were estimated (calibrated) by using least
squares fitting on the training data (pixels with measured depth). In other terms, Eq.
(11) was built by using multiple linear regression analysis, using depth as the
dependent variable and the X; as the independent variables. Multiple bands of X;
were combined to reduce the effect of inhomogeneity in bottom type and water

quality.The complete multispectral bathymetry formula is summarized as follows:

h ) Equation 2-15
h=pBy— Zl’—lﬁi (log(XrSl.)) quation

where f3, is the y-offset; B; is determined by a regression analysis of depth against

linearized reflectance; and n is the number of bands.

2.2. Data

2.2.1. Bathymetry and Tidal Data

Bathymetry data were measured using a single-beam echo sounder and a
differential global positioning system (D-GPS). The measured depth data were
affected by the tide. Hence, [ need to convert the measured depth to mean sea levels

(MSL) by subtracting the measured depth from the tide level of tide gauge. The tidal
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data was based on the onsite tidal measurement and closes tidal station. Table 2.1

shoes the detail of bathymetry and tidal data in each sites.

Table 2-1 Bathymetry and Tidal data detail in each sites

Sites Bathymetry Tidal
Measurement Number of Source Source
Date Measurement
Gili Mantra 2011/09/25 3049 Personal Personal
Islands Measurement Measurement
Gondol Beach 2013/10/12 82 KKP KKP
Menjangan 2013/09/01 266 Personal KKP
Island Measurement
Panggang 2013/05/24 769 BIG BIG
Islands
Sorong Beach 2012/08/06 218 BIG BIG
Pamanggangan 2012/06/10 671 Hasanuddin BIG
Island University
Sarappo Keke 2012/06/12 273 Hasanuddin BIG
Island University
Sarappo Lompo 2012/06/12 385 Hasanuddin BIG
Island University
Luwu luwu 2012/06/12 686 Hasanuddin BIG
Island University
Badi Island 2012/06/12 302 Hasanuddin BIG
University

2.2.2. Multispectral Dataset

The WorldView-2 high-resolution commercial imaging satellite was launched on

October 8, 2009. The satellite is in a nearly circular, sun-synchronous orbit with a

period of 100.2 minutes at an altitude of approximately 770 km. WorldView-2

acquires 11-bit data in nine spectral bands covering panchromatic, coastal, blue,
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green, yellow, red, red edge, NIR1, and NIR2. The spectral response of each band is
shown in Figure 1 (Updike and Comp, 2001)

Figure 2-2 WV?2 relative spectral response [nm].

In this study, level-2 radiometric-corrected WorldView-2 imagery with six
visible bands and two near-infrared bands was used. Table 2-2 shows the imagery
information for each site. According to the formulae and directions provided by the

satellite data provider DigitalGlobe, the digital number was converted to top-of-
atmosphere radiance Lroa, and reflectance Proa; by the following formula:

_ Ki - q; .
Lroa; = A_ Equation 2-16
i

2
(LTOAi'dES .7'[)

Equation 2-17
(Esuni- lls)

Proa; —
where dgg is the Earth-Sun distance during image acquisition, Esuni is solar spectral
irradiance, and ys is the cosine of the solar zenith angle during acquisition, K; is the
absolute radiometric calibration factor for a given band, gi are radiometrically

corrected digital numbers, and Ai is the effective bandwidth for a given band.
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Table 2-2 WorldView-2 Image detail for each sites

Sites Image ID Acquisition  Sun Zenith Satellite
date [degree] Zenith
[degree]
Gili Mantra 10JAN25024728-M2AS-
052647590010_01_P001 2010/01/25 266 263
Gondol Beach - 2013/05/04 30.3 13.5
Menjangan -
sland 2011/01/17 30.3 13.4
Panggang Island 130CT05032942-M2AS- 2013/10/6 7.2 6.609
054968372050_01_P001
Sorong Beach 11JUL29020537-M2AS- 2011/7/29 6.27 7.7
054968372070_01_P001
Pamanggangan 14AUG28024013-M2AS- 2015/08/28 64.5 68.8
Island 054968372010_01_P001
Sarappo Keke 14AUG28024014-M2AS- 2015/08/28 64.5 68.8
Island 054968372020_01_P001
Sarappo Lompo 14AUG28024014-M2AS- 2015/08/28 64.5 68.8
Island 054968372020_01_P001
Luwu luwu 14AUG28024016-M2AS- 2015/08/28 64.4 68.2
Island 054968372030_01_P001
Badi Island 14NOV01024111-M2AS- 2014/11/01 71.4 64

054968372040_01_P001

2.2.3. Simulation Dataset

2.2.3.1. Dataset description

In this study, a simulated dataset was created to represent multispectral images of a
shallow coral reef environment. The simulation dataset is built based on several
assumptions specific to the conditions of the Indonesian coral reef ecosystem. First,
water is very clear with little suspended matter. Secondly, chlorophyll-a

concentration ranges 0.02-5 mg m3. Thirdly, the sky is often clear, implying that
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there is no significant noise such as cloud, haze, and smoke. Fourthly, due to the high
resolution of the spatial imagery, there is a shorter pixel mixing spectrum. Finally,
the water surface is calm with no significant white caps.

As input, Case-1 water conditions were modeled with differing combinations
of water depths, chlorophyll concentrations, solar zenith angles, and numbers of
bottom types reflectance, defines a follows. First, water depth is define as the high
of water column from the top of surface object to the water surface. Second, in the
case 1 water, the chlorophyll-a concentration was used as the main indicator to
shows the water quality, and mg/m?3 is the unit used in this study. Third, solar zenith
angle is the angle between the zenith and the center of the sun's disc. Last, bottom
types is a specific object or species cover the ocean crust and submerged, namely,
bright sand, rock, mud, green algae, brown algae, coralline algae sp., montipora sp.,
and enhalus sp..

The simulated dataset was built based on a zero noise assumption. Using the
radiative transfer model, the above water remote sensing reflectance was then
simulated according to the spectral response of each visible band of the WorldView-
2 satellite sensor. Although the WorldView-2 sensor has visible bands with
sensitivities greater than 700 nm (band 6), the majority of the spectral data available
for coral reef bottom types were limited to 700 nm. Therefore, band 6 was excluded
from further analysis. From here forward, all uses of the term “bands” refers to the
first five bands of WorldView-2, namely, the coastal blue (band 1), blue (band 2),
green (band 3), yellow (band 4), and red (band 5) bands, unless otherwise stated.

2.2.3.2. Radiative transfer model

The Lee et al. (1999) subsurface reflectance model was used to simulate the above
water remote sensing reflectance just above the surface at nadir-view. The
simulation was done from 400-700 nm at a 1-nm resolution and then rescaled to
the spectral response of WorldView-2 bands 1-5. The radiative transfer model used
to build the simulation dataset (Lee et al., 1999) was as follows:

R,s = 0.574/1 — 1.51 Equation 2-18
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where R, is the above water remote sensing reflectance just above the surface; 7.

is the modeled subsurface reflectivity; rr‘ip is the subsurface reflectance of optically
deep water (infinitive depth); p is the bottom reflectance; 6; is the subsurface solar
zenith angle; DS and D2 are the optical path-elongation factors for scattered
photons from the water column and the bottom, respectively; k is the attenuation
coefficient; and H is the depth.

The radiative transfer equation parameters depend greatly on the optical

properties of the water, which were expressed through the following equations:

rP ~ (0.084 + 0.17u(z 1))u(z 1), Equation 2-20

by(z, 1) Equation 2-21
u(z, 1) =

a(z, 1) + by (1z, 1)

k(z,A) = a(z, )b, (z, 1)L Equation 2-22
D (z,2) = {J1.03(1 + 2.4u(z, 1)) Equation 2-23
D2(z,2) ~ {/1.04(1 + 5.4u(z, 1)) Equation 2-24
by(z,4) = by, (A) + by, (z,2) Equation 2-25
a(z,A) = a,(D) +a,(z,1) + a,(z,4) Equation 2-26

where u is the backscattering diffuse attenuation ratio; a,,, a,, and a, are the
attenuation coefficients for pure water, chlorophyll-bearing particles, and covarying
yellow matter (i.e., colored dissolved organic matter; CDOM), respectively; and
by, and by, are the backscattering coefficients for water and suspended particles,
respectively. Lastly, the IOP parameters were calculated based on several equations
below.

We used a new IOP model, which has been referred to in recent publications
regarding absorption and scattering in Case-1 waters (Bricaud et al., 1998; Morel

and Maritorena, 2001; Morel et al., 2002). The model is characterized as follows:
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a,(z, 1) = AQ)[Chl(2)]ED Equation 2-27

ay(2,2) = a,(2, Ay49)el7001620"20s0)], Equation 2-28
by, (z,A) = Ep(z, Dby (z, 1) Equation 2-29
B,(z2) = 0.002+ (0.01[0.5 — 0.25l0g;,(ChI(z))]) Equation 2-30
by(z,4) = ¢,(2,1) — ay(z,4) Equation 2-31
¢, (2,2) = 0.407 [ChL(2)]°7%5(1/660)" Equation 2-32

where A and E are numerical constants (Bricaud et al., 1998); Chl(z) is the

Chlorophyll-a concentration in mgms3.

2.2,3.3. Optical conditions

The simulated dataset was built by combining the following two input steps:
a gridded step and a random step. The aim of the gridded step was to distribute the
value of each parameter evenly. Table 2-3 shows the optical conditions used through
the gridded step to create a total of 211,200 combinations. The aim of the random
step was to ensure that bottom type cases included in the random condition were
within the range of conditions that commonly appear in coral reef environments. In
this step, water depth, chlorophyll-a concentration, and solar zenith angle were set
randomly within the realistic range of optical conditions shown in Table 2-3. The
random step produced 211,200 combinations, which was equal to the output
number of the gridded step.

As a quality control measure, simulated just-above-surface reflectances with
a bottom contribution of less than 25% were excluded from the analysis, because
they are less accurate (Carder et al., 2005). The percent of bottom contribution is
the ratio of the bottom reflectance part of the remote sensing reflectance at nadir-
view just above the surface (R_rs), to the the remote sensing reflectance at nadir-

view just above the surface (R_rs), expressed in the following equation:
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Table 2-3 Optical conditions for the gridded portion of the simulation dataset.

Input Setting [units]
Depth depth = 0.5-n(n=1,3,---,39) [m]
Chlorophyll-a concentration chl = 0.02%2"2(n=1,3,--,15) [mg/m3]
Solar zenith angle sZ=3-n(n=0,3,-+,15) [degrees]
Bottom spectral reflectance Field spectra from 164 types of 5 major classes: coral, algae,
(Figure 2-3) dead coral, seagrass, and substrates from Indonesia, Japan,

and Australia. Bali, Indonesia: Hochberg et al. (2004);
Derawan, Indonesia: Nurlidiasari (2004); Spermonde,
Indonesia: Nurjannah Nurdin (Personal archive data); Japan:
Sagawa et al. (2010, 2012); Australia: Roelfsema and Phinn
(2012).

Water refractive index 1.334

2.3. Atmospheric Correction

2.3.1. DOS (Dark Object Subtraction)

The DOS model is an old atmospheric correction method that is widely used due to
its practicality. This method is based on the assumption that some pixels in an image
are in complete shadow, and radiance or reflectance values received by the satellite
for them are solely due to atmospheric scattering (Chavez, 1988). This method
implicitly assumes the homogeneity of the atmosphere. The equation for the DOS

method is as follows:

Pcpos; = proa; — PTOApaze; Equation 2-34

where p¢ pos—cosr; i the corrected reflectance for band i, and phazei is the minimum

reflectance value obtained from the histogram of each band.
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Figure 2-3. Bottom type spectra measured in the field for five different bottom cover classes.

The line color denotes the measurement location, as defined in the legend.

2.3.2. Lyzenga06 correction
Lyzenga06 correction method is used for multispectral bathymetry and bottom
classification. It does not assume the homogeneity of the atmosphere. Instead, it
assumes that the reflectance in NIR bands does not depend on water depth even in
shallow water because the attenuation coefficient is very large. Thus, this method
assumes that pixel-wise variations in NIR bands represent those in atmospheric
scattering and sea surface reflection components. If one of the two components is
dominant, a correlation between arbitrary visible band reflectance and arbitrary
NIR band reflectance is expected.

Because WorldView-2 has two NIR bands, correction can be carried out by
using one or both of them. When a single NIR band is used, the correction formula

for visible band i can be written as

Pety; = Proa; = inir-(ProaniR = PTOANIR) Equation 2-35

26



where proanirn 1S the measured TOA reflectance in the nth NIR band, pro4 nirn 1S
that averaged over the deep water pixels (the pixels belonging to the deep area in
the image, which was visually chosen in this study), and a;y;z, is the slope of the
simple regression line between visible reflectance and NIR reflectance for deep-
water pixels.

When two NIR bands are used, the correction formula is

Pcly; = Proa; — ainir1- (Proanirt — Proanir1) — Ainir- (PToANIR2 . o1 2-36
quation 2-

- ﬁTOA.NIRZ)

2.3.3. 6S code (Second Simulation of a Satellite Signal in the Solar
Spectrum)

The 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) is a famous

radiative transfer code that calculates the corrected atmospheric reflectance

(Vermote et.al., 1997) as

( 1/Tg;  ~7S'Lroa;  Pa; )
- T(05-6,); Hs*Esun  T(6s.0,); Equation 2-37
Peosi 1+ 1/Tg;  —7S"Lroa; Pa; ) 1

( (T(es- ev)i Us Esun T(es- ev)i) Si)

where Tg is total gaseous transmittance, T(6s) and T(0v 6s) are the downwelling and
upwelling of Rayleigh and aerosol scattering, respectively, pa is the atmospheric
scattering component, and si is the spectral albedo total of the atmosphere.
Although this is often misunderstood, our detailed investigation of the
current version (6SV2.1) of 6S found that it assumes a homogeneous and

Lambertian Earth surface when calculating p 65, in Eq. (6). Eq. (6) is equivalent to

the following equation:

Peesi = (Xa *Lroq —xb)/(1+ (xa * Lrog —xb) - xc) Equation 2-38
Where

xa = ((1/Tg)/(T(6s)-T(8,)))" (—ms/us* Esun) Equation 2-39

xb = p,/(T(65) - T(8,)) Equation 2-40
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XCES Equation 2-41

are the values generated by 6S.

2.4. Evaluation Criteria
The accuracy of the depth estimation was evaluated by using the statistical criteria
of the standard deviation (o), coefficient of determination (R2), and root-mean-

square (RMS) error, which can be defined, respectively, as follows:

1 o2\ Equation 2-42
o= (2. - R))
i

RZ=1— Z(hi — Ei)Z/Z(hi _ ;‘1)2 Equation 2-43
i i

0.5 Equation 2-44

n
RMS error = (Z(hi - fli)z/n)
i=1

where h; is the measured depth for the ith pixel in the test data, h; is the estimated
depth for the ith pixel in the test data, h is the mean of the measured depth over the
test data, and n is the number of test data items. A large value of R? close to 1 and a
small value of RMS error close to zero indicate satisfactory estimation accuracy. The
average R? and RMS error values for 100 instances of cross-validation were used to
assess the overall accuracy of MLR-based bathymetry with each atmospheric

correction method.

2.5. Bottom Types Classification

2.5.1.1. Lyzenga’s Water Column Correction

Transformed radiance (X) bands i and j are a linear function of water depth
(Equation 2-42) and are linearly relate each other, for a given bottom types (Lyzenga,
1981). Then If the relationship between reflectance and depth is linear and the
bottom type is constant, the scatter plot of transformed reflectance (X) bands i and j

will fall ideally in a straight line and expressed as:
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Xi=mX;j+y Equation 2-45

The slope (m) of this straight line represents the relative attenuation (%) in each
)

combination of bands. The different bottom types represented in a scatter plot should
create a similar line, the variation which indicates changes in depth. The gradient of each

line would be identical because the ratio of the attenuation coefficients (%) is independent
J

of bottom type.
The y-intercept of each line is subsequently used, independent of free of
depth, as an index of bottom type; this is known as the depth-invariance index (Yij),

which can be written as:

YVii= Xi— — X Equation 2-46

where Xi and Xj represent the transformed radiance at bands i and j,
respectively; and ki/kj is the irradiance attenuation coefficient of water in bands i
and j. The the ratio of attenuation coefficient (ki/kj) only holds when pixels of the
same object at different depths are distributed linearly for the paired bands

(Lyzenga, 1978).

2.5.1.2. Supervised Classification

The maximum likelihood classifier is a supervised classification method, which
attempts to envisage the output of the bottom-type class. The maximum-likelihood
algorithm assumes normality within the training data, and the parametric rule
should be approximated by having an appropriate sample size. If the statistical
characterization is approximated, then the image classification approach uses the
maximum-likelihood decision rule with equal probabilities of the classes
(Vanderstraete et al., 2004). The normal distribution of the statistics for each class
in each band was a basic assumption in this classification method. The assumption
is used to estimate the probability that a given pixel belongs to a particular class. The
maximum likelihood method is applied to classify the bottom-type distribution
using the depth-invariance indices, and the training area is used as the
reference/training data. The following function is calculated for each pixel

(Research System Inc., 2009):
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gi(0) —Inp(w) — Yy mmlz] = 1/5 (0 —m)'E ™ (x — my) Equation 2-47
where
i=class
x= n-dimensional data (where n is the number of bands)

p(®,) = probability that class ®; occurs in the image; it is assumed to be the same for all
classes

|2] = determinant of the covariance matrix of the data in class m;
X1 = its inverse matrix

mj= mean vector

2.5.1.3. Classification Accuracy Test

The accuracy test was referenced to thematic accuracy, which has the non-positional
characteristics of spatial data. If the data were to be subjected to hyperspectral or
multispectral classification, then thematic accuracy would correlate to classification
accuracy (Stehman, 1997). This accuracy refers to the correspondence between the
class label and the “true” class, which is generally defined as that observed on the
ground during field surveys (Green et al., 2000). In other words, it refers to how
much of the class, which is labeled as coral reef on a classified image, is a coral reef
in situ.

In this assessment, an error matrix (user accuracy) was used to identify
object accuracy, and kappa analysis used to identify statistical difference accuracy.
The accuracy of the predicted coral reef ecosystem map is represented as user
accuracy. A user of this map will find that each time an area labeled as coral reef on
the map is visited, there is only an n% probability that it is actually coral
reef (Green et al, 2000). Moreover, the kappa statistic is an estimator of n
parameters for a population of subjects and observers (Abraira et al., 1997). The
kappa coefficient was first proposed by Cohen (1990). It measures whether two (or
more) observers are independent by classifying items or observations into the same
set of n mutually exclusive and exhaustive categories. It may be of interest to use a

measure that summarizes the extent to which the observers agree in their
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classifications (Kvalseth, 2011). Based on kappa statistics, one can test whether two

datasets have statistically different accuracies (Smith, 2012).
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Chapter 3. Effect of Atmospheric Correction Methods
and Multispectral Bands for Coastal Application

3.1. Introduction

In the coral reef coastal application, the multispectral imagery able to provide the
information of bathymetry, bottom type distribution, water quality, and shoreline
change and etc. Two importance information to preserve coral reef ecosystems are
bathymetry, and bottom type distribution. By knowing the distribution of water
depth and objects within an area, we can estimate and analyze many aspects of the
coral reef system, such as changes in bottom type in shallow-water coral reef
habitats, the accounting of natural resources, and coastal area zoning, also known as
protected marine areas. Sustainable regional planning is required in regions with
coral reefs in order to preserve coral reef ecosystems. The threats to a coral reef
ecosystem are not only from within the local reef environment, but also from the
environment around it.

The first step in multispectral image analysis is to calculate a variable
proportional to the reflectance just above the water surface (we call it “corrected
reflectance” in the following) from the observed TOA (top-of-atmosphere) radiance,
for each pixel and band. This step is called “atmospheric correction.” Atmospheric
correction methods are required to obtain sufficient accuracy in multispectral
bathymetry (Martin et al., 2012, Mahiny and Turner et al., 2007).

Atmospheric correction over coastal waters is particularly challenging due
to the considerably lower signal-to-noise ratio attainable at the sensor level on
shorter wavelengths than that on land (Pacheco et al., 2015). Atmospheric
correction has proven to be a crucial step in the processing of high-resolution
images for coastal applications (Brando et al., 2009; Eugenio et al., 2015). However,
it remains unclear which atmospheric correction method is most suitable for
shallow-water bathymetry or bottom type classification.

The first aim of this chapter is to test the effectiveness of three common
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atmospheric correction methods for multispectral bathymetry and compare them
with the case where no atmospheric correction is carried out, where the corrected
reflectance is substituted by TOA reflectance. The methods tested were the DOS
(Dark Object Subtraction), Lyzenga06 pixel-wise sun-glint correction method, and a
method based on the 6S (Second Simulation of a Satellite Signal in the Solar
Spectrum; Vermote et.al, 1997) radiative transfer model. Lyzenga06 correction
method was built for shallow-water application (bathymetry and bottom-type
classification), whereas DOS and 6S code are general purpose. In this study, I
excluded commercially available atmospheric correction methods (MODTRAN,
ACORN, QUAC, and FLAASH) for the sake of generality. We were focus on identifying
the non-commercial methods that generally and widely used. We used WorldView-
2 images of five coral reef sites and the popular multispectral bathymetry method
based on MLR (Multiple Linear Regression) (Paredes (1983), Lyzenga et al., (1985))
for the test.

Several studies, for instances Kerr (2002), Lee et al. (2011), Doxani et
al.(2012), and Eugenio et al. (2015), have been carried out on SDB using WV2
imagery. Since WV2 imagery has 6 visible bands then choosing the right band
combination for SDB was also important. Kerr (2002) has revealed the best pair of
WV2 bands for the combination of linear ratio and MLR method. However,
identifying the best pair SBD was never done before. Then this study was also
examined 63 possible pairs from six visible bands of WorldView-2 image was
equally tested as an input to identify the best pair band for SDB and became the
second aims.

This paper was also call into question on the effect of atmospheric correction
and spectral bands Improvement on bottom type classification. WorldView-2 has
already been used for studies involving bottom-type identification in shallow-water
coral reef habitats. However, to the best of our knowledge, this is the first time that
bottom-type identification has been conducted using WorldView-2 imagery,
together with the Lyzenga method and the improved noise correction using the NIR

band, as the third aim of this chapter.
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3.2. Methods Overview

In attempt to do the evaluation the effect of atmospheric correction and number
multispectral bands, three following steps are performed. First, three correction
methods mentioned above were applied to ten coral reef sites in Indonesia: Gili
Mantra, Gondol Beach, Menjangan Island, Panggang Island, Sorong Beach,
Pamanggangan Island, Sarappo Keke Island, Sarappo Lompo Island, Luwu luwu
Island, and Badi Island.

The corrected reflectance obtained from each atmospheric correction
method (including the no correction cases) was used as an input to MLR-based
bathymetry. Because Lyzenga et al.’s method allows three choices of NIR bands, 1

had a total of six cases, as shown in Table 3-1.

Table 3-1 Six cases of atmospheric correction.

Case Description

1  Without atmospheric correction (non-correction case)
DOS correction
6S-based correction
Lyzenga06 correction using NIR 1 band

Lyzenga06 correction using NIR 2 band

N U1 A W N

Lyzenga06 correction using NIR 1 and 2 bands

Because our aim in this study was not actual depth mapping but accuracy
evaluation, not all pixels obtained with the measured depth were used as training
data; instead, pixels with measured depths were randomly partitioned with 80%
used as training data and 20% as test data. The random partitioning was conducted
100 times, thus defining a cross-validation.

The effectiveness of each atmospheric correction method in terms of
improving accuracy was quantified using the change from the non-correction case
with R2 (Eqg. 3-1) and the change ratio in terms of RMSE (Eq. 3-2), defined as

Agz= Rczltm.cor - R1210 atm.cor Equation 3-1
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FRMSE = (RMSEatm.cor - RMSEno atm.cor)/RMSEno atm.cor Equation 3-2

Positive values of these measures increased whereas negative values decreased.

As discussed in Subsection 3.3.2, a significant reduction in valid shallow-
water pixels resulted from the execution of certain atmospheric correction methods.
In practical bathymetric mapping, a small reduction is as important as satisfactory
accuracy. Therefore, the change ratio in the number of valid shallow-water pixels
with depth measurements (NVSPM) was also calculated:

nvspm = (NVSPMatm.cor - NVSPMno atm.cor)/NVSPMno atm.cor Equation 3-3

Second, WV2 have six visible bands, 63 different pairs (= 6 combinations one
band + 15 combinations of two bands + 20 combinations of three bands + 15
combinations of four bands + 6 combinations of five bands + 1 combination six
bands) could be used as an input for Equation 2-15. We tested the performance of
each pair to estimate the water depth.

Third, after the linearization (Equation 2-14), the known object pixels are
applied to predict the ratio of the attenuation coefficients (ki/kj); sand is used
because it is easily identified. The radiance value extracted from sand at various
depths is used as input in calculating the attenuation coefficients (ki/kj). Then, the
attenuation coefficient is calculated for each band pair. The rule of band pairing is
that a band only pairs once with another band. Thus, three visible bands create three
band pairs, while six visible bands create 15 band pairs. For each Lyzenga’s
correction method, this research derived ratios of attenuation coefficients from the
transformed radiance (X) values. Then, the variable calculated above is added to the
calculated depth-invariance index. A pair of bands is needed as an input with an
attenuation coefficient for the same band pair. Each pair of spectral bands produces
a single depth-invariant band. The data used in the classification process are the
result of the depth-invariance index derived from Equation 2-43. The inputs for the
classification process are the three and 15 depth-invariant bands from the three and

six visible bands, respectively.
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3.3. Results and Discussion

3.3.1. Atmospheric Correction on Multispectral Bathymetry

3.3.1.1. Results without Atmospheric Correction

Figure 3-1 shows a scatterplot of measured depth versus estimated depth at each
site for the case with no atmospheric correction. The Menjangan site showed poor
estimation (R? = 0.14): overestimation in shallow water and underestimation in
deep water. However, at the other nine locations, MLR-based bathymetry estimated
depth with 0.74-1.14 m RMS error and 0.73-0.96 R2. This result, with no atmospheric
correction, was used as the benchmark for evaluating the performances of

atmospheric correction methods.

3.3.1.1. DOS and 6S-based Methods

In contrast with Lyzenga06 correction method, there was no data removal from the
DOS and the 6S-based methods (Figure 3-2). Moreover, the DOS method exhibited
no effect, and the 6S-based method yielded little effect, on accuracy, as shown in
Figure 3-4. Although Martin (2012) proved that the DOS and the 6S-based methods
can satisfactorily correct for reflectance, our study indicates these methods do not
improve the accuracy of MLR-based bathymetry. Below, | investigate the theoretical
reasons for why the DOS has no effect and the 6S-based method has little influence
on accuracy.

X;, defined by Eq. (12) for the case with no atmospheric correction, written as

XnoAtmosphericCorrectioni = log(pTOAi - )5TOA ooi) Equatlon 3-4

Using Eg. (3), DOS is shown to have no effect on X; as follows:

Xposi = 10g(pcpos; = Pepose;) Equation 3-5
= log ((PTOAi - pTOAhazei) - (ﬁTOAooi - pTOAhazei))

= log (pTOAi ~ DProa °°i) = XnoAtmosphericCorrectioni
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Figure 3-1 Scatterplot of the estimated and measured depths for each site when no

atmospheric correction was applied.
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Table 3-2 Atmospheric parameters calculated by 6S for each site. Some of the products of

these parameters are also shown for discussion

Site 6S coefficients

Xa xb XC xa.xb xb.xc

Gili Mantra Islands 0.003059 0.0515 0.093568 0.000158 0.004819
Gondol Beach 0.002814 0.050741 0.093571 0.000143 0.004748
Menjangan Island 0.003329 0.048554 0.093568 0.000162 0.004543
Panggang Islands 0.00288 0.055803 0.093581 0.000161 0.005222
Sorong Beach 0.003261 0.053888 0.093586 0.000176 0.005043
Pamanggangan Island 0.003185 0.060821 0.093586 0.000194 0.005692
Sarappo Keke Island 0.003185 0.060865 0.093586 0.000194 0.005696
Sarappo Lompo Island 0.003185 0.060813 0.093586 0.000194 0.005691
Luwu luwu Island 0.003188 0.060406 0.093586 0.000193 0.005653
Badi Island 0.002871 0.05471 0.093586 0.000157 0.00512

Thus, I show that theoretically, DOS has no effect on MLR-based bathymetry.
Similarly, using Eq. (7) for 6S, I can derive

Xesi = log(pc 65; — Pc GSooi) Equation 3-6

-1 Xa'Lrpa;—Xb _ Xa'Lro aco; XD

= log (1+(Xa'LTOAi_Xb)'xC) (1+(Xa-ZTOA°OL.—Xb)-xc)
_ Lroa;~Lroaco; _

= log <1+(xa-LTOAi—Xb)L-xc) ¢

= Xnoatmosphericcorrectioni — C — log (1 —xb-xc+xa-xc- LTOAi)

where C = log (xa - (1 + (xa *Lros; ~ xb) - xc)) has a constant value for all the pixels in

an image. Because the offset change in X; in Eq. (11) does not change the linear form
of the predictor, the constant offset C does not change the result of MLR-based
bathymetry. Therefore, the effect of 6S-based correction is controlled only by the
magnitudes of products xb-xc and xa-xc . If these products are small in
comparison with unity, Xes; approaches X, ,armosphericcorrectioni—C, and MLR-
bathymetry is only slightly affected. Table 3-2 proves that these products were

considerably smaller than 1 for all tested sites, and hence explains why there was
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only a slight effect of the method on MLR-bathymetry shown in Figure 3-4. In
summary, the atmospheric correction methods with the assumption of a

homogenous atmosphere have no practical effect on MLR-based bathymetry.

3.3.1.2. Effectiveness of Lyzenga06 Correction Method

After applying each atmospheric correction method to the five sites and estimating
the water depth, the number of data items for each site was reduced, as shown in
Figure 3-2. For Lyzenga et al.’s method, a significant reduction of 2%-90% occurred.
As an example Image of Gili Mantra Islands (Figure 3-3) was chosen to visually show
the data reduction. The Lyzenga et al.’s correction method transformation generates
a non-value (NaN) pixel for two object types, which are dense seagrass and bright
sand (marked in Figure 3-3b). Sand reflectance in very shallow water does not follow
the assumption that reflectance in the NIR band is absorbed completely by the water.
Reflectance emitted from the sand in any NIR band is higher than the absorption
properties of the water. Meanwhile, the dense seagrass reflectance is similar or
slightly lower in value to the reflectance of the deep-water area, especially for low
wavelengths, i.e., coastal and blue band. The reflectance has low value and appears
dark (Figure 3-3a) because the areas of seagrass absorbed the light. Based on
Equation (2-36) of the Lyzenga et al.’s correction method, the calculated visible
bands, which are subtracted from the NIR band after multiplication with the a(A)
coefficient, produce a negative value of the log function in this case. In order to
describe the NaN pixel that appears in the Lyzenga et al.’s correction method, we

perform a simple algebraic description, as below:
log(LA); — a()ir- Lyir1 — a)iz- Lyirz) = NaN
L) < (@)io + a(Q)1-Lyri + (M) iz Lyir2), then
(LA); —a@)j1-Lyri — @) 2. Lyre) = negative value
log(L); — a(Wix- Lyirs — @M iz- Lnirz) = log(— value) = NaN
Based on above explanation, such significant reduction is known to be mainly
due to use of the NIR band. Unfortunately, the assumption that NIR band reflectance

does not depend on water depth does not hold for shallow pixels with bright

bottoms. This failure led to the overestimation of prpsnirn in Eq- (2-36) and a
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negative value of p.; — Pcoo; in Eq. (2-35). It thus became impossible to calculate the

log function in Eq. (2-14), resulting in data removal.

Sites

Badi Island ; Npoint.training.data: 181 ; Npoint.test.data: -

Gili Mantra Island ; Npoint.training.data: 1717 ; Npoint.t

Gondol Beach ; Npoint.training.data: 28 ; Npoint.test.da

Luwuluwu Island ; Npoint.training.data: 392 ; Npoint.test.data: 63 ; RMSE: 3 i R2:0.79
Menjangan Island ; Npoint.training.data: 163 ; Npoint.test.data: 43 ; RMSE: 1.43 m ; R2: 0.08
Pamanggangan Island ; Npoint.training.data: 321 ; Npoint.test.data: 63 ; RMSE: 1.83 m ; R2: 0.91
Panggang Island ; Npoint.training.data: 108 ; Npoint.test.data: 20 ; RMSE: 2.27 m ; R2: 0.77
SarappoKeke Island ; Npoint.training.data: 183 ; Npoint.test.data: 16 ; RMSE: 2.69 m ; R2: 0.87
SarappoLompo Island ; Npoint.training.data: 240 ; Npoint.test.data: 28 ; RMSE: 2.68 m ; R2: 0.85
Sorong Beach ; Npoint.training.data: 29 ; Npoint.test.data: 22 ; RMSE: 4.70 m ; R2: 0.34

Figure 3-2 Reduction in the number of valid data items as a result of each atmospheric
correction method, for each site. rINVSPM is the change ratio in the number of valid shallow-

water pixels with depth measurements.

In other cases of coral reef ecosystems with different bottom-type
characteristics, the reflectance of the bottom object is low in the NIR band. High
reflectance of bottom type in shallow water is not only due to the high reflectance of
the bottom, but also the adjacent effect. It is referred to as the effect of high
reflectance emitted from objects in the coastal area, which are very close to the
water body and being scattered in the atmosphere above the water area. The
information recorded by the satellite not only consists of information of the water
and spectral object below the surface, but also of the spectral object near the water
body.

Figure 3-4 shows two measures of accuracy change, rgysg and Agz, defined
in Egs. (3-1) and (3-2), for each site. For a fair comparison, these measures were
evaluated using only the pixels with measured depth that were not removed by any

correction method. The result showed that atmospheric correction can decrease or
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increase the accuracy of estimation depending mainly on the site in question.
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Figure 3-3 Visualization of WorldView-2 spectral reflectance; (a) Reflectance (b)
transformed radiance of band 2 (Xi) in Lyzenga’s correction. Images are represented using
the band blue.
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68 DOS Lyzenga06.NIR1  Lyzenga06.NIR12 | Lyzenga06.NIR2

rRMSE AR2 TRMSE AR? TRMSE AR? TRMSE AR? TRMSE Ag2
variable

Badi Island ; Npoint.training.data: 179 ; Npoint.test.data: 45 ; RMSE: 2.73 m ; R2: 0.87

Gili Mantra Island ; Npoint.training.data: 893 ; Npoint.test.data: 224 ; RMSE: 0.86 m ; R2: 0.81
Gondol Beach ; Npoint.training.data: 9 ; Npoint.test.data: 6 ; RMSE: 2.42 m ; R2: 0.46
Luwuluwu Island ; Npoint.training.data 2 - Npoint.test.data: 99 ; RMSE: 4.07 m; R2: 0.79
Menjangan Island ; Npoint.training.da ; Npoint.test.data: 24 ; RMSE: 1.33 m ; R2: 0.13

Pamanggangan Island ; Npoint.training.data: 265 ; Npoint.test.data: 67 ; RMSE: 1.98 m ; R2: (
Panggang Island ; Npoint.training.data: 102 ; Npoint.test.data: 26 ; RMSE: 2.59 m ; R2: 0.66
SarappoKeke Island ; Npoint.training.data: 183 ; Npoint.test.data: 46 ; RMSE: 2.88 m ; R2: 0.82
SarappolLompo Island ; Npoint.training.data: 240 ; Npoint.test.data: 60 ; RMSE: 2.85 m ; R2: 0.82
Sorong Beach ; Npoint.training.data: 10 ; Npoint.test.data: 8 ; RMSE: 12.33 m ; R2: 0.19

Figure 3-4 The RMSE change ratio (rruse) and Rz change (Arz) from the non-correction case

for each atmospheric correction method and site. The summary of MLR-based bathymetry

for non-correction case is shown in the legend.

The ranges of the RMSE change ratio (rgysg) and the R2 change (Agz2) were -
0.17-0.39 and -0.13-0.13, respectively. These minimum and maximum values were
obtained from the Gondol Beach and Sorong site. This sites had a very small amount
of data (15 points: nine for training and six for validation for Gondol Beach and 18
points: ten for training and eight for validation for Sorong Beach) that may have
yielded unstable results. If [ ignore this site, the ranges were -0.08-0.05 and -0.06-
0.035, respectively.

As described in Section 2.3, Lyzenga et al.’s correction method theoretically
assumes a linear relationship between each visible band and NIR bands in deep
water. We investigated whether site-dependent variations in rgysp and Agz2 were

related to how well the assumption held. For this purpose, 1 defined a new
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variable RZ, which is the band-averaged value of R? of the regression line (described
in Section 2.3) that relates each visible band reflectance value with NIR band
reflectance, and was built using deep-water pixels. This RZ can also be described as
the square of the correlation coefficient of visible band reflectance with NIR band
reflectance for deep-water pixels. Thus, RZ indicates how well the assumption by
Lyzenga et al. (2006) holds.

Figure 3-5 shows scatterplots between RZ and rgysz and also RZ and Age.
If T exclude the Gondol Beach and Sorong Beach site, which had unstable rzyss and
Ap2 values as described above, the difference in rgy g between the best and worst
sites, for a specific NIR band combination, ranged from 0.054 - -0.085, whereas that
in Apz ranged from 0.0314 - -0.062. The rgysr and Agzz values of each band
combination may seem to have had negative and positive correlations with R2,,
respectively, encouraging the hypothesis that the performance of Lyzenga06
method depends on the soundness of their theoretical assumption. However, as |

only had three sites, this hypothesis requires further analysis with a greater number

of sites or images.

Method ¢ LyzengaNIR1 4 Lyzenga.NIR12 ® Lyzenga.NIR2

Menjangan Island

Pamanggangan Island

Figure 3-5 Scatterplot between R%, (band-averaged value of the square of the correlation
coefficient between visible band reflectance and NIR band in deep-water pixels) versus

RMSE change ratio (rrumsg) and R2 change (Ar?).
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In Figure 3-5, we can observe that the best NIR band combination depended
on the site. The combination of two NIR bands did not always yield the best result.
Excluding the unstable Gondol Beach site, the difference in rzy s between the best
and worst combinations ranged from 0.019 - -0.043, depending on the site. That in
Ag2 ranged from -0.004 - 0.0314. These values were in the same order of magnitude
as the differences between the best and worst sites shown above. Because the effect
of the NIR band combination was shown to be as large as that of the site (or the
image), | recommend carefully choosing the best combination for each site by a

statistical method (e.g., cross-validation).

3.3.2. Best combination bands for SDB

Figure 3-6 - 3-8 shows the performance of SDB under 63 possible combinations of
Worldview-2 bands for nine sites, Gili Mantra Islands, Menjangan Island, Gondol
Island, Badi Island, Pamanggangan Island, Panggang Island, Lululuwu Island,
Sarappo Keke Island, and Sarappo Lompo Island. As a result, the rank of the best pair
is varied between each tested site. Thus, this result needs to be interpreted with
caution as a following. In contrast with the previous study (Kerr, 2002), the best
performance was not always given by the usage of all the visible bands. Although six
visible bands of WV2 were expected to estimate the depth accurately, it was not
predicted that the six bands would also give the best accuracy compared with less
number of bands as an input. This is not particularly unexpected considering that
some bands contain more noise or less bottom reflectance information than other,
such as RedEdge bands having less bottom reflection information especially in the
deeper depth due to high absorption value.

Interestingly, for evaluated sites the usage of band green, yellow, and red
shows better estimation accuracy. Meanwhile, the other bands namely coastal, blue,
and rededge had a tendency to give the adverse effect of poor estimation accuracy.
As shown in Figure 3-6 - 3-8, even though the short wavelength namely coastal and
blue band are sensitive to water depth and penetrate into the deeper water, the high
noise is also included. This problem is an issue of WV2 coastal band that claims to

be useful for shallow-water mapping.

44



Gili Mantra Island Gondol Beach | Menjangan Island
o

o))

(83,22 e)'02 I}
OXOO Ny
(@2 o)

U
on
<09
o>

(@]
PO

o 0 0o @

O~ O
C OO

5

&) iVe) 0)!

B o1

N
PN
oo
eo®

PO~

....‘...Q.....00.00'00'000.0

N

Cnmn<

s 0.
) ;U/;Em WG

N oW
mgg%§<mmm§m<
..‘.oo. b
°

ORON)

'OOQAN@AGQNA@QAN
200
EyoloYoXs)

N
to®o00oeoe0p0

A _ya =y b

L

SopSopme®

(¢
O—..ooo.,o.ooo.o....'.'o.o'.'ooot’co

Bar Graph : RMSE in meter Bar Graph Legend
@ Coastal Green Red

Dot Graph: R‘, Blue Yellow RedEdge

Figure 3-6 Graph of SDB estimation accuracy of SDB of 63 combination bands of Gili Mantra
Island, Gondol beach and Menjangan Islands. The color bar is the RMSR in meter, and black
dotis R2. Example: 01.CBYGRRed is combination number 1 consisting of Coral, Blue, Yellow,

Green, Red, and Red Edge bands, for Gili [slands the RMSR is 0.8 m and R2 is 0.9.

45



Panggang Island

c
©
»
c
@
o)
c
@
)
@)
c
@
£
©

EEGIEENRE

oooo-oo-ooooc.o-.oooooooo.o-o.ooooo-ooo-oooooooooooo.o.ooor.om-

000y 000000000%3,000 00003058090 ,00000,,02000000%°00,000F%500c0020
L [ ]

® eoe e ° 'YL o?o8
e® o o®o o0 ® °® * °®

. .
1 | | LI | 1

o [0 DO UY OUY V>~ O > U>-(HVVLIY VOUY O UY>-VVLLVY D

%RZW%%MR%W%BWI% O P e o O (S o S A P P (P Y o (PP P P Y

03 ODOL> O A R SG06 oL XA~(DA>- 0 D> OO D> D> O Y E>-(

-~ O OO0 O+, ¢ g S d A N o

© _/654%154474444%9%%43%0@87C543Yé8\.8C§YYY8DU\.

T e) <t OO0 7§%8§4%BEB§4%1C%SBBB%

4 0 N N A= OO (ORS00~

AN v~ T «— 7@;3430C

OO0

o

[tpllo]

value

o
S
,’L
G
°
[a]

Figure 3-7 Graph of SDB estimation accuracy of SDB of 63 combination bands for Badi

I[sland, Pamanggangan Island, and Panggang Island.
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Figure 3-8 Graph of SDB estimation accuracy of SDB of 63 combination bands for
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47



3.3.3. Effect of Lyzenga06 Correction Method and Spectral Improvement
on Bottom Types Classification
In the Gili Mantra Islands site, sand, rubble, seagrass, and live coral reefs were the
most abundant bottom types in the shallow coral reef ecosystem. Although these
features have different spectral characteristics and they can be separated as
homogeneous pixels, in reality, there can be significant intermixing between them,
even with spatial resolution of 2 x 2 m. Furthermore, complex feature combinations,
categorized as mixed bottom type, define inseparable objects in the field
observations. A training point for five bottom types was created as a reference for
the maximum likelihood classification Based on combinations of the depth-invariance
bands from non-correction and Lyzenga0O6 correction methods, using different
numbers of visible bands, the classification results were obtained (Figure 3-9).
Visual interpretation of Figure 3-9-a and 3-9-b, based on the combined
depth-invariance indices of the three visible bands, shows a complex distribution,
but most of which is misclassified. Both methods for this number of visible bands
show the misclassification of rubble and seagrass. The combined depth-invariance
indices of the three visible bands are unable to separate this information because
seagrass and rubble are always presented with different percentage cover in each
pixel. Figure 3-9-c and 3-9-d shows that the combination of depth-invariance indices
for the six visible bands for each method could differentiate the coarse bottom-type
classification. The mixed bottom type is frequently misclassified as seagrass;
however, in the Lyzenga06 correction, the number of misclassifications is reduced.
The techniques of accuracy assessment are based on statistical calculations
derived from the confusion matrix, which compares the output of classified and
control pixel data. Classification accuracies for each method, obtained with
WorldView-2 imagery, are provided in Table 3-3, together with the overall accuracy
and kappa coefficient. Individual bottom types exhibit different classification
accuracies. Values of class definition similarity, at the coarse descriptive level, vary
from 58% to 98%. These numbers represent the degree of uniformity among the
factors defining each bottom type class. For instance, rubble is always very well

classified (e.g., 93% to 98% user accuracy). Conversely, mixed bottom is poorly
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classified with the combined depth-invariance indices of the three visible bands (i.e.,
66% to 69%), but the accuracy is higher for the six visible bands (i.e., 74% to 80%).
The trigger could be because of the heterogeneity of bottom objects and because the
low spectral data of mixed objects does not allow the objects to be separated
accurately. The accuracy of identification of sand and seagrass is high (i.e., 72% to
97%) for both methods and combined depth-invariance indices. Coral identification
exhibits wide variation in accuracy (i.e., 58% to 86%). The highest overall accuracy
of WorldView-2 imagery analysis is achieved using the Lyzenga81 correction
method with the combined depth-invariance indices of the six visible bands. This
achieved an overall accuracy of 90% and it remained significantly high throughout
the analysis (>80%) for each bottom type. The value of the overall kappa statistic
exhibits a moderate value (0.71 and 0.73) for the application of three visible bands
and it is high for the application of six visible bands (0.81 and 0.86). This statistic
estimates the percentage of successful classifications compared with a random

chance classification assignment.

Table 3-3. Comparison of accuracy of bottom-type identification.

Non-correction Non-correction
Lyzenga06 with . .. Lyzenga06 with . ..
.. with 3 Visible .. with 6 Visible
3 Visible Bands 6 Visible Bands
Bands Bands
Coral 78.08% 58.46% 88.56% 89.22%
Mix Bottom 60.49% 62.57% 76.45% 87.61%
Rubble 99 80% 100.00% 100.00% 100.00%
Sand 90.18% 80.35% 94.02% 94.46%
Seagrass 90.97% 93.40% 90.97% 93.40%
Overall Accuracy 89.31% 92.86% 89.31% 92.86%
Kappa 0.87 0.91 0.87 0.91

Based on the classification results for all the cases, the rubble is located
relatively close to the shoreline, as is seagrass that is mixed with rubble and sand in
numerous parts of the island. On the other hand, corals were identified along the

edge of the shallow area bordering the deeper water (escarpment area).
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Figure 3-9 Image Classification of Bottom Type in Gili Mantra Islands. (Upper Right) Non-

correction method with three bands, (Bottom Right) Lyzenga06 correction method with
three bands, (Upper Right) Non-correction method with six bands, (Bottom Right)

Lyzenga06 correction method with six bands

Table 3-4 shows that the most influential factor for improving the accuracy
in this case is spectral resolution rather than the method of image noise correction.
The improvement of spectral resolution from three to six bands could enhance the
overall accuracy by 28% and 16% for the non-correction and Lyzenga06 correction
methods, respectively. On the other hand, it is not clear which noise correction
method gives better overall accuracy; the Lyzenga06 correction method is slightly
(2%) better for the case with three bands and the Lyzenga06 correction method is
slightly (4%) better for the six band case. However, the noise correction method
significantly affects the classification accuracy for some bottom types. For example,
the accuracy for coral in the three-band case changes by 10% depending on the
choice of the noise correction method. For the three visible bands, many

misclassifications occur for both methods and each object except rubble.
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Table 3-4. Effect of improvement on accuracy.

Improvement by Improvementby Improvementby Improvementby

Lyzenga’s Lyzenga’s Spectral Spectral
Method in 3 Method in 6 Coverage in non- Coverage in
Visible Bands Visible Bands correction Lyzenga06
Coral 19.62% ~0.66% 30.76% 10.48%
Mix Bottom ~2.08% ~11.16% 25.03% 15.96%
Rubble ~0.20% 0.00% 0.00% 0.20%
Sand 9.83% —0.43% 14.10% 3.84%
Seagrass ~7.38% ~2.44% 2.98% 7.92%
Overall Accuracy 2.45% ~3.55% 14.57% 8.57%
Kappa 0.03 ~0.04 0.18 0.10

Theoretically, the Lyzenga06 correction method is able to increase the
accuracy of bottom-type identification. However, the enhanced method could only
improve the low spectral resolution, whereas for the high spectral resolution, this
method reduces the accuracy. Additionally, the result shows that the non-correction
algorithm is the best method for identifying bottom type using the applied combined
depth-invariance indices of the six visible bands in the Gili Islands’ shallow-water
coral reef ecosystem. The trigger could be because the NIR band applied in the
Lyzenga(06 correction is sensitive to bottom spectral reflectance and the adjacent
effect; thus, the theory does not hold for correcting sea-surface scattering and
atmospheric noise. In summary, spectral resolution is more important than noise
correction for improving the accuracy of bottom-type identification.

The classification level applied in this research is a coarse description of the
bottom type (e.g., coral, seagrass, rubble, sand, and mixed bottom). It is possible to
implement an intermediate-fine description classification level using high-
resolution WorldView-2 imagery, if supported with appropriate field data. Applying
the method for a large number of bottom materials poses some problems because of
the similarity in the reflectance of several materials, such as vegetation and mud

(Lyzenga, 1981).
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3.4. Conclusion

First, this study compared the effects of three atmospheric correction methods on
the performance of MLR-based bathymetry, using WorldView-2 images of five coral
reef sites. As a result, I found that Lyzenga06 pixel-wise atmospheric correction
method was the only one that influenced accuracy. The correction method that used
a radiative transfer model (6S) had little effect, and the Dark Object Subtraction
method had no effect at all. We also provided theoretical evidence for this result.
Unfortunately, Lyzenga06 atmospheric correction method had the disadvantage of
significant data reduction. Moreover, the change in accuracy by this method
depended on the site and NIR band combination, and sometimes turned negative.

Second, considering the six visible bands of WV-2 images, 63 possible pairs
were evaluated to identify the best pair as an input in estimating the water depth.
As aresult, each band pair give different performance on estimating the water depth.
For each evaluated sites, the best band pair was different shows the site dependency
factor. Overall, a better accuracy was achieved when a multiple (>2) and excluding
the rededge bands from the input.

Third, Lyzenga’s bottom-type identification method was applied to
WorldView-2 imagery for the first time. The Lyzenga06 correction method, which
utilizes the near infrared (NIR) bands, was more accurate than the non-correction
method only for the case of three visible bands. This result indicates that the
superiority of the Lyzenga06 correction method is case-dependent. Moreover, the
used of six visible bands in the identification accuracy was better than only three
bands, regardless of the correction method. This result shows that a large number
of visible bands of multispectral data, used for water-column correction, improve
the accuracy of bottom-type identification in shallow-water coral reefs.

In practice, for water depth estimation, one of the non-correction methods
and Lyzenga06 correction method (with three possible NIR-band combinations)
and multiple bands input for each target image is recommended, depending on
acceptable data reduction and the required accuracy. The recommendations for
bottom type classification are the usage of higher spectral resolution image

(multiple bands) and the non-correction methods. Then, a statistical accuracy
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comparison can be conducted for each image by using cross-validation, as in this

study.
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Chapter 4. Simulation-Based Derivation of a Robust Set

of Coefficients of Lyzenga's SDB Formula

4.1. Introduction

Although Lyzenga’s SDB formula has been successful in many applications (Flener
et al., 2012; Yuzugullu Aksoy, 2014; Vinayaraj et al., 2016), the robustness under
varying conditions is still an essential question that is currently considered a
research gap. One place where such highly variable conditions can be encountered
is coral reef environments, which can exhibit a wide range of water quality features
and unique bottom types in terms of spectral characteristics and spatial
distributions. The goal of this study is to assess the influence of variable optical
conditions on Lyzenga’s multispectral bathymetry retrievals in the context of Case-
1 shallow coral reef waters. The evaluation was carried out by using a simulated
WorldView-2 above water reflectance dataset that combined the spectral properties
of a number of archived coral reef field reflectance measurements, along with
various depths and various modeled Inherent Optical Properties (IOPs) of Case-1
coral reef water scenarios. The simulated dataset is used for three analyses: First,
Lyzenga’s bathymetry formula is tested on a simulated dataset that represents a
coral reef environment to determine whether Lyzenga’s assumptions were
unrealistic. In real-world data, the number of bottom types tended to exhibit higher
levels of variation than the water quality did. Second, the effect of the quantity of
bottom types present at a site is tested, representing the full range of bottom-type
diversity that might appear in coral reef environments. Third, Lyzenga’s SDB
formula is tested in the case in which the bottom type is unknown. Ideally, the pixels
with known depth used as input in Lyzenga’s bathymetry formula should represent
the whole range of depths and bottom types in the targeted area. However, it difficult
to obtain representative input, because of the large area or varied bottom types of
coral reef environments. Thus, this analysis becomes importance for evaluating the

performance of Lyzenga’s bathymetry formula.
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4.2. Methods Overview

This empirical model of Lyzenga et al. (2006) was used to predict the shallow-water
bathymetry present in the simulated dataset. After quality control (Subsection 2.1.3),
the simulation dataset was analyzed to investigate the performance of Lyzenga’s
multispectral bathymetry model under a wide range of bottom types. The analysis
procedure was as follows.

First, water depths were estimated by applying the least squares method of
Equation 13 to the dataset. The residual (r) for each data point was determined as
the difference between the estimated and true depth value. The relationship
between the optical conditions and the magnitude of the residuals was then
investigated, as described further on in Subsection 4.3.2. To identify the effect of the
number of bottom types on the depth estimation, 100 possible combinations of
bottom types ranging in number from 1 to the maximum number of archived bottom
types were selected randomly. For each combination, a cross validation of 100
repeated random sub-sample validations was done by randomly splitting the
dataset into training and test datasets at a training:testing ratio of 9:1 (described in
detail in Subsection 4.3.3). The average RMS values for 100 instances of cross
validation were used to assess the overall accuracy of the depth prediction (further
described in Subsection 4.3.3). To testing the possibility in predicting the depth of
unknown bottom types, leave one cross validation was performed. Each bottom type
was excluded from the dataset then performed the fitting. Afterward, the excluded

bottom type data was used as tested data (described in detail in Subsection 4.3.4).

4.3. Results and Discussion

4.3.1. Simulation Dataset Overview

Figure 4-1 presents a portion of the simulated dataset, which was described in
Subsection 2.2.3. Each row in the dataset represents a different optical condition and
each column represents a variable. The figure shows only a subset of the dataset (9
variables and 10 rows) for the purpose of providing a general familiarization with

the data structure. The actual size of the dataset was 422,400 rows and 43 columns.
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The simulation dataset was built from the grid and random part as described in

Subsection 2.2.3.

Figure 4-1 Simulation dataset screen shot; the information for bands 3 to 5 was excluded
because of space limitations. The variable names in each column are abbreviations:
bottomType is the bottom type symbol; sZ is the solar zenith angle in degrees; depth is the
water depth in meters; chl is the chlorophyll-a concentration in mg m-3; Rrs.n is the above
water remote sensing reflectance just above the surface in band n; Rrs.deep.n is the deep
water remote sensing reflectance just above the surface at band n; and X.n is the linearized

above water remote sensing reflectance just above the surface at band n.

Table 4-1 shows the data removal that occurred following the surface
reflectance linearization and quality control steps. The data removal results were
spectrally dependent (i.e., different for each band). In the quality control step, the
opposite situation occurred, where low bottom contributions at long wavelengths
(band 5) led to the removal of ~70% of the initial data items. In this data reduction
step, the depth range of the dataset was reduced significantly from 0.5-19.5 m
initially to 0.5-10.5 m. These results show that longer wavelength bands and areas
of deeper water yielded small bottom contributions because of their
characteristically high attenuation coefficients. The low bottom contribution of
these samples can be explained by the maximum depth of bottom reflectance
detectability. As shown in Table 4-1, after quality control, the maximum depth was
less than 10.5 m and data at deeper depths were defined as having a low bottom
contribution. Similar results were found by Carder et al. (2005). The findings may
also explain the poor bathymetry estimations from actual satellite imagery for
depths greater than 10.5 m. However, to confirm this, further investigation is

needed. Meanwhile, in the linearized reflectance step, the majority of data removal
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occurred because of the low (< 25%) bottom contribution in the short wavelength
range (bands 1 and 2), and this was caused by dark object reflectance that was lower
than that of deep water. The data removal of these spectra caused a significant
removal of 141 of the 164 total bottom type objects, as shown in Table 4-1. This is a
known issue that commonly appears in the application of Lyzenga’s SDB formula

(Manessa etal., 2014).
Table 4-1 Summary of all data removed as a result of quality control requirements and
reflectance linearization (Equation 12). The initial data contained 422,400 rows. The number

of rows removed is shown in the “Number of data” column.

After quality control (> 25% of the % After depth variable linearization
bottom contribution) log(R2",)
Band No. of % of Depth No. of No. of % of Depth No. of
data initial rangein  bottom data initial rangein  bottom
(rows) datase  meters types (rows)  datas meters types
t et

Band1 253,998 60% 0.5-19.5 164 89,209 22% 0.5-10.5 144
Band2 305,784 73% 0.5-19.5 164 106,826 25% 0.5-10.5 141
Band3 344,031 82% 0.5-19.5 164 121,338 28% 0.5-10.5 163
Band4 189,854 45% 0.5-16.5 164 122,538 29% 0.5-10.5 164
Band5 124,440 29% 0.5-10.5 164 122,538 29% 0.5-10.5 164

All
Bands

122,538 29% 0.5-10.5 164 88,080 21% 0.5-10.5 137

4.3.2. Performance of Lyzenga’s Multispectral Bathymetry Model

4.3.2.1. Depth Estimation Accuracy

4-2(a) presents a scatter plot between the measured water depth and the estimated
water depth (the result of regression fitting) for all data items. For greater visual
understanding of the relationship shown in Figure 4-22(a), a subset of 500 points
were randomly selected and presented in Figure 4-22 (b). The differences between
the measured and estimated depth values were defined as residuals and are

summarized in Table 4-2. The maximum residual was around 1 m and the RMS
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residual was less than 0.4 m, as shown in Table 3. In the varying water quality and
bottom type conditions of 137 different spectra, Lyzenga’s SDB formula was able to
achieve good depth prediction accuracy. This provides support for the performance

of Lyzenga’s SDB formula under this wide range of optical conditions.

Depth [m]

Estimated Depth [m]

)
i
k7]
L

Figure 4-2 Scatter plot of the estimations (fitted values) of water depth versus the
measured water depth for (a) all data and (b) a subset of 500 randomly selected points
displayed for greater visual understanding. The color indicates the average spectral
reflectance of each bottom type. The red line is y = x, which indicates the parity of the model

predictions with real depth.

This finding on the generality of Lyzenga’s multispectral bathymetry appears
to be well-supported by previous studies, in which the application of Lyzenga’s SDB
formula on real coastal environment images acceptably estimates water depth
(Liceaga-Correa and Euan-Avila, 2002; Pacheco et al., 2014; and Vinayaraj et al.,
2016). The accuracies achieved in previous studies are 0.78-0.88 m and 0.8-2.63 m
for R2 and RMSE, respectively. The accuracy of real images is far higher that of the
simulation-based analysis (Table 3), as the optical conditions and bottom types are
less varied. The resistance parameters, (i.e., image spatial and spectral resolution,

image noise, data quality, and site dependency) contribute significantly to the
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accuracy achieved in real-image analysis; whereas, in this study, resistance
parameters were excluded, as the simulated dataset is assumed to be zero-noise.
Thus, these resistance parameters could well be responsible for several failures
(Stumpfetal, 2013; Manessa et al., 2016) in applying Lyzenga's SDB formula to real
images.

Table 4-2 Statistical summary of the residual () data between the estimated and measured

water depth values.

RMS (m) X Rz Mean absolute depth (m) Maximum absolute depth (m)

0.359 0.359 0.977 0.283 2944

4.3.2.2. Relationship between the accuracy and optical condition
Since the simulation dataset was free of noise, the average of the estimated depth
residuals was equal to zero. Thus, as Deakin and Kildea (1999) explain, RMS could

be broken down as follows:

RMS? = (22 = 7)?) + (= 1) Equation 4-1
or, alternatively, in words,
RMS? = estimate of standard deviation + (estimate of bias)?.
The mean component of RMS corresponds to the bias caused by the bottom type,
while the standard deviation component corresponds to the errors caused by other
optical conditions (depth, chlorophyll-a concentration, and solar zenith angle). It

follows that the contribution rate of bottom type to RMS is calculated by:

mean absolute  Equation 4-2
RMS

contributionrate of bottom types on RMS =

Table 4-3 shows the minimum, median, and maximum of the summary
statistics for each bottom type and the contribution rate of the bottom type to the
RMS. First, the results show that for any bottom type, the RMS was less than 1 m.
Second, the residuals were dominated by effects from the bottom types (Figure 4-3:
contribution rate of bottom type to the RMS error), while water depth, solar zenith
angle, and chlorophyll concentration contributed to the residuals to a lesser degree

(a maximum of 18%). An additional indication of bottom types contributing highly
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to the RMS is that 98 out of 137 bottom samples provided a bottom type
contribution rate of greater than 0.9 to the RMS. Moreover, Figure 4-3 shows that in
the case of the bottom type with the highest RMS (bottom type ID
“b155Encrusting20ms”), the effect of chlorophyll-a concentration and solar zenith
angle on RMS was only 0.17 m, far smaller than the 1-m effect of bottom type. Since
the majority of the RMS values of the residuals from the depth prediction were
distributed close to the parity line (y = x), it can be understood that the bottom type

had the greatest influence of all variables on RMS.

Table 4-3 The statistic of residual for each bottom types

Statistic Minimum Median Maximum
RMS [m] 0.05207 0.25774  0.95117
Mean (bias) [m] -0.82109 -0.00482 0.93329
Mean Absolute [m] 0.03941 0.25217 0.93329
Standard Deviation 0.02489 0.06379  0.48959

Contribution rate of bottom type on RMS ~ 0.72453  0.95964  0.99732
Number of data 98 660 1092
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Figure 4-3 Scatter plot of the measured versus estimated depths for the bottom type ID of
“b155Encrusting20ms.” This bottom type exhibited the highest RMS residual value
(0.95117 m). The plots are color-coded by the (a) solar zenith angle (degrees) and (b)

chlorophyll-a concentration (mg m'g).

4.3.3. Effect of Number of Bottom Types on the Depth Prediction Accuracy
Figure 4-7 presents the performance of Lyzenga’s SDB formula under a number of
bottom type conditions. Results showed that as the number of bottom types
increased, the RMS of the bathymetry prediction increased. The model provided its
best performance on the uniform distribution (one bottom type), with an RMS error
of 0.02 m (Figure 4-4), and performance declined (RMS error increased)
significantly with the each additional bottom type. This rate of increasing error
(decreasing accuracy) with increasing number of bottom types became significantly
smaller after approximately 15 bottom types and reached a plateau around 30
bottom types. This trend occurred because at high bottom type diversity, there was
a high probability of a bottom type with spectral properties being added to the group
of bottom types (i.e., at a certain number of bottom types, the spectral diversity
becomes robust to change with the addition of more bottom types). As shown in

Figure 2-3, many bottom types had very similar spectral characteristics.
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These results offer unprecedented evidence for the use of Lyzenga’s SDB
formula for diverse coral reef environments. Doubts about the performance of
Lyzenga’s method for diverse bottom types (Stumpt, 2003 and Sue et al., 2013) and
a number of bottom type greater than the number of bands (Lyzenga et al., 2006)

were not proven. However, it is natural that less diverse bottom types gives better

estimation accuracy than more diverse bottom types.

Number of test data

" uerf Bo Te i
Figure 4-4. RMS error (RMSE) estimation from 100-sample cross validations of each

instance of bottom type quantity.

4.3.4. The Performance of Lyzenga’s For Water Depth Estimation for the
Unknown Bottom Type

Figure 4-5 shows the comparison between RMS residual when all the bottom types
used in fitting and RMS of error when one bottom type excluded in fitting, almost the
plotted point fall closet to the straight line of x = y. Moreover, the removal of bottom
type in the fitting was increased the error but not too significant. This result shows
that even the bottom type is unknown this model still able to predict the water deep
of the unknown bottom type almost as accurate when the bottom type is known in

the model.
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Figure 4-5 Scatter plot of RMS residual when all the bottom types used in fitting versus
RMS of error when one bottom type excluded in fitting. Each point represent a one bottom

type. The red line is a straight line y = x.

Table 4-4 shows the statistic of residual of water depth estimation of each
bottom type in the minimum, center, and maximum for both cases of all bottom
types was known or the tested bottom type excluded in the calibration of estimation
model. The incensement rate of error because the tested or unknown bottom type
was excluded from model calibration. It is interesting to note from that the
maximum RMS residual when the bottom type is excluded was 1.03 m, which just
0.08 meter higher than if all the bottom types is used (RMS residual = 0.95 m). This
result has confirmed that our water depth estimation model or formula was general
enough to predict a water depth from a coral reef area with unknown bottom types.

This result confirmed that our water-depth estimation model was general
enough to predict water depth from a coral reef area with unknown bottom types.
However, careful attention must be paid to bottom type diversity of the model

prediction input. Excluding one bottom type of 134 still made the input (simulated
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dataset of 133 bottom types) diverse enough for model prediction; thus, the depth
of the excluded bottom type could still be estimated accurately. These result points
to the likelihood that Lyzenga’s SDB formula can still estimate the depth of an
unknown bottom type because the known depth used as input for building the
model has a bottom type that represents (or is similar to) the unknown bottom type.
Further studies that consider realistic cases, such as less diverse bottom types as

input, need to be performed.

Table 4-4 Statistic of RMS residual of estimated depth of each bottom type based on

estimation model using all the bottom types data and without the estimated bottom type.

Minimum Median Maximum

RMS when all the bottom types is used in training data
(=A) [m]
RMS when one bottom type is excluded in training data
(=B) [m]
Incensement Ratio of RMS rate of error (=B /A-1) 0.00101 0.01715 0.19958

0.05207 0.25774 0.95117

0.05213 0.26066 1.03373

Increase value of RMS (= B - A) [m] 0.00005 0.00487 0.12788

4.4. Conclusions

In this study, a WorldView-2 above-water remote sensing reflectance dataset was
simulated for Case-1 waters of a coral reef environment. The simulation dataset was
used to verify the generality of the Lyzenga et al. (2006) multispectral bathymetry
model under varying bottom type, solar zenith angle, and water quality (represented
by chlorophyll-a concentrations) conditions. First, for a wide range of bottom types
and variable optical conditions (solar zenith angles and chlorophyll-a
concentrations), Lyzenga’s SDB model was sufficiently general and able to
accurately estimate water depth. Lyzenga et al. (2006) noted that the application of
this method was limited to some bottom types, where the number of bottom types
is no greater than the number of multispectral bands. Surprisingly, the results of this
study contradict the previous result; the simulation-based analysis shows that this
model still works well (R2 = 0.97 and RMS residual 0.4 m) for 137 bottom types,

which is much greater than the number of multispectral bands used (5 visible bands
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of WorldView-2 image). Second, the number and combination of bottom types
(bottom type diversity) dominantly influenced the performance of Lyzenga’s
multispectral bathymetry model (72-99 % contribution to RMS residual), whereas
other optical conditions (solar zenith angles and chlorophyll-a concentrations)
made only minor contributions (maximum 18% contribution to RMS residual).
Third, Lyzenga’s depth estimation accuracy became poorer with the cumulative
increase of the number of bottom types. Interestingly, beyond a certain number of
bottom types (~30), the change in accuracy reached a plateau for any increase in
bottom type number. Lastly, the depth of an unknown bottom type can be predicted
accurately (~0.13 m RMS residual incensement) if the prediction model was built
based on diverse bottom type conditions (133 bottom types).

This study provides a basis for other research efforts aimed at the usage of
Lyzenga’s multispectral bathymetry for mapping shallow coral reef bathymetry.
However, it should be noted that this promising result was performed under a zero-
noise assumption. In reality, multispectral imagery contains noise, especially in the
shorter wavelength bands due to Rayleigh scattering. Thus, further studies that

consider the noise contribution must be performed..
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Chapter 5. Evaluation of Applicability of Simulation-

Derived Coefficients to Indonesian Coral Reefs

5.1. Introduction

Until now, Indonesia only had a single large-scale bathymetry map
(1:250.000) for the entire nation and detailed maps (1:50.000 or 1:25.000) of a few
locations. A straightforward and cost-efficient bathymetry mapping of the
Indonesian coral reef is urgently needed. To address this problem, I present a
simulation-derived coefficient for Lyzenga’s SDB formula that requires few in-situ
measurement data to adjust coefficients. The simulation dataset corresponding to
the Indonesian coral reef and Worldview-2 Imagery spectral response was built to
extract the coefficient. Then, the formula was validated using real Worldview- 2
images from ten shallow coral reef sites: the Gili mantra islands, Menjangan Island,
Gondol Beach, Panggang Island, Badi Island, Sarappo Keke Island, Sarappo Lompo
Island, Pamanggangan Island, Luwu luwu Island and Sorong Island in Indonesia.

This chapter presents a simulation-derived coefficient for depth estimation
formula using a multispectral image and limited survey data. We limited the target
areas to Indonesia shallow coral reefs. We used a multiple linear regression (MLR)
model to establish our formula. The first step consisted in building a simulation
dataset that represents the surface reflectance over Indonesia. Then, I tested the
performance of our simulated dataset to estimate the depth. If it showed satisfying
results, then the coefficient of the MLR model was extracted from the simulation.
These coefficients were used to build the depth estimation formula. For the final step,
a Worldview-2 image including depth measurements was used to evaluate the
performance of .proposed estimation formula based on simulation-derived

coefficients.
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5.2. Methods Overview

The WV2 imagery of ten sites were processed in three steps before being submitted
to the depth estimation formula from simulation-derived coefficients. First, a pre-
processing step is the sensor calibration, where digital numbers are converted into
units comparable to the band-averaged spectral reflectance or TOA (top of
atmosphere) reflectance. Secondly, the TOA reflectance was atmosphere-corrected
by applying the Lyzenga’s SDB formula. Lastly, the transformed reflectance (X;) was
calculated using Eq. 2-4.

The coefficients of 3 are derived from the regression analysis between the
depth and the transformed reflectance of a simulated dataset. The coefficients
indicate the intercept (8,) and slope (8;). For each site, the intercept (S,) coefficient
needs to be adjusted using two pixels (minimum) with measurement depth (A)
according to the following formula:

_ Z?inimum n(fln _ f’-n) Equation 5-1
n

Bo

5.3. Results and Discussion

5.3.1. Performance of Proposed Derived Coefficients
Considering that the simulation dataset (Chapter 4) shows a good fit with the
estimated depths, the coefficients from the MLR of Lyzenga’s SDB formula were
extracted. Then, the depth estimation formula using the simulation-derived
coefficients for Worldview-2 images is presented as:
h(m) = By — 0.5225 Xeoasear + 1.1021 * Xppye — 0.7364* Xgroon — Equation 5-2
5.1219* Xyepiow — 5.7963 * Xyeq
The proposed equation shows the influence of each band on bathymetric

estimations, with high coefficients corresponding to a strong influence.
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Figure 5-1 Scatterplot of depth estimation using simulated-derived coefficient for each

site. The red line is a straight line y = x.
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Table 5-1 The calculated g, for each site using five pixels with known depth

Sites Bo

Gili Mantra Island 1.364
Gondol Beach 3.402
Menjangan Island 1.969
Panggang Island 4.728
Sorong Beach 5.775

Pamanggangan Island  0.209
Sarappo Keke Island 0.128
Sarappo Lompo Island 0.102
Luwu luwu Island 0.726

Badi Island 1.159

Table 5-1 shows the S, for each tested site. The S, or intercept was
calculated from five pixels with measured depths to adjust the intercept (f;)
coefficient and to represent the problem of the limited measurement data in
Indonesia.

After applying the estimation formula based on the simulated-derived
coefficient for each site, the depth estimation value was obtained. Then, the
measured depths were plotted against estimated depths for each location (Figure 5-
1). The R?2 and RMSR between actual depth and estimated depth varied across
locations and depth range. The best performance was achieved only at six sites:
Panggang Islands, Gili Mantra Islands, Badi Island, Sarapo Keke Island, and Luwu
lulu Islands, at shallow depth range between 0.5 - 5 meter with RMS error less than
1 meter. Moreover, the error was rapidly increased at the deeper depth. Several
processes may have caused these accuracy problems. First, a measurement error of
the single beam echosounder occurred in the reef edge (deep) area, where there was
some delay in receiving the signal. Secondly, the deeper coral reef area displayed

high noise caused by the absorption and scattering of light. Thirdly, the simulation
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dataset was not able to represent the conditions of the deep area (> 5 m).
Meanwhile, the depth estimation at other three sites: Gondol Beach,
Menjangan Island, and Badi island sites failed. This failure might attribute to the
noise of the tested images, as describe further in subsection 5.3.2. Since the
simulated dataset was built under a no-noise assumption, then it is clear that the

formula was only applicable to a less noisy image.

Table 5-2. Statistics for RMS residual (accuracy) [m] of estimated depth at depth range in each

site

Sites Depth range [m]

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15

Gili Mantra Island 1.29 095 143 313 511 7.78 10.75 11.34

Gondol Beach NA 1.23 081 195 430 NA NA NA
Menjangan Island NA 358 290 4.02 4.79 NA NA NA
Panggang Island 0.70 080 167 386 562 7.22 9.45 NA
Sorong Beach NA NA 1.01 2.00 4.26 6.16 NA NA

Pamanggangan Island 045 044 152 2.88 5.96 8.01 1090 12.04
Sarappo Keke Island 0.55 081 152 342 572 8.21 10.51 1235
Sarappo Lompo Island 0.55 0.70 1.29 3.88 4.71 6.65 10.78 10.57
Luwu luwu Island 081 059 113 3.82 5.66 6.70 9.57 10.40
Badi Island 1.33 068 1.66 382 6.32 7.71 10.16 1194

5.3.2. Noisy Condition Assumption

As described in Section 5.3.1, the formula was not applicable in the all tested site.
Moreover, the estimated depth was accurate in the shallow area, while large errors
gradually increased with depth. We investigated whether the noise assumes in the
simulated dataset was not represent the actual condition of the tested image. For
this purpose, I build another simulated dataset with an additive noise added. This
refers to the concept of noise in an optical remote sensing system that additive in

nature and normally distribute. Gaussian Noise is a statistical noise that has a
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probability density function of the normal distribution (also known as Gaussian
distribution). It is represented the condition of noise that creates because of natural
processes which introduce noise.

The noise level is set based on standard deviation of the residual of used in
the Lyzenga06 correction as following

PToA, = Xo + @1 " PNIR1,, T X2 * PNIR2,, T TESIdUal Equation 5-3

where prg4  is the TOA reflectance of visible band deep water pixels, py;gry ., is TOA
reflectance of NIR band deep water pixels, « is regression coefficients.

The Standard deviation of the residual of above model shows the level of
error introduced just by the atmospheric correction and represented remaining
noise after the atmospheric correction. Table 5-3 shows the standard deviation of

the residual for all evaluated sites and also the minimum, maximum, and average

value.
Table 5-3 Standard deviation of the residual for ten evaluated sites
Sites Residual standard error

Coastal Blue Green Yellow RedEdge
Gili Mantra Island 0.000872 0.0009429  0.0008904 0.0005778 0.0008079
Gondol Beach 0.0007799 0.001082 0.0008938 0.00108 0.0007838
Menjangan Island 0.001314 0.001906 0.001274 0.0009522 0.001187
Panggang Island 0.001392 0.001859 0.001291 0.001137 0.007963

Sorong Beach 0.01499 0.01858 0.01676 0.01614 0.01294

Pamanggangan Island 0.001259 0.001848 0.001497 0.001256 0.001305
Sarappo Keke Island 0.0009984 0.001231 0.000841 0.0006723  0.0007249

Sarappo Lompo Island  0.0007681 0.001094 0.000781 0.0005120  0.0005609

Luwu luwu Island 0.001067 0.002472 0.001675 0.0007226 0.001231
Badi Island 0.001112 0.002082 0.001424 0.0007176  0.0009497
Minimum 0.000768 0.000943 0.000781 0.000512 0.000561

Mean 0.002455 0.00331 0.002733 0.002377 0.002845
Maximum 0.01499 0.01858 0.01676 0.01614 0.01294
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Table 5-4 Noise cases for noisy assumption simulated dataset and the accuracy

assessment

N Noise Noise (standard deviation value) RMSE (m)

o Cases Coastal Blue Green Yellow RedEdge Min Mean Max

R 0 0 0 0 0 676 391 214

2 Residual
SICUA 0.00076  0.00094 0.00078 0.00051 0.000561 412 298  1.66
Minimum
Residual

3 esidual 00245 0.00331 0.00273 000237 0002845 414 297  1.69
Mean

4 Residual
esidual 001499 001858 001676 001614 001204 502 313 182
Maximum
Equal Sd.

5 qual Sd 0.01 0.01 0.01 0.01 0.01 472 306 177
0.01

6  Equal Sd.
aua 0.005 0005 0005  0.005 0.005 441 3 172
0.005
Equal Sd.

70 EqualSd o001 0001 0001 0001 0.001 413 297 168
0.001
Equal Sd.

8 EqualSd 50001 00001 00001 00001 00001 417 302 171
0.0001
Equal Sd.

9 FqualSd 00001 000001 000001 000001 000001 661 386 213
0.00001

1 ina-

0 Combina- 5001 000001 000001 00001 0001 4 302 155
tion Sd1

11 Combin- :
ombin-g0001 %9990 500001 00001 0001 399 287 155
ation Sd2 1

12 Combina-
OmPIAT 9001 00001 000001 00001  0.001 399 302 156
tion Sd3

Table 5-4 shows that the overall response to this noise assumption approach
is positive as expected, where accuracy is increasing. The minimum residual of

standard deviation from residual the Lyzenga06 correction shows to be more
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accurate with RMSE of 4.12m, 2.98m, and 1.66m for the minimum, average, and
maximum, respectively. This improvement reaches 1-2m more accurate that the
zero noise assumption. Then the coefficients from a simulated dataset with the
additive noise of minimum residual of standard deviation were used for the
proposed noisy assumption water depth estimation formula.

Besides the minimum, maximum and average of standard deviation from
residual the Lyzenga06 correction, this study also tested several standard deviation
values that range from 0.01 - 0.00001 as shown in Table 5-4 (case 5 - 9). In order
to evaluate the range of optimum noise level that needs to be added into the
simulation dataset. As a result, the accuracy is achieved maximum at noise range
from 0.001 - 0.0001 value of standard deviation. Moreover, a different noise level
for each band was also tested (Table 5-4, case 10-12). For this case, the accuracy
found to be better but not significant. This fact shows that the accuracy level still
able to improve if the noise level is different for each specific band, and further
investigation is needed to reveal the most appropriate noise level at each band.

Finally, a simulation-derived coefficient was extracted from the simulated
dataset with an additive noise of minimum standard deviation of residual. Last,
estimate the depth from the ten sites using the proposed noisy assumed formula.
The depth estimation formula using the noisy assumed simulation-derived

coefficients for Worldview-2 images is presented as:

h(m) = By + 0.06538 * Xoogstar + 0.75803 * Xpye + 1.9524 * Xgreen — Equation 5-4
3.07569 * Xye1i0w — 0.90543 * X0
Table 5-5 shows the RMS residual of estimated depth using noisy assume
formula; almost all the site shows accuracy improvement using the noisy assume
formula. From nine of ten sites, the noisy assume formula give a better accuracy with
0.04 - 5.61 m less error. Compared with the shallow area (< 5 m) the accuracy was
significantly increased in deeper area (> 5 m). This finding strength our confidence
that the poor performance of simulated-derived coefficient (subsection 5.3.1) was
due noise factor of tested image. Even, our tested image has pass atmospheric and

surface noise correction; there was a big opportunity that the noise not perfectly
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removed.

Table 5-5 Statistics for RMS error [m] of estimated depth at depth range in each site using the

formula of simulated-derived coefficients of noisy assumed simulated dataset.

Sites Depth range [m]

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15

Gili Mantra Island 081 049 080 190 3.64 5.68 7.77 9.02

Gondol Beach NA 091 043 2.08 4.44 NA NA NA
Menjangan Island NA 197 196 3.59 446 NA NA NA
Panggang Island 034 041 139 3.89 5.25 7.42 9.00 NA
Sorong Beach NA NA 070 252 428 691 NA NA

PamangganganIsland 0.22 031 0.75 1.16 2.26 4.23 6.05 8.15
Sarappo KekeIsland  0.28 0.71 0.81 2.08 4.01 6.16 7.40 9.15
Sarappo LompoIsland 0.27 0.69 098 1.83 3.69 5.13 7.06 9.05

Luwu luwu Island 0.55 049 089 218 4.27 557 8.09 9.51

Badi Island 0.82 048 181 3.44 557 7.31 9.43 10.84

Even the proposed noisy assumed formula still far from our expectation,
specifically in deeper mapping area (> 5 m). These discrepancies can be neglected
because the targeted mapping area is dominated by a very shallow water depth.
Table 5-6 shows that more than 65 - 89 % of the targeted mapping area in the
evaluated site have a depth ranging from 0-5 m. except for Gondol and
Pamanggangan Site. As the final word, we are suggesting the usage of proposed
noisy assumed formula shown in Equation 5-4 to be applied to mapping only the
shallower part of the coral reef environment, as our experiment indicates that the
error is less than 1 meter. This error level was accepted for the usage of bathymetry
map of conservation area or shipping line (IHO, 2005), but could be used for detail

map such as a harbor construction based map.
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Figure 5-2 Scatterplot of depth estimation using proposed noisy assumed formula for

each site. The red line is a straight line y = x.
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Table 5-6 Targeted mapping area of shallow coral reef in ten evaluated sites. The percent

number shows the persentage of area at specific depth range over the entire shallow water

area (0-25 m)

Sites Shallow Water area in m? and percent
Shallow water Deep water
0-25m
0-5m 6-25m
Gili Mantra Island 4,649,072 2,912,840 63% 1,736,232 37%
Gondol Beach 590,672 62,480 11% 528,192 89%
Menjangan Island 949,984 818,040 86% 131,944 14%
Panggang Island 7,221,984 4,660,360 65% 2,561,624 35%
Sorong Beach 24,483,892 18,492,364 76% 5,991,528 24%
Pamanggangan Island 4,822,856 1,712,880 36% 3,109,976 64%
Sarappo Keke Island 706,556 497,560 70% 208,996 30%
Sarappo Lompo Island 1,235,340 924,856 75% 310,484 25%
Luwu luwu Island 1,581,952 1,218,736 77% 363,216 23%
Badi Island 561,940 390,936 70% 171,004 30%

5.4. Conclusion

In summary, the formula of the simulation-derived coefficients shows the
possibility to estimate the water depth of Indonesian shallow waters with a limited
number of measurements. Unfortunately, the image noise (atmospheric, surface, or
sensor) might control the performance of the proposed method. Moreover, the best
performance was achieved at shallow depth (* less than 5 meters) sites. Thus,
another coefficient was derived from a simulated dataset with additive noise was
also tested. The formula from noisy assumed simulation-derived coefficients give a
better estimation accuracy; it shows that the tested image was noise contained and
a zero noise assumption formula could not work perfectly. The present finding has

importance implication for solving the problem of the difficulty in collecting
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measurement depth data of hazardous shallow coral reef water. In eight from ten of
the tested sites, an area with 0-5 m depth range was covered more than 65% of the
targeted mapping area (shallow coral reef at 0-25 m depth range).

Future work will concentrate on improving the formula so that it overcomes
the poor depth estimations in deep waters. Moreover, it is also necessary to test the

method in a larger number of sites or images.
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Chapter 6. General Discussion and Conclusion

Given the importance of the coral reef ecosystems for life quality and the
global climate, efficient and adequate information about the biogeochemical
contents, water clarity, bathymetry, and distribution of benthic habitats of coral reef
ecosystems are important for government agencies and the public. Satellite-based
imaging systems with multispectral bands within the visible spectrum reliably
provide information at spatial scales needed to implement spatially based
conservation actions for coral reef locations, such as the Indonesia coral reef area.
This work has demonstrated the application of very high-resolution multispectral
imagery with less in-situ data to estimate bathymetry in the shallow-water coral reef
environments.

For the Satellite derived bathymetry based on Worldview-2 multispectral
images, this study affirms that atmospheric correction methods should carefully be
applied to WV2 imagery before the development of bathymetric, in order to increase
the accuracy of the final products. Preprocessing methods alter the estimated
radiance and reflectance values to account for known sources of error in the data,
resulting in values that more closely estimate the true radiance and reflectance.
Ideally, the evaluation of atmospheric correction is compared the retrieved
reflectance from satellite images with ground-based measurements for a variety of
targets, however, since there were no ground-based measurements then the
evaluation was the focus on the performance on accuracy improvement compared
with without atmospheric correction. Thus, it is surprising that applying
atmospheric correction procedures prior to fitting the depth derivation model
sometimes could not improve the retrieved water depths.

Selecting a proper atmospheric correction method became an essential step
in multispectral SDB. Base on the result of this study that the method using radiative
transfer simulation (6S) had little effect on accuracy, whereas Dark Object
Subtraction had no effect whatsoever, because a homogenous atmosphere was

assumed. Pixel-wise correction using near-infrared bands (Lyzenga06) was the only
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method influencing accuracy, but it significantly reduced the number of valid pixels.
Then the recommendation is using one of the non-correction methods and
Lyzenga06 correction method (with three possible NIR-band combinations) for
each target image, depending on acceptable data reduction and the required
accuracy.

A previous study on Lyzenga’s SDB formula shows a good fit in estimating a
water depth. However, there was no scientific publication evaluating the
performance of the Lyzenga’s SDB formula under a variety of optical conditions and
bottom types that it applies to use for an unknown environment. A simulated dataset
was used to evaluate the Lyzenga’s SDB formula. Simulated dataset was represented
multispectral images of a shallow coral reef environment and build using Lee’s
radiative transfer model. This study provides a basis for other research and this
study effort aimed at the usage of Lyzenga’s for mapping shallow coral reef
bathymetry.

Lyzenga (2006) in the paper mention that the application of this method was
limited to some bottom types, where the number of bottom types is no greater than
the number of multispectral bands. Surprisingly, the result of this study said;
differently, the simulated-based analysis shows that this model still works perfectly
(0.97 of R2 and 0.4 m of RMSR) under 137 bottom types, which much higher than
the number of multispectral bands been used (five visible bands of WV2). But still,
the influence of bottom types plays the most significant role in Lyzenga’s model,
compared with the water quality. It means that a variety of water quality on images
was less affecting the accuracy of the retrieved water depths. An importance
information for several researchers that doubt the performance of Lyzenga’s SDB
formula under diverse water quality. Moreover, the bottom spectral variance
became the main issue on Lyzenga’s model, where more variance the spectral
signature less accurate the retrieved water depths obtained.

The last simulation based experiment conduct in this study was testing the
set of simulation-derived coefficients for estimating the water depth of unknown
bottom type. As became the goal to proposed a simulation-derived coefficient for

water depth estimation formula that able to predict a depth with less in-situ
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measurement. That means no in-situ measurement used for model fitting to obtain
the coefficient (Lyzenga’s SDB formula based), and in-situ measurement was only
for converting the relative depth to absolute depth or as intercept adjustment. Even
the simulation dataset build based on 137 different bottom types there still a high
opportunity that some bottom type appear in targeted coral site was not included.
Then to test this issue, every bottom type (from 137 bottom types) has been
excluded from the simulation dataset model fitting; then the excluded bottom types
was used as tested data. As a result, the maximum RMS residual was 1.03 m when
the bottom type excluded, which just 0.08 meter higher than if all the bottom types
are used (RMS residual = 0.95 m). This performance has confirmed that our water
depth estimation model or formula was general enough to predict a water depth
from a coral reef area with unknown bottom types.

As the final works, we extracted the coefficient from the fitting of simulation
dataset used then tested the performance of ten evaluated coral reef sites. The result
was varied across locations, and depth range, wherein few location the estimation
is failed. Moreover, the other site shows the best performance at shallow depth (*
less than 5 meters), and error gradually increased follow with depth. This result was
far from the expectation if refer to the simulation analysis result. This poor
performance on the application on real WV2 imagery shows an opposite result from
the simulation analysis where the formula was able to estimate the depth of
unknown bottom type accurately (maximum RMS error * 1m). Since those
promising result of the simulated based analysis was performed under a zero noise
assumption. In reality, multispectral imagery always contains noise even after a
correction method been performed. Then a simulation-derived coefficient based on
anoisy assumption for water depth estimation formula was built from the simulated
dataset with additive noise. Minimum two pixels with known depth for each image
is needed to adjust the intercept of depth estimation formula, as this study used five
pixels with known depth. As a result, the retrieved water depths accuracy was
improved (* less than 5 meters: RMSE 0.22- 1.96m) compared with the zero noise
assumption. In fact, by adding a noise component to the simulated dataset, the

accuracy significantly improved. By optimizing noise component in further studies,
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there is room for improving the accuracy.

As a recommendation, for mapping a very shallow area (less than 5 meters),
the depth estimation formula from noisy assumed simulation-derived coefficients
shows to give a good accuracy with error ranging from 0.26 - 0.92 meter. This will
help to remove the risk of measuring a depth data in a shallow coral reef
environment. Since in the most shallow coral reef site (refer to the ten coral reef site
used in this study), the area of 0 - 5Smeter depth is cover more than 60% of targeted

mapping area.
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Appendix Bottom Irradiance Spectral

No | Bottom Type Name Bottom Type Symbol Site Class
001 | MUD bOMUD derawan substrate
002 | Algae.1 b01PadinaarborescensHolmes | japan coral
003 | coralline_algae b02Corallinealgael bali algae
004 | coralline_algae.1 b03Corallinealgae2 bali algae
005 | cA b04Corallinealgae3 derawan algae
006 | Coralline_Algae b05Corallinealgae4 world algae
007 | Algaebrown b06Eckloniacava japan algae
008 | seagrass b07Gelidiumcrinale japan algae
009 | green_macroalgae b08Greenmacroalgae world algae
010 | HALIMEDA b09Halimedal derawan algae
011 | halimeda b10Halimeda2 world algae
012 | SPONGE b11Sponge derawan algae
013 | PADINA b12Padina derawan algae
014 | Algae.2 b13brownRockalgae japan algae
015 | Algae.3 b14greenRockalgae japan algae
016 | seagrass.1 b15Sargassumfusiforme japan algae
017 | Sargassum_horneri bl6Sargassumhorneri japan algae
018 | Algaebrown.1 b17Sargassumringgoldianum japan algae
019 | tuft_algae b18Tuftalgae world algae
020 | Algae b19Undariapinnatifida japan algae
021 | acropora b20Acroporasp1 world coral
022 | Acropora_formosa b21Acroporasp2 spermonde | coral
023 | ACROPOR b22Acroporasp3 derawan coral
024 | Acropora_sp b23Acroporasp4 bali coral
025 | Acropora_sp.1 b24Acroporasp5 bali coral
026 | acropora_palma b25Acroporasp6 world coral
027 | OTHER b26Corall derawan coral
028 | coral b27Coral2 bali coral
029 | porites.1 b28Coral3 world coral
030 | CYAN b29Cyanobacteria derawan coral
031 | Cymodocea_sp b30Cymodoceasp spermonde | coral
032 | Diploria_clivosa b31Diploria world coral
033 | GALAXY b32Galaxeasp derawan coral
034 | HELIOPORA b33Heliopora derawan coral
035 | macropora b34Macropora world coral
036 | porites b35Poritessp1 world coral
037 | Porites_sp b36Poritessp3 bali coral
038 | BRANPOR b37Poritessp4 derawan coral
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039 | MASSPOR b38Poritessp5 derawan coral

040 | Sinularia_sp b39Sinulariasp1 bali coral

041 | SINULARIA b40Sinulariasp2 derawan coral

042 | soft_coral b41Softcorall bali coral

043 | soft_coral.1 b42Softcoral2 bali coral

044 | OTHER_SC b43Softcoral3 derawan coral

045 | Syringodium_sp b44Syringodiumsp2 spermonde | coral

046 | XENIA b45Xenia derawan coral

047 | Dead_Acropora b46DeadCorall spermonde | deadcoral
048 | deadcoral b47DeadCoral2 world deadcoral
049 | DCBL b48DeadCoralBleaching derawan deadcoral
050 | pccA b49DeadCoralCorallineAlgae derawan deadcoral
051 | DCTA b50DeadCoralTuftAlgae derawan deadcoral
052 | deadcoral_acropora b51Poritessp6 world deadcoral
053 | Enhalus_sp b52Enhalussp spermonde | seagrass
054 | Halophila_sp b53Halophilasp spermonde | seagrass
055 | Seriotopora_stelata b54Seriotoporastelata spermonde | seagrass
056 | syringodium_filiforme b55Syringodiumsp1 world seagrass
057 | thalassia_testidinum b56Thallasiasp1 world seagrass
058 | Thallasia_sp b57Thallasiasp2 spermonde | seagrass
059 | 7_asia b58Zasiatica japan seagrass
060 | Zcau b59Zcaulescens japan seagrass
061 | batu b60Rock japan substrate
062 | Rubber_..6_months. b61Rubblel spermonde | substrate
063 | Sand_broken_shell b62Rubble2 spermonde | substrate
064 | Rubber_.6_Minus_12_months. b63Rubblealgae spermonde | substrate
065 | SAND b64Sand1 derawan substrate
066 | sand b65Sand2 world substrate
067 | sand.1 b66Sand3 world substrate
068 | sand b67Sand4 spermonde | substrate
069 | pasir b68Sand5 japan substrate
070 | Montipora b69Montipora australia coral

071 | Chlorodesmis b70Chlorodesmis australia algae

072 | MontiporaBlue b71MontiporaBlue australia coral

073 | MontiporaBrown b72MontiporaBrown australia coral

074 | Gorgonian b73Gorgonian australia coral

075 | SoftCoral b74SoftCoral australia coral

076 | SandORrock b75SandORrock australia substrate
077 | FolioseCoral b76FolioseCoral australia coral

078 | MontiporaPurple b77MontiporaPurple australia coral

079 | DeadBranching b78DeadBranching australia deadcoral
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080 | Laurencia b79Laurencia australia algae
081 | Gorgonian b80Gorgonian australia coral
082 | FluoresentCoral b81FluoresentCoral australia coral
083 | EncrustingBrown b82EncrustingBrown australia coral
084 | DigitateCoral b83DigitateCoral australia coral
085 | ChlorodesmisShaded b84ChlorodesmisShaded australia algae
086 | ChlorodesmisNotShaded b85ChlorodesmisNotShaded australia algae
087 | AcroporaLight b86AcroporaLight australia coral
088 | BrownCoral b87BrownCoral australia coral
089 | Rubble2 b88Rubble2 australia substrate
090 | FireCoral b89FireCoral australia coral
091 | Acropora b90Acropora australia coral
092 | MontiporaGreen b91MontiporaGreen australia coral
093 | DeadPlate200 b92DeadPlate200 australia deadcoral
094 | DeadPlate100 b93DeadPlate100 australia deadcoral
095 | CoralLine b94CoralLine australia algae
096 | AcroporaBrown1 b95AcroporaBrown1 australia coral
097 | AcroporaYellow1 b96AcroporaYellow1 australia coral
098 | AcroporaTurfl b97AcroporaTurfl australia coral
099 | AcroporaBrown2 b98AcroporaBrown2 australia coral
100 | AcroporaYellow2 b99AcroporaYellow2 australia coral
101 | AcroporaTurf2 b100AcroporaTurf2 australia deadcoral
102 | RubbleOrturf b102RubbleOrturf australia substrate
103 | CoralEncrusting b103CoralEncrusting australia coral
104 | Coraline b104Coraline australia algae
105 | MontiporaBlue b105MontiporaBlue australia coral
106 | AcroporaBrown b106AcroporaBrown australia coral
107 | DigitateGreen b107DigitateGreen australia coral
108 | GreenAlgae b108GreenAlgae australia algae
109 | AcroporaBlue b109AcroporaBlue australia coral
110 | AcroporaLightBrown b110AcroporaLightBrown australia coral
111 | AcroporaLight b111AcroporalLight australia coral
112 | AcroporaBrown b112AcroporaBrown australia coral
113 | Halimeda b113Halimeda australia algae
114 | Coraline b114Coraline australia algae
115 | Rock b115Rock australia substrate
116 | MassiveLive b116MassiveLive australia coral
117 | FolioseTurf b117FolioseTurf australia deadcoral
118 | FolioseLive b119FolioseLive australia coral
119 | DigitateLive b120DigitateLive australia coral
120 | DigitateDead b121DigitateDead australia deadcoral
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121 | AcroporaTurf b122AcroporaTurf australia deadcoral
122 | AcroporaLive b123Acroporalive australia coral
123 | AcroporaTurf b124AcroporaTurf australia deadcoral
124 | AcroporaLive b125AcroporaLive australia coral
125 | AcroporaBlue b126AcroporaBlue australia coral
126 | Lobophora b127Lobophora australia algae
127 | Porites b128Porites australia coral
128 | TurfOnPorites b129TurfOnPorites australia coral
129 | LiveEncrusting b130LiveEncrusting australia coral
130 | TurfEncrusting b131TurfEncrusting australia algae
131 | LaurenciaGreen b132LaurenciaGreen australia algae
132 | LaurenciaRed b133LaurenciaRed australia algae
133 | Halimeda b134Halimeda australia algae
134 | Cholorodesmis b135Cholorodesmis australia algae
135 | Caulerpa b136Caulerpa australia algae
136 | Caulerpa2 b137Caulerpa2 australia algae
137 | Caulerpa3 b138Caulerpa3 australia algae
138 | Dictyota b139Dictyota australia algae
139 | DictyotaSand b140DictyotaSand australia algae
140 | Turbinaria b141Turbinaria australia algae
141 | Enteromorpha b142Enteromorpha australia algae
142 | AlgaeSand b143AlgaeSand australia substrate
143 | AlgaeNoSand b144AlgaeNoSand australia algae
144 | AlgaeGreen b145AlgaeGreen australia algae
145 | Turbinaria b146Turbinaria australia algae
146 | sand b147Sand australia substrate
147 | SandBMA b148SandBMA australia substrate
148 | Pocillopora b149Pocillopora australia coral
149 | LaurenciaRed b150LaurenciaRed australia algae
150 | LaurenciaGreen b151LaurenciaGreen australia algae
151 | FuzzyAlgae b152FuzzyAlgae australia algae
152 | Porites b153Porites australia coral
153 | RedSponge b154RedSponge australia coral
154 | Encrusting20ms b155Encrusting20ms australia coral
155 | Encrusting50ms b156Encrusting50ms australia coral
156 | Encrusting50msshade b157Encrusting50msshade australia coral
157 | Turf b158Turf australia algae
158 | Encrusting b159Encrusting australia coral
159 | BrownAcropora b160BrownAcropora australia coral
160 | BlueAcropora b162BlueAcropora australia coral
161 | PinkSponge b163PinkSponge australia coral
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162 | TurfOnMassive b164TurfOnMassive australia algae
163 | AcroporaLightBrown b165AcroporaLightBrown australia coral
164 | AcroporaDarkBrown b166AcroporaDarkBrown australia coral
165 | MontiporaGreen b167MontiporaGreen australia coral
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