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Abstract 

Biologics (recombinant protein drugs) such as cytokines are used in low dose. 
Consequently, as the production size is not big, the efficiency of the manufacturing 
process was not considered important. However, for some high-dose recombinant 
monoclonal antibody (mAb) products, an annual production of 1 ton or more is required. 
In order to improve the production process of mAb various technologies have been 
developed. The cell culture process called the upstream process has been dramatically 
improved, which results in ten-fold increases in the mAb concentration over the last 10 
years.  

Although there have not been epoch-making innovations in the purification process 
called the downstream process (DSP), so-called platform DSPs have been established. 
This is because a product-specific purification process is not needed as the properties of 
mAbs are basically similar. Increasing cost pressure requires much efficient DSPs as 
they are expensive and increase the total production cost. Platform DSPs usually consist 
of three chromatography steps, a capture step by protein A chromatography (PAC) 
followed by two polishing steps (ion-exchange chromatography, IEC). Such 
chromatography packing materials (media, gels or resins) have been improved 
remarkably recently. It is now possible to construct an efficient DSP by choosing 
suitable chromatography media and proper operating conditions based on mechanistic 
models. 
 Protein A chromatography (PAC) is commonly used as a capture step in mAb 

separation processes. Usually dynamic binding capacity is used for choosing the right 
PAC. However, if aggregates can be efficiently removed during elution, it can make the 
following polishing steps easier. In chapter 2, a method for choosing the right PAC 
media in terms of mAb aggregate removal is proposed. Linear pH gradient elution 
experiments of two different mAbs on various PAC columns were carried out, where the 
elution behavior of aggregates as well as the monomer was measured. Aggregates of 
one mAb were more strongly retained compared with the mAb monomer. Another mAb 
showed different elution behavior, where the aggregates were eluted as both the weakly 
and strongly retained peaks. In order to remove the two types of aggregates by stepwise 
elution two protocols were tested. The first protocol A consisted of the sample loading, 
the wash with the equilibration buffer and the low pH elution. The wash stage of the 
second protocol B included the wash with 1.0 M arginine. No detectable peaks were 
observed during the wash stage of protocol A whereas significant peaks were monitored 
during the arginine wash of protocol B. One of the PAC columns showed a smaller peak 
during the arginine wash. In addition, both the aggregate removal and the monomer 
yield were higher with protocol B compared with the other PAC columns. This method 
was found to be useful for choosing the right PAC column. 
The temperature is not considered a critical parameter in DSPs. However, the 



manufacturing process is most often carried out at room temperature whereas the 

early-stage process development may be performed at low temperatures in the 

laboratory. It is also important to know the temperature dependence of chromatography 

performance for the process validations. In chapter 3, the dynamic binding capacity 

(DBC) of model proteins on ion-exchange chromatography (IEC) was analyzed based 

on a simplified pore diffusion model in order to develop a simple method for designing 

a capture chromatography process. A dimensionless parameter, udp
2/ (ZDm) was derived 

from the pore diffusion model, where u0 is the superficial velocity, dp is the particle 

diameter, Z is the column bed height, and Dm is the molecular diffusion coefficient. 

Breakthrough curves of model proteins (Lysozyme and mAb) were measured for cation 

exchange chromatography columns at various temperatures (8, 13, 18, 23 and 28 C). 

The DBC/SBC values (column efficiency) was calculated from the experimental data 

were well correlated to udp
2/ (ZDm) (SBC = static binding capacity). The DBC/SBC - 

u0dp
2/ (ZDm) curve was found to be useful for designing efficient capture processes of 

proteins
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Fig.8

2.3 

2.3.1 

 3  mAb-A mAb-B mAb-C

mAb-A NS0 37 12

0.64 g/L PAC 2 IEC

DBC mAb-B mAb-C CHO

37 14 0.89 g/L 1.36 g/L

2 pH

2.3.2 PAC
5 PAC Table 2 pH

DBC 1 mL

5 mL

Table 2



PAC Supplier dp 

[ m]

Alkaline 
resistance

Base 
matrix

Vt  [mL]

pH 

ProSep 

UltraPlus

MerckMillipore 60 No Glass 1 5 

MabSelect GE-HealthCare 85 No Agarose 1 4.7 
MabSelect 

SuRe

GE-HealthCare 85 Yes Agarose 1 4.7 

Toyoperal 

AF650

Tosoh 40 Yes Poly- 

methacrylate

1 5 

KanCapA KANEKA 75 Yes Cellulose 1 5 

dp = nominal particle diameter, Vt = packed bed volume 

2.3.3

GE

ÄKTA explorer 100 ÄKTA FPLC

Fig.9

Fig.9 
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2.3.4 DBC
(0.02M /0.14M , pH 

7.5) mAb-A 280 nm

10% DBC

(0.05M /0.06M , 

pH 3.5)

2.3.5 pH
(0.02M  / 0.02M , pH 6.0)

1 mL 15 mg 5 C.V

0.02M 

, pH 3.5 20 C.V 0.33 mL/min (

 3 ) 1 mL 280 nm

SEC

2.3.6 

ProSep UltraPlus 2.5 4

4 2.2.3 3

2

A (0.02M /0.14M 

NaCl, pH 7.5) 30 mg/mL-bed

7.5 C.V

( 0.05M  / 0.06M NaCl, pH 3.5 )

280 nm 1.0

B 4 C.V

5 C.V 1.0M , pH 7.5 4 C.V

A

280 nm 1.0

ProSep UltraPlus, MabSelect 1.0M

1.5M 2.0M



2.3.7 
mAbs Protein G (POROS G20, 4.6 

mm I.D × 50 mm Applied Biosystems) 5 mL/min

0.05M  / 0.15M pH 

7.5 0.15M pH 2

280 nm

2.3.8 
SEC TSKgel Super SW 3000 (7.8 mm 

id×300 mm, Tosoh Bioscience, Japan) 0.05M

 / 0.15M , pH 7.5 0.5 mL/min

280 nm HPLC Agilent 1100 1200 Agilent USA

2.3.9 SDS PAGE
SDS PAGE 4-12% Bis-Tris NuPAGE pre-cast polyacrylamide gel (Life 

Technologies, USA) MOPS running buffer

pH 7.0 1 mg/mL

65 L 25 L NuPAGE 

lithium dodecylsulfate LDS  sample buffer 4 10 L NuPAGE sample 

reducing agent 70°C 10 SDS PAGE

NuPAGE sample reducing agent Q

SeeBlue Plus2 Pre-Stained Standard Life Technologies

10 L 150 V 65 GelCode Blue Stain 

Reagent PIERCE, USA



2.4 

2.4.1 mAb-A DBC
DBC PAC PAC

4 35 40 mg/mL DBC

mAb-A 10% DBC Table 

3 ProSep UltraPlus DBC  [21] 

4

Table 3  PAC DBC

        Name             DBC        RT  
                       [mg/mL-bed]    [min]  

ProSep UltraPlus 55 2.5 
MabSelect 44 4 

MabSelect SuRe 46 4 
Toyoperal AF-650 33 4 

KanCapA 45 4 
DBC = dynamic binding capacity at 10% breakthrough RT = residence time 

2.4.2 pH
mAb-B mAb-C pH

Figs.11-1 11.5 Figs.12-1 12-5 mAb-B aggregates

aggregates PAC

pH

[22-23] Fig.10 mAb-C

aggregates mAb-B

 (Figs.12-1 12.5) MabSelect SuRe 2

mAb-C 2 aggregates

PAC



Fig. 10  Protein A  (PAC) 
The sample solution containing mAb (target material), contaminants such as host cell 
proteins (HCPs) and DNAs, and aggregates is fed to the column before the 
breakthrough of mAb occurs. This volume, V1, is often used for calculating the dynamic 
binding capacity (DBC) as DBC = CFV1/Vt where CF = sample mAb concentration and 
Vt = column bed volume. After the sample loading period, the column is washed to 
remove HCPs and DNAs remained. The low-pH solution is applied to the column to 
elute (desorb) the product (mAb). Aggregates is expected to be bound the column, 
which is desorbed during the regeneration period.  



Fig. 11-1  mAb-B ProSep UltraPlus pH

 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

Fig. 11-2  mAb-B MabSelect pH
 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

<

<
<



Fig. 11-3  mAb-B MabSelect SuRe pH
 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

Fig. 11-4  mAb-B Toyopearl AF650 pH

 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

<



Fig. 11-5  mAb-B KanCapA pH
 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

Fig. 12-1  mAb-C ProSep UltraPlus pH
. 

 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 



Fig. 12-2  mAb-C MabSelect pH
 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

Fig. 12-3  mAb-C MabSelect SuRe pH
 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

<



Fig. 12-4  mAb-C Toyopearl AF650 pH

 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

Fig. 12-5  mAb-C KanCapA pH
 Fraction volume was 1 mL. Aggregates content is the ratio of aggregates to the total 
mAb in the fraction analyzed by SEC. 

2.4.3. Aggregates

mAb-C aggregates

Fig.13
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Fig.13  Protein A 
 Protein A chromatography is commonly used as an efficient capture step in mAb 

separation. By choosing the right protein A chromatography media, different types of 

aggregates (type 1: normal mAb-stronger binding and type 2: hybrid and truncated mAb 

weaker binding) can be efficiently removed during the wash and the elution periods. 

This study proposes a method to select the best media, which can make the following 

polishing chromatography steps easier. 



Fig. 14-1  ProSep UltraPlus 2
mAb-C PAC 

Fig. 14-2  MabSelect 2 mAb-C
PAC 



Fig. 14-3  Toyopearl AF650 2
mAb-C PAC 

Fig. 14-4  MabSelect SuRe 2
mAb-C PAC 



Fig. 14-5  KanCapA 2 mAb-C
PAC 

Table 4  mAb-C

PAC rein Alkaline 
resistance 

Monomer content1 [%] Monomer Yield2 [%] 
Protocol A 

Non 
-arginine 

wash 

Protocol B 
Arginine 

wash 

Protocol A 
Non 

-arginine 
wash 

Protocol B 
Arginine 

wash 

ProSep UltraPlus No 72 75 61 60 
MabSelect No 79 87 61 57 

MabSelect SuRe Yes 74 95 60 61 
Toyoperal AF-650 Yes 75 95 57 56 

KanCapA Yes 94 95 60 59 
1 Monomer content was calculated as the ratio of the recovered monomer to the total 
mAb recovered (monomer +aggregates) by SEC. 
2 Monomer yield was calculated as the ratio of the recovered monomer to the amount of 
mAb in the load sample. 



Fig.15-1  A ProSep UltraPlus-PAC
SEC

Fig.15-2  B ProSep UltraPlus-PAC
SEC
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Aggregates 

Monomer 

Aggregates 



Fig.16-1  A MabSelect SuRe-PAC
SEC

Fig.16-2  B MabSelect SuRe-PAC
SEC
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Aggregates 

Monomer 

Aggregates 



Fig.17-1  A KanCapA-PAC
SEC

Fig.17-2  B KanCapA-PAC
SEC

Monomer 

Aggregates 

Monomer 

Aggregates 



Table 5  Native Protein A

PAC resin 
Monomer content1 [%] Monomer Yield2 [%] 

1.0M  
Arginine 

wash 

1.5M  
Arginine 

wash 

2.0M 
Arginine 

wash 

1.0M  
Arginine 

wash 

1.5M  
Arginine 

wash 

2.0M 
Arginine 

wash 
ProSep UltraPlus 75 78 79 60 60 59 

MabSelect 87 86 86 57 59 58 
1 Monomer content was calculated as the ratio of the recovered monomer to the total 
mAb recovered (monomer +aggregates) by SEC. 
2 Monomer yield was calculated as the ratio of the recovered monomer to the amount of 
mAb in the load sample. 

Fig.18  MabSelect Sure KanCapA PAC 
 Protocol A was used for both experiments. The sample for MabSelect Sure PAC was 
the pooled fraction from the start to the elution volume of 75 mL for KanCapA PAC 
stepwise elution. 

(A) 
(B) 



Fig. 19  KanCapA, MabSelect SuRe, and ProSep UltraPlus

SDS PAGE



Lane 1: Culture supernatant, Lane 2: Flow-through, Lane 3: Eluate (without arginine 

wash), Lane 4: Arginine wash peak, Lane 5: Eluate (with arginine wash), Lane 6: 

Flow-through, Lane 7: Eluate (withrout arginine wash), Lane 8: Arginine wash peak, 

Lane 9: Eluate (with arginine wash), Lane 10: Flow-through,  Lane 11: Eluate (without 

arginine wash), Lane 12: CIP peak (After elution, Non arginine wash), Lane 13: 

Arginine wash peak, Lane 14: Eluate (with arginine wash). The sample was the clarified 

cell culture supernatant of mAb-C.
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Fig. 20  Protein A- mAb
(A) native-Protein A has weak interaction with Fab region as well as strong binding 

with Fc region. (a) Alkaline stable recombinant Protein A does not have weak 

interaction with Fab. (B) (b) Type 1 aggregates are bound to Protein A more strongly 

than mAb monomer does as they have more binding Fc sites. (C) Type 2 aggregates are 

bound to native-protein A with Fab and Fc regions. (c) As Fc regions of Type 2 

aggregates are buried or partially lost, the interaction with Protein A becomes weaker 

than the interaction between mAb monomer and Protein A.
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concentration, F is the volumetric flow rate, and Vt is the column bed volume[3]

3.2 IEC

Fig.22



Fig.22 
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3.3.1 
ca.14,300, 2
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Table 6 

Resin 
Z 

(cm) 

dc

(cm) 

dp

( m) 

Vt

(mL) 

SP Sepharose Fast Flow 

SPFF 1) 2.5 0.7 90 0.96 

SP Sepharose XL 

SPXL 1) 2.5 0.7 90 0.96 

SP Sepharose High 

Performance 

SPHP 1)

2.5 0.7 34 0.96 

Fractogel SE Hicap 

FGSE 2) 1.92 0.82 40-90 1.01 

POROS HS20 

(PHS20)3) 5.0 0.46 20 0.83 

CIM SO32) 0.9 1.2 - 1.02 

1) Agarose,  2)Methacrylate,  3)Polystyrenedivinylbenzene  
Z dc dp Vt

3.3.2 

GE

ÄKTA explorer 100 ÄKTA FPLC

3.3.3

3.5.1

25mM /20mM pH 5.0

A280 1 1.2 25mM

/20mM (pH 5.0)

1 8 13 18 23 28



C

A280 Fig.5
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DBC  [32-34]
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C0 VB C=CB, Vt

CB/C0=0.1 10%

Fig.23 SBC

SBC =  C0VC/Vt  (4) 

VB CC/C0=0.55 - 0.60



Fig.23  

LUB = length of unused bed, LES = length of equilibrium section 
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dp
2/[Dm(Z/u)] (6) 

=udp/Dm.

 r HETP  (h=HETP/dp) 

[40] HETP tR

HETP = Z ( /tR)2  (7) 

DBC/SBC dp
2/[Dm(Z/u)]

3.4 

3.4.1 

 2 DBC Fig.24
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POROS HS20

Fig. 24  2
SPFF= SP Sepharose FF, SPHP= SP Sepharose HP, SPXL= SP Sepharose XL,  
FGSE= Fractogel SE Hicap,  PHS20= POROS HS20,  
CIMSO3=CIM SO3 monolithic disk 

3.4.2 DBC/SBC

Fig.24 DBC/SBC dp
2/[Dm(Z/u)] 

Fig.25 DBC/SBC dp
2/[Dm(Z/u)] 

Fig.25 SPFF SPHP SPXL PHS20 DBC/SBC

udp
2/ZDm 3.2



DBC

DBC

FGSE

Fig.25

Stokes Einstein Dm /T=constant Dm

[41] T DBC/SBC dp2/[Ds (Z/u)]

Ds

SBC

96

[42]

Fig.25  mAb-A Lysozyme DBC/SBC udp
2/ZDm 

The molecular diffusion coefficient Dm was calculated by the equation proposed by 

Young et al.[10]. 
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