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Abstract

We develop a systematic procedure for constructing soliton solutions of an integrable

two-component Camassa-Holm (CH2) system. The parametric representation of the mul-

tisoliton solutions is obtained by using a direct method combined with a reciprocal trans-

formation. The properties of the solutions are then investigated in detail focusing mainly

on the smooth one- and two-soliton solutions. The general N -soliton case is described

shortly. Subsequently, we show that the CH2 system reduces to the CH equation and

the two-component Hunter-Saxton (HS2) system by means of appropriate limiting pro-

cedures. The corresponding expressions of the multisoliton solutions are presented in

parametric forms, reproducing the existing results for the reduced equations. Last, we

discuss the reduction from the HS2 system to the HS equation.
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1. Introduction

In this paper, we consider the following two-component generalization of the Camassa-

Holm (CH) equation

mt + umx + 2mux + ρρx = 0, (1.1a)

ρt + (ρu)x = 0, (1.1b)

which is abbreviated as the CH2 system. Here, u = u(x, t), ρ = ρ(x, t) and m = m(x, t) ≡

u−uxx+κ
2 are real-valued functions of time t and a spatial variable x, and the subscripts

x and t appended to u and ρ denote partial differentiation. The parameter κ in the

expression of m is assumed to be a non-negative real number.

The CH2 system (1.1) has been derived for the first time in [1] in search of the bi-

Hamiltonian formulation of integrable nonlinear evolution equations. Actually, the system

can be represented as the dual bi-Hamiltonian system for a coupled Korteweg-de Vries

equation introduced independently by Zakharov [2] and Ito [3]. Later, a similar system

with the coefficient of ρρx in (1.1a) being minus was studied [4-6]. In particular, a recipro-

cal transformation between the system and the first negative flow of the AKNS hierarchy

was established in [6]. In the physical context, on the other hand, the CH2 system with

κ = 0 was derived by applying an asymptotic analysis to the fully nonlinear Green-Naghdi

equations for shallow water waves, where u represents the horizontal velocity and ρ is re-

lated to the depth of the fluid in the first approximation [7]. The same system with κ 6= 0

was also obtained from the basic Euler system for an incompressible fluid with a constant

vorticity [8]. One can also consult Ref. [9] as for a brief history of the CH2 system.

One remarkable feature of the CH2 system is that it is a completely integrable system.

Indeed, it has a Lax representation given by

Ψxx =

(

−λ2ρ2 + λm+
1

4

)

Ψ, (1.2a)

Ψt =

(

1

2λ
− u

)

Ψx +
ux
2
Ψ, (1.2b)

where λ is the spectral parameter [7, 8]. It turns out that the compatibility condition

of the linear system (1.2) yields (1.1), thus enabling us to apply the inverse scattering

transform method (IST) [10, 11]. A number of works have been devoted to the study of

the mathematical properties of (1.1). For example, some conditions were provided for the

wave breaking and the existence of the traveling waves [7, 12, 13]. The explicit solitary

wave solutions were obtained by using the method of dynamical systems [14, 15], and the
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general multisoliton solutions were constructed by means of the IST [16]. More precisely,

the IST is reformulated as a Riemann-Hilbert problem [11], and the N -soliton solution is

given by a parametric form. However, the analysis of multisoliton solutions has not been

done as yet.

Various reductions are possible for the CH2 system while preserving its integrabil-

ity. Specificallly, the reduction to the CH equation is of great importance. This can be

accomplished simply by putting ρ = 0 in (1.1), giving [17]

ut + 2κ2ux − uxxt + 3uux = 2uxuxx + uuxxx. (1.3)

The CH equation describes the unidirectional propagation of shallow water waves over a

flat bottom. Its structure has been studied extensively from both theoretical and numer-

ical points of view [18, 19]. The Lax representation associated with the CH equation can

be obtained simply by putting ρ = 0 in (1.2). This enables us to apply the IST which has

been successfully used for various integrable soliton equations such as the Korteweg-de

Vries (KdV) and nonlinear Schrödinger equations. Unlike the KdV equation which is a

typical model of shallow water waves, the CH equation could explain the wave breaking

as well as the existence of peaked waves (or peakons) which are inherent in the basic Euler

system.

Another reduction is the two-component Hunter-Saxton (HS2) system which can be

derived by means of the short-wave limit of the CH2 system. It has the same form as the

system (1.1) with the variable m replaced by −uxx + κ2. Explicitly, it can be written in

the form

uxxt − 2κ2ux + uuxxx + 2uxuxx − ρρx = 0, ρt + (ρu)x = 0. (1.4)

Furthermore, on taking ρ = 0, the HS2 system (1.4) reduces to

uxxt − 2κ2ux + uuxxx + 2uxuxx = 0. (1.5)

In the case of κ = 0, equation (1.5) becomes the classical Hunter-Saxton (HS) equation

which is a model for describing the propagation of weakly nonlinear orientation waves in

a massive nematic liquid crystal director field [20]. We refer to (1.5) as the HS equation

hereafter.

The purpose of the present paper is to develop a systematic method for obtaining the

multisoliton solutions of the CH2 system and investigate their properties. Subsequently, a

reduction procedure is performed to obtain the multisoliton solutions of the CH equation

and the HS2 system from those of the CH2 system. We impose the boundary conditions
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u(x, t) → 0 and ρ(x, t) → ρ0 as |x| → ∞, where ρ0 is a positive constant. These boundary

conditions are consistent with the hydrodynamic derivation of the system [7, 8]. A direct

method is employed to obtain solutions which worked effectively for the construction of

the soliton solutions of the CH equation [21] and the modified CH equations [22, 23].

This paper is organized as follows. In section 2, we transform the CH2 system to

a system of partial differential equations (PDEs) by means of a reciprocal transforma-

tion similar to that employed for the CH and modified CH equations [21-23]. We then

perform the bilinearization of the latter system through appropriate dependent variable

transformations. Following the standard procedure of the bilinear transformation method

[24, 25], we construct the N -soliton solution of the bilinear equations in terms of the

tau-functions, where N is an arbitrary positive integer, thus obtaining the parametric

representation for the N -soliton solution of the system (1.1). The dispersion relation of

the soliton is explored in detail to feature its propagation characteristics. In section 3,

we investigate the properties of the soliton solutions. First, we address the one-soliton

solutions, showing that the profile of ρ always takes the form of bright soliton whereas

that of u takes both bright and dark solitons depending on the dispersion relation of the

soliton. Subsequently, the asymptotic analysis of the N -soliton solution is performed to

derive the formula for the phase shift. Last, the interaction process of two solitons is

exemplified for both overtaking and head-on collisions. In section 4, we carry out various

reductions of the CH2 system. Specifically, by introducing appropriate scaling variables,

we demonstrate that the CH2 system reduces to the CH equation in the limit ρ0 → 0,

and recover the N -soliton solution of the CH equation as well as the formula for the phase

shift. We also show that the short-wave limit of the CH2 system leads to the HS2 sys-

tem, and the N -soliton solution of the latter system is recovered from that of the former

system. Then, we give a brief summary about the reduction to the HS equation. Section

5 is devoted to some concluding remarks. In appendix A, we detail the bilinearization

of the CH2 system. In appendix B, we provide a proof of the bilinear identities for the

tau-functions associated with the N -soliton solution of the CH2 system.

2. Exact method of solution

In this section, we develop a systematic method for constructing the multisoliton solutions

of the CH2 system. To this end, we employ an exact method of solution which is referred

to as the direct method [24] or the bilinear transformation method [25]. When compared

with the IST, this method is an especially powerful technique for obtaining particular

solutions like soliton and periodic wave solutions. After transforming the system (1.1)
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to an equivalent system of PDEs by a reciprocal transformation, we bilinearize the latter

system and then solve it in terms of the tau-functions, thus giving rise to the parametric

representation of the N -soliton solution.

2.1. Reciprocal transformation

First of all, we introduce the reciprocal transformation (x, t) → (y, τ) according to

dy = ρ dx− ρu dt, dτ = dt. (2.1a)

Then, the x and t derivatives transform as

∂

∂x
= ρ

∂

∂y
,

∂

∂t
=

∂

∂τ
− ρu

∂

∂y
. (2.1b)

Applying the transformation (2.1) to the system (1.1), we obtain the system of PDEs
(

m

ρ2

)

τ

+ ρy = 0, (2.2a)

ρτ + ρ2uy = 0. (2.2b)

It then follows from (2.1b) that the variable x = x(y, τ) obeys a system of linear PDEs

xy =
1

ρ
, (2.3a)

xτ = u. (2.3b)

The system of equations (2.3) is integrable since its compatibility condition xτy = xyτ is

assured by virtue of (2.2b).

Now, the quantity m = u − uxx + κ2 in (1.1) can be rewritten in terms of the new

coordinate system as

m = u+ ρ(ln ρ)τy + κ2, (2.4)

where we have used (2.2b) to replace uy by −ρτ/ρ
2. Let us introduce the new dependent

variable Y = Y (y, τ) by the relation

m

ρ2
−
κ2

ρ20
= Yy. (2.5)

Subsituting (2.5) into (2.2a) and then integrating the resultant expression by y under the

boundary conditions Yτ → 0 and ρ→ ρ0 as |y| → ∞, we obtain

ρ = ρ0 − Yτ . (2.6)
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The following proposition is the starting point in the present analysis.

Proposition 2.1. The variables x and Y satisfy the system of PDEs

xy(ρ0 − Yτ) = 1, (2.7)

(ρ0 − Yτ )

(

κ2

ρ20
+ Yy

)

= xτxy − [(ρ0 − Yτ )xτy]y + κ2xy. (2.8)

Proof. Equation (2.7) follows immediately from (2.3a) and (2.6). If we substitute m

from (2.5) into (2.4) and use (2.3a) and (2.3b) to express ρ and u in terms of xy and xτ ,

respectively, (2.4) becomes

κ2

ρ20
+ Yy = xτx

2
y − xτyy +

xτyxyy
xy

+ κ2x2y.

Dividing this expression by xy and using (2.7), we arrive at (2.8). �

2.2. Bilinearization

In applying the bilinear transformation method to the given nonlinear equations, the

first step is to transform the equations into the bilinear equations, which we shall now

demonstrate. To this end, we introduce the dependent variable transformations

x =
y

ρ0
+ ln

f̃

f
+ d, (2.9)

Y = i ln
g̃

g
, (2.10)

where f, f̃ , g and g̃ are tau-functions and d is an arbitrary constant. One advantage of the

form (2.10) is that the structure of the system of bilinear equations becomes transparent

when compapred with the introduction of another form like Y = 2 tan−1(Im g/Re g).

This facilitates the analysis, in particular the construction of solutions. Obviously, the

definition of Y from (2.5) implies that it can be taken as a real quantity which is achieved

simply if one chooses the tau-function g̃ as a complex conjugate of g. This recipe can be

used successfully in constructing real soliton solutions, as will be manifested in theorem

2.2.

Now, we establish the following proposition.
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Proposition 2.2. Consider the following system of bilinear equations for f, f̃ , g and g̃:

Dyf̃ · f +
1

ρ0
(f̃ f − g̃g) = 0, (2.11)

iDτ g̃ · g + ρ0(f̃ f − g̃g) = 0, (2.12)

DτDyf̃ · f +
1

ρ0
Dτ f̃ · f + κ2Dyf̃ · f = 0, (2.13)

DτDyg̃ · g − i
κ2

ρ20
Dτ g̃ · g + iρ0Dyg̃ · g = 0, (2.14)

where the bilinear operators are defined by

Dm
y D

n
τ f · g = (∂y − ∂y′)

m (∂τ − ∂τ ′)
n f(y, τ)g(y′, τ ′)|y′=y, τ ′=τ , (m,n = 0, 1, 2, ...).

(2.15)

Then, the solutions of this system of equations solve the equations (2.7) and (2.8).

The proof of proposition 2.2 will be detailed in appendix A.

2.3. Parametric representations of the solutions

Theorem 2.1. The two-component CH system (1.1) admits the parametric representa-

tions of the solutions

u(y, τ) =

(

ln
f̃

f

)

τ

, (2.16)

ρ(y, τ) = ρ0 − i

(

ln
g̃

g

)

τ

, (2.17)

x(y, τ) =
y

ρ0
+ ln

f̃

f
+ d. (2.18)

Proof. The expression (2.16) follows by introducing (2.9) into (2.3b) whereas the expres-

sion (2.17) comes from (2.6) and (2.10). The expression (2.18) is just (2.9). �

Remark 2.1. The parametric representations of 1/ρ and m/ρ2 in terms of the tau-

functions are also available from (2.3a), (2.5), (2.9) and (2.10). Explicitly, they read

1

ρ
=

1

ρ0
+

(

ln
f̃

f

)

y

, (2.19)

m

ρ2
=
κ2

ρ20
+ i

(

ln
g̃

g

)

y

. (2.20)
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2.4. N-soliton solution

Theorem 2.2. The tau-functions f, f̃ , g and g̃ constituting the N-soliton solution of the

system of bilinear equations (2.11)-(2.14) are given by the expressions

f =
∑

µ=0,1

exp

[

N
∑

j=1

µj (ξj + φj) +
∑

1≤j<l≤N

µjµlγjl

]

, (2.21a)

f̃ =
∑

µ=0,1

exp

[

N
∑

j=1

µj (ξj − φj) +
∑

1≤j<l≤N

µjµlγjl

]

, (2.21b)

g =
∑

µ=0,1

exp

[

N
∑

j=1

µj (ξj + iψj) +
∑

1≤j<l≤N

µjµlγjl

]

, (2.22a)

g̃ =
∑

µ=0,1

exp

[

N
∑

j=1

µj (ξj − iψj) +
∑

1≤j<l≤N

µjµlγjl

]

, (2.22b)

where

ξj = kj (y − cjτ − yj0) , (j = 1, 2, ..., N), (2.23a)

eγjl =
κ2(cj − cl)

2 − ρ0(kj − kl)cjcl(cjkj − clkl)

κ2(cj − cl)2 − ρ0(kj + kl)cjcl(cjkj + clkl)
, (j, l = 1, 2, ..., N ; j 6= l), (2.23b)

e−φj =

√

(1− ρ0kj)cj − ρ0κ2

(1 + ρ0kj)cj − ρ0κ2
, (j = 1, 2, ..., N), (2.23c)

e−iψj =

√

√

√

√

√

(

κ2

ρ0
− iρ0kj

)

cj + ρ20
(

κ2

ρ0
+ iρ0kj

)

cj + ρ20

, (j = 1, 2, ..., N), (2.23d)

and cj is the velocity of jth soliton in the (y, τ) coordinate system which is given by the

solution of the quadratic equation

(1− ρ20k
2
j )c

2
j − 2ρ0κ

2cj − ρ40 = 0, (j = 1, 2, ..., N). (2.23e)

Here, kj and yj0 are arbitrary complex parameters satisfying the conditions kj 6= kl for

j 6= l. The notation
∑

µ=0,1 implies the summation over all possible combinations of

µ1 = 0, 1, µ2 = 0, 1, ..., µN = 0, 1.

A proof of theorem 2.2 will be given in appendix B in which the tau-functions (2.21)

and (2.22) are shown to satisfy the system of bilinear equations (2.11)-(2.14) by means of

mathematical induction.
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Remark 2.2. The bilinear equations (2.13) and (2.14) arise from the reduction of the

BKP family of integrable soliton equations [26, 27]. The tau-functions associated with

the N -soliton solutions of these equations have the same forms as those given by (2.21)

and (2.22). Within this framework, however, the parameters cj and kj in (2.23b) can

be taken independently. On the other hand, for the present N -soliton solutions, both

parameters are related to each other by the quadratic equation (2.23e). This follows

from the requirement that the tau-functions solve the bilinear equations (2.11) and (2.12)

simultaneously.

The parametric representation of the N -soliton solution given by (2.16)-(2.18) with

the tau-functions (2.21) and (2.22) is characterized by the 2N complex parameters kj and

yj0 (j = 1, 2...., N). The parameters kj determine the amplitude and the velocity of the

solitons, whereas the parameters yj0 determine the position (or phase) of the solitons. If we

impose the conditions f̃ = f ∗ and g̃ = g∗ where the asterisk denotes complex conjugate,

then the solutions become real functions of x and t. Note, however that they would

yield multi-valued functions unless certain conditions are imposed on the parameters

kj(j = 1, 2, .., N). The similar situation has already been encountered in investigating the

structure of the soliton solutions of the CH and modified CH equations [21-23]. We will

address this issue in the next section where the detailed analysis of the soliton solutions

will be performed.

Before proceeding, we investigate the characteristics of the velocity of the soliton in the

(y, τ) coordinate system. As will be discussed in section 3.1, the corresponding velocity

in (x, t) coordinate system is given simply by cj/ρ0. The quadratic equation (2.23e) has

two roots

cj =
ρ0

1− (ρ0kj)2
(κ2 + dj) =

ρ30
dj − κ2

, (j = 1, 2, ..., N), (2.24a)

where

dj = ǫj

√

κ4 + ρ20 − ρ40k
2
j , (ǫj = ±1, j = 1, 2, ..., N). (2.24b)

To assure the reality of cj, one must impose the condition for the parameter ρ0kj. Actually,

it must lie in the interval

0 < ρ0kj <
√

κ4 + ρ20/ρ0, (j = 1, 2, ..., N), (2.25)

where we have assumed kj > 0 (j = 1, 2, ..., N). Figure 1 plots the velocities c+ ≡ cj(ǫj =

+1) and c− ≡ cj(ǫj = −1) as a function of ρ0k ≡ ρ0kj. The velocity c+ is positive for

9
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Figure 1. The velocity c = c± of the soliton as a function of ρ0k for ρ0 = 1 and κ = 1:
c+(solid curve), c−(dashed curve).

0 < ρ0k < 1 and negative for 1 < ρ0k <
√

κ4 + ρ20/ρ0. It exhibits the singularity at

ρ0k = 1. Specifically,

ρ0

(

κ2 +
√

κ4 + ρ20

)

< c+ <∞, (0 < ρ0k < 1), (2.26a)

−∞ < c+ < −ρ30/κ
2,

(

1 < ρ0k <
√

κ4 + ρ20/ρ0

)

. (2.26b)

On the other hand, the velocity c− is a continuous function of ρ0k and takes negative

values in the interval (2.25), as indicated by the inequality

−ρ30/κ
2 < c− < −ρ0

(

√

κ4 + ρ20 − κ2
)

,

(

0 < ρ0k <
√

κ4 + ρ20/ρ0

)

. (2.27)

In particular, c− = −ρ30/(2κ
2) at ρ0k = 1. It turns out that the soliton with the velocity

c− always propagates to the left whereas the soliton with the velocity c+ propagates to

the right and left depending on the value of ρ0k. Thus, the two-soliton solution exhibits

both the overtaking and head-on collisions.

Using (2.24), the expressions (2.23c) and (2.23d) become

e−φj =
|(1− ρ0kj)cj − ρ0κ

2|

ρ0
√

κ4 + ρ20
=

{(1− ρ0kj)cj − ρ0κ
2}sgn cj,

ρ0
√

κ4 + ρ20
, (2.28)
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e−iψj =
κ2cj + ρ30 − iρ20kjcj
√

κ4 + ρ20 |cj|
. (2.29)

where the last expression in (2.28) is obtained by employing (2.24) again with sgn being

the sign function. Substituting cj from (2.24) into (2.28), one can show that e−φj < 1 and

hence φj > 0. In view of the relation d2j − d2l = ρ40(−k
2
j + k2l ) which comes from (2.24b),

one can derive the formula

κ2(dj − dl)
2 + ρ40(kj ± kl)(kjdl ± kldj) + κ2ρ40(kj ± kl)

2

=
1

2
(dj + dl + 2κ2)

{

(dj − dl)
2 + ρ40(kj ± kl)

2
}

.

Inserting this into (2.23b), we obtain a simplified expression for it

eγjl =
(dj − dl)

2 + ρ40(kj − kl)
2

(dj − dl)2 + ρ40(kj + kl)2
. (2.30)

It will be used in proving the N -soliton solution. See appendix B.

Remark 2.3. Equation (1.1a) with a term −ρρx instead of +ρρx coupled with equation

(1.1b), i.e.

mt + umx + 2mux − ρρx = 0, ρt + (ρu)x = 0, (2.31)

has been introduced in purely mathematical contexts [4-6]. It exhibits peculiar features

when compared with features of the system (1.1). In particular, it admits peakons and

kinks as well as smooth solitons [6]. The smooth N -soliton solutions with N ≤ 4 have

been obtained by using the Darboux transformation [28]. The exact method of solution

developed here enables us to construct the general N -soliton solution in a simple manner,

which we shall summarize shortly. The expressions corresponding to (2.1)-(2.6) follow

by the replacement of the variables in accordance with the rule ρ → i ρ (ρ0 → i ρ0), y →

iy, Y → iY while other variables remain unchanged. The parametric representation of

the solutions then takes the form

u(y, τ) =

(

ln
f̃

f

)

τ

, ρ(y, τ) = ρ0 −

(

ln
g̃

g

)

τ

, x(y, τ) =
y

ρ0
+ ln

f̃

f
+ d. (2.32)

The tau-functions associated with the N -soliton solution can be obtained from (2.21)-

(2.23) if one replaces the parameters as kj → −ikj , cj → icj, yj0 → iyj0 (j = 1, 2, ...., N),

in addition to the replacements of the variables prescribed above. The soliton solutions

have a rich mathematical structure and their properties deserve further study. The results

of the detailed analysis will be reported elsewhere.
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3. Properties of soliton solutions

In this section, we first explore the properties of the one-soliton solution in detail and

then perform an asymptotic analysis of the general N -soliton solution. Consequently,

the formula for the phase shift of each soliton will be derived. The two-soliton case is

discussed in some detail.

3.1. One-soliton solution

The tau-functions corresponding to the one-soliton solution are given by (2.21) and (2.22)

with N = 1

f = 1 + eξ+φ, f̃ = 1 + eξ−φ, (3.1)

g = 1 + eξ+iψ, g̃ = 1 + eξ−iψ, (3.2)

with

ξ = k (y − cτ − y0) , (3.3a)

c = c± =
ρ30

±
√

κ4 + ρ20 − ρ40k
2 − κ2

, (3.3b)

e−φ =
|(1− ρ0k)c− ρ0κ

2|

ρ0
√

κ4 + ρ20
, (3.3c)

e−iψ =
κ2c+ ρ30 − iρ20kc
√

κ4 + ρ20 |c|
, (3.3d)

where we have put ξ = ξ1, k = k1, c = c1, φ = φ1, ψ = ψ1 and y0 = y10 for simplicity.

The parametric representation of the one-soliton solution is obtained by introducing

(3.1) and (3.2) with (3.3) into (2.16)-(2.18). It can be written in the form

u =
kc sinh φ

cosh ξ + cosh φ
, (3.4a)

ρ = ρ0 +
kc sin ψ

cosh ξ + cos ψ
, (3.4b)

X ≡ x− c̃t− x0 =
ξ

ρ0k
+ ln

1− tanh φ

2
tanh ξ

2

1 + tanh φ

2
tanh ξ

2

, (3.4c)

with

sinh φ =
k|c|

√

κ4 + ρ20
, cosh φ =

√

1 +
k2c2

κ4 + ρ20
, (3.4d)
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sin ψ =
ρ20kc

√

κ4 + ρ20 |c|
, cos ψ =

κ2c+ ρ30
√

κ4 + ρ20 |c|
, (3.4e)

where c̃ = c/ρ0 is the velocity of the soliton in the (x, t) coordinate system, x0 = y0/κ

and the constant d in (2.18) has been chosen such that ξ = 0 corresponds to X = 0. The

traveling wave coordinate X defined by (3.4c) is particularly useful for the description of

the one-soliton solution since it becomes stationary in this coordinate system. One can

use the formula tanh(φ/2) = sinh φ/(cosh φ+ 1) to rewrite (3.4c) in terms of sinh φ and

cosh φ.

It now follows from (3.4d) and (3.4e) that c sin ψ = ρ20 sinh φ. Since φ > 0, the

sign of c must coincide with that of sin ψ. This condition coupled with (3.4e) is used to

determine the permissible value of ψ. Explicitly,

c+ (0 < ρ0k < 1) : 0 < ψ < π/2, c+ (1 < ρ0k <
√

κ4 + ρ20/ρ0) : π < ψ < 3π/2,

c− (0 < ρ0k <
√

κ4 + ρ20/ρ0) : 3π/2 < ψ < 2π. (3.4f)

Let us now describe some important properties of the solution.

(a) Smoothness of the solution

We compute the y derivative of x from (3.4c) to obtain

xy =
1

ρ0
−

k sinh φ

cosh ξ + cosh φ
. (3.5)

Since k > 0 and φ > 0, one has the inequality xy ≥ xy|ξ=0. Substituting (3.4d) for sinh φ

and cosh φ and using (2.23e), we obtain

xy|ξ=0 =
1

ρ0
−

k sinh φ

1 + cosh φ

=
1

ρ0

[

1−
1

|c|

(

|c− ρ0κ
2| − ρ0

√

κ4 + ρ20

)]

=
1

|c|

(

√

ρ20 + κ4 + κ2sgn c

)

. (3.6)

The last expression follows from the previous one by considering the cases c > 0 and c < 0

separately with the help of the inequalities (2.26) and (2.27) for c±. Note, in particular

that c+ > ρ0κ
2 for 0 < ρ0k < 1 which is a unique positive branch of the dispersion curve,

as is evident from Figure 1. Thus, if c is finite, then xy > 0, and the map (2.1) becomes

one-to-one, assuring that the solution is smooth and nonsingular. Actually, one can show

that the derivatives du/dX and dρ/dX are finite for arbitrary X ∈ R. Furthermore, it

turns out from (3.3b) and (3.6) that the smoothness of the solution prevails in the zero

13



dispersion limit κ → 0. However, the limit operation ρ0 → 0 with κ being fixed at a

constant value requires a delicate analysis. See section 4.1.

(b) Amplitude-velocity relation

The amplitude-velocity relation of the soliton is an important characteristic of the wave.

It can be derived simply from the explicit form (3.4) of the solution. To this end, let Aρ

be the amplitude of the wave measured from the constant level ρ = ρ0 and Au be that of

the fluid velocity, i.e., Aρ = ρ(X = 0)− ρ0, and Au = |u(X = 0)|. We find that

Aρ =

(

√

κ4 + ρ20 |c̃| − κ2c̃− ρ20

)

/ρ0, (3.7a)

Au =

∣

∣

∣

∣

|c̃− κ2| −
√

κ4 + ρ20

∣

∣

∣

∣

, (3.7b)

where c̃ = c/ρ0. Note that

u(X = 0) = kc tanh
φ

2
=

(

|c̃− κ2| −
√

κ4 + ρ20

)

sgn c̃.

Invoking the expression of the velocity c from (3.3b), we can see that Aρ > 0 for arbitrary

c = c± whereas u(X = 0) > 0 for c > 0 and u(X = 0) < 0 for c < 0. These results show

that the profile of ρ is always of bright type, but that of u depends on the propagation

direction of the soliton. Actually, if c is positive (negative), then u is curved upward

(downward).

Figure 2 depicts the typical profile of u and ρ for the right-going soliton (a), and the

left-going soliton (b) and (c), respectively

3.2. N-soliton solution

Here, we investigate the asymptotic behavior of the N -soliton solution for large time. Let

c̃n(= cn/ρ0), (n = 1, 2, ..., N) be the velocity of the nth soliton in the (x, t) coordinate

system, and order them in accordance with the relation c̃N < c̃N−1 < ... < c̃1. We take

the limit t → −∞ with the phase variable ξn of the nth soliton being fixed. Then, the

other phase variables behave like ξ1, ξ2, ..., ξn−1 → +∞, and ξn+1, ξn+2, ..., ξN → −∞.

Performing an asymptotic analysis for the tau-functions (2.21) and (2.22), the leading-

order approximations for them are found to be

f ∼

(

∏

1≤j<l≤n−1

eγjl

)

exp

[

n−1
∑

j=1

(ξj + φj)

]

(

1 + eξn+φn+δ
(−)
n

)

, (3.8a)
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Figure 2. One-soliton solution. u: thin solid curve, ρ: bold solid curve. a: κ =
1, ρ0 = 1, k = 0.4, c̃ = c̃+ = 2.81, b: κ = 1, ρ0 = 1, k = 1.4, c̃ = c̃+ = −1.25, c:
κ = 1, ρ0 = 1, k = 1.4, c̃ = c̃− = −0.83.

f̃ ∼

(

∏

1≤j<l≤n−1

eγjl

)

exp

[

n−1
∑

j=1

(ξj − φj)

]

(

1 + eξn−φn+δ
(−)
n

)

, (3.8b)

g ∼

(

∏

1≤j<l≤n−1

eγjl

)

exp

[

n−1
∑

j=1

(ξj + iψj)

]

(

1 + eξn+iψn+δ
(−)
n

)

, (3.9a)

g̃ ∼

(

∏

1≤j<l≤n−1

eγjl

)

exp

[

n−1
∑

j=1

(ξj − iψj)

]

(

1 + eξn−iψn+δ
(−)
n

)

, (3.9b)

where

δ(−)
n =

n−1
∑

j=1

γnj =
n−1
∑

j=1

ln

[

(dn − dj)
2 + ρ40(kn − kj)

2

(dn − dj)2 + ρ40(kn + kj)2

]

. (3.10)

Substituting (3.8) and (3.9) into (2.16)-(2.18), we obtain the asymptotic form of u, ρ and

x

u ∼
kncn sinh φn

cosh
(

ξn + δ
(−)
n

)

+ cosh φn
, (3.11)

ρ ∼ ρ0 +
kncn sin ψn

cosh
(

ξn + δ
(−)
n

)

+ cos ψn
, (3.12)
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x− c̃nt− xn0 ∼
ξn
ρ0kn

+ ln
1− tanh φn

2
tanh

(

ξn+δ
(−)
n

)

2

1 + tanh φn
2

tanh

(

ξn+δ
(−)
n

)

2

− 2

n−1
∑

j=1

φj. (3.13)

In the limit t → +∞, on the other hand, we see that ξ1, ξ2, ..., ξn−1 → −∞, and

ξn+1, ξn+2, ..., ξN → +∞. Applying the similar analysis yields the asymptotic forms cor-

responding to (3.8)-(3.13)

f ∼

(

∏

n+1≤j<l≤N

eγjl

)

exp

[

N
∑

j=n+1

(ξj + φj)

]

(

1 + eξn+φn+δ
(+)
n

)

, (3.14a)

f̃ ∼

(

∏

n+1≤j<l≤N

eγjl

)

exp

[

N
∑

j=n+1

(ξj − φj)

]

(

1 + eξn−φn+δ
(+)
n

)

, (3.14b)

g ∼

(

∏

n+1≤j<l≤N

eγjl

)

exp

[

N
∑

j=n+1

(ξj + iψj)

]

(

1 + eξn+iψn+δ
(+)
n

)

, (3.15a)

g̃ ∼

(

∏

n+1≤j<l≤N

eγjl

)

exp

[

N
∑

j=n+1

(ξj − iψj)

]

(

1 + eξn−iψn+δ
(+)
n

)

, (3.15b)

where

δ(+)
n =

N
∑

j=n+1

γnj =

N
∑

j=n+1

ln

[

(dn − dj)
2 + ρ40(kn − kj)

2

(dn − dj)2 + ρ40(kn + kj)2

]

, (3.16)

and

u ∼
kncn sinh φn

cosh
(

ξn + δ
(+)
n

)

+ cosh φn
, (3.17)

ρ ∼ ρ0 +
kncn sin ψn

cosh
(

ξn + δ
(+)
n

)

+ cos ψn
, (3.18)

x− c̃nt− xn0 ∼
ξn
ρ0kn

+ ln
1− tanh φn

2
tanh

(

ξn+δ
(+)
n

)

2

1 + tanh φn
2

tanh

(

ξn+δ
(+)
n

)

2

− 2

N
∑

j=n+1

φj . (3.19)

These results show that as t→ ±∞, the N -soliton solution is represented by a super-

position of N independent solitons each of which has the form of the one-soliton solution

given by (3.4). The net effect of the collision of solitons appears as a phase shift. To
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see this, let xnc be the center position of the nth soliton. It then follows from (3.13) and

(3.19) that the trajectory of xnc is given by

xnc ∼ c̃nt−
δ
(−)
n

ρ0kn
− 2

n−1
∑

j=1

φj , (t→ −∞), (3.20a)

xnc ∼ c̃nt−
δ
(+)
n

ρ0kn
− 2

N
∑

j=n+1

φj, (t→ +∞). (3.20b)

We define the phase shift of the nth soliton which propagates to the right by ∆R
n = xnc(t→

+∞)− xnc(t → −∞), and that propagates to the left by ∆L
n = xnc(t → −∞)− xnc(t →

+∞). Using (2.23c), (3.10), (3.16) and (3.20), we find that

∆R
n =

1

ρ0kn

[

n−1
∑

j=1

ln

[

(dn − dj)
2 + ρ40(kn − kj)

2

(dn − dj)2 + ρ40(kn + kj)2

]

−

N
∑

j=n+1

ln

[

(dn − dj)
2 + ρ40(kn − kj)

2

(dn − dj)2 + ρ40(kn + kj)2

]

]

+
N
∑

j=n+1

ln

[

(1− ρ0kj)c̃j − κ2

(1 + ρ0kj)c̃j − κ2

]

−
n−1
∑

j=1

ln

[

(1− ρ0kj)c̃j − κ2

(1 + ρ0kj)c̃j − κ2

]

. (3.21)

The expression of ∆L
n is equal to −∆R

n .

3.3. Two-soliton solution

The two-soliton solution is the most fundamental element in understanding the dynamics

of solitons since each soliton exhibits pair wise interactions with every other soliton, as

indicated by the formulas of the phase shift. There exist two types of interactions for the

CH2 system, i.e., the overtaking and head-on collisions. We describe them separately.

The tau-functions for the two-soliton solution are given by (2.21)-(2.23) and (2.30)

with N = 2. They read

f = 1 + eξ1+φ1 + eξ2+φ2 + δ eξ1+ξ2+φ1+φ2, (3.22a)

f̃ = 1 + eξ1−φ1 + eξ2−φ2 + δ eξ1+ξ2−φ1−φ2, (3.22b)

g = 1 + eξ1+iψ1 + eξ2+iψ2 + δ eξ1+ξ2+iψ1+iψ2 , (3.23a)

g̃ = 1 + eξ1−iψ1 + eξ2−iψ2 + δ eξ1+ξ2−iψ1−iψ2 , (3.23b)

where

ξj = kj (y − cjτ − yj0) , (j = 1, 2), (3.24a)
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Figure 3. The overtaking collision of two solitons. u: thin solid curve, ρ: bold solid
curve. κ = 1, ρ0 = 1, k1 = 0.8, k2 = 0.7, c̃1+ = 6.02, c̃2+ = 4.37.

δ = eγ12 =
(d1 − d2)

2 + ρ40(k1 − k2)
2

(d1 − d2)2 + ρ40(k1 + k2)2
, (3.24b)

e−φj =

√

(1− ρ0kj)cj − ρ0κ2

(1 + ρ0kj)cj − ρ0κ2
, (j = 1, 2), (3.24c)

e−iψj =

√

√

√

√

√

(

κ2

ρ0
− iρ0kj

)

cj + ρ20
(

κ2

ρ0
+ iρ0kj

)

cj + ρ20

, (j = 1, 2). (3.24d)

Recall from (2.24) that the velocity of jth soliton in (x, t) coordinate system is given by

c̃j = cj/ρ0 =
ρ20

dj − κ2
, dj = ǫj

√

κ4 + ρ20 − ρ40k
2
j , (j = 1, 2). (3.25)

Substituting (3.22)-(3.25) into (2.16)-(2.18), we obtain the parametric representation of

the two-soliton solution. Since the velocity c̃j takes either the positive or negative values,

this solution enables us to describe both the overtaking and head-on collisions between

two solitons.

(a) Overtaking collision
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Figure 4. The head-on collision of two solitons. u: thin solid curve, ρ: bold solid curve.
κ = 1, ρ0 = 1, k1 = 0.8, k2 = 1.4, c̃1+ = 6.02, c̃2+ = −1.25

We consider the case cj = cj+, 0 < ρ0kj < 1 so that 0 < c̃2+ < c̃1+. Figure 3 illustrates

the overtaking collision of two solitons for four distinct values of t. The solitonic feature

of the solution is obvious from the figure which confirms an asymptotic analysis presented

in §3.1. The phase shift of each soliton is given by (3.21). Explicitly,

∆R
1 = −

1

ρ0k1
ln

[

(d1 − d2)
2 + ρ40(k1 − k2)

2

(d1 − d2)2 + ρ40(k1 + k2)2

]

+ ln

[

(1− ρ0k2)c̃2 − κ2

(1 + ρ0k2)c̃2 − κ2

]

, (3.26a)

∆R
2 =

1

ρ0k2
ln

[

(d1 − d2)
2 + ρ40(k1 − k2)

2

(d1 − d2)2 + ρ40(k1 + k2)2

]

− ln

[

(1− ρ0k1)c̃1 − κ2

(1 + ρ0k1)c̃1 − κ2

]

, (3.26b)

with

d1 =
√

κ4 + ρ20 − ρ40k
2
1, d2 =

√

κ4 + ρ20 − ρ40k
2
2. (3.26c)

(b) Head-on collision

An example of the head-on collision is shown in Figure 4, where the velocity of each soliton

is chosen as c2+ < 0 < c1+. The formula of the phase shift for the right-running soliton is

the same as (3.26a) whereas that of the left-running soliton is given by ∆L
2 = −∆R

2 .

Remark 3.1.
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As noticed in [7], the CH2 system (1.1) with κ = 0 does not admit peakons. The same

will be true in the case of κ 6= 0. Recall, however that another integrable CH2 system

(2.31) exhibits peakons when the parameter κ is related to the boundary value ρ0 of ρ as

ρ0 = κ2. See, for example [28].

4. Reductions to the CH equation, the HS2 system and the HS equation

CH2
SL

−−→ CH




y
SWL





y
SWL

HS2
SL

−−→ HS

Figure 5. The reduction process for the CH2 system in which SL and SWL abbraviate
the scaling and short-wave limits, respectively.

In this section, we first show that the CH2 system and its N -soliton solution reduce to

the CH equation and the corresponding N -soliton solution under an appropriate limiting

procedure, or more precisely, the scaling limit. Then, we demonstrate that the short-

wave limit of the CH2 system yields the HS2 system. The reduction to the HS equation

is outlined shortly.

The primary difference between the scaling limit and short-wave limit is that in the

former limit, no scalings are prescribed for the space and time variables whereas in the

latter limit, the rapidly-varying space variable x̂ and slowly-varying time variable t̂ are

introduced via the relations x̂ = x/ǫ and t̂ = ǫt, where ǫ is a scaling parameter. The

reduction process developed here is displayed in Figure 5 in which the two different avenues

leading to the HS equation are indicated.

4.1. Reduction to the CH equation

The CH equation (1.2) is derived formally from the CH2 system by putting ρ = 0. In this

setting, one must impose the boundary condition ρ0 = 0. The N -soliton solution of the

CH equation is reduced from that of the CH2 system by taking the limit ρ0 → 0. This

limiting procedure is, however highly non-trivial, as will be shown below.

First, we introduce the following scaling variables with an overbar

u = ū, ρ = ρ0ρ̄, m = m̄, x = x̄, y =
ρ0
κ
ȳ, t = t̄, τ = τ̄ , d = d̄,
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kj =
κ

ρ0
k̄j, cj =

ρ0
κ
c̄j , yj0 =

ρ0
κ
ȳj0, (j = 1, 2, ..., N). (4.1)

Then, the leading-order asymptotics of cj from (2.24), and γjl, φj, and ψj from (2.23) are

found to be

cj ∼
2ρ0κ

2

1− (κk̄j)2
, (j = 1, 2, ..., N), (4.2a)

eγjl =

(

k̄j − k̄l
k̄j + k̄l

)2

≡ eγ̄jl , (j, l = 1, 2, ..., N ; j 6= l), (4.2b)

e−φj ∼
1− κk̄j
1 + κk̄j

≡ e−φ̄j , (j = 1, 2, ..., N), (4.2c)

e−iψj ∼ 1− i
ρ0
κ
k̄j, (j = 1, 2, ..., N). (4.2d)

We note that a limiting form c̄j ∼ −ρ20/(2κ) of the velocity which arises from (2.24) with

ǫj = −1 (j = 1, 2) is not relevant since in accodance with the scaling (4.1), this expression

leads to c̄j/ρ0 ∼ −ρ0/(2κ) → 0 (ρ0 → 0), showing that the velocity in the (x̄, t̄) coordinate

system degenerates to zero.

The asymptotics of the tau-functions f and f̃ from (2.21) and g and g̃ from (2.22)

become

f ∼
∑

µ=0,1

exp

[

N
∑

j=1

µj
(

ξ̄j + φ̄j
)

+
∑

1≤j<l≤N

µjµlγ̄jl

]

≡ f̄ , (4.3a)

f̃ ∼
∑

µ=0,1

exp

[

N
∑

j=1

µj
(

ξ̄j − φ̄j
)

+
∑

1≤j<l≤N

µjµlγ̄jl

]

≡ ¯̃f, (4.3b)

g = f̄0 + i
ρ0
κ
f̄0,ȳ +O(ρ20), (4.4a)

g̃ = f̄0 − i
ρ0
κ
f̄0,ȳ +O(ρ20), (4.4b)

where

f̄0 =
∑

µ=0,1

exp

[

N
∑

j=1

µj ξ̄j +
∑

1≤j<l≤N

µjµlγ̄jl

]

, (4.5a)

ξ̄j = k̄j (ȳ − c̄j τ̄ − ȳj0) , c̄j =
2κ3

1− (κk̄j)2
, (j = 1, 2, ..., N). (4.5b)

Introducing (4.1), (4.3) and (4.4) into (2.16)-(2.18) and taking the limit ρ0 → 0, we obtain

the limiting forms of u, ρ and x

ū =

(

ln
¯̃
f

f̄

)

τ̄

, (4.6)
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ρ ∼ ρ0

(

1−
2

κ
(lnf̄0)ȳτ

)

≡ ρ0ρ̄, (4.7)

x̄ =
ȳ

κ
+ ln

¯̃f

f̄
+ d̄. (4.8)

The parametric representation of the N -soliton solution given by (4.6) and (4.8) with

the tau-functions (4.3) coincides perfectly with that of the CH equation presented in [21].

In particular, the one-soliton solution (3.4) reduces to

ū =
2κc̄k̄2

1 + κ2k̄2 + (1− κ2k̄2) cosh ξ̄
, (4.9a)

X̄ = x̄− ¯̃c− x̄0 =
ξ̄

κk̄
+ ln

(1− κk̄) eξ̄ + 1 + κk̄

(1 + κk̄) eξ̄ + 1− κk̄
, (4.9b)

with

ξ̄ = k̄(ȳ − c̄τ̄ − ȳ0) c̄ =
2κ3

1− (κk̄)2
, ¯̃c = c̄/κ, (4.9c)

reproducing the one-soliton solution of the CH equation.

The limiting form of the phase shift which is denoted by ∆̄R
n can be derived from (3.21)

by using (4.2a). It reads

∆̄R
n =

1

κk̄n

[

n−1
∑

j=1

ln

(

k̄n − k̄j
k̄n + k̄j

)2

−
N
∑

j=n+1

ln

(

k̄n − k̄j
k̄n + k̄j

)2
]

+
N
∑

j=n+1

ln

(

1− κk̄j
1 + κk̄j

)2

−
n−1
∑

j=1

ln

(

1− κk̄j
1 + κk̄j

)2

. (4.10)

This is just the formula for the phase shift of the N -soliton solution of the CH equation

presented in [21].

Remark 4.1.

If we put r̄ = κ− 2(ln f̄0)ȳτ , then

ρ̄ =
r̄

κ
, m̄ = r̄2. (4.11)

The first equation in (4.11) follows immediately from (4.7), and the second equation can

be derived by taking the scaling limit of (2.20). The reciprocal transformation (2.1a)

reproduces the corresponding one for the CH equation [21]

dȳ = r̄ dx̄− r̄ū dt̄, dτ̄ = dt̄. (4.12)
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In terms of the scaling variables (4.1), the bilinear equations (2.11)-(2.13) reduce respec-

tively to

κDȳ
¯̃f · f̄ + ¯̃f f̄ − f̄ 2

0 = 0, (4.13)

Dτ̄Dȳf̄0 · f̄0 + κ( ¯̃f f̄ − f̄ 2
0 ) = 0, (4.14)

κDτ̄Dȳ
¯̃f · f̄ +Dτ̄

¯̃f · f̄ + κ3Dȳ
¯̃f · f̄ = 0. (4.15)

The scaling limit of (2.14) is performed after eliminating the derivative Dτ g̃ · g in (2.14)

by means of (2.12). We then find that the limiting form of (2.14) coincides with (4.14).

One can show that the tau-functions f̄ and ¯̃f from (4.3) and f̄0 from (4.5) solve the above

bilinear equations.

4.2. Reduction to the HS2 system

The HS2 system arises from the short-wave limit of the CH2 system. In this case, we

introduce the scaling variables with a hat

u = ǫ2û, ρ = ǫρ̂, m = m̂, x = ǫx̂, y = ǫ2ŷ, t =
t̂

ǫ
, τ =

τ̂

ǫ
. (4.16)

Rescaling the CH2 system (1.1) by (4.16) and taking the limit ǫ→ 0, we obtain the HS2

system

m̂t̂ + ûm̂x̂ + 2m̂ûx̂ + ρ̂ρ̂x̂ = 0, (4.17a)

ρ̂t̂ + (ρ̂û)x̂ = 0, (4.17b)

where m̂ = −ûx̂x̂ + κ2, which coincides with (1.4) upon removing the hat attached to the

variables.

The N -soliton solution of the HS2 system can be recovered from that of the CH2

system by means of a scaling limit. The appropriate scaling variables are found to be

kj =
k̂j
ǫ2
, cj = ǫ3ĉj, yj0 = ǫ2ŷj0, (j = 1, 2, ..., N), ρ0 = ǫρ̂0, d = ǫd̂. (4.18)

In the limit ǫ→ 0, the soliton parameters corresponding to those given by (4.2) have the

leading-order asymptotics

cj ∼ −
ǫ3

ρ̂0k̂2j
(κ2 + d̂j), d̂j = ǫj

√

κ4 − ρ̂40k̂
2
j , (j = 1, 2, ..., N), (4.19a)

eγjl ∼
(d̂j − d̂l)

2 + ρ̂40(k̂j − k̂l)
2

(d̂j − d̂l)2 + ρ̂40(k̂j + k̂l)2
≡ eγ̂jl , (j, l = 1, 2, ..., N ; j 6= l), (4.19b)
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e−φj ∼ 1 + ǫ
k̂j ĉj
κ2

, (j = 1, 2, ..., N), (4.19c)

e−iψj ∼

√

√

√

√

√

(

κ2

ρ̂0
− iρ̂0k̂j

)

ĉj + ρ̂20
(

κ2

ρ̂0
+ iρ̂0k̂j

)

ĉj + ρ̂20

≡ e−iψ̂j , (j = 1, 2, ..., N). (4.19d)

The tau-functions (2.21) and (2.22) have the leading-order asymptotics

f ∼ f̂ +
ǫ

κ2
f̂τ̂ , f̃ ∼ f̂ −

ǫ

κ2
f̂τ̂ , (4.20)

g ∼
∑

µ=0,1

exp

[

N
∑

j=1

µj

(

ξ̂j + iψ̂j

)

+
∑

1≤j<l≤N

µjµlγ̂jl

]

≡ ĝ, (4.21a)

g̃ ∼
∑

µ=0,1

exp

[

N
∑

j=1

µj

(

ξ̂j − iψ̂j

)

+
∑

1≤j<l≤N

µjµlγ̂jl

]

≡ ˆ̃g, (4.21b)

where

f̂ =
∑

µ=0,1

exp

[

N
∑

j=1

µj ξ̂j +
∑

1≤j<l≤N

µjµlγ̂jl

]

, (4.22a)

ξ̂j = k̂j(ŷ − ĉj τ̂ − ŷj0), ĉj = −
1

ρ̂0k̂2j

(

κ2 + ǫj

√

κ4 − ρ̂40k̂
2
j

)

, (j = 1, 2, ..., N). (4.22b)

The parametric representation for the N -soliton solution of the HS2 system follows by

introducing (4.20) and (4.21) into (2.16)-(2.18) and taking the limit ǫ → 0. Explicitly,

û = −
2

κ2
(ln f̂)τ̂ τ̂ , (4.23)

ρ̂ = ρ̂0 −
2

κ2
i

(

ln
ˆ̃g

ĝ

)

τ̂

, (4.24)

x̂ =
ŷ

ρ̂0
−

2

κ2
(ln f̂)τ̂ + d̂. (4.25)

The limiting forms of (2.19) and (2.20) turn out to be

1

ρ̂
=

1

ρ̂0
−

2

κ2
(ln f̂)τ̂ ŷ, (4.26)

m̂

ρ̂2
=
κ2

ρ̂20
+ i

(

ln
ˆ̃g

ĝ

)

ŷ

. (4.27)
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We write the one-soliton solution for reference.

û = −
1

2κ2
(k̂ĉ)2

cosh2 ξ̂

2

, ρ̂ =
1

1
ρ̂0

+ k̂2ĉ
2κ2

1

cosh2 ξ̂

2

, (4.28a)

X̂ = x̂− ˆ̃ct̂− x̂0 =
ξ̂

ρ̂0k̂
+
k̂ĉ

κ2
tanh

ξ̂

2
, (4.28b)

with

ξ̂ = k̂(ŷ − ĉτ̂ − ŷ0), ĉ = −
1

ρ̂0k̂2

(

κ2 ±

√

κ4 − ρ̂40k̂
2

)

, ˆ̃c = ĉ/ρ̂0. (4.28c)

Notice that the velocities ˆ̃c from (4.28c) are negative for both plus and minus signs so that

the soliton propagates to the left as opposed to the soliton solution of the CH2 system

for which the bi-directional propagation is possible. Furthermore, in contrast to the CH2

case, the profile of ρ̂ takes the form of a dark soliton. We also remark that all the results

reduced from the CH2 system reproduce the corresponding ones obtained recently by an

analysis of the HS2 system [29].

Remark 4.2.

Under the scaling (4.16), the reciprocal transformation (2.1) and equations (2.2)-(2.5)

remain the same form. The bilinear equations (2.11), (2.12) and (2.14) reduce respectively

to

Dτ̂Dŷf̂ · f̂ −
κ2

ρ̂20
(f̂ 2 − ˆ̃gĝ) = 0, (4.29)

iDτ̂
ˆ̃g · ĝ + ρ̂0 (f̂

2 − ˆ̃gĝ) = 0, (4.30)

Dτ̂Dŷ
ˆ̃g · ĝ − i

κ2

ρ̂20
Dτ̂

ˆ̃g · ĝ + iρ̂0Dŷ
ˆ̃g · ĝ = 0, (4.31)

whereas the bilinear equation (2.13) reduces to (4.29) when coupled with (2.11).

4.3. Reduction to the HS equation

The HS equation (1.5) can be reduced from either the short-wave limit of the CH equation

or the scaling limit of the HS2 system, as shown in Figure 5. The former reduction has

been performed in [30]. To attain the latter reduction, we employ the same scaling

variables as those given by (4.1) and find that the resulting expressions reproduce those

obtained in [30]. The reduction process can be established in parallel with that for the

CH2 system, and hence the detail of the computation is omitted here.

25



The parametric representation of the N -soliton solution can be obtained by taking the

scaling limit of (4.22), (4.23) and (4.25). It leads, after removing the hat appended to the

variables for simplicity, to

u = −
2

κ2
(ln f)ττ , (4.32a)

x =
y

κ
−

2

κ2
(ln f)τ + d, (4.32b)

with

f =
∑

µ=0,1

exp

[

N
∑

j=1

µjξj +
∑

1≤j<l≤N

µjµlγjl

]

, (4.33a)

ξj = kj(y − cjτ − yj0), cj = −
2κ

k2j
, (j = 1, 2, ..., N), (4.33b)

eγjl =

(

kj − kl
kj + kl

)2

, (j, l = 1, 2, ..., N ; j 6= l). (4.33c)

The one-soliton solution is given by

u = −
2

k2
1

cosh2 ξ

2

, X = x− c̃t− x0 =
ξ

κk
−

2

κk
tanh

ξ

2
, (4.34a)

with

ξ = k(y − cτ − y0), c = −
2κ

k2
, c̃ =

c

κ
. (4.34b)

The above parametric solution takes the form of a cusp soliton. This can be confirmed

simply by computing the derivative uX(= uξ/Xξ) from (4.34), giving uX = 4κ/(k sinh ξ).

Thus, limX→±0 uX = ±∞, showing that the slope of the soliton becomes infinite at the

crest.

5. Concluding remarks

An intriguing feature of the CH equation is the existence of peakons which mimic Stokes’

limiting solitary waves in the classical shallow water wave theory [31]. The peakons can

be reduced from the smooth solitons by taking the zero dispersion limit κ → 0. See, for

example [32, 33]. Since the CH2 system under consideration is an integrable generaliza-

tion of the CH equation, one can expect that it exhibits peakons as well. The detailed

analysis of the one-soliton solution (3.4) reveals that the peakon can not be produced from

the smooth soliton in any limiting procedure. On the other hand, another integrable CH2

system (2.31) admits peakons [6]. However, the general N -peakon solution is still unavail-

able for this system. In addition, whether peakons can be reduced from smooth solitons
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or not has not been resolved. The complete classification of traveling wave solutions of

the CH2 system has not been performed yet for both periodic and nonperiodic boundary

conditions. Specifically, as for the existence of multi-valued solutions, no decisive answer

exists even today. These interesting problems will be considered in a future work.
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Appendix A. Proof of Proposition 2.2.

First, we show that the solutions of the bilinear equations (2.11) and (2.12) solve (2.7).

Upon substituting (2.9) and (2.10) into (2.7), the equation to be proved becomes P = 0,

where

P ≡







1

ρ0
+

(

ln
f̃

f

)

y







{

ρ0 − i

(

ln
g̃

g

)

τ

}

− 1.

Invoking the definition of the bilinear operator (2.15), P is rewritten in the form

P =

{(

1

ρ0
f̃f +Dyf̃ · f

)

(ρ0g̃g − iDτ g̃ · g)− f̃ g̃fg

}

/(f̃ g̃fg).

This expression becomes zero by virtue of (2.11) and (2.12).

To preceed, we introduce (2.9) and (2.10) into (2.8), and obtain

{

ρ0 − i

(

ln
g̃

g

)

τ

}

{

κ2

ρ20
+ i

(

ln
g̃

g

)

y

}

=

(

ln
f̃

f

)

τ







1

ρ0
+

(

ln
f̃

f

)

y







−





{

ρ0 − i

(

ln
g̃

g

)

τ

}

(

ln
f̃

f

)

τy





y

+ κ2







1

ρ0
+

(

ln
f̃

f

)

y







.

In view of (2.11) and (2.12), the second term on the right-hand side of the above equation

is modified as




{

ρ0 − i

(

ln
g̃

g

)

τ

}

(

ln
f̃

f

)

τy





y

=

(

ln
g̃g

f̃f

)

τy

.
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Inserting this relation and using (2.11) and (2.12), the equation to be proved reduces to

Q = 0, where

Q ≡

(

ln
g̃g

f̃f

)

τy

+ iρ0
f̃ f

g̃g

(

ln
g̃

g

)

y

−
1

ρ0

g̃g

f̃f

(

ln
f̃

f

)

τ

+
κ2

ρ0

(

f̃ f

g̃g
−
g̃g

f̃f

)

.

It now follows from the the definition of the bilinear operators that

(ln f̃ f)τy =
DτDyf̃ · f

f̃f
−

1

(f̃f)2
(Dτ f̃ · f)(Dyf̃ · f),

(ln g̃g)τy =
DτDy g̃ · g

g̃g
−

1

(g̃g)2
(Dτ g̃ · g)(Dyg̃ · g).

Substituting these identities into the first term of Q and rewriting the second and third

terms by means of the bilinear operators, Q recasts to

Q =
DτDyg̃ · g

g̃g
+ i

Dy g̃ · g

(g̃g)2
(iDτ g̃ · g + ρ0f̃ f)−

DτDyf̃ · f

f̃f

+
Dτ f̃ · f

(f̃ f)2

(

Dyf̃ · f −
1

ρ0
g̃g

)

+
κ2

ρ0

(

f̃ f

g̃g
−
g̃g

f̃f

)

.

This expression turns out to be zero by virtue of (2.11)-(2.14).

Appendix B. Proof of Theorem 2.2

In this appendix, we show that the tau-functions (2.21) and (2.22) solve the system of

bilinear equations (2.11)-(2.14). We use a mathematical induction similar to that has

been employed for the proof of the N -soliton solution of the nonlinear network equations

[34]. Since the proof can be performed in a similar manner for all equations, we describe

the proof of (2.11) in some detail, and outline the proof for other three equations.

First, we substitute the tau-functions f and f̃ from (2.21) into the bilinear equation

(2.11) and use the formula

Dm
τ D

n
y exp

[

N
∑

i=1

µiξi

]

· exp

[

N
∑

i=1

νiξi

]

=

{

−

N
∑

i=1

(µi − νi)kici

}m{ N
∑

i=1

(µi − νi)ki

}n

exp

[

N
∑

i=1

(µi + νi)ξi

]

, (m,n = 0, 1, 2, ...),

(B.1)
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to show that the equation to be proved becomes

∑

µ,ν=0,1

[{

N
∑

i=1

(µi − νi)ki +
1

ρ0

}

exp

[

−
N
∑

i=1

(µi − νi)φi

]

−
1

ρ0
exp

[

−i
N
∑

i=1

(µi − νi)ψi

]]

×exp

[

N
∑

i=1

(µi + νi)ξi +
∑

1≤i<j≤N

(µiµj + νiνj)γij

]

= 0. (B.2)

Let Pm,n be the coefficient of the factor exp
[
∑n

i=1 ξi +
∑m

i=n+1 2ξi
]

(1 ≤ n < m ≤ N)

on the left-hand side of (B.2). This coefficient is obtained if one performs the summation

with respect to µi and νi under the conditions µi+νi = 1 (i = 1, 2, ..., n), µi = νi = 1 (i =

n + 1, n + 2, ..., m), µi = νi = 0 (i = m + 1, m + 2, ..., N). We then introduce the new

summation indices σi by the relations µi = (1 + σi)/2, νi = (1 − σi)/2 for i = 1, 2, ..., n,

where σi takes either the value +1 or −1, so that µiµj + νiνj = (1 + σiσj)/2.

Consequently, Pm,n can be rewritten in the form

Pm,n =
∑

σ=±1

[{

n
∑

i=1

σiki +
1

ρ0

}

exp

[

−

n
∑

i=1

σiφi

]

−
1

ρ0
exp

[

−i

n
∑

i=1

σiψi

]]

×exp









1

2

∑

1≤i<j≤n

(1 + σiσj)γij +

m
∑

i=1

m
∑

j=n+1
(j 6=i)

γij









. (B.3)

If we invoke (2.24) and (2.28)-(2.30) as well as the definition of σi, we deduce

exp

[

−
n
∑

i=1

σiφi

]

=
n
∏

i=1

[

sgn ci
√

ρ20 + κ4
di − κ2ρ0σiki
1 + ρ0σiki

]

, (B.4)

exp

[

−i

n
∑

i=1

σiψi

]

=

n
∏

i=1

[

sgn ci(di − iρ20σiki)
√

ρ20 + κ4

]

, (B.5)

exp

[

1

2

∑

1≤i<j≤n

(1 + σiσj)γij

]

=
∏

1≤i<j≤n

[

(di − dj)
2 + ρ40(σiki − σjkj)

2

(di − dj)2 + ρ40(σiki + σjkj)2

]

. (B.6)

Substituting (B. 4)-(B. 6) into (B. 3), Pm,n becomes

Pm,n = cm,n
∑

σ=±1

[(

n
∑

i=1

ρ0σiki + 1

)

n
∏

i=1

di − κ2ρ0σiki
1 + ρ0σiki

−

n
∏

i=1

(di − iρ20σiki)

]
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×
∏

1≤i<j≤n

[

(di − dj)
2 + ρ40(σiki − σjkj)

2
]

, (B.7)

where cm,n is a multiplicative factor independent of the summation indices σi (i =

1, 2, ..., n). To put (B. 7) into a more tractable form, we introduce the new variables

r and θi by di + iρ20ki = reiθi = rzi, where zi = eiθi , r =
√

d2i + ρ40k
2
i =

√

κ4 + ρ20. Note

that r is a constant independent of ki. To proceed, we substitute the relation

di − κ2ρ0σiki
1 + ρ0σiki

=
−κ2di + κ4 + ρ20 − ρ30σiki

di − κ2
, (B.8)

which follows from (2.24) into the first term on the right-hand side of (B. 7) and then

rewrite Pm,n in terms of the new variables zi. Dropping a factor independent of the

summation indices σi, the equation to be proved reduces to the following algebraic identity

in z1, z2, ..., zn:

Pn(z1, z2, ..., zn)

≡
∑

σ=±1

[{

r

2iρ0

n
∑

i=1

(

zσii − z−σii

)

+ 1

}

n
∏

j=1

{

−
κ2

2r

(

zj + z−1
j

)

+ 1−
ρ0
2ir

(

z
σj
j − z

−σj
j

)

}

−

n
∏

j=1

{

1

2

(

zj + z−1
j

)

−
κ2

r

}

z
−σj
j

]

∏

1≤i<j≤n

(

zσii − z
σj
j

)

(

z−σii − z
−σj
j

)

= 0, (n = 1, 2, ..., N).

(B.9)

The proof proceeds by mathematical induction. The identity (B. 9) can be confirmed

for n = 1, 2 by a direct computation. Assume that Pn−2 = Pn−1 = 0. Then,

Pn|z1=1 = 2

(

1−
κ2

r

) n
∏

i=2

(1− zi)(1− z−1
i )Pn−1(z2, z3, ..., zn) = 0. (B.10)

Pn|z1=z2 = −2(z1 − z−1
1 )2

{

1

2
(z1 + z−1

1 )−
κ2

r

}2

×
n
∏

j=3

(z1 − zj)(z
−1
1 − z−1

j )(z−1
1 − zj)(z1 − z−1

j )Pn−2(z3, z4, ..., zn) = 0. (B.11)

The function Pn is symmetric with respect to z1, z2, ..., zn and invariant under the trans-

formation zi → z−1
i for arbitrary i. When coupled with the above two properties (B. 10)

and (B. 11), one can see that Pn is factored by a function

n
∏

i=1

(zi − 1)(z−1
i − 1)

∏

1≤i<j≤n

(zi − zj)(zi − z−1
j )(z−1

i − zj)(z
−1
i − z−1

j ). (B.12)
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It turns out from this expression that

n
∏

i=1

z2i
∏

1≤i<j≤n

(zizj)
2Pn = An

n
∏

i=1

(zi − 1)(1− zi)
∏

1≤i<j≤n

(zi − zj)
2(zizj − 1)2, (B.13)

where An is a polynomial of z1, z2, ..., zn. The left-hand side of (B. 13) is a polynomial

whose degree in z1, z2, ..., zn is at most 2n2 + 2n whereas that of the right-hand side is

3n2 − n at least. This is impossible for n ≥ 4 except Pn ≡ 0. The identity P3 = 0 can be

checked by a direct computation, implying that the identity (B. 9) holds for all n.

The bilinear equations (2.12), (2.13) and (2.14) reduce, after substituting the tau-

functions (2.21) and (2.22), to the algebraic identities Qn = 0, Rn = 0 and Sn = 0,

respectively, where

Qn(z1, z2, ..., zn)

≡
∑

σ=±1

[

[ n
∏

i=1

{

1

2
(zi + z−1

i )−
κ2

r

}

+
1

2

n
∑

i=1

(

zσii − z−σii

)

n
∏

j=1
(j 6=i)

{

1

2
(zj + z−1

j )−
κ2

r

}] n
∏

j=1

z
−σj
j

−
n
∏

i=1

{

−
κ2

2r
(zi + z−1

i ) + 1−
ρ0
2ir

(

zσii − z−σii

)

}

]

∏

1≤i<j≤n

(

zσii − z
σj
j

)

(

z−σii − z
−σj
j

)

,

(n = 1, 2, ..., N). (B.14)

Rn(z1, z2, ..., zn)

≡
∑

σ=±1

[{

1 +
r

2iρ0

n
∑

i=1

(

zσii − z−σii

)

}

[ n
∑

i=1

(

zσii − z−σii

)

n
∏

j=1
(j 6=i)

{

1

2
(zj + z−1

j )−
κ2

r

}]

−
κ2r

ρ20

n
∑

i=1

(

zσii − z−σii

)

n
∏

i=1

{

1

2
(zi + z−1

i )−
κ2

r

}

]

×
n
∏

i=1

{

−
κ2

2r
(zi + z−1

i ) + 1−
ρ0
2ir

(

zσii − z−σii

)

}

×
∏

1≤i<j≤n

(

zσii − z
σj
j

)

(

z−σii − z
−σj
j

)

, (n = 1, 2, ..., N). (B.15)

Sn(z1, z2, ..., zn)

≡
∑

σ=±1

[{

κ2

r
+

1

2

n
∑

i=1

(

zσii − z−σii

)

}

n
∑

i=1

(

zσii − z−σii

)

n
∏

j=1
(j 6=i)

{

1

2
(zj + z−1

j )−
κ2

r

}]
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+

n
∑

i=1

(

zσii − z−σii

)

n
∏

i=1

{

1

2
(zi + z−1

i )−
κ2

r

}

]

×
n
∏

i=1

z−σii

∏

1≤i<j≤n

(

zσii − z
σj
j

)

(

z−σii − z
−σj
j

)

, (n = 1, 2, ..., N). (B.16)

The polynomials Qn, Rn and Sn are shown to be factored by a function (B. 12). Applying

the similar induction argument to that used in proving (B. 9), one can establish the

identities Qn = 0, Rn = 0 and Sn = 0. This completes the proof of theorem 2.2.
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