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An Algorithm to form a D-stable Coefficient Set and its Application

to the Determination of `2 D-stability Radius
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Abstract
This paper concerns the zeros of a polynomial inside a given circle in the left
half complex plane. Marden provided an algorithm to determine the number of
zeros which a given polynomial has inside the unit circle by using only its co-
efficients. In this short article, it will be shown that the result can be extended
to more general case where the center of the circle is on the real axis and its
radius is arbitrary. The execution of the proposed algorithm will produce a set
of inequalities which serve as an algebraic expression of a D-stable set in the
coefficient space. It should be emphasized that those expressions are suitable
for controller design consideration in the coefficient space. The determination
of `2 D-stability radius as an application of the result and its related theorem
will also be dictated.
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Rouchè’s theorem, `2 D-stability

1 Introduction

For linear time-invariant plants in state space,
pole assignment is an accepted technique for
designing a regulator which ensures ideal tran-
sient response[2]. But it is often adequate to
place all closed loop poles inside a pre-specified
region instead of specifying exact location of
each. This kind of problem is referred to as
the “D-stabilization” or “D-pole assignment”,
where D represents a domain of interest like
inside a circle[8], inside an ellipse or left of a
sector[3]. D-stabilization to a circular region
for plants with structured uncertainty has been
extensively studied in the state space for the
past decade[9, 10, 11, 12]. On the other hand,
it is known that an n − 1-th order controller
can assign the corresponding closed loop poles
of a control system with n-th order fixed coef-
ficient plant transfer function at arbitrary lo-
cation if the plant has mutually coprime nu-

merator and denominator polynomials. How-
ever, the problem becomes surprisingly diffi-
cult when interval perturbations in the plant
coefficients should be considered, that is, when
the plant needs to be robustly D-stabilized.
This is because the relationship between coef-
ficients of a polynomial and the corresponding
root location is hard to be established analyt-
ically for high order polynomials. Thus find-
ing a set or a boundary surface in the coeffi-
cient space which guarantees closed loop pole
location inside a desirable domain is crucial for
achieving robust D-stabilization. For instance,
Keel and Bhattacharyya[7] proposed fixed or-
der pole-assignment problem for a linear uncer-
tain plant in the coefficient space and presented
a linear programming solution using “desired
interval coefficient set” which is obtained by a
repetitive root calculation. Soh et al.[6] also
gave robust pole assignment solution for an in-
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terval plant using the formulation of nonlinear
programming. They presented three different
approaches to calculate the D-stable coefficient
set: a repetitive root calculation using the fa-
mous result of Kharitonov, the sensitivity Jaco-
bian and a convex polytope of the polynomial
coefficients corresponding to the disjoint real
interval roots.

This paper will present an algorithm to ob-
tain a D-stable set in the coefficient space when
the domain of interest is the interior of a circle
in the left half complex plane. The develop-
ment will be shown to result in the extension
of the the Marden’s algorithm[1] which deter-
mines the number of zeros of a given polyno-
mial f(s) inside a unit circle in the complex
plane. The key of Marden’s result lies in a def-
inition of the associated polynomial given in
accordance with f(s). It will be shown that our
extension is also achieved by the specially con-
structed associated polynomial using the inver-
sion of zeros of f(s) about the circle in concern.
The resulting set consists of n possibly nonlin-
ear simultaneous inequalities, where n is the or-
der of the polynomial. It is worth to note that
the obtained algebraic set is quite suitable to
be combined with the already existing meth-
ods on robust D-stabilizing controller design.
Our result will also allow the calculation of `2

D-stability radius for a given D-stable polyno-
mial. Its formulation and a related theorem
will be explained in section 3.

2 Extension of the Marden’s
algorithm

This section states how the algorithm given by
Marden[1] can be extended to a general case
where the domain of interest is a circle located
on a left half complex plane with arbitrary ra-
dius. Let the polynomial in concern be given
by

φ0(s) = α0 + α1s + · · ·+ αnsn (1)

and the target domain D be a circle as shown
in Fig. 1, which is defined by

D
4
= {s ∈ C||s + α| ≤ r} (0 < r < |α|). (2)
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Im
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r

Figure 1: The target domain D

In the following discussion, we will restrict
our attention to the case where the coefficients
αi(i = 0, 1, · · · , n) of (1) are all real. The cen-
ter −α of the circle (2) should be assumed to
be real because symmetricity on the location
of zeros of a real polynomial forces to choose a
domain symmetric about the real axis. Next,
let us recall the definition of an inversion[15].

Definition 1 (Inversion) A point P’ on a
half-line OP in the complex plane is said to
be an inversion of P about the circle Q if
OP · OP’ = r2 where O is the center of Q and
r is its radius.

A real polynomial φ0(s) can be rewritten in the
factored form

φ0(s) = αn

n∏

j=1

(s− sj) (3)

= αn

n∏

j=1

(s− sj), (4)

where sj (j = 1, 2, . . . , n) denotes the zero of
(1). The inversion of sj about the boundary
circle of domain (2) is given by

s∗j = −α +
r2

sj + α
, (5)

and let us define a polynomial φ∗0(s) associated
with φ0(s) by

φ∗0(s)
4
=

(s + α)n

rn
φ0

(
−α +

r2

s + α

)
(6)

=
(s + α)n

rn
αn

n∏

j=1

(
−α +

r2

s + α
− sj

)

=
φ0(−α)

rn

n∏

j=1

(s− s∗j ) (7)

= β0 + β1s + · · ·+ βnsn.
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As one can see from the expression (7), the as-
sociated polynomial defined by (6) has s∗j (j =
1, 2, . . . , n) : the inversion of sj about the
boundary circle ∂D, as its zero.
Note: In the Marden’s algorithm[1] where
∂D is a unit circle at the origin, the asso-
ciated polynomial f∗(s) accordingly obtained
from f(s) was defined by using z∗k: the inver-
sion of the zero zk of f(s) about the unit circle,
as shown in equation (42,14). The definition
of the associated polynomial φ∗0(s) is similarly
constructed with the use of the expression (5).

Lemma 1 φ0(s) and φ∗0(s) have a same abso-
lute value on the boundary of the circular region
D, that is, the following equation holds

|φ∗0(−α+rejθ)| = |φ0(−α+rejθ)| (θ ∈ [0, 2π]).
(8)

Proof) A direct calculation using (3) and (7)
shows

φ∗0(−α + rejθ) = ejnθ · φ0(−α + rejθ), (9)

and the result follows.
The dependency of Marden’s algorithm on

Rouche’s theorem together with lemma 1 im-
plies that the body of Marden’s procedure can
be applied as it is to the determination of the
number of zeros which φ0(s) has inside the cir-
cle D. Thus we have just obtained the follow-
ing theorem.

Theorem 1 (Extended result of Marden)
For a given real polynomial φ0(s), let us define
a polynomial sequence

φj(s) =
n−j∑

k=0

α
(j)
k sk (j = 0, 1, · · · , n) (10)

where
{

φj+1(s) = β
(j)
n−jφj(s)− α

(j)
n−jφ

∗
j (s)

α
(j+1)
k = β

(j)
n−jα

(j)
k − α

(j)
n−jβ

(j)
k .

(11)
φ∗j (s) in (11) is similarly generated from φj(s)
by replacing φ0 and n in (6) with φj and n− j,

respectively. Also, let δj+1 be a real number
defined by

δj+1 = |β(j)
n−j |2 − |α(j)

n−j |2. (12)

If

• φj(s) has pj zeros inside D and no zeros
on the boundary ∂D for each j,

• δj+1 6= 0 ,

then φj+1(s) has

pj+1 =
1
2
{n− j − [(n− j)− 2pj ]sgn(δj+1)}

(13)
zeros inside D and no zeros on the boundary
∂D where D is a circular region defined by (2).
Furthermore, if we define Pk as

Pk
4
= δ1δ2 · · · δk (k = 1, 2, · · · , n), (14)

the number of zeros of φ0(s) inside the circle
D can be calculated by

p =
1
2

(
n−

n∑

k=1

sgnPk

)
. (15)

Proof) It can be proved in the same manner
as done in the original proof of Marden’s result
by noticing that lemma 1 holds.

What can be drawn from theorem 1 is that
φ0(s) has all its n zeros inside D and no zeros
on the boundary if and only if

sgnPk = −1 (k = 1, 2, · · · , n). (16)

For it is equivalent to the verification of the
following n inequalities

δ1 < 0 (17)
δk > 0 (k = 2, 3, · · · , n), (18)

and recalling that each δk is a function of the
coefficients of the polynomial (1), (17)(18) pro-
vides an algebraic expression of a D-stable set
in the coefficient space within which the coeffi-
cients of (1) are allowed to vary without losing
its D-stability. We will refer to this D-stable
coefficient set as V in the following discussion.
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We state here a numerical example on the ex-
ecution of the presented algorithm.
Example 1 [Execution of the algorithm]
Consider the problem of determining the num-
ber of zeros that the polynomial

φ0(s) = a2s
2 + a1s + a0 (19)

has on the circular region D

D = {s||s + 3| < 1} (20)

by using its coefficients a2, a1, a0.
First, generate the polynomial sequence in

accordance with (11) by

φ∗0(s) = (s + 3)2 ×
{

a2

(−3s− 8
s + 3

)2

+a1

(−3s− 8
s + 3

)
+ a0

}

= (9a2 − 3a1 + a0)s2

+ (48a2 − 17a1 + 6a0)s
+ (64a2 − 24a1 + 9a0)

= β2s
2 + β1s + β0 (21)

φ1(s) = β2φ0(s)− a2φ
∗
0(s)

= (β2a1 − a2β1)s + (β2a0 − a2β0)

= α
(1)
1 s + α

(1)
0 . (22)

Similarly, φ∗1(s) and φ2(s) can be calculated as

φ∗1(s) = (−3α
(1)
1 + α

(1)
0 )s + (−8α

(1)
1 + 3α

(1)
0 )

= β
(1)
1 s + β

(1)
0 (23)

φ2(s) = β
(1)
1 α

(1)
0 − α

(1)
1 β

(1)
0 (24)

and the algorithm is terminated. From theo-
rem 1, one can conclude that the given poly-
nomial (19) has all its zeros inside the circle D
if

δ1 = |β2|2 − |a2|2 < 0 (25)

δ2 = |β(1)
1 |2 − |α(1)

1 |2 > 0 (26)

holds. Conditions (25) and (26) can be ex-
pressed in terms of the coefficients a2, a1 and
a0 like

(8a2 − 3a1 + a0)(10a2 − 3a1 + a0) < 0 (27)
(a2

0 + 6a2
1 + 32a2

2 − 5a0a1 − 28a1a2 + 12a2a0)
×(a2

0 + 12a2
1 + 128a2

2

− 7a0a1 − 80a1a2 + 24a2a0) > 0. (28)

3 Calculation of `2 D-stability
radius

For a stability analysis of a polynomial in the
coefficient space, the question ”how large per-
turbation on the coefficients of a nominally sta-
ble polynomial is permitted while maintain-
ing its stability” is usually of great concern.
To answer this question quantitatively, the ”`2

stability radius” is often used[16]. The same
is true for a robust D-stability of a polyno-
mial, and ”`2 D-stability radius” can be defined
similarly. This section dictates several results
on the `2 D-stability radius by using the pre-
viously obtained algebraic expression of a D-
stable set.

The set of surfaces defined by

E = {(αn, · · · , α0) | δk = 0 (∀k = 1, 2, · · · , n)}
is a boundary of a D-stable coefficient set V in
the coefficient space because zeros of a polyno-
mial is a continuous function of its coefficients.
Thus for a given D-stable polynomial

f(s) = ansn + · · ·+ a1s + a0,

finding a minimum of

min
(αn,···,α1,α0)

{
n∑

i=0

(αi − ai)2
} 1

2

s.t. (αn, · · · , α1, α0) ∈ E (29)

appears to be an `2 D-stability radius evaluated
in the coefficient space.
Example 2 [Calculation of `2 D-stability ra-
dius]
Let the left hand side of (27) and (28) be
h1(a0, a1, a2) and h2(a0, a1, a2), respectively.
Assume for simplicity that a nominally D-
stable real polynomial is given by

φ0(s) = an
0+an

1s+an
2s2 = (s+β)2 (−β+j0 ∈ D).

Calculation of the `2 D-stability radius about
the circle D defined by (20) can be formulated
as a following constrained minimization prob-
lem

min
i=1,2

{
(a0 − an

0 )2 + (a1 − an
1 )2 + (a2 − an

2 )2
} 1

2

s.t. hi(a0, a1, a2) = 0. (30)
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Figure 2: Relationship between the `2 D-
stability radius and the location of the nominal
double zeros

The radius obtained by solving (30) is clearly
a function of the location of the nominal ze-
ros (in this case −β). It is then quite natural
to ask which β will lead to the supremum of
the D-stability radius. Fig. 2 is obtained by it-
eratively solving the constrained optimization
problem (30) by changing the value of −β from
−3.9 to −2.1 with the increment by 0.05. It is
interesting to note that the supremum is taken
at −β = −2.7, not being equal to the center
of the circle −3.0 + j0 as one might intuitively
imagine.

The next theorem claims where the mini-
mum of `2 D-stability radius for given interval
polynomial family is taken.

Theorem 2 [Vertex result on `2 D-stability
radius]

Assume the interval polynomial family P (s)

P (s) = ansn + · · ·+ a1s + a0 (31)
ai ∈ [a−i , a+

i ] (∀i = 0, 1, · · · , n)

is robustly D-stable against all possible coeffi-
cient perturbations. Then the minimum `2 D-
stability radius of the given interval polynomial
family will be taken on one of the 2n+1 vertices
of the hypercube H

H =
{
(an, an−1, · · · , a0) | ai ∈ [a−i , a+

i ] (∀i)
}

.

(32)

Proof) Let the vector of coefficients be de-
noted like

a = [an, an−1, . . . , a0]T ,

and the vertices of the hypercube H be denoted
by vk (k = 1, 2, · · · , 2n+1). We prove the the-
orem by contradiction. Now suppose the min-
imum `2 D-stability radius is taken on a poly-
nomial c ∈ H where c 6= vk(∀k). Let ρ(x) de-
note the `2 D-stability radius of the polynomial
x. Then the assumption leads the following in-
equality

ρ(c) < min(ρ(v1), . . . , ρ(v2n+1)). (33)

So there is at least one p ∈ Rn+1 with ‖p‖ =
ρ(c) such that the polynomial c + p is not
D-stable. On the other hand, the inequality
ρ(x) < y assures robust D-stability of a poly-
nomial x against any coefficient perturbations
q satisfying ‖q‖ < y. Thus we can infer the
2n+1 polynomials v1 + p, . . . , v2n+1 + p are all
D-stable from the relation (33). Recall the cir-
cular domain D in concern is a Kharitonov
region[5], D-stability of 2n+1 aforementioned
vertex polynomials will lead to the robust D-
stability of a hypercube defined by

H ′ =
{
(an, · · · , a0) + p | ai ∈ [a−i , a+

i ] (∀i)
}

.

(34)
It can be seen easily that c + p belongs to
H ′, leading to a contradiction to the statement
above. Thus the proof is completed.

4 Conclusion

In this paper, a solution was given for the prob-
lem of determining the number of zeros of a
polynomial φ0(s) inside a circle D in the left
half complex plane by using its coefficients,
based on an algorithm originally proposed by
Marden whose equivalent known as Jury’s sta-
bility test. The enhancement is accomplished
by defining an associated polynomial φ∗0(s) us-
ing the inversion of the zeros of φ0(s) about
the boundary of D, which is given by (6). As
you can see, Marden’s algorithm owes its the-
oretical basis to Rouche’s theorem. This fact
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together with lemma 1 shows that the afore-
mentioned problem can be solved in a similar
manner. Our extension also allows to express a
D-stable coefficient set algebraically in the co-
efficient space as a set of inequalities. It serves
as a region within which the coefficients of the
closed loop characteristic polynomial should be
located in spite of the coefficient perturbation
and turns out to be useful when one consid-
ers a controller design problem for an interval
plant in the coefficient space. In addition, the
expression also permits the calculation of `2 D-
stability radius. It has also been shown that
the vertex result holds on the determination of
a minimum `2 D-stability radius of a robustly
D-stable interval polynomial as stated in sec-
tion 3.
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