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Abstract

This dissertation summarizes the results of the studies on modeling and com-
pensation of the rate-dependent hysteresis of a piezo-electric actuator, based
on the soft computing staffs.

Smart materials are the materials which respond to the exogenous phys-
ical stimuli. They are commonly found in many engineering applications as
a part of smart systems. Piezo electric material inflates in the direction of
electrical field when voltage is applied. Piezo electric actuator is a prime ap-
plication of the piezo electric material which has the distinctive advantages
of solid state actuation, compact size, high precision, high stiffness and quick
responses. It is widely used in engineering applications like vibration control,
machine tool control, high-precision positioning control and many others.

However, it is known that piezo electric actuator suffers hysteresis which
might lead to considerable deterioration of positioning accuracy without ap-
propriate compensation. It is also recognized by practitioners and researchers
in the field that real-world piezo actuators might exhibit drastic change in
their hysteretic behavior when the rate or the frequency of their driving sig-
nal varies. This phenomenon is referred to as the rate-dependent hysteresis.
Extensive research efforts have been devoted to both mathematical hysteresis
modeling and the compensation of hysteresis.

Many mathematical models have been proposed to capture the nonlinear
behavior of hysteresis. Examples include the Preisach model, Play / Stop
models, Bouc-Wen model, Maxwell slip model and Duhem model. However,
it is not a good choice to use Preisach or Play / Stop models to capture
rate dependent hysteresis because vast amount of calculation is inevitable
to prepare the database of distribution functions to cover the entire range
of driving conditions. In order to reduce the amount of calculation neces-
sary to capture the rate-dependent behavior of the piezo actuator, use of
models which contain few parameters and the repeat the parameter identifi-
cation would be a natural thought. Thus I have formulated the radial basis
function neural network model and trained it to exhibit a rate-dependent
input /output hysteretic behavior. T also have used the classical Bouc-Wen
model to do the same thing. These two choices would finally result in the
same problem to find the set of parameters which best fits the input/output
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data used for training. I have proposed the membrane structure genetic al-
gorithm as a solver of the included parameter identification problem. Several
classical global search algorithms have been applied to both two models in
order to discuss how only the structure of the model affects the fitting result.

Enormous amount of studied have been reported about the hysteresis
compensation of piezo actuator. The study include the feedforward approach
which mainly uses inverse hysteretic mapping as a compensator and the feed-
back control approach. This study proposes the internal model control with
two radial basis function networks: one used as the internal model of the
piezo actuator and the other used as the feedback controller of the system.
Experimental results with time varying frequency pure sinusoidal position
reference signal were given to evaluate the performance of the proposed con-
trol system.

This dissertation is divided into 5 chapters.

Chapter 1 introduces the previous research about hysteresis modeling and
compensation, and explains the background of the works and overview of the
dissertation.

Chapter 2 dictates soft computing tools such as radial basis function neu-
ral network, particle swarm optimization, genetic algorithm and membrane
computing and introduces rate-dependent hysteresis behavior of piezo elec-
tric actuator. Furthermore, In order to improve the research of hysteresis
modeling and compensation of piezo electric actuator, a description of mem-
brane structure genetic algorithm which is hereafter abbreviated as MSGA
is presented in this chapter.

Chapter 3 describes the modeling of the rate-dependent hysteresis of piezo
electric actuator. The Bouc-Wen model and the RBF neural network model
for hysteresis modeling of our piezo electric actuator are conducted, the pa-
rameters optimization based on soft computing is applied for the hysteresis
models in this chapter too. In order to find the influence of the modeling
performance by the models and optimization methods, the comparison of the
two models based on tree different methods is given to analyze the results.

Chapter 4 introduces the control strategy for the compensation for hys-
teresis of piezo electric actuator. Based on the last chapter, an adaptive
internal model control design with double RBF neural networks for compen-
sation of rate-dependent hysteresis of a piezo actuator is proposed. Internal
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model control design basically requires precise model of a controlled-process,
one RBF neural network is trained with the help of particle swarm optimiza-
tion algorithm to perform as the internal model of a piezo electric actuator
with rate-dependent hysteresis which is a necessary element to synthesize
internal model control, while the other RBF neural network is given the role
of a controller of the feedback control. The control results and analysis of
the experiments are shown in this chapter too.

Finally, conclusion has been drawn in Chapter 5.
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Chapter 1

Introduction

1.1 Background

Smart materials integrate the function of sensing, actuation, logic and con-
trol to respond adaptively to the changes of their environment in a useful
and usually repetitive manner. They are commonly found in many engineer-
ing applications usually as a part of smart systems. Piezo electric material
shrinks in the direction of electrical field when driving voltage is applied. A
variety of existing engineering materials can be utilized as a sensor as well
as actuator if being properly designed. Piezo electric actuator is a prime ap-
plication of the piezo electric material which has the distinctive advantages
of solid state actuation, compact size, high precession, high stiffness and
quick responses. It is widely used in engineering applications like vibration
control™?, machine tool controll®, high-precision positioning control*3 and
many others!® 7.

However, it is also known that piezo clectric actuator suffers hysteresis
which might lead to considerable deterioration of positioning accuracy with-
out appropriate compensation!®. It is commonly recognized by practitioners
and researchers in the field that real-world piezo actuators might exhibit
drastic change in their hysteretic behavior when the rate or the frequency
of their driving signal varies. This phenomenon is called the rate-dependent
hysteresis. Compensation of rate-dependent hysteresis is a challenging prob-
lem and attracts interest of researchers. FExtensive research efforts have been
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devoted to the hysteresis compensation of piezo actuators which can gener-
ally be divided to two major problems. One is the modeling of hysteretic
behavior and the other is the controller synthesis.

In order to capture the property of hysteresis for piezo electric actu-
ator, vast amounts of studies have been conducted by the researchers in
this field which use mathematical models like Preisach model™ ' Bouc-
Wen model™™ '8 Maxwell slip modell’®?? and Duhem model®*26. Follow-
ing the pioneering research on the mathematical modeling of hysteresis by
Franz Preisach in 1935, Mayergoyz has given necessary and sufficient condi-
tions for the representation of hysteresis nonlinearity with his scalar Preisach
modell’ . Yu et al. proposed dynamic Preisach modeling of hysteresis for the
piezo electric actuator”. Ueda et al. proposed an ALC model for hysteresis
where the states of magnetization of the discretized Preisach plane constitute
the input signal sequence of ALCP®. Preisach model has also been success-
fully applied to many engineering problems. Bouc-Wen model is proposed by
Bouc initially in 197159 and extended by Wen in 1976/*°). Bouc-Wen model
is capable of capturing the property of a wide class of hysteretic systems
and it has been extensively used in many engineering applications such as
magnetohydrodynamical dampers*!), base isolation devices*?, and mechan-
ical systems®®. Lee et al. used a nonlinear differential equation based on
Bouc-Wen model to express hysteresis for precise tracking control of a peizo
actuator*. Maxwell slip model was used to express hysteresis by Yeh et
al and it was reported that this model was successfully adapted to capture
both symmetric and asymmetric hysteretic loopsi*?. Tri et al. used Maxwell
slip model to describe hysteretic behavior of the pneumatic artificial muscle
to control its contraction!*®, but the assumption on the rising curve of hys-
teresis which yields the actuator to start its motion from a relaxed state is
difficult to be satisfied for some applications. Wang et al. presented hystere-
sis compensation in giant magnetostrictive actuators using Duhem model*” .

However, because of their definitive mathematical structures, these mod-
els require parameter identifications before they are actually used in the
model based controller design. Some require considerably large amount of
data and calculation in order to determine all the parameters included in the
model to capture a single hysteretic motion of the system, and it might be-
come void if the target device exhibits rate/frequency-dependent hysteresis.
If the model is not sufficiently accurate, the resulting hysteresis compen-
sation performance can be poor and/or the control system might be very
conservative.
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A tremendous amount of results on the compensation of hysteresis non-
linearity have been reported in literature which is basically classified to feed-
forward approach?™3" and feedback approach*'%. Rosenbaum et al. pro-
posed a feedforward control using inverse Preisach model for accurate control
of electromagnetic actuators*®. Another feedforward compensation control
system was utilized for piezo actuator system based on an exact inversion
of the model under the condition that the distances between the thresholds
do not increase in timel*”. Rakotondrabe proposed an inverse multiplicative
structure of a compensator scheme for the hysteresis nonlinearity which was
expressed by Bouc-Wen modell®. An optimal PID control was utilized to
improve tracking performance of a piezoelectric positioner at low frequencies
by Shieh et al.P¥. Lu et al. decentralized sliding mode control for a steel
frame micro-manipulator®®. Lin presented neural network adaptive control
and repetitive control for precise motion control applications®¥. A state
feedback control approach was applied to the piezoelectric actuator for dia-
mond turning machines by Okazakil®. Recently, Hata et al. have designed
a parametrized feedforward controller using Preisach model for the com-
pensation of rate-dependent hysteresis[55]. The inverse distribution function
is generated off-line by an interpolation of two inverse distribution functions
identified at two extremal driving frequencies to avoid elaborative work of de-
termining a large number of inverse distribution functions for many different
operating conditions, and their controller exhibits acceptable performance
for a wide range of frequencies but the positioning accuracy and tracking
performance of the control system will possibly be deteriorated if the re-
sponse characteristics deviate largely due to resonance because it will lead
to increased inaccuracy of the models used in control input synthesis.

In order to solve the complex problems of traditional research technique.
the idea and use of neural network and bio inspired algorithms give the
new idea and direction to solve the problems in control field. The bio in-
spired algorithm such like genetic algorithm (GA), particle swarm optimiza-
tion (PSO), artificial fish-swarm optimization and membrane computing pro-
mote the improvement and development of the control research. Membrane
computing proposed by Ghoerghe Paun is a new computing method inspired
from the structure and function of living cells model which is also called the
P system[%®).

Many researches about bio inspired algorithms can be found in the lit-
erature. The genetic algorithm was proposed for optimization of PID con-
troller on the electro-hydraulic servo control System!™. A fuzzy logic con-
troller with PSO was proposed for 2 DOF robot trajectory control™. The
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membrane computing are successfully applied to many engineering problems.
The membrane systems were applied for the knee joint injury and repair
modell™. A stochastic membrane system was also applied for metapopula-
tions modeling!™. In order to improve the research of hysteresis modeling
and compensation based on membrane computing, inspired from membrane
computing and genetic algorithm, a membrane structure genetic algorithm
which is hereafter abbreviated as MSGA is utilized to improve the perfor-
mance of this research.

Bouc-Wen model is a mathematical model for capturing the property of
a wide class of hysteresis. The hysteresis modeling of Bouc-Wen model with
membrane structure genetic algorithm proposed first in this dissertation.
Neural network can be a powerful system identification tool, which has good
ability in approximating nonlinear mappings, and the model identification
performed by neural network is applied for piezo electric actuators in this
research. Furthermore, because RBF neural network which is abbreviated
hereafter as RBFNN has better ability of approximating nonlinear mappings,
ease of generalization, fast convergence of training process and simplicity of
architecture, then an RBFNN hysteresis modeling with PSO is proposed
for piezo electric actuator. All the comparison between two models based
different methods is given at last.

The intrinsic difficulty of model based control system for rate-dependent
hysteresis is coming from the fact that mathematical structure of the model
is fixed. This observation leads to the idea to incorporate numerical mapping
staffs into the control system to capture rate-dependent hysteresis and utilize
it in the controller design. An adaptive feedback control system design for
compensation of rate-dependent hysteresis of a piezo actuator is presented
in the dissertation. In this research, the proposed control system design is
based on the structure of internal model control (IMC) originally proposed by
Morari and Zafirious in 19897 . The IMC basically requires precise model of
a controlled-process. This control strategy adopts two radial basis function
neural networks to construct a high precision positioning control system of
a piezo electric actuator which exhibits rate-dependent hysteresis.

The experimental results indicate that the proposed control strategies
have adequate performance on the compensation of hysteresis to guarantee
high precision in positioning control for the piezo electric actuator.
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1.2 Overview

This dissertation summarizes the results and the works on modeling and
compensation of the rate-dependent hysteresis a piezo electric actuator based
on soft computing, where RBF neural networks and bio inspired algorithms
are extensively used as a key technical tool. The dissertation will be divided
to five chapters.

Chapter 1 introduces the previous research about hysteresis modeling and
compensation, and explains the background of the works and overview of the
dissertation.

Chapter 2 dictates the preliminaries. The rate-dependent hysteresis of
piezo electric actuator are described, soft computing tools such as radial ba-
sis function neural network, particle swarm optimization, genetic algorithm
and membrane computing are introduced. Membrane computing proposed
by Gheorghe Paun is a branch of natural computing which investigates com-
puting models abstracted from the structure, the functioning of living cells.
Furthermore, In order to improve the research of classical methods of hys-
teresis modeling and compensation, a membrane structure genetic algorithm
proposed for fast global optimization is also described in this chapter.

Chapter 3 describes modeling of the rate-dependent hysteresis of piezo
clectric actuator. The Bouc-Wen model and the RBF neural network model
for hysteresis modeling of our piezo electric actuator are conducted, the pa-
rameters optimization based on soft computing is applied for the hysteresis
models in this chapter too. In order to find the influence of the modeling
performance by the models and optimization methods, the comparison of the
two models based on tree different methods is given in this chapter too.

Chapter 4 introduces the control strategy for compensation for the rate-
dependent hysteresis of a piezo electric actuator. This chapter describes an
adaptive feedback Internal model control system design for compensation of
rate-dependent hysteresis of a piezo actuator. TBased on the last chapter, an
adaptive internal model control design with double RBF neural networks for
compensation of rate-dependent hysteresis of a piezo actuator is proposed.
Internal model control design basically requires precise model of a controlled-
process, one RBF neural network is trained with the help of particle swarm
optimization algorithm to perform as the internal model of a piezo electric
actuator with rate-dependent hysteresis which is a necessary element to syn-
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thesize internal model control, while the other RBF neural network is given
the role of a controller of the feedback control system. The control experi-
mental results and analysis based on the proposed control system have also
been given in this chapter

Finally, conclusion has been drawn in Chapter 5.



Chapter 2

Preliminaries

2.1 Phenomenological Models of Hysteresis

2.1.1 Preisach Model

The Preisach model proposed by Franz Preisach is the most popular operator-
based model in order to capture the property of hysteresis for piezo electric
actuator. Generally, Preisach model can be expressed by a double integrator
equation as defined by

£(t) = / / (@ B uslu(tdads, (2.1)

where z(t) is the displacement output of the actuator, u(a, ) is a distribu-
tion function , the hysteresis operator v,5[u(t)] has an output value of -1 or
+1 upon the polarized direction of input u(t) corresponding to up and down
switching values of the operator as shown in Fig.2.1. The distribution func-
tion p(a, B) selected by experience and experiments determines the shape
of the hysteresis curve. The triangular domain of integration of Eq.(2.1) in
(e, B) plane is called the Preisach plane as shown in Fig.2.2.

Considering the positive part T and the negative part 7~ in the hys-
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Figure 2.1 The hysteresis operator v,z
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teresis operator, Eq.(2.1) can be rewritten by

//T+ (v, B)davdB — //_ (o, B)dadp
N
—2//T+ B)dadp — //m B)dadp,

(2.2)
(2.3)

(2.4)
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where T is when the whole entire area of T' become positive. Preisach model
is used in the discretized form in the practical implementation. The Preisach
plane and the corresponding distribution function should be discretized ac-
cordingly. Let the interval [tyn, Umaz] be discretized into n small intervals
[Un_1,Uyp), (n = 1,2,---, N). The discretized distribution function can be
calculated by

W)= [ [ utapaads, (2.5

which corresponds to (i, j)-th cell of a discretized Preisach plane. The dis-
crete version of Eq.(2.4) is given by

flu) =2 W) 5) =) Y w0 ), (2.6)

i=1 j=1 i=1 j=1

where T"(i, j) represents how (i,7)-th cell is magnetized. T'(i,j) takes the

value 1 when the cell is positively magnetized, otherwise it takes the value
0[55,56}.

As mentioned in chapter 1, the Preisach model is widely used in hys-
teresis modeling. A modified Preisach model is proposed for an integrated
piezo-driven cantilever beam under quasi-static condition®”. In a type of hy-
brid model, the tabulated Everette function is used in terms of the Preisach
model to reduce the number of data points required in the classical Preisach
model®®!. A PID optimal control using Preisach model is designed for a shape
memory alloy actuator®. Although the Preisach model is widely used for
hysteresis characterization, it also has some disadvantages. For instance, it
requires large quantity of databases and experiments to identify the distri-
bution function which influences the accuracy, it is also inconvenient when
using it for real-time online systems, and it has difficulties in research of
rate-dependent hysteresis because of rate-independent model.

2.1.2 Bouc-Wen Model

Bouc-Wen model introduced by Bouc and extended by Wen is another math-
ematical model for capturing the property of a wide class of hysteresis. Bouc-
Wen model has been extensively used in the current literature to describe
the behavior of components and devices with hysteresis. It is frequently used
in the areas of civil and mechanical engineering.
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Generally, the Bouc-Wen model can be expressed in the form of the non-
linear differential equation defined by

2 = at — Bla||z[" "ty — yulz|", (2.7)
where a, 3, v and n are the parameters of the model which govern the shape
and the magnitude of hysteresis, z is a state variable, and « is the derivative
of the input. Figs.2.3,2.4,2.5,2.6 show how different parameters would affect
the shape of the resulting hysteretic behavior of the Bouc-Wen model. It can
be found from the figures that o controls the restoring force amplitude of
Bouc-Wen model, 8 and ~ control the shape of the trajectory, and n controls
the smoothness of the transition from elastic to plastic response.

Figure 2.3 How « affects the response of Bouc-Wen model(f = 1, v = 1,
n=1)

The Bouc-Wen model is capable of capturing input/output behavior for
a wide class of hysteretic systems, and it can also be used for piezo actuators.
A fuzzy-based PD controller is synthesized for a piezo actuator!®”. A back-
stepping nonlinear control using identified Bouc-Wen model is proposed for
a piezo actuator to improve the performance of nonlinear system![®!.

However, Bouc-Wen model also has some disadvantages. Although Bouc-
Wen model just requires one auxiliary nonlinear differential equation which
features computational simplicity, the rate-independent property and sym-
metric structure of Bouc-Wen model will restrict the range of application
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Figure 2.4 How (3 affects the response of Bouc-Wen model(a = 1, v = 1,
n=1)

Figure 2.5 How ~ affects the response of Bouc-Wen model(av = 1, f = 1,
n=1)

of Bouc-Wen model. Some researchers modified the structure of Bouc-Wen
model in order to achieve hysteresis modeling accurately. Using system iden-
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Figure 2.6 How n affects the response of Bouc-Wen model(a = 1, g = 1,
r\/ — 1)

tification techniques to perform parameter identification of Bouc-Wen model
is one way possible improvement of the Bouc-Wen model.
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2.2 Rate-dependent Hysteresis of Piezo Elec-
tric Actuator

2.2.1 Piezo Electric Actuator

Electric mechanical

_—

Energy BRergy

Figure 2.7 Principle of piezo electric actuator

Piezo electric actuator is a prime application of the piezo electric material
which has the distinctive advantages of solid state actuation, compact size,
high precision, high stiffness and quick responses.

Figure 2.8 Piezo electric actuator

It converts an electrical driving signal into physical displacement as dis-
played in Fig.2.7. In the case where active layer is piezoelectric, deformation
in that layer may be induced by the application of an electric field. This
deformation induces a bending displacement of the cantilever. There are



CHAPTER 2. PRELIMINARIES 14

two types of bending actuators, unimorph and bimorph. The unimorph or
monomorph type piezo electric actuator is a cantilever that consists of one
active layer and one inactive layer. The bimorph type piezo electric actuator
has two layers of piezo electric actuator.

Fig.2.8 shows the bi-morph type piezo electric actuator (PZBA-00030
manufactured by FDK Corporation) used in the experiments in this disser-
tation.

2.2.2 Experimental setup

The bi-morph type piezo electric actuator and a non-contacting type displace-
ment sensor used in this research is shown in Fig.2.9. Physical parameters
of the actuator are summarized in Table 2.1.

Figure 2.9 Apparatus of experiment

Fig.2.10 shows the experimental setup. The input signals are generated
with a D/A interface installed in the PC which is amplified by the piezo driver
(As-904, NF) to drive the piezo electric actuator. The system is controlled in
real time by a PC in which ART-Linux/? is installed as a real time operating
system. Displacement of the actuator is measured with a non-contacting type
displacement sensor (M-2213, MESS-TEK Corporation) with dynamic range
of £1000[pm| and a positioning resolution of 20[nm|. The sensor output
is provided in the form of an analogue voltage which is read by an A/D
interface, 1[ms] sampling interval is used in all experiments disclosed in this
dissertation.

We have also used an alternate laser displacement sensor (LK-G30 Keyence)
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Table 2.1 The physical parameters of piezo electric actuator PZBA-00030

Width[mm] 20
Length[mm] 65
Thickness[mm] 0.5

Displacement[mm /70v] | 0.6

Natural Frequency[HZ] | 103

Table 2.2 Details of Keyence laser sensor LK-G30

Reference distancelmm| | 30
Measuring range[mm]| +5
Mass|g] 280
Resolution of laser[mm/V] | 0.5

to see how measurement accuracy will affect precision of the modeling and
control of piezo electric actuator. Details of Keyence laser sensor are sum-
marized in Table 2.2.

2.2.3 Rate-dependent Hysteresis

Hysteresis is the time-based dependence of a system output on the present
and the past inputs. The dependence arises because the history affects the
value of an internal state. In order to predict its future outputs, either its
internal state or its past input must be known®!. The phenomenon can
be observed in the form of the hysteresis loop in the input/output plane as
shown in Fig.2.11. Presence of hysteresis introduces nonlinearities between
the input and the output. It causes positioning errors which significantly
hinder the operating speed and precision of the piezo electric actuator.
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Figure 2.10 Schematic diagram of the experiment

B

Figure 2.11 An example of the hysteresis

However, the piezo electric actuator in real world exhibits rate-dependent
hysteresis. Rate-dependent hysteresis is a form of hysteresis which changes
its hysteretic behavior when the rate or the frequency of their driving signal
varies.

Fig.2.12 gives an illustrative example of rate-dependent hysteresis of the
piezo electric actuator observed with the piezoelectric used in this disserta-
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Figure 2.12 Examples of rate-dependent hysteresis of piezo electric actuator

tion. This figure contains four input/output trajectories of a single piezo
actuator. The difference of the results comes from the difference in the fre-
quency of the driving sinusoidal signals.

The lateral axis corresponds to the value of the input voltage and the
vertical axis shows the displacement responses of the actuator. It can be
seen that the shapes of the trajectories are completely different.
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2.3 Soft Computing Tools

Compared with traditional methods, the idea and use of neural network and
bio inspired algorithms give the new direction to solve the complex problems
such as particle swarm optimization, genetic algorithm, membrane comput-
ing and so on.

2.3.1 Radial Basis Function Nerural Network

Radial basis function neural network (RBFNN) is one implementation of
the artificial neural network that uses radial basis functions as its activation
functions, which is first formulated by Broomhead and Lowe in 1988(64:65
RBF neural network has better ability of approximating nonlinear mappings,
ease of generalization, fast convergence of training process and simplicity of
architecture.

The output of RBFNN is a linear combination of the values of radial
basis functions to the inputs and neuron parameters. Radial basis function
network can be applied to various problems, including regression, time series
prediction, function approximation, classification, and system control.

The supervised learning for neural network is the problem in statistics
with applications in many areas to guess or estimate a function from some
example of input to output pairs with little or no knowledge of the form of
the function. Fig.2.13 shows the supervised learning with neural network.

Figure 2.13 Supervised learning
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Figure 2.14 Traditional RBF neural network

Radial basis functions are a special class of function, their characteristic
feature is that their response decreases or increases monotonically with dis-
tance from a central value. The center and the width are parameters of the
radial basis function.

A typical radial function is the Gaussian which in the case of a scalar
input is determined by

r

h(z) = exp <_H$—;‘3H2> , (2.8)

where center ¢ and the width r are the parameters of RBF.

The traditional RBF neural network is shown in Fig.2.14. It shows n
components of a vector & are used as the input of radial basis functions
whose outputs are combined with weights w to sum up to a scalar output of
the RBF neural network.
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2.3.2 Particle Swarm Optimization

Particle swarm optimization denoted hereafter as PSO is an intelligent opti-
mization algorithm proposed by Eberhart and Kennedy!66.

The PSO process begins with initializing a group of random particles
corresponding to the variables to be sought, and then finds out the optimal
solution through iteration. Particles track two extreme values to update
their own in each iteration, one is the optimal solution called the individual
extreme value p that particles themselves find, the other is the present global
optimal solution called the global extreme value g that the particle swarm
finds. When the two extreme values are found, the speed and the position of
the particles will be updated by utilizing the equation

Up =WV, +c1 1% (p—pe) +caxrx(g—pe) (2.9)

for the speed and
Dn = Pe + Un (210)

for the position of the particles, where v, represents the new speed of the
particles, v, their current speed, p, new position of the particles and p. being
the current position of the particles. The quantity (0 < r < 1) in Eq.(2.9) is
a generated random number for increasing the randomness of particle move.
c1 and ¢y are called the acceleration constants, and w represents the inertia
weight whose magnitude determines the strength of the inertial behavior.

2.3.3 Genetic Algorithm

Genetic Algorithm (GA) is the adaptive heuristic search algorithm based
on the evolutionary ideas of natural selection and genetics. This heuris-
tic is routinely used to provide useful solutions in optimization and search
problems!67,

GA belongs to the large class of evolutionary algorithms, which gener-
ate solutions to optimization problems using techniques inspired by natural
evolution, such as inheritance, mutation, selection, and crossover.

GA has been used in science and engineering as an adaptive algorithm
for solving practical problems and as computational models of natural evo-
lutionary systems. The algorithms represent an intelligent exploitation of a
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random search used to solve optimization problems. Although randomized,
GA is by no means random, instead they exploit historical information to di-
rect the search into the region of better performance within the search space.
Since in nature, competition among individuals for scanty resources results
in the fittest individuals dominating over the weaker ones.
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2.4 Membrane Computing

2.4.1 Introduction to Membrane Computing

Membrane computing proposed by Ghoerghe Paun is a new natural comput-
ing method inspired from the structure and function of living cells model.
It is also called the P system. It is a branch of natural computing which
investigates computing models abstracted from the structure, the function-
ing of living cells and their interactions in tissues or higher order biological
structuresl©8.

Membrane computing or P system has been used in many fields. For
instance, the framework of P system was used for modeling cellular struc-
tures which include the definition of two minimal models for the activity of
mechanosensitive channels®”. Membrane computing was used to solve diffi-
cult computational NP-complete problems in a polynomial time by creating
exponentially membranes!™. Membrane computing was also applied to the
problems of optimization as membrane algorithm for a traveling salesman
problem by Nishida/™. A polynomial time membrane algorithm was used to
compute approximate solutions to the instances of min storage by Leporati
et al.l™,

Formally, the construction of membrane computing can be described by
I = (MT7C7M»w17"' »wmv(Rlapl)v'” a(anp"L)) (nz 1)7 (211)

where

1) V represents the whole finite number of objects in a membrane computing,

)

2) T is the output,
)
)

3) C is the catalysts,

4) p is the structure of membrane, consisting of n membranes, labeled 1 to
n?

5) w; (1 =1,2,--- ,m) is the object in region i of the membrane structure,

6) R; is the evolution rules associate with region 4,
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Inside . Jutside

Figure 2.15 nested structure membrane algorithm

7) p; is the priority for evolution rule R;.

A membrane algorithm is first used for the NP-complete optimization
problem by Nishida as an application of P system(™. He proposed the nested
structure membrane algorithm as shown in Fig.2.15. A membrane algorithm
is used for optimization of control design of a ball-plate system by Liu et all™.
They used a parallel membrane algorithm for the optimization of NN-PID
controller of positioning and tracking control design of a ball-plate system.
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2.4.2 Membrane Structure Genetic Algorithm

A membrane structure genetic algorithm (MSGA) is proposed in this disser-
tation for mathematical modeling of the rate-dependent hysteresis of piezo
electric actuator, which is inspired from genetic algorithm and the structure
of membrane computing.

The MSGA uses nested membrane structures, the specific rules in each
membrane regions, and the transportation mechanism between the mem-
branes. The basic idea of membrane algorithm suits well with a distributed
and parallel computing device. The structure is designed in an arrangement
of membranes which forms several compartments where various chemicals
(objects) evolve according to computing rules. MSGA employs the rules of
selection, mutation, crossover and shift as were also used in the classical
genetic algorithm.

nitialize parameter

Evalve in turn

Complete’

Exchange rules

Halt conditions

Uutput

Figure 2.16 The flow chart of MSGA

In order to understand and use this membrane structure genetic algo-
rithm, compared with genetic algorithm and particle swarm optimization,
the global optimum for some testing functions have been operated.
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Figure 2.17 Griewank function

Fig.2.17 shows Griewank function which can be described by

1

_ 2.12
=7 1000 (2.12)

(2 + y2) — (cos z cos i) +1,

V2

Because this function has many local minimums and they are very close to
each other, it is one of the hardest functions for searching global minimum.

Fig.2.18 and Table 2.3 give the results of global optimum search of Griewank
function by three algorithms. The initial objects of all the three methods are
generated by random in [-600, 600] in the same condition. It can be found
that the MSGA has the best result in the global optimum search of Griewank
function.

Table 2.3 Optimum results of Griewank

X Y Lmin
MSGA | -0.0051 | -0.0045 | 0.00002
GA | -0.0568 | -8.9826 | 0.0241
PSO | 9.3242 | -13.1280 | 0.0799
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Figure 2.18 Optimum of Griewank

Another example is the Schwefel function. It is also a complex function,
the global minimum is on the edge which is very close to the local minimum.
Classical methods is difficult to search the global minimum of the function.

Schwefel function shown in Fig.2.19 is described by

z = —rsiny/z — ysin/y, (2.13)

Table 2.4 Optimum results of Schwefel

X Y Zmin
MSGA | 420.9711 | 420.9487 | -837.9657
GA 421.8985 | 420.9203 | -837.8564
PSO | 411.0058 | 421.0312 | -825.5509

Fig.2.20 and Table 2.4 give the results of global optimum search of Schwe-
fel function by three algorithms. The initial objects of all the three methods
are generated by random in [-500, 500] also in the same condition The results

also show MSGA has the best result in the global optimum search of Schwefel
function.
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Figure 2.20 Optimum of Schwefel
The flow chart in Fig.2.16 shows the computation process of MSGA al-

gorithm. The details of MSGA will be introduced later in this dissertation
alongside with the specific content of this research.



Chapter 3

Modeling of Rate-dependent
Hysteresis of Piezo Electric
Actuator

3.1 Bouc-Wen Hysteresis Model for Piezo Elec-
tric Actuator

3.1.1 Hysteresis Modeling with Bouc-Wen model us-
ing Membrane Structure Genetic Algorithm Pa-
rameters Fitting

The Bouc-Wen model introduced by Bouc and extended by Wen is a good
mathematical model which is capable of capturing the property of a wide
class of hysteretic systems. Foregoing research® shows that it is sometimes
necessary to modify the structure of Bouc-Wen model in order to apply it
to the modeling of piezo electric actuators. However, it is presumed to be
possible to apply original Bouc-Wen model for modeling the behavior of piezo
electric actuator provided that an improved global optimization algorithm is
used in the parameter identification.

This chapter proposes the use of the membrane structure genetic algo-
rithm which is hereafter abbreviated as MSGA for parameter determination

28
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of Bouc-Wen model.

The Bouc-Wen model for piezo electric actuator decomposes the output
of a hysteretic component D(t) into a non-hysteretic displacement d(t) and
a hysteretic component h(t) by the equation

D(t) = d(t) — h(t). (3.1)

Fig.3.1 shows the curve of hysteretic component h(t) of our piezo electric
actuator (d.=0.16, dp=0). Observed from the curve of this figure and the
plots in Fig 2.13 in Chapter 2, we have decided to subtract A(t) from d(t) in
Eq.(3.1). The non-hysteretic component of the model is described by

d(t) = dou(t) + do, (3.2)

where d, is the ratio of the displacement to the input, u(¢) is the input voltage
and dj is the initial displacement.

The hysteretic component of the Bouc-Wen model h(t) is characterized
by
h(t) = adt) — Bla(t)|[h(E)[" h(t) —yu(t)|hH)]", (3.3)

where «, 8, v and n are the parameters of the model which govern the shape
and the magnitude of hysteresis.

In order to apply Bouc-Wen model to capture the hysteretic behavior of
something, the parameters of Bouc-Wen model need to be adjusted appro-
priately. Fig.3.2 shows the Bouc-Wen model curve corresponding to a=0.6,
£=0.6, v=0.6 and n=0.6.

In order to do the Bouc-Wen hysteresis modeling, a MSGA global op-
timization algorithm is proposed for parameter identification of Bouc-Wen
modeling of our piezo electric actuator. The MSGA uses nested membrane
structures, the rules in separated membrane regions, and the transported
mechanism from the membranes. With the help of all the ingredients, the
parameters fitting problem of Bouc-Wen modeling for a piezo electric ac-
tuator can be solved. Fig.3.3 depicts the proposed membrane structure of
MSGA used in the parameter fitting of Bouc-Wen model to comply with the
behavior of our bi-morph piezo actuator.

The structure of MSGA has 5 membranes. The membranes 1, 2, 4 are
referred to as the elementary membrane. The final results of MSGA will be
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Figure 3.2 Bouc-Wen model

outputted to environment through skin. 5 membranes are utilized as the com-
partments of the membrane structure. Membranes include multi-sets of ob-
jects which evolve according to given rules in a synchronous non-deterministic
maximally parallel manner. The process of MSGA can be organized as fol-
lows.

Step 1: Specify the total population size, the number of membranes and
the subpopulation size of objects in each membrane.
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Figure 3.3 membrane structure

Step 2: Objects of each membrane utilize the evolution rules of selection,
mutation, crossover and shift to obtain the fitness objects. V; is the set of
multiple objects in each membrane, V; is the fitness objects by operation,

Vin is the update objects in operation and p is probability between [0,1].

Selection rules: A roulette wheel approach is adopted as the selection
procedure, which is one of the fitness-proportional selection. In this scheme
a new V;, is selected by roulette wheel selection operator, the probability of
selection is proportional to the value of fitness.

Vi=Vi (fa<h)
Vi=Vin (fa>fi) (3.4)
be = f(Vi)

TN W)

where py is the probability of selection, f is the value of fitness, the symbol
fn represents the fitness of new V;,, and f; is the fitness of V;.
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Mutation rules:

Vi= (%‘1,%‘27 Tt ,Um)
Vi =1 (Pm > p) (3.5)
Vi/ = (Uz{la ng? T 7vz{n)

where 7 is the mutation variation, p,, represents the probability of mutation.

Crossover rules:

Vi = (U117 Vig, -+ 7”171)
Vo = (va1, Va2, -+ + , Vo) (3.6)
Vi=aVi+(1—a)Vy (p.>p)

where « is a random factor set between [0,1] and p, represents the probability
of crossover.

Shift rules:

{ Vi= (vi1, "+, Vias Vit =, Vin) (3.7)
Vi = (Vir, -+, Vip, Vias =+, Vin) (s > D)

where ps represents the probability of shift.

Step 3: When the evolution is over, the communication rule of MSGA
is activated to exchange the fitness objects among the membranes. The
communication rule is employed to obtain the optimal objects among all the
membranes after the evolution rules are applied to obtain better objects in
each membrane region.

Step 4: Output the optimal parameters (d,, c, 8,7, n) to our Bouc-Wen
model.

MSGA is primarily divided into four steps as shown in the flowchart in
Chapter 2: input, evolution, communication and the output. We have ap-
plied proposed MSGA is to parameters identification of Bouc-Wen hysteresis
modeling. The initial sets necessary for MSGA include the number of initial
objects of each membrane, the probabilities of evolution rules, the percentage
of communication, the number of iterations and some parameters.

The number of initial objects of each membrane is set to be 40 (totally
200) which consist of the parameters d., «v, 8, v and n. The initial parame-
ters are shown in Table 3.1, where G is the maximum number of iterations,
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pm represents the probability of mutation, p. represents the probability of
crossover, p, represents the probability of shift, and p denotes the percent-
age of communication. The elements of initial objects in each membrane are
randomly generated in [0,1.5]. Each object is a vector of the parameters of
Bouc-Wen model which has different influence and contribution to the out-
put of Bouc-Wen model. Every object in the membrane will be assigned a
fitness value which shows the ability of the specific object to adapt to the
environment. Actually, the better the object is, the higher the its fitness
value is.

Table 3.1 The initial parameters setting of MSGA

G | pm | Pe | Ps P

200 | 0.1 0.9 | 0.05 | 30%

In order to visualize the progress of Bouc-Wen modeling based on MSGA,
the instantaneous fitting error function at discrete time k£ defined by

ly(k) = ym(K)|* _ e(k)?

glk] = 5 ==

(3.8)

is used, where y is the output displacement of piezo electric actuator obtained
in the experiment and y,, is the output of Bouc-Wen model which corresponds
to the current best individual model. Accumulated error for a single iteration
is defined by

T=> g(k) (3.9)

k=1

Equation (3.9) is calculated over one specific iteration where N represents
the number of signal samples contained in a single iteration.

3.1.2 Results of Bouc-Wen Modeling for Piezo Electric
Actuator

The value of J under the 1[Hz] sinusoidal excitation experimental data can be
observed from Fig.3.4. Classical GA is used as a comparison for MSGA, the
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initial setting of GA is the same with MSGA. It shows that MSGA provides
both faster convergence and better fitting results than GA.

- - GA
- - MSGA ||

0.3f

0.25

0.2

0.15

0.1

0.05f;

0 50 100 150
Number of iteration

Figure 3.4 The progress of parameters identification

Table 3.2 RMS error by different identification method

GA MSGA

1Hz | 0.0145[mm] | 0.0066[mm]

10Hz | 0.0451[mm] | 0.0286][mm]

20Hz | 0.0635[mm] | 0.0439[mm]

28Hz | 0.0974[mm] | 0.0543[mm]

Fig.3.5, 3.7, 3.9 and 3.11 give the measured output displacement of piezo
electric actuator and the output displacement of the Bouc-Wen model based
on MSGA and classical GA.

The output displacement data of piezo electric actuator under sinusoidal
excitation is used to identify the parameters of Bouc-Wen model, Model out-
puts with MSGA and GA for the same input signal are plotted in Figs.3.5(a),
3.7(a), 3.9(a) and 3.11(a), together with the corresponding actual motion
of the actuator. Corresponding modeling errors are given respectively in

Fig.3.5(b), 3.7(b), 3.9(b) and 3.11(b).
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Figure 3.5 The output displacement of sinusoidal input excitation under 1[Hz]
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Figure 3.6 Hysteresis performance under 1[Hz]

It can be found the results of Bouc-Wen modeling based on MSGA is
better than the one obtained with classical GA. The RMS error of Bouc-Wen
modeling based on these two identification algorithms are given in Table 3.2.
Observing Table 3.2, under the 1[Hz| sinusoidal excitation, RMS modeling
error of the MSGA model is 0.0066[mm|, whereas RMS modeling error of
GA model is 0.0145[mm]. Thus the difference is not so obvious. However, as
the frequency increases, responses of MSGA trained model under 10, 20 and
28[Hz| are much better than the GA-trained model for Bouc-Wen model.
It can be seen that the Bouc-Wen model based on MSGA perform better
at high input frequencies. The hysteresis performance under different input
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Figure 3.7 The output displacement of sinusoidal input excitation under
10[Hz]
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Figure 3.8 Hysteresis performance under 10[Hz]

frequencies of our piezo electric actuator and Bouc-Wen model are shown
in Fig.3.6, 3.8, 3.10 and 3.12, the window of time of all there figures follow
the time of output. It can be found that the Bouc-Wen model can almost
capture the properties of hysteresis of the piezo electric actuator, but some
errors remain at the maximum and minimum of Bouc-Wen model output
which may result from the structural error of the Bouc-Wen model used for
our piezo actuator, the accuracy of hysteresis modeling by Bouc-Wen model
is not good enough. Improving the Bouc-Wen model expression may help
to improve the results which we will continue our research on this topic.
In order to get more precise modeling, we established another model for
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Figure 3.10 Hysteresis performance

hysteresis modeling of piezo clectric actuator.

under 20[Hz]
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3.2 RBFNN Hysteresis Model for Piezo Elec-
tric Actuator

3.2.1 Structural Description of RBFNN Model for Rate-
dependent Hysteresis of Piezo Electric Actuator

Figure 3.13 Structure of RBFNN model

Neural network is a very powerful tool for nonlinear mapping, and RBF
neural network has better ability of approximating nonlinear mappings, ease
of generalization, fast convergence of training process and simplicity of ar-
chitecture. Therefore, RBF Neural network is a very good tool for hysteresis
modeling. Due to multi-valued nature of hysteresis nonlinearity, a three lay-
ered neural network with radial-basis activation functions has been applied
here for modeling piezo actuator hysteresis. The network is configured to
have a 3-7-1 structure as described in Fig.3.13. The quantities labeled x1, x5
and x3 are fed to the input nodes. These correspond to

r1 = r(k)
re = r(k—1) (3.10)
r3 = y(k‘ - 1)

respectively, where r(k) represents the value of the training input signal at
time k, r(k—1) being the value of the training signal at previous time instant
and y(k — 1) amounts to the previous output displacement of the actuator.
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The choice of variables described by Eq.(3.10) amounts to the introduction of
the nonlinear ARMA model structure for modeling rate-dependent hysteresis.
This set of inputs corresponds to the simplest model which has the lowest
model order among all.

Nodes at hidden layer utilize multiple radial basis function units necessary
to capture the input-output dynamics of piezo electric actuator. Let @;(k)
denote the vector of input signal sequence at time k defined by

x;(k) = [11, 29, 73]". (3.11)

The output of the j-th hidden layer node h;(k) is calculated accordingly by

|| (k) — ¢l? _
h;(k) = exp( | (222 il ) ;o U=12,---,7), (3.12)
j
where
cj = [cij, c95,03),  (1=1,2,---,7) (3.13)

represents the center of Gaussian RBF function and the scalar constant b;
amounts to its Gaussian width. The output of RBF neural network model
denoted as y,,,(k) in the figure is calculated accordingly by

Ym (k) = ij - hy(k), (3.14)

where wj; is the weight corresponding to h;(k).

In addition, although it is possible to introduce more hidden layer nodes to
this model, adding more hidden nodes will result in the excess redundancy
and the amount of computation which should be avoided in the real time
control implementation. In order to see how the number of nodes of input
layer and hidden will influence the results of the hysteresis modeling, we have
tried more experiments with more nodes of input and hidden layers in the
experiments of next part.

3.2.2 Training RBFNN Model Using PSO

Training parameters in RBFNN to capture input-output behavior of piezo
actuator can be thought as doing the model identification task in the classical
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approach of model based control system design. It is important to have a
reliable, high precision model in order to achieve high control performance, no
matter how the model is constructed. The particle swarm global optimization
(PSO) algorithm which is proposed by Eberhart and Kennedy is used for
Training RBFNN model here.

The process of PSO algorithm begins with initializing a group of random
particles corresponding to the parameters to be optimized, then finds out
the optimal solution through iteration. Particles track two extreme values
to update their own in each iteration One is the optimal solution called the
individual extreme value p that particles themselves find, and the other is
the present global optimal solution called the global extreme value g that
the particle swarm finds. When the two extreme values are found at each
iteration, the speed and the position of the particles will be updated by

Vp =W X Ve + ¢y X1 X (p—pe)+ o X1 X(g—pe) (3.15)

for the speed, and
Pn = Pe+ Uy (3.16)

for the position of the particles, where v and p amount to the speed and
position of a particle respectively, with suffix n representing the new updated
values and ¢ being their current values. The quantity 7(0 < r < 1) in
Eq.(3.15) is a randomly generated number to increase randomness of particle
move. ¢1(= 2) and co(= 2) are called the acceleration constants, and w
represents the inertia weight whose magnitude determines the strength of
the inertial behavior.

The parameters c¢;, b; and w; of RBFNN model in Eqs.(3.12) and (3.14)
will be tuned by the PSO algorithm during the training calculation as de-
scribed, and the RBFNN model will be trained to provide the output value
ym (k) at k-th sampling instant which is expected to be identical to the ac-
tuator output displacement y(k) as schematically shown in Fig.3.14, where
the signal r(-) in the figure represents the input signal for training RBF neu-
ral network, two past signal inputs are applied to the RBF neural network
model.

Training of RBFNN will be conducted by PSO to minimize the instanta-
neous fitting error function defined by
ly(k) — ym(K)[* _ e(k)?

g(k) = 5 =5 (3.17)
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Piezo-actuator

Figure 3.14 RBF neural network modeling

where y(k) is the actuator output and y,,(k) is the RBFNN model output
both at time k. The parameters to be trained with PSO in the 3-7-1 RBFNN
actuator model include the center vector ¢ and widths of function b at hidden
layer, and the weights w; in the output equation Eq.(3.14).

3.2.3 Results of RBFNN Modeling for Piezo Electric
Actuator

Before conducting the identification of real world piezo electric actuator dy-
namics, a numerical practice has been conducted to illustrate the perfor-
mance of RBFNN modeling. Based on the algorithm which has been intro-
duced above, a 20[Hz| sinusoidal voltage signal is utilized as a training input.
In the numerical identification setup, the output y[k] is determined by

y[k] = 0.9802y[k — 1] — 0.3406r[k] + 0.3306r[k — 1], (3.18)

where r[k] is the aforementioned sinusoidal input. We used this description to
operate virtual identification first, then the actual actuator output measure-
ment was used in the experimental identification. The ordinary back propa-
gation (BP) algorithm, in addition to PSO training, has also been adopted
to train RBFNN for both these two setups to illustrate the outstanding op-
timization performance of PSO. The number of initial population is selected
to be 100, individuals length to be 35 and the maximum number of iterations
to be 100, each of which is determined by experience. When model output
Ym approaches to the real actuator response y, g must decrease gradually.

Fig.3.15 to Fig.3.18 show the results of model identification in the numer-
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Figure 3.15 Numerical output results y[k] and y,,[k] trained by PSO
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Figure 3.16 Modeling error by PSO

ical setup. Fig.3.15, Fig.3.16 correspond to the results obtained with PSO
training while Fig.3.17, Fig.3.18 represent the results with Back Propagation
training. The modeling error plot in Fig.3.16 and Fig.3.18 clearly show that
RBFNN trained by PSO has achieved much better modeling accuracy than
the one obtained with BP training.

It then proceeds to the model identification of RBFNN using the real
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Figure 3.18 Modeling error by BP

experimental data which is acquired by driving the piezo electric actuator
with 4[Hz| sinusoidal input signal. Fig.3.19 to Fig.3.22 summarize the results.
These figures clearly show that output of RBFNN trained by PSO in Fig.3.20
is almost identical to the output of the piezo actuator, whereas apparently
large errors can be observed in Fig.3.22 which s tuned with classical back
propagation method.
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Figure 3.19 Experimental output results y[k] and v,,[k] trained by PSO
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Figure 3.20 Modeling error by PSO

In order to see how the number of nodes of input and hidden layer will
influence the results of the hysteresis modeling, the number of input nodes
is increased to 7 which was tested as an alternate model structure first, the
results are shown in Figs.3.23 and 3.24, then the number of hidden layer is
increased to 9, the results are summarized in Figs.3.25 and 3.26. Compared
with the results of Figs.3.19 and 3.20, the performance has little difference,
setting more input nodes to the RBFNN will not contribute much to the
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Figure 3.21 Experimental output results y[k| and v,,[k| trained by BP
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Figure 3.22 Modeling error by BP

improvement of modeling accuracy and additional nodes of hidden layer also
will not contribute much to performance of our test.

After finishing the experiment of RBFNN hysteresis modeling of piezo
electric actuator with particle initial population being 100, individual length
35 and the maximum number of iterations to be 100 above, another attempt
of RBFNN hysteresis modeling have been generated, the initial particle of
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Figure 3.23 Experimental output results y[k| and y,,,[k] trained by PSO when
increasing input nodes
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Figure 3.24 Modeling error by PSO when increasing input nodes

this experiment is set to be 150 while allowing 200 iterations, which will be
shown as follows to acquire improved hysteresis modeling accuracy.

The input voltage plotted with a blue solid line in Fig.3.27(a) is the input
voltage generated for training RBFNN model, and response of the actuator
for this input can also be found with a red solid line in Fig.3.27(a).
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Figure 3.25 Experimental output results y[k| and y,,[k] trained by PSO when
increasing hidden nodes
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Figure 3.26 Modeling error by PSO when increasing hidden nodes

Once the parameter fitting was completed, another different input signal
shown in Fig.3.27(b) was given to the actuator for parameter validation. The
validation input is a time varying amplitude sinusoidal signal whose frequency
also varies with time from 10 to 1[Hz]. The frequency of the voltage signal
is altered to capture the property of rate-dependent hysteresis.
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Figure 3.27 Input and output signals for training and validation

Figure 3.28 shows how optimization proceeds with PSO and BP. The
vertical axis shows the value of the function

L=> g(k). (3.19)

This function accumulates instantaneous fitting error g(k) defined by Eq.(3.17)
over a single learning iteration, where N is the number of signal samples
contained in it. The value of L is expected to decrease as iteration number
increases. It can be observed from the figure that training result is good
and the proposed neural network has been trained to represent the dynamic
relation between the input and the output signal of the piezo actuator, for a
given range of frequency.

In order to see how learning algorithm would affect the modeling per-
formance, another 3-7-1 RBFNN is trained with ordinary back propagation
(BP) algorithm using the same dataset. The actual response of piezo ac-
tuator is depicted in the input vs output form as shown in Fig.3.29, it can
be seen that the trajectory of hysteresis changes with both amplitude and
frequency of the input voltage.

Fig.3.30 corresponds to the results of back propagation learning after
50 iterations, whereas Fig.3.31 corresponds to the results of PSO training.
Fig.3.32 shows the result of additional 50 learning iterations for BP.

It can be found from the results clearly that allowing more iterations
will actually improve the modeling accuracy when BP is used for learning,
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Figure 3.29 Response of the actuator to the validation input signal sequence

but it is not good enough to capture rate-dependent hysteresis of the actu-
ator. Comparison of these figures immediately shows that RBFNN trained
with PSO has successfully captured rate-dependent hysteresis of an actua-
tor, while RBFNN trained with back propagation fails and cannot model
dynamic behavior of rate-dependent hysteresis. Table 3.3 summarizes the
modeling accuracy quantitatively.

In addition, we attempted another experimental verification of RBFNN
modeling trained by PSO for piezo electric actuator with 10 and 20[Hz] driv-
ing signals, and the responses of RBFNN model are shown in Figs.3.33 and
3.35, whereas the modeling errors are depicted in Figs.3.34 and 3.36.
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Figure 3.30 RBFNN modeling results trained by BP after 50 iterations
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Figure 3.31 RBFNN modeling results trained by PSO after 50 iterations

Table 3.3 Comparison of modeling accuracy for two differently configured
RBFNNs after 50 iterations

Max error occurred RMS error
PSO trained model 0.027[mm)| 0.003[mm] (0.5%)
BP trained model 0.2877[mm] 0.0451[mm)] (8.3%)

These figures demonstrate that the model is good enough when the ac-
tuator is driven with 10[Hz] signal whereas slight degradation of accuracy
is observed in 20[Hz] results. To the best of the authors’ understandings, it
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Figure 3.33 Experimental verification of RBFNN model for piezo-actuator
with 10[Hz| driving signal

might be caused by the structural oscillation of the actuator which is com-
monly observed for 16[Hz| or above driving frequency.
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Figure 3.35 Experimental verification of RBFNN model for piezo-actuator
with 20[Hz] driving signal
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Figure 3.36 RBFNN modeling error with 20[Hz| driving signal
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3.3 Comparison of Bouc-Wen model and RBFNN
model for Hysteresis Modeling

The Bouc-Wen model and the RBFNN model based on soft computing for
hysteresis modeling of piezo electric actuator are already introduced in this
chapter. Because the controller for compensation of hysteresis of piezo elec-
tric actuator is designed based on hysteresis model which has been already
tested, in order to apply precise hysteresis modeling for control design of
piezo electric actuator, the best choice of proposed models with different
methods need to be selected.

The comparison of the results of Bouc-Wen model and RBFNN model
by all the three different algorithms are given in this part so as to choose
a precise modeling method for the following research of compensation of
hysteresis of piezo electric actuator. The introduction and setting of all the
three algorithms has already described in the previous part.

Figure 3.37 shows how Bouc-Wen model optimized with GA, PSO and
MSGA proceeds. The three methods for Bouc-Wen hysteresis modeling are
tested in the same initial condition, in which the population is 200, and the
number of iteration is 150.

0.3
S IR MSGA
L GA
S KT ST PSO
0.2 |5 ;
1
- 015 f;
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11
0.1h1
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1
0.05 i1
I_r‘\ ‘‘‘‘‘‘‘ LI OO
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Number of iteration

Figure 3.37 Changes of value of J of Bouc-Wen hysteresis modeling for 150
iterations

Figure 3.38 shows how RBFNN model optimized with GA, PSO and
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MSGA proceeds. The three methods for RBFNN hysteresis modeling are
also tested in the same initial condition, in which the population is 200, and
the number of iteration is 150.
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Figure 3.38 Changes of value of J for RBFNN hysteresis modeling 150 iter-
ations

From the results of proceeding of this two models after 150 iterations, it
can be found that either for the Bouc-Wen model or for the RBFNN model,
MSGA provides both faster convergence than GA and PSO. Furthermore,
both fitting results of MSGA and PSO are better than GA.

Table 3.4 RMS error

Bouc-Wen model RBFNN model

MSGA | GA PSO | MSGA | GA PSO

1[Hz] | 0.0066 | 0.0145 | 0.0123 | 0.0033 | 0.0038 | 0.0019

28[Hz] | 0.0543 | 0.0974 | 0.0565 | 0.0208 | 0.0237 | 0.0179

In order to demonstrate the performance of hysteresis modeling, exper-
imental verification of the proposed models are shown in Figs.3.39 to 3.46.
The RMSE of Bouc-Wen model and RBFNN model is summarized in Ta-
ble 3.4. First, compared with the results of Bouc-Wen model and RBFNN
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Figure 3.39 Hysteresis performance of Bouc-Wen model under 1[Hz]
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Figure 3.40 The output displacement of sinusoidal input excitation of Bouc-
Wen model under 1[Hz]

model, it can be seen clearly that although using parameter fitting methods
for Bou-Wen model of hysteresis modeling, all the results of RBFNN model
are better than Bouc-Wen model. So it’s better to apply the more precise
RBFNN hysteresis modeling for control design of piezo electric actuator.
Then, compared with RBFNN hysteresis modeling based MSGA, GA and
PSO, the results have little difference, which shows all the three for RBFNN
model can be applied for hysteresis modeling of piezo electric actuator.
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Figure 3.44 The output displacement of sinusoidal input excitation of Bouc-
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Chapter 4

Compensation of
Rate-dependent Hysteresis of
Piezo Electric Actuator

4.1 Internal Model Controller Design for Hys-
teresis Compensation of the Piezo Elec-
tric Actuator

This chapter explains the control system design of a positioning control of a
piezo electric actuator.

The concept of internal model control (IMC) is treated thoroughly by
Morari and Zafiriou in 1989, Figure 4.1 depicts the block digram of prin-
ciple of classical IMC system, where (), represents the actual plant, G, is
the model of plant, and G, is the controller of IMC system.

In the control design of IMC system, if the model is perfect and no distur-
bances are acting on the system, the feedback signal will be zero. Therefore,
the model of plant used for IMC design is very important, the controller of

IMC system design requires an accurate model of the plant to be controlled.

With the help of comparison in chapter 3, the results of RBFNN model

61
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performs much better, an adaptive IMC with double RBFNNs is designed for
compensation of rate-dependent hysteresis of the piezo electric actuator. In
the IMC design, one RBFNN based on PSO is used for hysteresis modeling
of piezo electric actuator, while the other RBFNN is given the role of the
controller of the IMC system. Figure 4.2 shows the structure of the proposed
control system.

Figure 4.1 Block diagram of classical IMC system

In the process of IMC design, a RBFNN model trained with PSO has been
incorporated as the internal model. IMC is suitable for control of a stable
plant. It provides good control performance if the model to be embedded in
the control system is sufficiently accurate like the case in this study.

y(k)
O A ) ,—h Piezo-ceramic actuator
S
SeNerAd
N e(l) )

‘.\"In (l()
PSO-RBFNN model

Figure 4.2 Block diagram of control system design

However, due to the rate/frequency-dependent nature of the hysteresis,
embedded model might lose accuracy when driving signal frequency and/or
speed is altered. This chapter proposes the use of additional RBF neural
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network as the controller of the actuator which is adaptively tuned on-line
to cope with the possible changes in actuator hysteresis and dynamics as
well as to suppress disturbances, as depicted in Fig.4.2. Controller RBFNN
is configured to have 2-7-1 structure whose input layer receives the tracking
error

2 = e(k) = ya(k) —y(k) (4.1)

and the rate of error change
29 = ec(k) =e(k) —e(k—1), (4.2)

where y,4(k) represents the reference position of the actuator at time k. The
reason for the choice is that z; is used for the tracking control of our piezo
actuator, and z; is used to suppress jerky response.

Let z = [z, 25]" be an input signal vector for controller RBFNN. Then
output of the activation function of the j-th node of the hidden layer is
determined by

Nz -7\
k) = e (ESAE) G-rze ) (43)
J

where d; and ¢; (j = 1,2,--- ,7) correspond to the center and width of radial
basis function, respectively. The control input will be synthesized finally by
the following equation

7
u(k) = vih;(k), (4.4)
j=1
where v; is the weight for h;.

The controller is trained to make the tracking error e(k) converge to zero.
It is equivalent to learn the inverse rate-dependent hysteresis property of the
piezo actuator if there is no modeling error, disturbance and/or measure-
ment noise. The controller should also compensate modeling inaccuracies
and disturbances when they are present. In order to increase the efficiency
of control process, the conventional back propagation training is employed for
the possible need of on-line tuning of the controller parameters, because of
its light computational load and convergence speed. Let the target function
for controller training be defined by
(ya—y)?* e

=24 d) _ = 4.5
g 5 5 (4.5)
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All network parameters d; and ¢; are updated according to its gradient of the
tracking error function g.. The update laws for these parameters are given
by the following three equations

B = dy(k 1) g B 1)~ k- 2), (46
G = 6k —1) = noE 4 Bl —1) e (h=2) (&)

and
(k) = sk = 1)~ o2 Bk~ 1) —wy (k- 2)) (48)

J

The parameter n > 0 in these equations governs the learning rate. The terms
starting with £ in Eqs.(4.6) (4.7) and (4.8) represent the inertial terms which
accelerate learning.



CHAPTER 4. COMPENSATION OF RATE-DEPENDENT HYSTERESIS65

4.2 Results of control experiment

4.2.1 Experimental results at low frequency reference

In the proposed IMC strategy for our piezo electric actuator, the RBFNN
controller is used for IMC design. In order to clarify of the proposed con-
trol system, a comparison with the proposed RBFNN controller for IMC is
necessary.

Another PID controller instead of RBFNN controller for IMC system is
applied as a comparison. In addition, because compared with traditional
PID controller, the incremental PID controller which is an improvement
of PID not only can realize the output of incremental PID easily which is
only relevant with last three samplings but also has the effectiveness for
initialization®” if the proposed RBFNN controller for IMC is better than
incremental PID, it is also better than the traditional one. So a incremen-
tal PID controller is used to validate the performance of proposed RBFNN
controller for piezo electric actuator

The incremental form of PID controller is defined by
du(k) = kyle(k) —e(k — 1) + kie(k) + kqle(k) — 2e(k — 1) + e(k — 2)] (4.9)

where e(k) is the instantaneous tracking error at time &k and du(k) represents
the increment of control.

Gains included in this PID control law are set to (k,, ki, kq) = (1.0,0.8,0.6)
by trial and error.

A feedback positioning control has been performed for a sinusoidal ref-
erence input whose frequency changes as a function of time from 1[Hz| to
2[Hz].

The comparison between this two is shown in Fig.4.3 and 4.4 which illus-
trates the results.

From the results in Fig.4.3, the RMS error based on PID is 0.0259[mm],
and the RMS error based on RBFNN is 0.0023[mm], it can be found that
the tracking error of PID controller is much lager than RBFNN controller,
the propose RBFNN controller delivers excellent tracking for IMC system
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Figure 4.3 Results of positioning control simulation for time-varying (1-2[Hz])
frequency reference signal. It is apparent proposed RBFNN-IMC controller
outperforms conventional PID controller.
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Figure 4.4 Difference of hysteresis compensation performance: (a)Proposed
controller and (b)Conventional PID

design while incremental PID results in a poor performance. The trajectory
in Fig.4.3 also shows the incremental PID controller fails to compensate the
hysteresis of piezo electric actuator as well.
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4.2.2 Experimental results at middle frequency refer-
ence

The control results at low frequency have been already given above. Fur-
thermore, in order to observe the performance of proposed double RBFNNs
adaptive IMC control system, two sinusoidal positioning command signals at
middle frequency are given as the reference of the adaptive positioning con-
trol system experiment, while the frequency varies with time: to be specific,
1-3[Hz] and 1-4[Hz] respectively.

0.25 T T T T T T T 0.03
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Actual output 0.02
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Figure 4.5 Adaptive control experimental results of 1-3[Hz| input

Actual displacement (mm)

-0.25

0.2 0.1 0 0.1 0.2
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Figure 4.6 Hysteresis compensation performance when 1-3[Hz| time varying
frequency reference signal is given to the system
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Figure 4.7 Adaptive control experimental results of 1-4[Hz| input
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Figure 4.8 Hysteresis compensation performance when 1-4[Hz| time varying
frequency reference signal is given to the system

Figs.4.5 and 4.7 separately give the tracking control performance for 2 dif-
ferent reference signals at middle frequency in time domain, whereas Figs.4.6
and 4.8 show the results of hysteresis compensation performance. The RMS
error at 1-3[Hz] is 0.0028[mm| and the RMS error at 1-4[Hz] is 0.0031[mm],
the results show the proposed adaptive internal model control system with
double RBFNNs performs quite well at middle frequency for compensation
of rate-dependent hysteresis of our piezo electric actuator.
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4.2.3 Experimental results at high frequency reference

Finally, another control experimental results of proposed double RBFNNs
adaptive IMC control system for sinusoidal reference input at high frequency
whose frequency changes as a function of time from 1 to 10[Hz| is also shown
in this part.
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Figure 4.9 Adaptive control experimental results of 1-10[Hz| input
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0.2 0.1 0 0.1 0.2
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Figure 4.10 Hysteresis compensation performance when 1-10[Hz] time varying
frequency reference signal is given to the system

The output displacement and tracking error of proposed control scheme
are separately shown in Fig.4.9(a) and 4.9(b), whereas Fig.4.10 shows the
hysteresis compensation performance.
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Table 4.1 RMS error at different frequencies

1-3[Hz| 1-4[Hz| 1-10[Hz]

RMSE | 0.0028[mm] | 0.0031[mm] | 0.0067[mm]

Table 4.1 summarizes the RMS error of the experiments above. It can
be found the proposed adaptive internal model control system with double
RBFNNs also perform well at high frequency of our piezo electric actuator,
but the tracking error will increase as the frequency of input increases, the
response tends to be oscillatory as input frequency increases. This might be
caused by discontinuous change of the frequency of the reference and reso-
nance of the actuator. Such a low frequency resonance might occur because
the bimorph actuator is thin in its shape.

The transient part of the responses have been removed from the plots
for the latter three figures in order to illustrate that proposed controller
maintains hysteresis compensation performance even when driving frequency
is altered. Transient tracking performance can be seen in the former three
figures in the time domain. Relatively large tracking errors are observed in
Figs.4.7 and 4.9 at the beginning of control. But it can also be seen in these
figures that real time BP controller tuning works and the errors have been
attenuated significantly within a single second.



Chapter 5

Conclusion

5.1 Summary and Contribution

This dissertation discloses the results of resecarches focusing on the applica-
tion of RBF neural networks and bio inspired algorithms for modeling and
compensation of rate-dependent hysteresis of a piezo electric actuator. The
proposed methods, analysis and results of experiments have been summarized
as follows.

Firstly, the research on Bouc-Wen model with MSGA for piezo electric
actuator is summarized in this part. MSGA has flexible structure and better
performance on convergence time and precision, it is employed for parameter
identification of Bouc-Wen model in an efficient way. MSGA is so flexible
that there is also a room for improvement to acquire accurate model. In order
to verify the performance of the method in a comparative manner, classical
GA ans PSO are also applied for Bouc-Wen model. The displacement output
results of Bouc-Wen model show that the modeling error will increase under
different frequencies, but the Bouc-Wen model identified with MSGA can
capture the hysteresis for our piezo electric actuator and performed better
than GA based model. Results of modeling error often remains at the maxi-
mum and minimum of model output. It may result from the structural error
of the Bouc-Wen model used for the piezo electric actuator.

Then an RBF neural network is designed as a hysteretic model to char-
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acterize rate-dependent hysteresis of piezo electric actuator. In order to in-
crease precision of the adaptive RBFNN modeling, PSO algorithm is applied
to optimize the parameters of the RBF neural network model, and number
of the iteration is found to be another factor for our modeling, and adjusting
the number of iterations is done to get better performance. The results of
hysteresis modeling illustrate that this proposed RBFNN model trained with
PSO performed very well. The RBFENN hysteresis modeling based on MSGA
and GA has also been tested in this research.

The comparison between Bouc-Wen model and RBFNN model shows
the results of RBFNN hysteresis modeling performs better and more efficient
than Bouc-Wen hysteresis modeling, MSGA provides both faster convergence
than GA and PSO, both fitting results of MSGA and PSO are better than
GA, and limitations happened in the Bouc-Wen model can be solved by
RBFNN model. So the RBFNN model based on PSO is applied for the
following research of control design for compensation of rate-dependent hys-
teresis of our piezo electric actuator.

An adaptive double RBF neural networks internal model control sys-
tem for piezo electric actuator has been presented in the dissertation. Two
RBFNNSs are used in the proposed control system, one RBFNN trained with
PSO serves as the internal model of the actuator with rate-dependent hys-
teresis, whereas the other RBFNN based on PSO is configured as the IMC
controller which is tuned on-line by the classical back propagation algorithm
with inertia term.

Results of the experiment indicate that proposed control system can com-
pensate the hysteresis under several different reference signals for our piezo
electric actuator. However, the response tends to be oscillatory as input
frequency increases. This might be caused by discontinuous change of the
frequency of the reference and resonance of the actuator. Such a low fre-
quency resonance might occur because the bimorph actuator is thin in its
shape.
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5.2 Future work

Based on the results obtained in this research, there still remains many prob-
lems and works which should be solved and improved.

More works need to be done for the compensator design for variety of
different piezo electric actuators which covers wide range of operating con-
ditions. As mentioned in the research of Bouc-Wen model, problems of the
maximum and minimum modeling error should be improved. The bio in-
spired algorithms like flexible MSGA still should be designed more suitable
for on line control application, improvement of MSGA should be sought for
online control system design. Along with the high-precision systems, the re-
search works should continue to achieve the control design for systems with
ultra high frequencies.
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