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Abstract 

   Newcastle disease virus (NDV) infection in bird usually causes systemic 

infection and widespread pathological lesions in most of body organs. 

Pancreatic and renal pathologic lesions are usually reported during NDV 

infection in several avian species for example chicken, turkey, pigeon, goose 

and double-crested cormorants. Until now, little is known about pancreatic and 

renal lesions in NDV infections and the pathogenesis of NDV in the pancreas 

and kidney of infected chickens remains unclear. Previously, a comparative 

study between chickens and ducks after experimental infection with 9a5b 

mutant NDV was performed by our laboratory and the pancreatic and renal 

lesions were more prominent in chickens than ducks; therefore, we aimed in 

this study to investigate the pathogenesis of pancreatic and renal lesions in 

chickens using the same isolate in detail from an early infection phase 6 hours 

postinoculation (6 hpi) till the late phase of infection 10 days postinoculation 

(10 dpi). Also, to investigate the pathogenesis of NDV strains that may 

spontaneously mutate from avirulent to virulent ones. The virulent 9a5b mutant 

NDV isolate was inoculated intranasally in 32-day-old specific pathogen-free 

white Leghorn chickens. The pancreas and kidney was grossly examined and 

both fixed in formalin for histopathological and immunohistochemical 

investigations. Pancreas was fixed in gluteraldehyde for electron microscopic 

examinations. The kidney was further examined by RT-PCR and virus titration. 

In the chicken pancreas, inflammatory changes were observed in the 

peripancreatic tissue at the early stage of infection (12 hpi) and became more 

prevalent towards the end of the experiment. Multifocal areas of necrotizing 

inflammation were detected in the exocrine portion of the pancreas by 5 dpi 

and became more severe at 10 dpi. The endocrine islets were generally 



preserved, but slight degenerative changes were observed at 10 dpi. 

Immunohistochemistry (IHC), NDV-nucleoprotein (NP) positive signals were 

detected in the peripancreatic soft tissues (macrophages and other lymphoid 

cells) by 1 dpi. In the exocrine portion of the pancreas, NDV-NP positive 

signals were detected at 5 dpi and increased in intensity and distribution by 10 

dpi. NDV particles were confirmed in the cytoplasm of exocrine acinar cells by 

transmission electron microscopy. CD3-postive cells were observed 

preferentially in the peripancreatic soft tissues earlier than in the pancreatic 

tissue. Moreover, in comparing with control chicken, insulin immunopostivity 

was unchanged, except on the last day of experiment, when insulin IHC was 

slightly reduced. In the kidney study, histopathologically, tubulointerstitial 

nephritis was detected in both renal cortex and medulla but it was more 

abundant in the medulla. Nephrotropism of the 9a5b NDV isolate in the 

chicken kidneys was confirmed by IHC, RT-PCR, and virus isolation from an 

early time after infection (1 dpi). Virus detection was consistent among these 

three methods and started at 1 dpi, peaked at 5 dpi, and diminished at 10 dpi. 

Massive degenerative changes and infiltration of CD3 immunopositive cells 

accompanied replication of the 9a5b NDV isolate in chicken kidneys from 1 

dpi.  

   In conclusion, the 9a5b NDV infection in the chicken pancreas initially 

induced inflammatory reaction and viral replication in the peripancreatic soft, 

and spread to the pancreatic parenchymal tissue. Furthermore, necrosis affected 

mainly the exocrine portion of the pancreas while the endocrine portion was 

generally unaffected by the NDV infection. In the chicken kidney, the 9a5b 

NDV mutant isolate had showed a nephrotropism to the chicken kidney from 

an early time after infection (1 dpi). Tubulointerstitial nephritis was more 

severe in the renal medulla than the cortex. Local inflammatory response in 



kidney tissues may play an important role in suppressing viral replication. 

Pathological changes that were caused by NDV in the chicken kidneys were 

similar to those caused by avian influenza virus, infectious bronchitis virus, and 

avian nephritis virus and this highlights the importance of including ND in the 

differential diagnosis of kidney disease in chickens. 
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INTRODUCTION 

   Newcastle disease virus (NDV) is the causative agent of Newcastle disease 

(ND). NDV is a single-stranded, nonsegmented, negative-sense enveloped 

RNA virus (de Leeuw and Peeters, 1999; Dortmans et al., 2011). The genome 

of NDV encodes six structural proteins: nucleoprotein (NP), fusion protein (F), 

RNA polymerase protein (L), matrix protein (M), hemagglutinin-

neuraminidase protein (HN), and phosphoprotein (P) (de Leeuw and Peeters, 

1999; Dortmans et al., 2011). Cleavability of F protein gene is an important 

factor that influences tissue tropism and viral spread. Based on F protein gene 

cleavability by cellular proteases, NDV strains differ in their virulence (Gotoh 

et al., 1992; Murphy et al., 1999; Nagai, 1995). Also, the HN gene (De Leeuw 

et al., 2005; Dortmans et al., 2011; Huang et al., 2004; Wakamatsu et al.,

2006b) and the P gene (Wakamatsu et al., 2006b) have been identified as key 

players in NDV virulence. According to the World Organization for Animal 

Health (Known as Office International des Epizootics; OIE), NDVs can be 

categorized into strains of high virulence (velogenic), moderate virulence 

(mesogenic), and low virulence (lentogenic). In chickens, the velogenic strains 

have viscerotropic form (characterized by marked lesions in the gastrointestinal 

tract and high mortality) and neurotropic form (characterized by respiratory and 

neurologic signs with high mortality). Mesogenic strains cause acute 



respiratory disease but with low mortality. Lentogenic strains induce mild 

respiratory infections (OIE, 2012).

   The pathogenicity of NDV isolate can be determined using the intracerebral 

pathogenicity index (ICPI) in 1-day-old chicks. The virulent viruses will give 

scores close to 2.0, whereas lentogenic strains will give scores close to 0.0 (OIE, 

2012). The clinicopathological characters of NDV infections are varied and 

depend on many factors, including the method of infection, host, and virus 

strain (Alexander, 2003). 

   The F protein cleavage site sequence of avirulent strains is 

112(G/E)(K/R)Q(G/E) RL117 which is only susceptible to trypsin-like enzymes 

found in the respiratory and digestive tissues, causing localized infection. 

While, the F protein cleavage site sequence of virulent strains is 112(R/K)-R-Q-

(R/K) RF117 which is susceptible to ubiquitous intracellular host proteases, 

enabling them to induce systemic infection (de Leeuw et al., 2005; Glickman 

et al., 1988; Miller and Koch, 2013; Toyoda et al., 1987). Avirulent wild 

waterfowl viruses, having the typical avirulent fusion protein cleavage site 

sequence, have the potential to become velogenic after passage in chickens 

(Shengqing et al., 2002; Tsunekuni et al., 2010). The virulent 9a5b NDV 

mutant isolate was generated from the lentogenic Goose/Alaska/415/91 strain 

by nine consecutive passages in chicken air sacs, followed by five passages in 



chicken brain (Shengqing et al., 2002). The original strain has an ICPI of zero 

and avirulent F protein cleavage site compared with the 9a5b NDV mutant 

isolate that has an ICPI equal to 1.88 and a virulent F protein cleavage site 

(Shengqing et al., 2002). Furthermore, a genetic comparison between the 

original lentogenic Goose/Alaska/415/91 and the 9a5b NDV mutant isolate 

demonstrated that 3 amino acid substitutions in the HN proteins, causing 

change in the inactive HN0 precursor (found in avirulent viruses) to biologically 

active HN protein (found in virulent viruses and are responsible for the virus 

attachment to the host cell and promotes F protein fusion activity) (Huang et 

al., 2004; Lamb and Kolakofsky, 2001; Robert, 1993; Takimoto et al., 2002; 

Tsunekun et al., 2010). 

   Pancreatic and renal pathologic lesions are usually reported during NDV 

infection in several avian species for example chicken, turkey, pigeon, goose 

and double-crested cormorants. However, little is known about pancreatic and 

renal lesions in NDV infections and the pathogenesis of NDV in the pancreas 

and kidney of infected chickens remains unclear. Previously, a comparative 

study between chickens and ducks after experimental infection with 9a5b 

mutant NDV was performed and the pancreatic and renal lesions were more 

prominent in chickens than ducks (Anis et al., 2013a); therefore, we aimed in 

this study to investigate the pathogenesis of pancreatic and renal lesions in 



chickens using the same isolate in detail from an early infection phase (6 hpi) 

till the late phase of infection (10 dpi). Also, to investigate the pathogenesis of 

NDV strains that may spontaneously mutate from avirulent to virulent ones.  



Review Of Literature 

2.1. Newcastle disease history 

   In 1926, the first official outbreak of ND was reported in Java, Indonesia 

(Kraneveld, 1926). In 1927, the disease was reported in Newcastle-upon-Tyne, 

England (Doyle, 1927), from where the name "Newcastle disease" was originated 

(Doyle, 1933). Many authors believed that ND was presented before its official 

documentation for example, outbreaks in Central Europe (Halasz, 1912), Korea in 

1924 (Levine, 1964), Ranikhet, India (Edwards, 1927) and in the Western Isles of 

Scotland in 1896 (Macpherson, 1956). ND has spread throughout the world within 

a few years (Senne et al., 1983; Spradbrow, 1988) and continues to emerge in both 

endemic and epidemic forms (Brown et al., 1999).  

   Since the first recognition of the disease, four panzootics of NDV had occurred 

(Alexander, 2001). Southeast Asia was the location of the first panzootic and this 

panzootic extended slowly through Asia to England and Europe in 1926 and then 

worldwide spread has occurred by the early1960s. By the late 1960s, the second 

panzootic started in the Middle East and most countries infected by 1973 (Within 4 

Years) (Hanson, 1972). The increase in the international trade of poultry and caged 

psittacine species and poultry industry development are among the reasons which 

have facilitated the spread of the second panzootic (Francis, 1973; Walker et al., 

1973). This panzootic has entered California, USA through caged birds (Francis, 



1973; Hanson, 1972). The third panzootic has occurred in the late 1970s and was 

recognized from the antigenic and genetic analysis of NDV, which indicated that 

probably there is a spread of a third virulent virus different from the other 2 panzootic. 

In comparing with the previous two panzootic, the start and spread of this panzootic 

were unclear probably due to the universal vaccination against ND (Herczeg et al., 

2001; Lomniczi et al., 1998). The fourth panzootic of ND was occurred in the Middle 

East in the late 1970s and originated from the pigeons and doves (Kaleta et al., 1985). 

This panzootic was characterized by nervous signs similar to the neurotropic form 

of ND in chickens but without respiratory signs. By 1981, ND had reached Europe 

(Biancifiori and Fioroni, 1983) and became a worldwide pathogen.  

Fig. 1: The global scenario of NDV outbreaks in the world (Ganar et al., 2014). 

2.2. Etiology of Newcastle Disease 



   Newcastle disease virus (NDV) is the causative agent of Newcastle Disease (ND) 

(Brown et al., 1999). NDV is a member of the order Mononegavirales in the family 

Paramyxoviridae, genus Avulvirus (Wise et al., 2004). NDV is a nonsegmented, 

single-stranded, negative-sense enveloped RNA virus (de Leeuw and Peeters, 1999; 

Dortmans et al., 2011). Newcastle disease virions or Avian paramyxoviruses virions 

are pleomorphic, filamentous and/or round in shape (Alexander et al., 1983a; Briand  

et al., 2012; Yamamoto  et al., 2015; Yusoff and Tan, 2001) with a diameter ranged 

from 100 to 500 nm (Miller and Koch, 2013; Yusoff and Tan, 2001). The viral 

genome encodes six structural proteins: nucleoprotein (NP), fusion protein (F), RNA 

polymerase protein (L), matrix protein (M), hemagglutinin-neuraminidase protein 

(HN), and phosphoprotein (P) (Fig. 2).  

Fig. 2: 

NDV structure: A. Schematic diagram of Newcastle disease virus structure (Ganar et al., 2014); B. Negative staining 

and electron tomographic analysis of Newcastle disease virus. 44-nm thick digital section taken at the level of the 

envelope. Bar = 100 nm. Inset; Glycoprotein protruding from the envelope. Bar = 10 nm (Miller and Koch, 2013).



   The viral nucleocapsid has a diameter of about 18 nm and 1 mm in length 

(Alexander et al., 1983a; Briand  et al., 2012; Yusoff and Tan, 2001) and is formed 

by three proteins; NP to which the P and L proteins connected forming the 

herringbone-like ribonucleoprotein complex (RNP) (Lamb and Parks, 2007; Yusoff 

and Tan, 2001). The L protein is the largest structural protein of NDV (Yusoff et al., 

1987) and its precise functions is unknown (Yusoff and Tan, 2001) but it can 

contribute with the P protein in synthesis of the virus RNA (Hamaguchi et al., 1983). 

The P gene encodes two further proteins V and W by the RNA editing phenomenon 

(Fig. 3) which means to add one or two G at the RNA editing site (Catolli et al., 

2011; Lamb and Parks, 2007; Steward et al., 1993). V and W proteins are present 

only in the virus infected cells (Ganar et al., 2014). The virus attachment and fusion 

to the host cell membrane is a responsibility of the two surface glycoproteins (F and 

HN). Also, the F and HN proteins have the ability to induce protective immunity 

(Meulemans et al., 1986; Nagy et al., 1991). The F protein has trimer spikes whereas 

the HN protein has tetramer spikes (Ganar et al., 2014) and the spikes length is varied 

from 8 nm to 10 nm (Lamb and Parks, 2007; Yamamoto et al., 2015). The M protein 

is a hydrophobic non-glycosylated matrix protein (Yusoff and Tan, 2001) located 

under the virus membrane and is responsible for virus assembly and budding (Pantua 

et al., 2006).  



Fig. 3: Newcastle disease virus RNA editing Phenomenon; incorporation of single G or two G residues at the 

RNA editing site could give rise to V or W, respectively (Ganar et al., 2014). 

   NDV strains are classified into two classes, class I and class II. Class I includes 

mildly virulent viruses circulating among wild birds in the US live-markets (Seal et 

al., 2005), while class II includes 16 genotypes with varying degree of virulence 

(Kapczynski et al., 2013). The viral genome (Fig. 4) of class I and class II viruses 

consists of 15,198 and 15,186 or 15,192 nucleotides, respectively (Czeglédi et al., 

2006).  



Fig. 4: Newcastle disease virus genomic organization (Seal et al., 2000). 

   The  (Fig. 5) is a phenomena needed by all NDV isolates for efficient 

viral replication (Calain and Roux, 1993) where the genomes are in multiple of six 

nucleotides in the vast majority, if not all NDV isolates (Peeters et al., 2000). 

Fig. 5: Schematic representation of Newcastle disease virus genome highlighting the rule of six essentially means 

that a nucleocapsid protein can bind effectively to six nucleotides. The area between the genes shown in black 

represents Inter Genomic Sequences that vary in size from 1 to 47 nucleotides (Ganar et al., 2013).

2.3. Paramyxovirus serotypes 



   The paramyxoviruses isolated from avian species are divided into nine serotypes 

(APMV 1~9) based on haemagglutination inhibition and neuraminidase inhibition 

assays (Ganar et al., 2014). Recently, new serotypes have been identified and 

paramyxoviruses extended to include 13 known serotypes (Briand et al., 2012; 

Fornells et al., 2012; Goraichuk et al., 2016; Terregino et al., 2013; Yamamoto et 

al., 2015). Summary of APMV serotypes (1-13) is present in Table 3. 

NDV is known as avian paramyxovirus serotype-1 (APMV-1) to be distinguished 

from other serotypes of avian paramyxoviruses (Tumova et al., 1979a). NDV is the 

only well-characterized serotype due to its economic importance and infection to 

most of avian species (Nayak et al., 2012); in contrast to serotype-1, little is known 

about the other APMV serotypes and their biological characteristics and 

pathogenicity still remains unclear (Nayak et al., 2012). APMV (2~9) usually 

isolated from wild birds (Mundt, 2013). Complete genome sequences of APMV (2-

9) were reported (Kumar et al., 2008; Nayak et al., 2008; Paldurai et al., 2009; 

Samuel et al., 2009, 2010; Subbiah et al., 2008; Xiao et al., 2009, 2010). APMV 

serotypes were classified into specific lineages or clades based on serological 

(monoclonal antibodies) and phylogenetic studies (Alexander, 2000). 

2.4. Newcastle disease virus (APMV-1) Pathotypes 

   Based on the severity of clinical signs seen in infected chickens (Alexander and 

Senne, 2008), NDV strains can be divided into five pathotypes (viscerotropic and 



neurotropic velogenic, mesogenic, lentogenic and asymptomatic) (OIE, 2012). The 

velogenic strains are divided into viscerotropic and neurotropic strains; 

Viscerotropic strains characterized by marked lesions in the gastrointestinal tract and 

high mortality while, the neurotropic strains characterized by respiratory and 

neurologic signs with high mortality. Mesogenic strains cause acute respiratory 

disease but with low mortality. Lentogenic strains induce mild respiratory infections. 

Asymptomatic usually considered a subclinical enteric infection (OIE, 2012). 

   These pathotypes are formerly named Hitchner form for Asymptomatic enteric and 

lentogen, Beaudette form for mesogen, Doyle form for velogenic viscerotropic and 

Beach form for velogenic neurotropic (Beard and Hanson, 1984). Pathotype 

classification is not clear-cut because considerable change and overlapping of the 

clinical signs sometimes observed (Alexander and Allan, 1974). 

2.5. Pathogenicity tests 

   Standard pathogenicity parameters is performed to classify NDV pathotypes and 

this includes mean death time (MDT), intravenous pathogenicity index (IVPI), and 

intracerebral pathogenicity index (ICPI). 



2.5.1. Mean death time (MDT): In this assay, the time of chick embryo death is 

recorded after inoculation of the allantoic sac. The higher NDV virulence is the 

shorter the MDT. Lentogenic viruses have an MDT greater than 90 hours (hrs), 

mesogenic strains have an MDT of 60-89 hrs, whereas the velogenic isolates have 

an MDT of less than 60 hrs (Hanson and Brandly, 1955). 

2.5.2. Intravenous pathogenicity index (IVPI): This test is performed by 

intravenous inoculation of 6-week-old chickens with infective allantoic fluid (0.2 

ml/ bird) and observing birds daily for 10 days. After inoculation, numbers of 

healthy, sick, paralyzed and dead birds were used to calculate the IVPI of an isolate. 

The IVPI values ranged from 0 to 3.0; velogenic strains have IVPI approach 3.0, 

while lentogenic strains and some mesogenic strains have IVPI values of zero.  

2.5.3. Intracerebral pathogenicity index (ICPI): This test is performed in chicks 

over 24-hrs and under 40-hrs old at the time of inoculation. 0.05 ml of the fresh 

infective allantoic fluid with a haemagglutinin titer greater than 16 and diluted in 

1/10 sterile isotonic saline are injected intracerebrally in each of 10 chicks. The birds 

are examined daily for 8 days and scored: 0 if normal, 1 if sick, and 2 if dead. The 

ICPI is the mean score per bird per observation over the 8-day period. The virulent 

viruses will give scores close to 2.0, whereas lentogenic strains will give scores close 

to 0.0 (OIE, 2012).



   In the past, intravenous pathogenicity test and mean death time were used to 

characterize NDV virulence (Alexander and Senne, 2008), but now no longer used 

and the ICPI is the official recognized test by the World Organization for Animal 

Health (OIE). Newcastle disease has to be reported if the virus has an ICPI greater 

than 0.7 or have multiple basic amino acids at the fusion cleavage site (molecular 

basis for NDV isolate pathogenicity) (OIE, 2012). 

2.6. Molecular basis for NDV isolate pathogenicity

   Genome sequence of NDVs is now the most convenient step performed by many 

laboratories to characterize NDV strains (Miller and Koch, 2013). 

   Envelope of NDV has a surface glycoprotein called the F protein which is a key 

player in NDV virulence, enabling the virus to fuse with the host cell membrane (De 

Leeuw et al., 2005; Panda et al., 2004; Romer-Oberdorfer et al., 2003). The F protein 

is present as inactive precursor (F0) and must be cleaved by the host proteases to 

active forms (F1 and F2) for the virus particles to be infectious (Ganar et al., 2014; 

Scheid and Choppin, 1974). The F protein cleavage and activation does not require 

acidic pH (Ganar et al., 2014). 

   The cleavage specificity is determined by the amino acid sequence present at the 

cleavage site and varies with the type of the strain (Glickman et al., 1988; Toyoda 

et al., 1987). The F protein cleavage site sequence of avirulent strains has a 

monobasic amino acid sequence motif at the C-terminus of the F2 protein and a 



leucine at the N-terminus of the F1 protein 112(G/E)(K/R)Q(G/E) RL117 which is 

cleaved by trypsin-like enzymes found in certain tissues such as the respiratory and 

digestive tissues, causing localized infection. While, the F protein cleavage site 

sequence of virulent strains has a multibasic amino acid sequence motif at the C-

terminus of the F2 protein and a phenylalanine at the N-terminus of the F1 protein 

112(R/K)-R-Q-(R/K) RF117 and is cleaved by ubiquitous intracellular host proteases, 

enabling them to induce systemic and fatal infection (de Leeuw et al., 2005; 

Glickman et al., 1988; Miller and Koch, 2013; Toyoda et al., 1987). 

   Pathogenicity indices have some drawbacks and can be criticized (Cattoli et al., 

2011; Dortmans et al., 2011). For example, strains that have been classified as 

virulent strains based on their pathogenicity indices and F protein cleavage site 

(Susta et al., 2011; Wakamatsu et al., 2006a) but does not produce severe clinical 

disease (Anis et al., 2013a; Dortmans et al., 2011, Susta et al., 2011; Wakamatsu et 

al., 2006a). These drawbacks usually rose with strains isolated from species other 

than chickens (Anis et al., 2013a; Pearson et al., 1987). Also, intracerebral 

inoculation, not being the natural way of infection, may lead to a difference in ICPI 

value when compared with the natural route of infection (Dortmans et al., 2011) and 

NDV virulence is multigenic and the F protein gene is not the only key player in 

NDV virulence (De Leeuw et al., 2005; Dortmans et al., 2011; Huang et al., 2004; 

Wakamatsu et al., 2006b). (Cattoli et al., 2011) reported that 



indication of the true pathogenicity of ND viruses for a susceptible species could 

come from experimental infection of a statisticall

young and adult birds with a viral standard dose (e.g. 105 EID50) administered via 

natural routes (e.g. oro- . 

2.7. NDV pathogenesis and replication 

   NDV pathogenesis is multigenic and several viral genes have been identified as 

key players in the pathogenesis such as F, HN, P, NP, L and V proteins (Brown et 

al., 1999; De Leeuw et al., 2005; Dortmans et al., 2010, 2011; Huang et al., 2003; 

Huang et al., 2004; Romer-Oberdorfer et al., 2003; Wakamatsu et al., 2006b). NDV 

is a negative sense RNA virus and has the same replication strategy followed by the 

vast majority of negative sense RNA viruses (Lamb et al., 2005). NDV replication 

cycle is the fastest among parmyxoviruses with viral yields peaked within 12 hpi 

(Hightower and Bratt, 1974).  

   Replication process started with the virus attachment to the host cell (Ganar et al., 

2014; Hines and Miller, 2012; Yusoff and Tan, 2001). All viral replication events 

occur within the host cell cytoplasm (Hines and Miller, 2012). NDV infection occurs 

primarily via pH-independent pathway and sometimes by receptor mediated 

endocytosis or caveolae-dependent endocytosis (Ganar et al., 2014).  

   NDV attaches through its surface protein HN to the cell receptors such as sialic 

acid residues (gangliosides and N-glycoproteins receptors) (Ganar et al., 2014; 



Hines and Miller, 2012; Yusoff and Tan, 2001). Actual viral receptors on the host 

cells are still unknown (Yusoff and Tan, 2001). Due to the attachment of the HN 

protein to the host membrane some conformational changes may occur, allowing the 

activation and exposure of the F protein to the host membrane and then successful 

virus cell fusion (Hines and Miller, 2012; Yusoff and Tan, 2001).  

   After fusion, the M proteins detached from the nucleocapsid by unknown 

mechanism to free the viral nucleocapsid into the cell cytoplasm and begin the 

replication and transcription process (Yusoff and Tan, 2001). NDV genome is 

negative-sense RNA, so the L proteins alone (Hines and Miller, 2012) or in 

combination with the P protein act as the viral RNA polymerase (Yusoff and Tan, 

2001), helping the negative genomic RNA to transcribe to the positive sense mRNA 

which then translates into viral proteins (Ganar et al., 2014). The positive sense RNA 

is then used as a template for the synthesis of negative sense genomic RNA (Ganar 

et al., 2014). The HN0 and F0 glycoproteins, are synthesized in the rough 

endoplasmic reticulum, whereas the viral structural proteins (NP, P, L and M) and 

the non-structural proteins V and W are produced in the cytoplasm (Yusoff and Tan, 

2001). The glycoproteins undergo some post-translational modifications and then 

transported across the endoplasmic reticulum and Golgi apparatus (Yusoff and Tan, 

2001). N, P and L proteins are essential for nucleocapsid assembly (Ganar et al., 

2014). The nucleocapsid proteins align within the new membrane to form the RNP 



complex (Hines and Miller, 2012) and then transported to the plasma membrane 

(Yusoff and Tan, 2001). The M protein is essential for mature NDV assembly and 

budding from the host cell membrane (Ganar et al., 2014; Yusoff and Tan, 2001). 

The replication process is summarized in Fig 6. 

Fig. 6: Schematic representation of Newcastle disease virus replication. HN protein attaches to sialic acid 

receptors on cell surface, resulting in fusion. The negative sense viral RNA is transcribed to produce the 

structural mRNAs, with the help of RNA dependent RNA polymerase. The negative sense RNA is converted to 

positive sense template for the synthesis of new negative sense RNA genome. This newly formed genomic RNA 

is then wrapped in N, P and L proteins to form the nucleocapsid that is assembled with matrix and surface 

glycoproteins and released from the host cell (Ganar et al., 2014).

2.8. NDV transmission 

2.8.1. Sources of NDV particles 



   Birds infected with NDV usually shed the virus particles in their feces, 

oropharyngeal secretions (Lee et al., 2016; Samuel et al., 2012; Susta et al., 2014) 

and skin feathers (Lee et al., 2016).  

2.8.2. Type of NDV transmission 

   Horizontal and vertical transmission of NDV has been reported. However, 

horizontal transmission is more documented and reported in literatures as it is easy 

for birds to be infected through ingestion, drinking and/or inhalation of materials 

contaminated with NDV particles (Miller and Koch, 2013). Examples of horizontal 

transmission were reported such as eating of contaminated food by diseased pigeons 

(Alexander et al., 1984) or oral application of live freeze-dried vaccine  (Thekisoe 

et al., 2004) and finally air borne transmission occurs through inhalation of virus 

aerosols (Li et al., 2009) or live virus vaccine (Mazija et al., 2010). 

   Vertical transmission or transmission of NDV from parents to their offspring is 

rarely reported. This way of transmission is still questionable due to the possibility 

of infection by contaminated feces through broken or cracked eggshell and/or 

exposure newborn chick to a virus contaminated materials (Miller and Koch, 2013). 

Another possibility is with high virus titer in embyonated eggs, a prompt embryo 

death and no vertical transmission will occur (Chen and Wang, 2002). However, 



vertical transmission and NDV tropism for the reproductive tract have been reported 

(Biswal and Morril, 1954; Bwala et al., 2011; Silva et al., 2016). Isolation of NDV 

have been documented in eggs (Lancaster, 1963), embryonated eggs after 

vaccination (Bivins et al., 1950; Capua et al., 1993; Prier et al., 1950) and from 

breeder hen (Roy and Venugopalan, 2005). Also, vaccine strain has been detected 

in the reproductive tract (Raszewska, 1964; Silva et al., 2016). Moreover, 

vaccination of chicken has decreased internal egg contamination with NDV (Silva 

et al., 2016). 

2.8.3. Factors contribute to the widespread of NDV  

   There are some factors help the massive spread of NDV between flocks such as 

movement of live birds including exotic, feral, game and racing pigeons, movement 

of farm equipments, poultry products, and mechanical transmission of the virus 

through contact with farm workers and vaccines (Burridge et al., 1975; Alexander, 

2000). With open rearing systems, the chance of infection is more through contact 

with feral birds, while in closed rearing systems the chance of contact with feral 

birds and infection is less (Lancaster and Alexander, 1975). 

2.9. Virus hosts 

   It is generally accepted that all birds are susceptible to NDV based on a report that 

NDV has been documented in at least 241 species of birds (Kaleta and Baldauf, 

1988). Chickens are by far the most susceptible among birds to infection, while other 



birds are resistant and does not produce much clinical signs such as duck (Higgins, 

1971).  

2.10. Incubation period 

   The clinicopathological characters of NDV infections are varied and depend on 

many factors, including the host species, age, host immunity, virus strain, dose and 

method of infection (Alexander, 2003; Cattoli et al., 2011). Natural infections have 

average incubation period of 6 days but in other cases incubation period can be 

extend to 15 days. With more virulent strains, infection with viscertropic velogenic 

NDV has a short incubation period of 1-4 days (Miller and Koch, 2013). 

2.11. Clinical signs 

   The severity of clinical signs widely differs and depends on the virulence of the 

virus and the host immune status, route of infection and age. Younger birds usually 

manifest more severe and acute disease than older one (Cattoli et al., 2011). NDV 

strains can be divided into five pathotypes (viscerotropic and neurotropic velogenic, 

mesogenic, lentogenic and asymptomatic) based on the severity of clinical signs seen 

in infected chickens (OIE, 2012). Neither the clinical signs nor the gross lesions are 

pathognomonic for ND (Miller and Koch, 2013).  

   With highly virulent viruses, the disease may appear suddenly with high mortality 

and absence of the clinical signs (Miller and Koch, 2013). Other studies described 

the clinical signs with experimental infection of viscerotropic velogenic strains as 



started 2 dpi and include the following; mortality can reach to 100%, anorexia, 

weakness, green diarrhea, conjunctival swelling, ruffled feathers, tremors, 

prostration  (Brown et al., 1999; Kommers et al., 2002, 2003), respiratory signs were 

observed very rarely (reviewed in Cattoli et al., 2011). 

   For velogenic neurotropic form of ND, it is mainly reported in the United States 

(Alexander and Senne, 2008) and has longer disease course than with velogenic 

viscerotropic form (Cattoli et al., 2011). The disease has 100% morbidity and up to 

50% mortality and started with sudden onset of severe respiratory disease followed 

by the neurological signs (Alexander and Senne, 2008). The clinical signs are most 

prominent between 5 and 10 dpi and include the following; tremors, opisthotonus, 

head twitch, and paralysis (Brown et al., 1999; reviewed in Cattoli et al., 2011) and 

diarrhea is not always observed (Alexander and Senne, 2008). 

   The clinical signs of mesogenic strains of NDV in field infection are respiratory 

signs and drop in egg production (Alexander and Senne, 2008). Mortality rate is low 

except in very young and compromised birds when secondary infections are 

common complications of mesogenic NDV infections and result in more severe 

morbidity (Bhaiyat et al., 1994; El Tayeb and Hanson, 2002; Nakamura et al., 1994). 

   The clinical signs are not observed in previous experimental infection with 

lentogenic viruses (Brown et al., 1999; Hamid et al., 1990) except in cases with very 

young birds (Cattoli et al., 2011). On the other hand, in one report mild clinical signs 



were observed in 40-day-old specific pathogen-free (SPF) chickens when a 

lentogenic strain was aerosolized with high concentration (Kotani et al., 1987).  

2.12. Gross pathology of NDV 

   The presence of hemorrhages and necrosis in the intestinal wall and/or necrosis 

and hemorrhage in the gut-associated lymphoid tissue are pathogonomic for 

velogenic visceotropic NDV strains (Brown et al., 1999; Hanson et al., 1973; 

Kommers et al., 2002, 2003; Susta et al., 2011). Cecal tonsils are one of the 

prominent lesions in visceotropic velogenic NDV strains and usually have 

hemorrhage and necrosis (Cattoli et al., 2011). Enlarged and mottled spleens, severe 

atrophy of thymus and bursa, perithymic hemorrhages and multifocal hemorrhages 

and ulceration in the junction between proventriculus and gizzard are usually 

observed with viscerotropic strains (reviewed by Cattoli et al., 2011).   

   For velogenic neurotropic NDV strains, gross lesions are absent in the central 

nervous system and no characteristic gross lesions have been described (Brown et 

al., 1999).    

   Mesogenic strains have minimal lesions such as mild splenomegaly and some 

degree of conjunctivitis (Brown et al., 1999).   

   Lentogenic strains produce minimal or no gross lesions. In one report mild 

pulmonary hemorrhages and splenomegaly have been observed with QV4 strain 



(Hamid et al., 1990), on the other hand another experiment with the QV4 does not 

induce any gross lesions (Brown et al., 1999). 

2.13. Histopathology of NDV 

   The lymphoid organs (spleen, thymus, bursa and cecal tonsils) are the target organs 

for NDV pathology. Several studies have addressed these pathologic changes in the 

lymphoid organs and varied between lymphoid depletion, necrosis, sometimes 

apoptosis and fibrin deposition (Anis et al., 2013b; Brown et al., 1999; Harrison et 

al., 2011; Susta et al., 2011). 

 2.13.1. Other organs 

   The brain is mainly involved in infection with velogenic neurotropic NDV strains 

and has multifocal perivascular cuffing, neuronal degeneration, moderate gliosis and 

hypertrophy of the endothelial cells (Brown et al., 1999; Kommers et al., 2003; Susta 

et al., 2011; Wilczynski et al., 1977). With velogenic viscerotropic NDV, 

perivascular cuffing has been reported (Brown et al., 1999; Kommers et al., 2002, 

2003). 

   The heart has myocarditis (Susta et al., 2011) associated with myofibers disruption 

and infiltration of macrophages and lymphocytes (Brown et al., 1999; Kommers et 

al., 2003). Vascular changes have been reported with velogenic neurotropic NDV 

and include hyalinization, hyaline thrombosis in small vessels and hydropic 

degeneration of the blood vessels media (Nakamura et al., 2004). These vascular 



changes are seen in vessels near to the primary site of infection and are caused by 

intense exudation of proteins (Cattoli et al., 2011). 

   The eye usually has prominent edema, hemorrhage, and necrosis associated with 

fibrin exudation especially at the site of inoculation (Brown et al., 1999; Nakamura 

et al., 2004; Susta et al., 2011). 

   The gastrointestinal tract usually has ulceration and necrosis mainly in the area of 

gut lymphoid tissues such as the cecal tonsils (Brown et al., 1999; Susta et al., 2011). 

Evidence of accumulated necrotic materials in intestinal lumens has been reported 

(Susta et al., 2011). Small focal degeneration and necrosis are observed in the liver, 

gall bladder, gizzard and proventriculus (Alexander and Senne, 2008) 

   Several experimental studies with velogenic strains (viscerotropic and 

neurotropic) concluded that the lung is not involved during infection or has little 

pathological changes (reviewed by Cattoli et al., 2011). Only one report from Japan 

has described pneumonia in an outbreak with velogenic neurotropic NDV 

(Nakamura et al., 2008).  

   The reproductive tract of chicken has mild interstitial edema, sporadic glandular 

ectasia, accumulations of lymphocytes and plasma cells and mild interstitial fibrosis. 

These changes were more observed in the uterus than in the magnum and the isthmus 

(Bwala et al., 2011). 



   The pancreas usually has multifocal necrotic areas mainly in the exocrine 

epithelium in chicken (Alexander, 2003; Anis et al., 2013a; Kommers et al., 2002, 

2003; Susta et al., 2011; Wakamatsu et al., 2006a;), turkey (Piacenti et al., 2006), 

pigeon (Barton et al., 1992; Zanetti et al., 2001), and geese (Wan et al., 2004). 

   The kidney usually has multifocal necrosis of the tubular epithelium and 

mononuclear cells infiltration in chicken (Anis et al., 2013a; Courtney et al., 2013; 

Kommers et al., 2001), duck (Anis et al., 2013a; Njagi et al., 2012; Zhang et al., 

2011), turkey (Piacenti et al., 2006), and double-crested cormorants (Kuiken et al., 

1999). 

2.14. Ultrastructural changes in NDV infections 

   Several authors have performed transmission (TEM) and scanning electron 

microscopy to describe the ultrastructural changes in organs after infection with 

NDV. The trachea has been reported to have hypertrophy of goblet cells, excessive 

globular mucous secretion, increase in the proportion of nonciliated to ciliated 

epithelium, deciliation and erosions of the mucosal epithelial tracheal surface (Anis 

et al., 2013a; Mast et al., 2005). In the lung, after aerosol vaccination, there is 

decrease or absence of lung surfactant and their producer cells (pneumocytes) lost 

their cell junction and had apoptotic changes, serofibrinous exudate was observed in 

most of the air capillaries between the 24 and 72 hrs. Later most of these changes 

were reversed and lung restored to almost a normal state (Kazachka, 2008). In the 



esophagus, intracytoplasmic inclusion body was occasionally observed in the 

endothelial cells of esophageal blood vessels (Crespo et al., 1999). In the heart, 

shortening of sarcomeres, damaged mitochondrial (ghost-like), hemorrhage with no 

or little infiltration of inflammatory cells, edema and apoptosis were observed (Lam, 

1996b). Blood cells (heterophils, lymphocyte and macrophages) have condensed 

chromatin, apoptosis (Lam, 1996a,c). In addition, macrophages have the viral 

particles and lost their phagocytic activity (Lam, 1996c).  



AIM OF THE STUDY 

   NDV infection in bird usually causes systemic infection and widespread 

pathological lesions in most of body organs. The pancreas is frequently 

involved during NDV infection and the pathologic lesions in the pancreas have 

been reported in chickens (Alexander, 2003; Anis et al., 2013a; Kommers et 

al., 2002; Kommers et al., 2003; Susta et al., 2011; Wakamatsu et al., 2006a), 

turkey (Piacenti et al., 2006), pigeon (Barton et al., 1992; Zanetti et al., 2001), 

and geese (Wan et al., 2004). Also, the renal lesions induced by NDV were 

previously reported in chickens (Anis et al., 2013a; Courtney et al., 2013; 

Kommers et al., 2001), duck (Anis et al., 2013a;  Njagi et al. 2012; Zhang et 

al., 2011), turkey (Piacenti et al., 2006), and double-crested cormorants 

(Kuiken et al., 1999). Kidney might be implicated in the virus excretion and 

possible transmission to other birds (Kuiken et al., 1999). Until now, little is 

known regarding pancreatic and renal lesions in NDV infections and the 

pathogenesis of pancreatic and kidney damage during NDV infection in birds 

is still unclear. An experimental infection has been performed by our laboratory 

to compare the pathogenesis of 9a5b NDV mutant isolate in chickens and ducks 

and the pancreatic and renal lesions were reported to be more prominent in 

chickens than ducks (Anis et al., 2013a); therefore, we aimed in this study to 

investigate the pathogenesis of pancreatic and renal lesions in chickens in detail 



using the same NDV isolate from an early infection phase (6 hpi) till the late 

phase of infection (10 dpi). Also, to investigate the pathogenesis of NDV strains 

that may spontaneously mutate from avirulent to virulent ones. 



Table 1: Study design 

Twenty-nine (Pancreas study) or twenty- six (Kidney study) 32-day-old male 

white leghorn SPF chickens were acclimatized for one week and then 

intranasally inoculated with the 9a5b NDV mutant isolate, and sampled as 

shown in this table 

*; number of chickens sampled at each time point 
 **; hour postinoculation 
 ***; days postinoculation 

Table 2: Collected tissues samples and their methods of investigations. 
Analysis  Tissue samples 
 Pancreas Kidney 
HE* + + 
NDV-NP 
IHC** 

+ + 

CD3 IHC + + 
Insulin IHC + 
TEM*** + 
Virus titration  + 
PCR  + 

+: done; : not done 
*; Hematoxylin and eosin staining  
**; Immunohistochemistry  

Inoculation Chickens* 
 Infected          Control 
 Pancreas Kidney  

6 hpi*  4* 3  
12 hpi 4 3  

    1 dpi*** 4 3  
2 dpi 3 3  
3 dpi 3 3  
5 dpi 3 3  
10 dpi 3 3 5 
Total 24 21 5 



***; Transmission electron microscopy 

MATERIALS AND METHODS 



1. Virus 

2. Chickens  



3. Necropsy and sampling  

   Pancreatic tissues were fixed in 2.5% gluteraldehyde for transmission 

electron microscopy (TEM) investigation.  







1. QY-I (n- Butyl glycidyl ether) 30 min/ on vibrator. 

2.  QY-II (Methyl glycidyl ether) / 40 min/ on vibrator. 

3.  QY-I: Epon (2: 1) / 30 min/ on vibrator. 

4.  QY-I: Epon (1: 2)/ 30 min/ on vibrator. 

5.  Epon (Quelol- 812)/ 60 min/ on vibrator. 

6.  Epon/ 60 min or overnight/ on vibrator. 

7.  Embedding in Epon.  

8.  Put the embedded samples at 60ºC for 3 days. 

9. Store the hard embedded samples in closed tube with silica gel to absorb the 

moisture until semi-thin and ultrathin sections preparation and examination.  

Preparation of Epon 
Epon 812----- Quetol 812 
DDSA---------- Dodecenyl Succinic  Anhydride 
MNA------------ Methyl Nadic Anhydryde 
DMP-30-------- dimethylaminomethyl phenol 
Mix the first 3 components together in paper cub and 
mix on magnetic stirrer for 5 min then add the fourth 
component (DM-30) and continue mixing on the stirrer 
for about 15 min and the color will changed from dark 
yellow to reddish.     



10. Semi-thin sections (1- -thick) were obtained and stained with 1% 

toluidine blue for light microscopy; representative fields were selected to make 

ultrathin sections (70 nm). 

11. After staining with uranyl acetate and lead citrate, ultrastructural 

investigation was performed using a transmission electron microscope (TEM-

100CX; Japan Electron Optical Laboratory, Tokyo, Japan).  







3.1. Pathogenesis of the 9a5b NDV mutant isolate in the chicken pancreas 

Clinical signs 

Clinical signs of NDV were transient and started from the third dpi in the form 

of inappetence, sleepiness, and diarrhoea and peaked at 4 and 5 dpi, with 

symptoms such as depression, lethargy, open-mouthed breathing with oral 

discharges, and closed eyes (Fig. 1). All symptoms began to decrease from 6 

dpi, and the chickens resumed appetite to food. Only mild depression persisted 

until the end of the experiment (Fig. 2). All the inoculated chickens completed 

the experiment without any mortality. No clinical signs were observed in 

control chickens.  

Gross pancreatic pathology 

Grossly, the pancreas had slight congestion, oedema, and mottled appearance 

from 1 dpi to 3 dpi (Fig. 3).  At 5 dpi, pale-whitish foci were observed on the 

surface of the pancreas which increased at the last day of the experiment (Fig.  

4). No gross lesions were found in control chickens. 

Histopathology of chicken pancreas 

The histopathological findings in the chicken pancreas were summarised in 

Table 4. Lymphoid-like nodules were observed in peripancreatic soft tissue. At 

12 hpi, slight infiltration of lymphocytes and macrophages in the peripancreatic 

soft tissue was observed (Fig. 5). The inflammatory reaction increased in 



intensity toward the end of the experiment (Fig. 6). The inflammation in the 

peripancreatic tissues occurred earlier than that in the pancreatic tissue (Table. 

4). In the pancreas, mild infiltration of heterophils and mononuclear cells 

(lymphocytes and macrophages) in the interstitial tissue of the exocrine tissue 

was seen at 1 and 2 dpi. At 3 dpi, slight vacuolation and necrosis of pancreatic 

exocrine cells were observed, along with increased number of heterophils and 

mononuclear cells. By 5 dpi, some inflammatory nodules, mononuclear cells 

and heterophilic infiltration, mild to moderate necrosis and vacuolation of the 

exocrine cells were observed (Fig. 7). At 10 dpi, this necrotizing pancreatitis 

became more severe and involved all the exocrine portion of the pancreas. 

Necrotizing pancreatitis was characterized by destruction of the exocrine gland, 

severe vacuolation and infiltration of mononuclear cells (Fig. 8) and heterophils 

with marked lymphoid nodules proliferation. Mononuclear cells infiltration 

was prominent around the pancreatic duct, along with mild vacuolation of the 

duct epithelium. The main pancreatic ducts and their branches did not exhibit 

any obstructive lesions. The endocrine portion of the pancreas was not affected 

throughout the experiment and remained intact, except at 10 dpi, when the islets 

showed slight atrophy. No histological lesions were detected in control 

chickens.  



NDV-nucleoprotein IHC in chicken pancreas 

The immunohistochemical findings in the peripancreatic and pancreatic tissue 

were summarised in Table 5. Strong positive signals were observed in the 

macrophages and lymphocytes infiltrating the peripancreatic soft tissue from 1 

dpi (Fig. 9) and monocytes within the blood vessels (Fig. 10). In the pancreatic 

tissue, NDV-positive signals were detected in the cytoplasm of the degenerated 

exocrine cells, within vacuolated lesions, and in macrophages at 5 dpi (Fig. 11). 

On the last day of the experiment, NDV-NP positive signals were more 

abundant in the necrotic pancreatic acinar cells (Fig. 12) and macrophages (Fig. 

12 inset). The peripancreatic and the pancreatic tissues from the control group 

tested negative for NDV. 

TEM 

In the infected group, virus particles were seen in the cytoplasm of the exocrine 

cells at 10 dpi. The virus was enveloped and round in shape with a diameter of 

200 nm ~ 500 nm (Fig. 13). 

CD3 IHC in chicken pancreas 

 By 12 hpi, CD3-immunopositive cells were observed in the peripancreatic soft 

tissues and these cells started to infiltrate the adjacent pancreatic tissue (Fig. 

14). CD3-positive cells infiltration in the pancreatic tissue increased with time 

(Fig. 15) and eventually diffused throughout the whole pancreas especially 



between the exocrine tissue (Fig. 16) and around pancreatic duct branches (Fig.  

17), the pancreatic endocrine islets, and blood vessels by the last day of the 

experiment.  

Insulin IHC in chicken pancreas 

The immunohistochemical findings of insulin immunopostivity were 

summarised in Table 6. Compared with the control group (Fig. 18), insulin 

immunoreactivity in the endocrine islets was not affected throughout the 

infection, except on the last day of the experiment, when slight reduction of 

insulin immunopositive signals were seen in the pancreatic islets and most of 

the islets were surrounded by severe inflammatory reaction (Fig. 19).  





3.2. Pathogenesis of the 9a5b NDV mutant isolate in the chicken kidney 

Gross renal pathology 

   The findings are summarized in Table 7 and 8. Grossly, the kidneys were pale with 

mild lesions. Multifocal small whitish areas were observed in cross sections of 

kidneys in 2 and 3 chickens at 5 and10 dpi, respectively. 

Histopathology of chicken kidney 

   Histologically, about 1~2 small lymphoid foci were observed in the interstitium of 

the kidney in 2 of the 5 control chickens and in the ureteral mucosa of all examined 

birds. Areas of hematopoiesis composed of red blood cells and granulocytes were 

observed in both control and infected birds. No histopathological changes were 

observed in infected kidneys at 6 and 12 hpi. At 1 dpi, 2 chickens had congestion, 

hemorrhage and marked mononuclear cell infiltration. At 2 and 3 dpi, 2 chickens in 

each had mild multifocal lymphohistiocytic tubulointerstitial nephritis within the 

cortex and lymphoid nodules were observed and gradually increased. The medullary 

cones were mildly dilated and infiltrated with heterophils and other mononuclear 

cells (Fig. 20). At 5 dpi, 3 chickens had moderate multifocal lesions and occasionally 

these lesions coalesced to form diffuse cortical tubulointerstitial nephritis (Fig. 21). 

Marked degeneration, necrosis, and apoptosis of the renal tubular epithelium in the 

cortical region were identified (Fig. 22). The medullary cone showed moderate 

dilatation and degeneration of its components (collecting tubules and ducts, 



medullary loops, and ureteral branches) associated with calcification and 

inflammatory reaction. At 10 dpi, 3 chickens had severe cortical tubulointerstitial 

nephritis. The medullary cones were markedly dilated and more severely damaged 

than the cortex. Mild to moderate interstitial fibrosis and protein casts were observed 

in the renal tubular lumen. Severe dystrophic calcification and inflammatory 

response were observed (Fig. 23). Clinical signs, gross and histopathologic lesions 

were absent in control chickens.  

NDV-NP IHC in chicken kidney 

   Immunohistochemically, NDV-NP was detected in infected renal tissues at 1 dpi, 

followed by an increase in intensity and distribution at 2 5 dpi and then decreased 

or became absent by the final experimental day (Table 8). Most immunostaining for 

NDV-NP was distributed in a multifocal pattern in the intact (Fig. 24) and vacuolated 

epithelium of proximal and distal tubules (Fig. 22 inset), in infiltrating mononuclear 

cells, and occasionally in some cells of reptilian-type glomeruli in the cortex (Fig. 

25). In the renal medulla, NDV-NP immunostaining was mainly present in the 

tubular epithelium and the infiltrating mononuclear cells. Kidney of control chickens 

was negative to NDV-NP IHC.   

CD3 IHC in chicken kidney 

   CD3 positive cells were observed rarely in the interstitium of the kidneys in 2 

chickens of the control group and in the ureteral mucosa of all control chickens. In 



the infected renal tissues, infiltration of CD3 immunopositive cells commenced at 1 

dpi (Fig. 26) and became marked at 10 dpi (Fig. 27). CD3 positive cells had focal 

and diffuse infiltration throughout the entire kidney (Fig. 28) and in areas with 

immunostaining signals of 9a5b NDV mutant isolate (Fig. 29).  

Virus titration of chicken kidney 

   Virus titration results are summarized in Fig. 30. At 6 and 12 hpi, 9a5b NDV 

mutant isolate was not detected in kidneys. Virus was detected at 1 dpi, in one 

chicken at 1 dpi, in 2 chickens at 2 dpi, in all examined chickens at 3 and 5 dpi with 

a replication peak at 5 dpi, and in only one chicken at 10 dpi. No virus was detected 

in control chickens. 

RT-PCR 

 RT-PCR was performed to detect the genome of NDV.  The results in infected 

chicken kidneys coincided with IHC and virus titration results (Fig. 31). Kidneys of 

control chickens were negative by RT-PCR. 







Fig. 31: RT-PCR of individual chicken kidneys after experimental infection with the 9a5b NDV 

mutant isoalte showed postive band at 168 pb. 



Discussion 

   This study was conducted to investigate the pathological effect of the 9a5b 

NDV mutant isolate on chicken pancreas. The clinical signs were mild and were 

compatible with our previous report (Anis et al., 2013a). Also, similar findings 

were observed for virulent NDV strains that does not produce much clinical 

disease (Dortmans et al., 2011; Ecco et al., 2011a; Susta et al., 2011) although, 

those previously studied viruses were classified as virulent strains based on 

their ICPI and the sequence of F protein cleavage site (Susta et al., 2011). 

Intracerebral inoculation, not being the natural way of infection, may lead to a 

difference in ICPI value when compared with the natural route of infection 

(Cattoli et al., 2011; Dortmans et al., 2011). In addition, NDV virulence is 

multigenic and the F gene is not the only key player in NDV virulence (De 

Leeuw et al., 2005; Dortmans et al., 2011; Huang et al., 2004; Wakamatsu et 

al., 2006b).  

   Viral replication and an associated inflammatory reaction occurred in the 

peripancreatic tissues and then in the pancreas. The virus most likely reached 

the peripancreatic tissues and pancreas at the same time by viraemia. 

Infiltrating CD3-positive cells were detected in the peripancreatic tissues as 

early as 12 hpi and these cells started to infiltrate the adjacent pancreatic tissue 

from this time. The infiltration extended within the pancreas, eventually 



invading the entire exocrine pancreas. Moreover, NDV-NP signals were 

detected in macrophages and other lymphoid cells at 1 dpi in the peripancreatic 

tissue were then observed in the pancreas by 5 dpi. Additionally, in the present 

study and in a previous study on the same strain of NDV (Anis et al., 2013a), 

the gross and histological pancreatic lesions were mild until 5 or 6 dpi and then 

increased in severity and distribution, causing multifocal necrotizing 

pancreatitis (Kommers et al., 2003; Piacenti et al., 2006; Wakamatsu et al., 

2006a). The same pattern of spread of inflammation in peripancreatic tissue has 

been reported previously for other viruses such as Rift valley fever virus 

(Gommet et al., 2011). The infected chickens had lymphoid-like nodules in 

their peripancreatic tissues, which were also infiltrated by macrophages and 

other lymphoid cells at an early stage after infection. In-vivo studies support 

the role of macrophages and other lymphoid cells in NDV replication and 

further dissemination to other tissues (Brown et al., 1999; Kommers et al., 

2003; Wakamatsu et al., 2006a; Susta et al., 2011; Anis et al., 2013b; Lu et al., 

2014). In addition, an in-vitro study confirmed that NDV could replicate within 

macrophages (Lam, 1996). Replication of NDV in macrophages disrupts their 

function and phagocytic ability (Lam, 1996; Qureshi, 1998; Qureshi et al., 

2000). We speculate that the abundance of macrophages and other lymphoid 



elements in the peripancreatic tissues at an early stage after NDV infection 

provides a suitable environment for viral replication.   

   In this study, the exocrine portion of the pancreas is mainly affected by the 

9a5b NDV mutant isolate infection while the endocrine islets were slightly 

affected at the last day of the experiment. It is possible that that the damage in 

the exocrine gland after NDV infection may be attributed to the proteases 

content in the exocrine cell which may enhance the viral replication. This 

hypothesis agrees with the results of previous reports (Gotoh et al., 1992; 

Murphy et al., 1999; Nagai, 1995), which suggested that NDV exhibits 

differences in tropism and virulence depending on the activation of a viral 

fusion protein precursor by cellular proteases. 

   The slight degenerative changes in the endocrine islets at the last day of the 

experiments (10 dpi) may explain the weaker and fainter insulin IHC-positive 

signals in the infected group than that of the control group. The endocrine islets 

appear to be resistant to NDV infection. The resistance of endocrine islets may 

be explained by the following: firstly, avian pancreas contains a high level of 

glutathione which is 10 times more than the level found in mammalian pancreas 

(Hazelwood, 2000). Glutathione was proposed to have a protective action 

against cytotoxic studies on avian endocrine beta cells (Hazelwood, 2000); 

therefore, may be a similar protective effect for glutathione in the endocrine 



pancreas against viral infections is present. Secondly, differences in the tissue 

distribution of the cellular proteases like furin and proprotein convertase (PC2 

and PC3) were previously mentioned. Furin is located on the Golgi membrane 

and ubiquitously present in a variety of tissues; while, PC2 and PC3 are only 

expressed in the endocrine tissues.  Furin is completely capable of F protein 

gene cleavability of virulent viruses; on the other hand, PC2 and PC3 are fully 

incapable or partially capable of F protein gene cleavability. Cleavage by furin 

can increase the virus infectivity (Gotoh et al., 1992; Nagai, 1995). However, 

the real cause for endocrine resistance is still unknown which may need further 

studies. In the present study, changes in the endocrine islets may be secondary 

to the massive necrosis of the exocrine glands or may be due to indirect effect 

of the virus because NDV cannot be detected by IHC or by TEM in the 

endocrine cells. Late virus dissemination from the peripancreatic soft tissues 

into the pancreatic tissues is possible and this may explain the late dramatic 

massive extension of pancreatic necrosis from 5 dpi. 

    In conclusion, the 9a5b NDV mutant isolate infection in chicken induced 

inflammatory reaction and viral replication in the peripancreatic soft tissues 

earlier than in the pancreatic tissue; therefore, the peripancreatic soft tissues 

may play a preparatory role in late widespread necrotizing pancreatitis induced 

by NDV in chickens. Furthermore, necrosis affected mainly the exocrine 



portion of the pancreas while the endocrine portion was generally unaffected 

by the NDV infection.  

   The second part of this study was performed to investigate the pathogenesis 

of NDV in the kidney of chickens after experimental infection with 9a5b NDV 

mutant isolate. To the best of our knowledge, there have been no previous 

studies that have addressed the relationship between histopathological 

alterations in chicken kidney tissues and NDV replication.  

   Nephrotropism of the 9a5b NDV mutant isolate in the chicken kidneys was 

confirmed by IHC, RT-PCR, and virus isolation from an early time after 

infection (1 dpi). Virus detection was consistent among these three methods 

and started at 1 dpi, peaked at 5 dpi, and diminished at 10 dpi. The 

histopathological changes in the kidneys of infected chickens were consistent 

with the viral replication. The 9a5b NDV mutant isolate caused severe 

degeneration and necrosis in the renal epithelium with positive viral 

immunostaining in both tubular epithelium and mononuclear cells as 

previously reported for other birds (Anis et al., 2013a; Courtney et al., 2012; 

Kuiken et al., 1999; Piacenti et al., 2006; Susta et al., 2011). The virus 

distribution was in the cortex and medulla of kidney as previously described 

(Kuiken et al., 1999) Moreover, in this study positive viral immunostaining 

were observed occasionally in some glomerular cells. 



   In this study, NDV tubulointerstitial nephritis can be classified into cortical 

tubulointerstitial nephritis and intratubular medullary cone nephritis as 

previously described in the case of AIV infection in chickens (Swayne and 

Slemons, 1990). The 9a5b NDV mutant isolate caused more severe 

tubulointerstitial nephritis in the renal medulla than in the cortex similar to 

findings with IBV infection in chickens (Albassam et al., 1986). In humans, the 

medulla is more susceptible to infection than the cortex due to the low pH, high 

osmolality, and high concentration of ammonia in the medulla (Schaeffer, 

2001). In birds, the different susceptibility of the renal cortex and the medulla 

to infection is unknown as the pH is variable (Echols, 2005). Tubular injury in 

the medulla more likely results from plugging of the lumina by cell debris or 

calcified materials or both, subsequently increasing inflammation as proposed 

by others in the case of AIV infection in chickens (Swayne and Slemons, 1990). 

Loss of renal function combined with water deprivation during the peak of 

clinical signs may enhance the effect.

   CD3-positive cells were the main inflammatory component in chicken 

kidneys as previously reported in chicken brain during NDV infection (Ecco et 

al., 2011b). Infiltration of CD3-positive cells in the infected kidneys were 

associated with a decrease or complete absence of viral replication at 10 dpi.  



   In conclusion, the 9a5b NDV mutant isolate showed a nephrotropism to 

chicken kidneys early after infection (1 dpi). Tubulointerstitial nephritis was 

more severe in the renal medulla than in the cortex and the local inflammatory 

response may play a role in suppressing viral replication. Lesions that were 

caused by NDV in the kidneys of chickens were similar to those caused by AIV, 

IB, and ANV and this highlights the importance to include NDV in the 

differential diagnosis of kidney disease in chickens. 



Summary and conclusion 

   This study aimed to investigate the pathology of NDV in two of the organs 

(pancreas and kidney) those are usually involved during NDV infection in several 

avian species. Moreover, scarce data are present regarding the pathogenesis of 

pancreatitis and nephritis in birds infected with NDV. 

   Usually with velogenic strains studies birds succumb to infection and die within 

3-5 dpi. In the present study, the clinical signs were mild with no mortality in 

chickens after the infection with the velogenic 9a5b NDV mutant isolate. The 9a5b 

NDV mutant isolate has ICPI of 1.88 and the F protein cleavage site of virulent 

strains.  This result can confirm that NDV virulence is multigenic and the F protein 

gene is not the only key player in virulence. In addition, intracerebral inoculation, 

not being the natural way of infection, may lead to a difference in ICPI value 

compared with the natural route of infection.  

   In the chicken pancreas, the 9a5b NDV infection induced inflammatory reaction 

and viral replication in the peripancreatic soft tissues earlier than in the pancreatic 

tissue; therefore, the peripancreatic soft tissues may play a supporting role in late 

widespread necrotizing pancreatitis induced by NDV. Furthermore, the exocrine 

portion of the pancreas was mainly affected while the endocrine portion was slightly 

resistant to the infection. Further studies are warranted to investigate the different 



susceptibility between the exocrine and the endocrine portion of the pancreas to 

NDV infections. 

   In the chicken kidney, the 9a5b NDV mutant isolate had a marked nephrotropism 

to chicken kidneys from an early time after infection (1 dpi). Kidneys might be 

implicated in the virus excretion and further transmission to other birds.  

Tubulointerstitial nephritis was more severe in the renal medulla than in the cortex. 

The local inflammatory response may play a role in suppressing viral replication. 

Lesions that were caused by NDV in the kidneys of chickens were similar to those 

caused by AIV, IB, and ANV and this highlights the importance to include NDV in 

the differential diagnosis of kidney disease in chickens. 
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