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Abstract

In this thesis, we study the following Cauchy problem for n-dimensional linear wave equation
with time-dependent propagation speed a = a(t):

{(@3 —a(t)?A)u=0, (tz)eR, xR",

n (1)
(u(0, ), (Bpu)(0, 7)) = (uo(x),ur()), = €R",
where Ry = [0,00), a € C™(R;) with m > 2, 0 < a( ) < a; with a positive constant a; and A

denotes the Laplace operator defined by A = >"" i1 w . Then the total energy to the solution
of (1) is defined by the sum of the elastic energy and the kinetic energy as follows:

1 1
E(t) = Bt ug,w1) = 5a(t)*[[Vu(t, )" + 5 10wu(t, I,

where || - || denotes the usual L? norm in R", V, = (94, ..., 04,)-
If the propagation speed a is a constant, then the total energy is conserved with respect to
t, that is, the following equality holds:

Moreover, it is known that the following estimates are established:
li Sa(0)|Vu(t, )| = Jim S0t )| @)
Ji, @IVt DI = fig g0t I

that is, both the elastic and the kinetic energies converge to the same quantity as t — oo.
However, such properties are not trivial for time dependent propagation speed. If the energy
conservation does not hold, we introduce the following energy estimates, which is called the
generalized energy conservation:

Coa(t)2E(0) < E(t) < C,E(0) (GEC)

with positive constants Cy and C;. Actually, (GEC) can be proved immediately by the classical
energy method even though a is not a constant if a’/a € L'(R, ). However, the classical energy
method is useless for the proof of (GEC) if a//a ¢ L'(R,); this is what we concern in this
thesis. Moreover, we also study the following energy estimate:

Et)<C (BE)

with a positive constant C'; which is called the boundedness of the energy. Here the constant
C may depend not only on a(t) and E(0) but also on the higher order derivatives of the initial
data in the sense of Sobolev and the Gevrey norm of the initial data. Let us introduce the
following conditions to the variable propagation speed a(t):

[° a(s) — aw(1+ ) %lds < Co(1 + £)° (3)

and
[a® (1)) < Ce(L+1) " (4)



with B = 1,...,m, 6 > 0, a < 0, 3 < 1 and § > 0. Here (3) is called the stabilization
property, which describes the order of the difference between a(t) and a monotone decreasing
function a.(1 +¢)7%, and (4) describes the order of the oscillation and the smoothness of a(t).
Then one of our main theorem is given as follows:

Theorem 1. (i) If (3) and (4) hold for 3> a+6+ (1 —a—0)/m, then (GEC) is established.
Moreover, (3) and (4) does not conclude (GEC) in general if < a+ . (it) If uo(z) € 7Y,
ui(x) € 4§ with v > 1, (3) and (4) hold for 3 > av/(v+ 1)+ 6+ (1 — a — d)/m, then (BE) is
established, where v§ and 7} are the Gevrey classes of order v. Moreover, (3) and (4) does not
conclude (BE) in general if 8 < av/(v — 1) + 0.

Here we note that we have examples of a(t), which cannot be applied any theorems in the
preceding works, but can be done Theorem 1 to conclude (GEC) and (BE). The second theorem
of this thesis derives a particular effect of the variable propagation speed for the behavior of
the elastic energy.

Theorem 2. Suppose that the conditions of Theorem 1 (i) are fulfilled. If § > 1 and 6 > —2a,
then the elastic energy to the solution of (1) has the following estimate:

SaITu(t, ) < O (1 + 6 P B(0).

Thus the elastic energy has a better estimate than the estimate from (GEC).

We remark that the main theorems of this thesis Theorems 2.1, 2.4 and 2.7 consider more
general model of a(t).

Our thesis consists of the following four sections:

In Section 1, we introduce some basic knowledges for the energy estimates of the Cauchy
problem of wave equations with time dependent propagation speed, the preceding works related
to our main theorems and the motivation to our problems. In section 2, we introduce the main
results of this thesis Theorems 2.1, 2.4 and 2.7, and corresponding examples Examples 2.3, 2.6
and 2.8. In section 3, we prove Theorems 2.1 and 2.4. The key idea for the proof of Theorem
2.1 is to estimate the Fourier image of the solution by different way in the high frequency part
Zy, and the low frequency part Z, of the phase space, which are called the hyperbolic zone,
and pseudo-differential zone respectively. To be more precise, we construct an approximated
solution in Zy by diagonalization technique for 2 X 2 matrix valued function making use of the
C™-property (4). On the other hand, the stabilization property (3) is applicable for the estimate
in Zy. The proof of Theorem 2.4 is concluded by constructing series of functions of variable
propagation speed and initial data, which provide the estimates of non-(GEC) and non-(BE).
In section 4, we prove Theorem 2.7. The fundamental idea for the proof is to introduce a new
zone Zg in the middle frequency part, which is called the stabilized zone. Consequently, we
have more precise estimate of the solution in Z by using a new technique for the representation
of the solution, and thus we can conclude the proof of Theorem 2.7.
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Symbols
R: real number field
Ry =[0,00)
R"™: n-dimensional Euclidean space
C: complex number field

C™: n-dimensional complex Euclidean space

2] = /212 + - + |z, (x € C" or z € R?)

0 0
0= Osy =

ot ! 8£Ej
oy = 0g1---09m for v = (21,...,2,) € R™ and multi-index of non-negative integers
a=(ay,...,qp)

V = (0syy--,0z,)
A =3" 9% (Laplace operator in R™)

Jj=1"z;

C™(I) (with non-negative integer m): the space of all m-times continuously differentiable
functions on I

O=(I) = =, C™(1)

C?(I) (with real number o € (0,1)): the space of all o-Hélder continuous functions on I
LP(Q): the space of all p-th power Lebesgue integrable functions in €

H?: Sobolev space of order s

H*: homogeneous Sobolev space of order s

WP the space of all functions f satisfying >°,, <y [10°f(-)||zp@n) < 00

(+,+)x: inner product of the inner product space X

|| - [|x: norm of the norm space X

1A= 1 2

f < g: for positive functions f and g there exists a positive constant C' such that f < Cg
f2ge fSgandg S f

C, Cy (k=0,1,...): positive constants
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1 Introduction

In this thesis we study the following Cauchy problem for n-dimensional linear wave equation
with time dependent propagation speed a = a(t):

{(6? —a(tPA)u=0, (tz)€eR. xR, (1.1)

(u(0, ), (Ou)(0,2)) = (up(x),us(x)), =x€R",

where a € C'(Ry) and 0 < a(t) < a; with a positive constant a;.
The following LP-L? type estimate is a fundamental problem of (1.1):

—1/1

sq—n=l(1_1
[Vt oy + Bt Moy < CO+F G0 ([ Vug() o + [ (llyrw) , (12)
where sp > 0, 1/p+1/g=1,1 <p < 2 and N, is an integer satisfying N, > n(1/p —1/q).
There are many results, which are concerned with (1.2), for instance, [14, 15, 16, 17]. In

particular, if p = ¢ = 2, then the estimate (1.2) is an estimate of the total energy to the
solution of (1.1) defined by the sum of the elastic energy and the kinetic energy:

1 1
B(t) = B(t; o, w) = 5a(0)[Vu(t, > + 510t )
In this thesis, we focus on L2-L? type estimate of (1.2) with sq = 0. If the propagation

speed is a constant, then the total energy is conserved with respect to ¢, that is, the following
equality holds:

E(t) = E(0).
Moreover, it is known that the following estimates are establised:
N SRy o _ i1 2 _ E(0)
lim () Va(t, )|> = Jim Z0u(t, )|? = 52,

that is, both the elastic energy and the kinetic energy converge to the same quantity as t — oo.
However, such properties are not trivial for time dependent propagation speed. If the energy
conservation does not hold, we introduce the following energy estimates:

Definition 1.1. The total energy E(t) to the solution of (1.1) satisfies the generalized energy
conservation if the following estimate holds:

E(t) ~ E(0). (GEC)

Definition 1.2. The total energy E(t) to the solution of (1.1) satisfies the boundedness of the
enerqgy if the following estimate holds:

E@) < C. (BE)

REMARK 1.3. If (GEC) holds, then (BE) is valid with C' = C,E(0). However, (GEC) does not
follow from (BE) in general. Indeed, it is possible that the energy cannot be estimated by the
initial energy F(0), but can be done by a constant C' under some additional assumptions to the
initial data for some non-linear problems or linear problem (1.1) with a singular propagation
speed (see [1, 2, 3,4, 5,9, 11, 13, 18]). Here the constant C' in (BE) depends on the following
properties of the initial data: the smoothness in Sobolev or the Gevrey class, decay order
|z| — oo, and so on.



Let us consider the sufficient conditions on a(t) which ensure (GEC). One of the trivial
results from the standard energy method is given as follows:

Proposition 1.4. If a’/a € L'(R.), then (GEC) is established.

It is a natural question whether (GEC) holds or not for a'/a ¢ L'(R,). If we restrict
ourselves to the following estimate:

0< Qo S CL(t) S ai (13)

with positive constants ay and a;, then Reissig and Smith gave the following answers to the
question in [14];

Theorem 1.5 ([14]). Let a € C*(R.) satisfy (1.3). If the following estimates hold:
()| < Cr(1+1)7F (1.4)

for k = 1,2, then (GEC) is established. Moreover, for any § < 1 there exists a € C*(R,)
satisfying (1.3) and
|a®)(t)| < Ci(1 + )7 (1.5)

for any k € N such that (GEC) does not hold.

Theorem 1.5 concludes that the size of the parameter 3 in (1.5), which describes an order of
the oscillation of the propagation speed, is crucial for (GEC), and the critical number is 5 = 1.
Moreover, ' /a € L'(R, ) is not a necessary condition for (GEC); indeed a(t) = 2+cos(log(e+t))
satisfies both (1.4) for k= 1,2 and a’/a ¢ L'(R,). Generally, we cannot expect (GEC) if a(t)
doest not satisty (1.5) with 8 < 1. However, (GEC) can be valid even though (1.5) is not
satistied for § satistying 6 < 1 if there exists some constants a., and « € [0,1) such that the
following estimate, which is called the stabilization condition, holds:

/Ot la(s) — aw|ds < Co(1 + )° (1.6)

Indeed, the following theorem is known:

Theorem 1.6 ([10]). Let m > 2 and a € C™(Ry) satisfy (1.3). If (1.5) for k=1,...,m and
(1.6) hold for
11—«
B > Bm =oa+ s (17)
m
then (GEC) is valid. If f < «, then the assumptions (1.5) and (1.6) do not conclude (GEC) in
general.

Theorem 1.6 tells us that the condition to a(t) for (GEC) is described by an interaction of
the parameters «, 5 and m, which represent the order of the stabilization to a constant a.,, the
oscillating speed and the smoothness of a(t) respectivety. Moreover, we observe the followings:

(i) Bm is monotone decreasing, and monotone increasing with respect to m, and a respec-
tively. That is, 5 can be chosen smaller as o smaller or m larger for (1.7). It follows that
a stronger stabilization or higher regurality admit faster oscillation to a(t) for (GEC).



(i1) limy, 00 Bm = a, it follows that (1.7) is almost optimal as m — oc.

(iii) infy>9acf0,1){Bm} = 0, it follows that § must be non-negative for (GEC). Therefore,
Theorem 1.6 does not give any answer whether (GEC) is valid or not if (1.5) does not
hold for 8 < 0.

One of the main purposes of this thesis is to extend the result of Theorem 1.6 faster oscillating
propagation speed a(t) which can not be apllied Theorem 1.6.



2 Main Theorems

Let v and s be real numbers satisfying v > 1 and s > 0. The Gevrey class 7; is the set of all
functions of f € H? satisfying

[ oo (2016l ) 1P )P < o0

with a positive constants p, where f denotes the Fourier transformation of f with respect to
z € R" and H* is the homogeneous Sobolev space of order s.

We suppose that a € C™(R;) for m > 2. Let A = A(f) be a positive and monotone
decreasing functions satisfying

At) € CHRY), a(t) — A(t) € LY(Ry) and a(t) ~ A(t). (2.1)

For a non-negative function 7(¢) and a positive monotone decreasing function =(¢) satisfying

E(t)=o0 (/00 A(s)ds) (t — 00), (2.2)
t
we introduce the following conditions:
a® ()] < CRAn@®)* (k=1,...,m) (2.3)
and -
/ la(s) — A(s)| ds < Z(t). (2.4)
Then our first theorem is given as Z%ollows:

Theorem 2.1 ([6]). Let a € C™(R,) with m > 2. Suppose that (2.1), (2.2), (2.3) and (2.4)
are valid. If there exist positive constants Koy and K1 such that

n()=()

Z(t)™ ! /Ot A(s) (%)m ds < K, (2.6)

then the following estimates are established:

and

At)*E(0) S E(t) S CE(0). (GEC)
In particular, if (ug,uy) € vy X v5 and there exist positive constants Ky and K, such that
n(t)=®)" _ -
—— <K 2.
<k 2.7

" Z(t)rm=b) /O t A(s) (@)m ds < K, (2.8)

for a real number k satisfying

then (BE) is established.



REMARK 2.2. It is common to introduce the Gevrey class on the well-posedness for the Cauchy
problem with singular propagation speed, where a(t) is singular if it is non-Lipschitz continuous
or having zeros. In [4], which is a pioneer work for this kind of problem, it is proved that if
a(t) > 0 and a(t) € C?(R;) with o € (0,1), then (1.1) is well-posed in the Gevrey class ~§
with v < 1/(1 — o). After that, the relations between various types of singularities of a(t) and
the Gevrey order v for the well-posedness of (1.1) were studied in many papers, for instance
[1, 3, 5, 11, 13]. In particular, a sort of stabilization properties corresponding to (1.6) and (2.4)
are introduced in [1, 11, 13].

EXAMPLE 2.3. We restrict ourselves to considering the following models:
Z(t) = Co(1 +1)%, n(t) = (1+1)7? and A(t) = ax(1 +1)7° (2.10)
with a < 0, 6 > 0 and a positive constant a.,. Here (2.2) requires the following inequality:
a < —0+ 1. (2.11)
Then (2.5), and (2.6) are valid for
B2 Pocs i =a+i,

and | 5
B> B i=a+d+——2
m

respectively. Noting B,,5 > foos and lim,, o Bm.s = Po.s, the condition (2.6) approaches (2.5)
as m — oo. Analogously, (2.7), and (2.8) are valid for

av

6 > Boo,& =

)
V—l+ ’

and

v l—a—90
+64+ ——
v—1 m

/B > Bm,& =

respectively. Moreover, we see that Bm’(; > Boo,(; and lim,, Bm,(; = 5&5.

The following theorem ensures the optimality of the conditions (2.5) and (2.7), or the
conditions (2.6) and (2.8) approach the optimal ones as m — oo.

Theorem 2.4 ([6]). Let n=1 and v > 1. For any § € R satisfying

8 < min{0, Bos}, (2.12)

there exist a; € C*(Ry) and (u;o(x),uji(x)) (7 = 1,2,...) satisfying (2.1), (2.3) and (2.4)
with a;(t) = a(t), (2.10), (2.11) and

E(O, Uj’(), Uj71) S 1 (213)
such that
lim sup E(t; w0, uj1) = 0. (2.14)
J—30 >0



Moreover, if
8 < min {O, Bmﬁg} , (2.15)
then (2.14) is established though the following estimate is valid:
sup { [ exp (20612 (0 OP1EP 300 + (@) de} <1 (216)
R

J

for a positive constant p.

REMARK 2.5. If 8 > f,,5, then (GEC') is valid by Theorem 2.1; thus (2.14) is not realized
since (2.13) holds. Analogously, if 8 > f3,.5, then (2.14) is not true since (2.16) holds. It is
open problems whether (GEC’) or (BE) hold or not if S5 < 8 < Bns, and Boo’(; <p< Bm’(;
respectively.

No (GECY) ~ (GEC) No (BE) (BE)
600,5 /Bm,é 590,5 Bmﬁ

EXAMPLE 2.6. Let us introduce an example of a(t), which can be applied Theorem 2.1. Let
x € C*(R) be a 1-periodic function satisfying
0<x(7)<1 and x(7)=0 near 7 = 0. (2.17)
We suppose that =, d, € and x are real numbers satisfying
v>1, >0, k<0 and max{0, -1+ r + v} <9 <~.

Denoting R
B +] —K—&

AT
we define a(t) by

al®) = {(1 +)7 (L) XA+ )T (=) e [ii+p), (218

(141)7° telj+p,j+1)
for j =0,1,....
Setting \(t) = (1 +¢)7°, for t € [,7 + 1) we have

o (a0} S (1407 4 ()T L (k) ) (k=1 m)

and

/too |a(5) - )\(3)| ds 5 2(1 + l)_’Y—E ~ (1 + j)—’Y—a—i-l ~ (1 + t)—'y—fs—i-l '

Therefore, (2.18) is an example satisfying (2.10) with a = —y —ec+ 1 and =k + (y — 9)/m.

In Theorem 2.1 and 2.4, we have introduced some results for the estimates of the total
energy of the solution to (1.1). In the next theorem we particularly consider the estimate of
the elastic energy.



Theorem 2.7 ([7]). Let a € C™(R,) N L'(Ry) with m > 2, and suppose that the same
assumption in Theorem 2.1 are fulfilled. If A(t) satisfies

/too a(s)ds = O(tA(t)) (t — o0) (2.19)

and
1S (14t At) or (L+1)\/A(t) is monotone decreasing, (2.20)

then there exists a positive constant N such that the following estimate for the elastic enerqy is
valid:

%a(t)QHVU(t NS @+ 20 (IVEIVDuo (I + [ E(VDur(I1?) (2.21)
where F' is defined by
1 for 0 <r <1,
Fr) = {max {1,7’\/)\(5—1(Nr*1))} for r > 1. (2.22)

ExXAMPLE 2.8. Let § > 1, Z(¢), n(t) and A(t) be given in Example 2.3. Then we see that
a~\e LYR,), (2.20) and

1 for 6 > —2a«
F(r) ~ - ’ . 2.2
") {TH% for 0 < —2« (r = oo) (2.23)

Therefore, by Theorem 2.7 we have the following estimates;

1

S0 [Vu(t, )" <

{(1 +1)2A(1)2B(0) for 6 2 —2a, (2.24)

L+ 0202 (VIR o+l (I, ) for < ~2a.
Noting lim; , (1 4+ t)A(t) = 0, (2.24) gives a better estimate for the elastic energy than the
estimate from (GEC’).

EXAMPLE 2.9. Let Z(t), n(t) and A(t) be given as follows:
E(t) = (1+1) "exp(=(1+1)"),

n(t) =1+t

and
A(t) = exp(—(1+1)"),

with ¥ > 1 and ¥ > v — 1. Then we have



and
/Ot)\(s) (%)m ds =/Ot exp (m —1)(1+s)") (1 +s) ™ ds
ISR ETER R

m—1

;n”jll /0 exp ((m — 1)(1+ )") (1 + 5)™"™ ds

_exp((m—1)(A+t)")(1+ )t exp(m — 1)

m—1 m—1
_ 1 t
mp—vil / exp ((m — 1)(1+ 8)") (1 +s) " ds
m—1 0

E(t)fm—i-l(l + t)fm(mfl)fmﬁfll+1 exp(m _ 1)

_|_

m—1 m—1
mB—v+1 [* n(s)\" ~
v MASYS 1 v
+ — /0 A(s) <>\(S) (1+s) "ds,
it follows that

=)™t /O t A(s) (%)m ds S 14 (14 ¢) "m-D-mbv+l

and we have )
F(r)~rz(logr)z (r — 00).

The relation between the previous results Theorem 1.5, 1.6 and Theorem 2.1, 2.4 (Example
2.3 with = 0) is represented as the following tables and diagrams:

Table 1: >0
f<a |a<B<Pn|Bn<pP<1l]| = 1<p
(GEC) | No (iii) ? Yes (iii) Yes (ii) | Yes (i)

(i) Proposition 1.4.
(ii) Theorem 1.5 [14] (a=1).
(iif) Theorem 1.6 [10] (0 < a < 1, m > 2).



Table 2: o« < 0

ﬁ<;{__y1 %Sﬁﬁﬂm,o 67n,0<6<05 a§ﬁ<ﬁm 6m§6

(GEC) | No (iv) No (iv) No (iv) ? Yes (iv)
(BE) | No (v) ? Yes (v) Yes (v) Yes (iv)(v)
b<F|lgash<a|la<B<bno|Pno<B<Pm| Pn<pb

(GEC) | No (iv) No (iv) ? ? Yes (iv)
(BE) No (v) ? ? Yes (v) Yes (iv)(v)

(iv) Theorem

2.1.

(v) Theorem 2.4.

unstab/&

7

stable

=

[10]

" fast oscillation

non{GEC)

1

nro

S

low

Figure 1: Result from Theorem 1.5 and 1.6



Figure 2: Result from Theorem 1.5, 1.6 and Example 2.3
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3 Proofs of Theorems 2.1 and 2.4

3.1 Proof of Theorem 2.1
Denoting v = v(t,€) := u(t,§), (1.1) is reduced to the following problem:

(0F +a(t)?|EP)v =0, (t¢) €Ry xR, (3.1)
(v(0,8), 0w(0,€)) = (Go(8), 11 (8)), & €R™
We define the energy density functions £(t, ) and &y(t, &) by
1
E(t,€) = 5 (a®)’ €l [v(t OF + [0 (t, OF) (3.2)
and ]
Eo(t,€) = 5 (AOIEP o (, O + |9 (L OF) -
Then, by (2.1) there exist positive constants ag and a; such that
apA(t) < a(t) < a1 A(t),
and thus

Noting (2.1), we have the following estimates:

(A@®)? —a()?)
At

DiEolt,€) =N (A D)€t ) + Sl ia@)fott, mir )y

<(1+a)alt) = A@)|[€]Eo(t, €)

and
2XN'(t)
A(t)

D10l €) > ( (14 a)a(t) — A<t>||g|) Eolt,€).

Therefore, by Gronwall’s inequality and (2.4) we have

(51 ) exp (-1 + a)EmIED &) < Et,6) < exp (14 SN En(rn ) (31

for any 0 < 19 < t.
For a large constant /N to be chosen later, let us define ¢¢ by

te . =min{t € Ry ; Z(¢)|{] < N}. (3.5)

Moreover, for a positive constant p, which provides the estimate
1
[ o (20161) 0.6 < o0

for (ug,u;) € 4% x vy, we define #¢ by

: . _ P
le = teRy; =(2 <N+ —K|v ;. 3.6
o= min{r € Ry S01€ < N+ Llef ) (3.6)

11



E(8)[§] = CE|

Figure 3: Sketch of the decomposition of the phase space Zy and Zp

Then we define the pseudo-differential zones Zy, and Zg by
Ly = {(t,g) S R+ x R" it > t&}, (37)

and }
Zy ={(t,&) e R xR"; t > ¢} (3.8)

respectively. Thus we have the following lemma by (3.3) and (3.4):

Lemma 3.1. The following estimates are established:

1 A(t)? .
and ) ) .
E(t,€) < Kaexp (plé]* ) Ele,€) in Za, (3.10)
where Ky = ag*a2eN(+a),

We define the hyperbolic zones Zy, and Zu satisfying Zy U Zy = Zy U Zy = Ry x RE by
Ly = {(t,g) ER+ XR”; tStg}, (311)

and

Ly = {(t,f)ER+XRn; téfg} (312)

respectively.
Let (¢,€) € Zy. The equation of (3.1) is reduced to the following first order system:

oVi = AW, (3.13)

12



where

_ (veFia(t)[E]v (b
Vi= (vt — ia(t)|§\v> = (b1 a> ’

by =br = —;a((?) and ¢ = ;T% +ia(t)]€). (3.14)
We denote p
oip = R{o} = 77108 Va(t), 15 =S{o1} = a(t)lg],
AL = Qi +iy/ 1y — [b1]?
and

_ N 2
g, =01 0y 1—@ .
by b 15

Here we note that {\;, \;} and {¢(1,6,),%(6;,1)} are the eigenvalues of A; and their correspond-
ing eigenvectors, respectively. Therefore, if |0,| < 1, then A, is diagonalized by the diagonalizer

O := (Y(1,6y) (61, 1)) as follows:
_ A0
0;'4,0, = (01 A_1> :

We define V5 := ©7'V;. Noting 0,(9,07") = —(9,0,)07", V; is a solution to the following

system:

OiVa = AgVs, (3.15)

where
(M0 o (b2 by
(i 8)eraen- (2 5)
(01) .
2 = _1 — ‘81‘27 ¢2 - ¢2§R +1¢2%7
Gop =1 — Orlog /1 — |62
and

Pos = /D2 — |b1]> — S {Orba} .

Generally, we have the following lemma:

Lemma 3.2. Let V}, be a solution to the following system:

Vi = AV, Ay = <¢k b—k> ,

13



and the matriz © be defined by

1 O . Prs |br|2
0, = ) W TR N i
: <9k 1) ; lbk: ( Diss

where grp = R{dx} and drs = S{gr}. If |0k] < 1, then Vip1 = O,'Vi is a solution to the
following system:

Vi1 = Apr1 Vit

where
br1 bk+1) (k)1
Appr = ALYy = R
= (bk+1 k41 wH 1 — |0,
and
Grr1 = Ok — Orlog /1 — |0k * +1i (—Gbks + 1/ Prs — |bk|* — %{e_kbk+1}> : (3.16)
Proof. The proof is straightforward. O

Denoting Vi, = *(Viu1, Vin2), by Lemma 3.2 we have

O\ Vinl? =2R (A Vin, Vin )z = 20mn| Vin|? + 4R Vi1 Vi o}
<2 (¢ + [binl) [Vin|?

and
alt‘vm|2 > 2 (Qbmﬂ% - |bm’> |Vm‘2>
it follows that

o J < exp (25 (dmn(s,€) + [bm(s. €)]) ds ) [V (0,6,

t (3.17)
> exp 2]0 (qu%(S?é) - |bm(87£)‘) ds |Vm(07£)‘2

[Vin(t, €]

in Zy and Zp.

Let us introduce some symbol classes restricted in Zy in order to show |f;| < 1 and estimate
the right hand sides of (3.17). For integers p > 0, ¢ and  the symbol class S®{q,r} is the set
of functions satisfying

07/ €)] < C (MOIEN ()™ in Zy (3.18)
for k =0,...,p. Then the following properties of the symbol classes are established:

Lemma 3.3. (S1) If f € S®{q,r} forp > 1, then 0,f € S®V{q,r + 1},
(S2) If f € SP{q,r}, then f € SP{qg+1,r —1}.

(53) If f € SP{—q,q} for g > 1, then N9|f| < Cok{.

(84) If f; € S®N{aq.r} (j = 1,2), then fi + fo € ST™Pe2b{q, 1},

14



(S5) If f; € S®){q;,r;} (j =1,2), then fify € SMnPrr2D gy 4 gy 1y + 1y}

Proof. (S1) and (S4) are trivial from the definition of the symbol class. Noting (2.5) and the
estimate Z(t)[{| > N in Zg, (S2) and (S3) are also trivial. (S5) is immediately proved by
Leibniz rule as follows:

k
O (f1f2)] Ej()mvl

7=0

8k ]fQ‘ < |€|)Q1+CI2 n(t)r1+r2+k

for any £k =0,...,min{py,p2}. O
Moreover, we have the following properties:
Lemma 3.4. The following properties are established:

(S6) If f € SP{—q,q} for ¢ > 1, then there exists Ny > 0 and g € S®{—q,q} such that
20=v1-[f)=f(1+g) for any N > Ny.

(S7) If f € S® g, r} and fo € SP{—qy,q2} for qo > 1, then there exists Ny > 0 such that
f1/(1 = fo) € Stmindeer2N g Y for any N > Ny.

Proof. Let us prove (S6). By (S3) and choosing Ny large, we can suppose that |f| < 1 for any
N > Ny. Then, by Taylor expansion we have

e (en £ G- L (o

Jj=2 J

thus g is given by

Let us estimate 9F f! focusing in the dependence of . We define

- ()

and note the following representation due to Fadadi Bruno’s formula:

Z H hljlh

h= heAp . j=1

k

of [ =k!

where Ah,kz = {h = (hl, cee ,hk) S (NU{O})k, hl + -4 h = h, 1h1 +--+kh = k} NOtng
the following estimate with a positive constant Cy:

k
[T17 " <T](Cikn)" = (€O
j=1

j=1

15



we have

Vﬁfﬂs&ﬂﬁéz%cbolh > () 1"
h=1

51
b h;!g!

k
<SHGOTHRY S Y

h=1 hEA,
<G (Cy0)'TF,
where C), = max;<p<, k! SF_, > hen,, 1 By choosing Ny large enough, we have (C, )R <
(1/2)! for any N > N,. Consequently, noting |(lél)| < 1/2, we have

o l ~ %) 1 l
k § : k gl K
‘81‘9‘ SQ — <l _|2_ 1> |8f f ‘ S CPCPCT] (]. + 1521 (5) >
<2C,Cp(A(®)[€]) " n(t)"*

for any kK = 0,--- ,p. Thus the proof of (S6) is concluded. (S7) can be proved on the analogy
of the proof of (S7) to the expansion

f N
1_f2—f1[Z;f2

for |fa| < 1 since N > 1. O

By using the properties (S1)-(S6) we shall prove the following lemma:

Lemma 3.5. There exists a positive constant N such that |0 < 1/2 for k = 1,...m and
by, € SO{—m +1,m}.

Proof. Firstly we show the following estimates:

()

where (1/a)V) = r;lTjj(l/a). If £ = 0, then (3.19) is trivial. Suppose that (3.19) is valid for
k=1,...,7. Noting the representations:

dit1 1 1\ G+ Iy 1\ G-
0=—(a-=)=al-= +3 I+ .o (L 7
dti+1 a a — [ a

g”f&“(kza”wm—1y (3.19)

we have
(3+1) . (j—1+1) S|
) =z Ci) @) =5
a a = [ a A

thus (3.19) is valid for any k = 0,...,m — 1. Therefore, for f € S®{q,7} we have

‘f(k)‘ . k (k) (o <l>(j)
< 2 GG

j=1

oh
! ¢1C§

Thus we have the following property:

< (gh*n .

16



(S8) If f € SW{q,r}, then f/p15 € SP{q—1,r}.

By applying (S6) for f = [b1|?/#% € S™~1V{—2,2}, which follows from (S5) and (S8), there
exists g; € S™Y{-2 2} such that

R bo? b
o= 28 (1 i) b gy e gty (3.20)
b1 13 2¢1€‘9

Therefore, by (S3) we have |6;] < 1/2 for any sufficiently large N. Moreover, by (S1) and (S7)
we have

by € S 1,2}. (3.21)
By (3.20), (3.21), (S4)-(S6) and (S8) we have

b n S {0ib2}

1—4/1 € Sm=2{ 2 9},

is P15
Therefore, by (3.21), (S5), (S7) and (S8) we have
by _ ,bz ! m— )Y (3.22)
s P1g 1 (1 - %% n i‘f{jiz})
and thus obtain
0, € Sm=D{ -2 2} (3.23)

by using the same arguments to show (3.20). Moreover, by (S3) we have |6;] < 1/2 for any
sufficiently large N. On the analogy of the arguments above, we can prove by, € S F{—k +
1k}, 0, € Sk k} and |0 < 1/2for k =3,...,m. O

The properties (S1)-(S8) except for (S3) are valid in Zy under the assumption (2.7), and
the estimate of (S3) is changed into N®/=1|f| < 1.
By (2.6), (2.8), Lemma 3.5 and the representation (3.16), there exists N > 1 and C,,, such

that
! —m-1 ! n<3) "
[ 2t ol as <ecig [ o (W) s
<20, (N'2(0)" / Me) (%> “
SZCmKlN_’"H

and

/0 20mn(s,€) ds = /0 0s <loga(s) - log (1 — |65(s, )|2)> ds

at) Ty (116

ol

—~
=
mn
~

4
3
§)m71 ag )\(
4 a1 A(0)
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in Zy. Therefore, by (3.17) we have

2=
Valt 42

By Lemmas 3.2 and 3.5, we have

)" W exp (20, KN 2811,,(0, €)1,
)m_lz—fexp(—%mKlN‘m“) (0))\ m(0,8)[%.

N [SURGNI I

Vil? = [0kVies1 > = (1 + [0k?) Vi1 |? + 4R{0kVir 1,1 Vir 1.2}

< (1 + 106 Vi |* < 9 Viya [,
> (1= 104])* Vi > 3Vinn|?,

1 m—1 9 m—1

uniformly in Zp. Consequently, noting

Vit O = 2 (a()*EP[u(t, ) + [v.(t, €)|*) = 4E(t.€),

it follows that

we have

e <t (3)" Mo

3"t Cma1y ) 2
T e (20, KN ) SEV0.6)
12" ay exp (2C,, KN~ \(t)
<
< = oo
127 Yay exp (20, Ky N~ 1) A(t) £(0,6).
n ao A(O)
By the same way, we have
a At
£(t.6) > ° D e0.¢).

— 1277 1ay exp (2C,, K1 N=™+1) \(0)

Let us consider the estimate in Z;. We define 7 by

lm_l _vm v

T := max {t >0; 2C,K,(1+a))1 'p ”flE(t)_m(K_ufl)} :

By (2.1)-(2.3) we have

2001

20&177(’5)5@7 é) S
Qo ag

DE(t,€) < E(t,€)

for 0 <t < 7, where 7y = maxo<;<7{n(t)}, it follows that

E(t.€) < exp (20;1771) £00.¢).

0

18

(3.24)



Let 7 <t < ;. Noting the estimate |£] > (p~'(1 + a1)=(t)) /1 and (2.8), we have

§2C«m[’€15(t)fnm+1 |§|7m+1

- (1 Tt ,
S2CmK1 ( —|—Cl1> E(t)fwz(n—m)|€|%
p

1
<pl¢|»

by (3.24). Then, by the same way in the estimates of Zy we have

E(t,€) gi (%)ml Vi (2,2

< Sm_lalA@)
- 401()A(’7~')
12" ta,

< exp (plel?) £(7.0)
<o (2201 oxp (sl ) £00.6)

Qo

exp (ple] ) [Vin(7.€)P

Summarizing the estimates above we have the following lemma:

Lemma 3.6. The following estimates are established:

A1) A(t) .

and

£(1,) < Ryexp (ple]?) £0,€) in Za,
where Kz = 12" 'a, ay exp (2C,, Ky N~™*) and Ky = 12" Laytay exp(2ay ' ).
Proof of Theorem 2.1. 1f (t,§) € Zy, then by Lemma 3.6 we have

(3.25)

(3.26)

(3.27)

1 2
If (¢,¢) € {(t.€); |£| < N/Z(0)} C Zy, and thus t; = 0 by (3.5), then by Lemma 3.1 we have
1 2
By Lemma 3.6 we have
1 Alte) Alte)

Therefore, if (t,€) € Zg N{(¢,€); |£| > N/=Z(0)}, then by Lemma 3.1 and (3.27) we have

A(te)
E(t,€) < KoKy >\(0€) £(0,6) < KoK3E(0,€)

19



and

> ALY 5€(0,¢).

1 A(t)?
£, = = TR\ 0

= KoK AM0)A(te)

£(0,¢)

Summarizing the estimates above and Parseval’s theorem, we have

At)

WE(O) < B(t) < K2 K3B(0).

By the same way we conclude (BE) as follows:
E(t) < KoKy / exp (zpm%) £(0,€) de < oo
R"
since (3.2) holds. Thus the proof of Theorem 2.1 is concluded.

3.2 Proof of Theorem 2.4

We shall prove Theorem 2.4 by constructing concrete examples of the series of the coefficients

a;(t)} and the initial data {(u;q,u;1)} making use of the ideas in [4, 10].
j 5,05 U,
Let ¢ € C*(R) be a 2m-periodic function satisfying

2w
©>0, ¢(71)=0 near 7 =0 and / @(7) cos® Tdr = .
0

We define the 27-periodic function i (7) by

U(T) = (1;2) := 1 + 4eip(T) sin(27) — 2/ (7) cos® T — 4e*p(7)? cos* 7,

where ¢ is a positive constant providing

<Vima <5

N —

Then we have the following lemma:

Lemma 3.7. The solution to the initial value problem
w” +(r;e)w =0, w(0) =1, w'(0)=0

15 represented by

w(r) = w(r;e) = exp (25 /0 " o(s) cos? sds) COS T,

Proof. The proof is straightforward.

For o, 3,0 € R satisfying a < 0, § <0, 6 > 0, (2.11) and (2.12) we define t; by

t; == (2mj) =,

20

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



Here we note that {¢; }f}?‘;o is a strictly increasing sequence satisfying lim;_,,, t; = co. Moreover,
for j =1,2,... we define A;, §; and p; by

Aj = tj_ﬁ, & = tj_ﬁM and p; 1= t;”(s.

For xy € C*®(R) satisfying x' < 0, x*)(7) = 0 near 7 € {0, 1} for any k € N, x(7) = 1 for 7 < 0
and x(7) =0 for 7 > 1, we define A € C*(R,) by

t—1

liv1 — 1

A(t) = )‘H—l + ()\l — >\l+1)X ( > for t € [tl, tl—i—l) and [ = 0, 17 ey (334)

where Ao = A;. Then we see that A’(t) <0, A®)(t) =0 for t € [0,#;) and
A= A

< thlfa—i-ﬁf%—(lfa—i-ﬁfé)k < thl—é—[}k
(tir — 1)

for t € [t;,t141), L =1,2,.... Let us define a;(¢) and A(¢) by

‘A(k)(t)‘ < max {‘X(k)(T)‘}

To0<r<1

A<t>7 t e [0715.7')7
aj(t) == q N/ \&(t —t5)), t e[t ty+py), (3.35)
Ajs t € [t; + pj,00),
and
Ma:{f@’iiﬁ@ﬂ (330

Then we see that a;(t) € C*(R,) and (2.1) are valid. Moreover, noting the estimates

a§’“)(t)\ < Oy (N = Gt
for t € [t;,t; + p;), we have

0, t €[0,ty),
Coty % tetiuti), 1=1,...,5—1,
Cit; %t e [t + py),

0, t € [tj+ pj,00)

)] <

for £ =1,2,.... It follows that a(t) = a;(t) satisfy (2.4) and (2.3) uniformly with respect to j
for

tj+pj o
=(t) = { 4 aj(s) = Alds = Nps = 15, ¢ € (0,85 + py),
0, t € [t; + pj, 00),
and

0, tel0,t),

PN L (A R A
G0ttt + o)
0, telt;+p;j.00).
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Now we consider the following Cauchy problems:

OFu; — a;(t)?0?u; =0, (t,z) € (0,00) X R,
(3.37)
(u(0, ), (Bu; ) (0, 2)) = (wjo(x), ujn(z)), = €R,
and the corresponding energy of (3.37)
1
Ej(t) = Ej(tujo, ujn) = 5/ (a5 ()00 (¢, ) + Opu; (t, 2)*) da (3.38)
R

for 7 = 1,2,.... Then we shall prove the following proposition, which implies the first part of
the conclusion of Theorem 2.4:

Proposition 3.8. Suppose that (2.11) and (2.12) are valid. There exists a series of initial data
{(uj0,u51)}52, such that

E;(0) <1 and lim sup{E;(t)} = . (3.39)
IO >0
REMARK 3.9. If « — §+ 0 <0, then (2.5) and (2.6) are valid for m > (o« +d —1)/(a — 5+ 6)
uniformly with respect to j. Therefore, there exists a positive constant C' independent of j
such that E;(t; + p;) < CE;(0) < C by Theorem 2.1. On the other hand, if & — f + 0 > 0,
that is, (2.12) holds, then we have

n(t;)=(t) ja—+6
A

(11

~ — 00 (j = o0)

;) ’

~~
<

and

titps S " m(a— .
2(¢ +Pj)m1/0 A(s) (%) ds =~ t; @A) _y oo (j — 00),

that is, (2.5) and (2.6) do not hold. Therefore, Proposition 3.8 implies that the conditions (2.5)
and (2.6) cannot be removed.

Proof of Proposition 8.8. Noting a}(t) = 0 on [t; + p;,00), we have E;(t) = Ej(t; + p;) for
t e [t]- + pj, 00). Moreover, we have

Bi(0) = NOA) [ ooyt do > S
for ¢t € (0,t;], it follows that
B0 2 1955,0) 2 XE,0) (3.40)

We shall find a series of initial data {(u;0,u;:1)}32, providing lim; ,. Fj(t; + p;) = oo. Let
{132, be a positive sequence, which will be defined in (3.50). By Lemma 3.7, the solution of

C.
v+ a0y = 0. ylt) = 35, w(t) =0
J
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is represented by

, Aj&5(t—t;)
y;(t) = i—]exp (25/ ©(s) cos® SdS) cos(N;&;(t —t;)). (3.41)
J 0
By (3.33) we have \;&;p; = 27j; hence we have
G :
(t;+ p;) = (D]} = 2L exp (27¢)) . 3.42
yilty +ps) = max Ay (1]} N exp (27ej) (3.42)

For a positive monotone decreasing sequence {o; }j"’;l satisfying o; < §;, which will be defined
in (3.50), we define X;(§) by

G, Eel&g—%.6+%],
X; = , .
© {0, 416 -%.6+%]

Here we note that [, X;(£)*d¢ = 0;¢7. Denoting @;(t,€) = v;(t,€), the equation of (3.37) is
reduced to

87:2%‘ + G/j(t)2£2'lfj =0. (343)
Then we set the initial data of (3.37) by
(ujo(x), uja(x)) = (0;(0,x), (80;) (0, 2)) , (3.44)

where © denotes the inverse partial Fourier transformation, and v;(0, z) is the solution of (3.43)
at ¢ = 0 with the initial data at ¢ = t;:

(0(t5,6). (B4 (1, €)) = (222 x 69,0 (3.45)
3
We define z;(t,€) and Z;(t, &) by
2(16) = vy (1.6) — yf)xj@) (3.46)
J
and |
2(1.6) = 1 (1P €10 OF + 105(1,E)P). (3.47)
Noting (3.42),
02 (t€) = —ay (€2 (1. €) — ay (1) (€ — ) yf’é_’f)xj@ (3.48)
and the inequalities
2 212 2 Tj\? 2 2 9 20 5. 2
-l xers ((6+32)-¢) xe<Raexen e
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we have

_a? 52_ 2 Yi
0.2 =a;a;€" 7" — R {@%’%Xj}

J

2
2O (L poLosp) 4 L (LE Suy
- Clj 2 J j = 201)\2532 Cj J

250307897,
64C1 N2 ;
<ACINE Z; + Cio3€; exp (4mej) X

<SACIAE 25+

by (3.30), where C, = 6075/2048C. Thus, noting Z;(t;,&) = 0, we have

2

401

8\
o= 85] exp (—4nCyj) and (;:= = (3.50)
Cl 4 9@‘0]'

Noting the inequalities (3.40) and |f + g|* > |f|?/2 — 2|g|?, we have o; < &,

Zi(t;+ p;, &) < exp (4mej + 8mC17) X;(€)%.

We set o; and ¢; by

E;i(t;+ pj) >= A2/€2|vj (t; + p;. )| d€

_)\2/€2
)\Q?J]t+PJ
> S /fX de=2 [ Zi(t+ 0.0 d¢

. <§]2 exp (4mej) Cho?

2
Mx JE) + 25ty + p, €] de

exp (4rej + 8w Cj ) /X 2de

16 2C

_szajg? exp (4mej) B )\? exp (4mej)

B 32 B 36

—00 (j — o0)
and 952 C2

E:(0) < — )2 < I
(0) — /\2 2/\2 /5 — 8/\2

Thus the proof of Proposition 3.8 is concluded. O

On the analogy of the proof of Proposition 3.8, we can prove the following proposition:

Proposition 3.10. Let v > 1. Suppose that (2.15) is valid. There ezist a positive constant p
and a series of initial data {(u;p,uj1)}32, such that

[ o0 (201€1) (05007 0utio @ + a0 de < 1 (3.51)
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and
lim sup{E;(t)} = oo. (3.52)

J=0 >0

Proof. Thanks to v < 0, we note that (2.12) is valid since (2.15) holds. Let v;(¢,&) be a solution
0 (3.43), and denote

N =

E(1,€) = 5 (a; (1)1 v; (1, €)1 + 10p; (1, §)) -

We set the initial data of (3.37) by (3.44) with

(v; (t5,€), (Opvy) (t5,€)) = (%?Xj(f) exp (-P|§\5> ,O) .

We may proceed as we did to derive (3.40), obtaining

E(t,€) 2550.8  te)
’ =&i(t; +p;,€) L€ty +pj,00).

We define z,(t, €) and Z;(t,€) b

£50.6) = 0.6 = L6 exp (ol ) (3.53)
and )
Zi(t.€) =5 (15, O + 1051, %) (3.54)

Then we have
0125 SACINEZ; + Crdyoe; exp (4mej) X;(6) exp (20l )

it follows that

& exp (4mej) 1
E;(t; + pj) 22— /Xj(€)2 exp (—2P|§|") d
32 R
2 2 1
LS YA
39 exp (477'8] 2 (2 PE;

—)\2 drej — 2 3 _(2 )7t e I
—36exp nEj 5 T pj

—00 (j — 00)

v

R =

since (2.15) holds. Moreover, we have

[ exo (201¢l£) £500.6) o < AQ [ (201el?) &1, e = 535 e <

Thus the proof of the proposition is concluded. O
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4 Proof of Theorem 2.7

4.1 Zones
We define

and suppose that A(0) = Z(0) without loss of generality. For a sufficiently large constant N
to be chosen later, we split the extended phase space into three zones, the pseudo defferential
zone Zy(N), the stabilized zone Zg(N) and the hyperbolic zone Zy(N) as follows:

Zu(N) = {(£.€) € Ry x R"; A(B)|¢] < N},

Za(N) == {(t,€) € Ry x R"; B(t)[¢] < N < A(t)[¢]}

and

Zp(N) :=A{(t,¢) e R xR"; E(t)[¢| = N} .

We also denote by 7¢, and t¢ the separating hypersurfaces between Z,(N), and Zgu(N), and
between Zy(N) and Zy(N) respectively. That is

A(7e) €] = E(le)|E] = N.

Figure 4: Sketch of the decomposition of the phase space
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4.2 Estimate in Z,(N)
Let us define () by

mm:%% (4.1)

For t > 7¢, that is (¢,&) € Z,(N) we put

vite.o) = (06,

(o (t7 5)
so that
SO0
0,V = Ag(t, €)Vp, m:(ﬁ%z : (4.2)
0(?) 0

Let us consider the fundamental solution F = E(t, s,£) to (4.2), that is , the solution of
O FE = AO(t7£>E7 E(S,S,é) =1, (43)

with 7 < s <'t, where I is the identity matrix. If we put £ = (E;;)ij=1,2, thanks to (4.2) we
obtain, for j = 1,2, the following integral equations:
0(t)

Ei(t,s,€) = ) <51j + i/:&(s)EQj(T, 3,5)d7> (4.4)

and
a(r)?

6(7)

t
Eyj(t,s,8) = 0z + i|§‘2/
By (4.4), (4.5) and integrating by parts we get

ba(r)?

Ey;(t, s, &) =02, +i|§\2/ 0(s

Elj(T,S,g)dT. (45)

(51j + i/T 0(s) Ly (0, s,{)da) dr

)
s e2s "a(r)? g2 ' . ' 2
=09; +1|€]761; 00) dr — €] /S Ey;(1,5,€) (/T a(o) da) dr.

s

By using (2.1), (2.2) and (2.4) we have

/: a(t)?dr ~ /: AT)a(T)dr < A(s) /:a(f)dT < a(s)A(s)

and

fa(r)? "a(r)? 2
/S 50s) dr = A(s)/s a(s) dr < A(s)”.

Taking into account the inequalities

I2VIGERIIIS 1+\§|2A(8)/ a(T)%dﬂrli\z/ a(T)A(T) By (7, 5,§)dr

<14 [EPAGs) / o) By (7, 5,€)|dr.
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by Gronwall’s inequality, there exists a positive constant C' such that

¢
|Eo;(t, s,€)] < exp <C(1 + \§|2A(S)/ a(7)d7)) <exp(C(1+N?)) <1 (4.6)
for j = 1,2 uniformly in Z;(N). Therefore, by (4.4) and (4.6) we conclude the estimate
o) s p
| Enj(ts s, 6)] S e )( 17+ (L+1)0(s)) (4.7)

for j = 1,2 uniformly in Z,(N). Summarizing all the consideration above implies the following
estimates:

Lemma 4.1. In Z,(N) the following estimates are established:

(6] < {(1 1) ([0(0, )] + [0(0,€)]) for 1¢] < N/A(0), 48)

(L+8)(0(7e)|v(7e, &) + |ve(7e, €)I)  for |€] = N/A(0).
Proof. Noting the representation Vy(t,&) = E(t,s,&)Vo(s, &), we have

i0(t)v(t,€)\  [(Eunlt, s, £)if(s)v(s, &) + Eialt, s, E)v(s, §)
( v (t, §) ) N (Ezl(t,s,f)ié?(s) (5,€) + Ean(t, s,E)ve(s, f)) (4.9)

)

)
For [£| < N/A(0), (4.8) trivially follows by using (4.7) to (4.9). For [{| > N/A(0), by (2.19)
and using (4.7) to (4.9) with s = 7¢ we have

o(t, )] < (ﬁ et t)) 0(r) v(re,€)] + (1 + Dlwn(re, €)|
<1+ 1) alte)[€llo(re, €)] + Jor (e, )]).

4.3 Estimate in Zy(N)

By Lemma 3.6 we immediately have the following estimate in Zg(N):

Lemma 4.2. There exists a positive constant N such that the following estimates are established

A@)[El[o(t, O + [vu(t, ) S VAR ([€]10(0, )] + 0. (0, €)]) -

4.4 Estimate in Zy(N)

For any t < s <t < 7¢, we put

.o = (MOEI9),
so that

Ny

B5Y0)
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Let M, be given by

1 -1
M1_<1 1)’

which is a diagonalizer of the principal part of A;. If we put W = M; 'Vy, then we get

ow = Aieow, A= (5 2), (4.1

where
M) ilel(a®) +X%() , _ A() N i[€](a*(t) — X*(t))
2A(1) 2X(t) RS0 2M() '

o1 =

Then we have

W =2R (W, 0,W) e = 2R (1) [W | + 4R (byw,W3)

X, -
—W‘W‘ +4§R(blw1w2)

() L (X IO ) — 2O
<SG + 21 S(A(t)* w)\+ — >|W|

:|§‘ la (i\)(t_) A2 (t)] |W|2 < |€la(t) — )\(t)||W|2.

By Gronwall’s inequality we have
t

¢ [ la(r) = Atrlarlel ) Wite. )
te

< exp (C /too la(T) — A(T)IdT|€|> W(te, €)I”

CE(te)[€]) [W (te, I
CN) |Wi(te, &)

—~ o~

Thercfore, noting that

(W (t,E)| = My Vit )] = [Vt &) = X&) IE][o(t, §)] + [ve(t, &)
we have the following lemma:

Lemma 4.3. In (t,£) € Zy4(N) the following estimate is establised:

A@DENo(E, )] + [o:(t, )] < Alte)[Elo(te, )] + [vr(te, E)-

4.5 Conclusion

Noting A(t¢) = A(E7H(N|[£]71)), the proof of Theorem 2.7 is concluded if the following estimate
is established in all zones:

a(®)[Ellv(t, ) S (L +1)A®) maX{L A(tg)lél} (I&][o(0, )] + (0, E)1) - (4.12)
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Indeed, by applying Parseval theorem we have
a(t)’[|Vu(t, )| Za(t)Q/ €% [v(t, €)1 de
R
S+ 0P0° [ POEE (60O +u0.O)) de

(L+ A0 (IVE(V Do)l + llur ()]7) -
If |£] < N/A(0), that is, (t,€) € Zy(N) N {|¢| < N/A(0)}, then by Lemma 4.1 we have

aOIEll(t, O] S+ DADE (00,) +[00(0,8)).
Let (t,€) € Zuy(N). If \/A ), then by Lemma 4.3 we have

a(t)[E]|v(t, )] SA@)IENv(E,&)] + [t €]

SVA®) ([€]1v(0, ) + [ve(0, E)])
S+ AR ([€][0(0,€)] + |ve(0, 1) -

If (1 +¢)A(t) is monotone decreasing, then by (2.19) we have

(T+0ONt) (T+)AE)VAlte)

A TEE S o R AR
(L DADVATD _
S Ang = VA A

It follows that

a(®)[€[lv(t, &) S (L4 O)A[E)/ M) €] (€]1v(0, §)] + [ve(0,£)]) -
If (t,€) € Zs4(N), that is, t <t < 7¢, then by (2.19), Lemma 4.3, Lemma 4.2 with t = ¢,
and noting that

) S+ DAL < (14 0n0

=N+ DA/ At)[E],

we have
Alte) [€l[v(te, O] + [ve(te, )

<\
Sy Alte) ([€110(0, )] + |v:(0, £)])
<(1

(1 4+ DA/ AlLe) €] ([€]1v(0, ] + [0n(0, ) -

a(t)[&]|v(t,€)]
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If (¢,€) € Zy N {|§] > N/A(0)}, then by Lemma 4.1, Lemma 4.3 with ¢ = 7¢, Lemma 4.2
with ¢t = t¢ and noting 7 <t we have

a(®)[Ellv(t, ) ST+ A@)IE] (0(7 Iv(Ts ) + [vi(7e, §)1)

6 (5ot 01+ e, )
8
B

S(L+DA®)

(1+0)A@)

(1 +6)A@)[E] )|§Hv(Ts> )+ [ve(7e, €)1)
(L +HAD)E

(1+1)A@)

—_
+

(7
L+ 1)A(t (te)lEl[o(te, )] + [uelte, E))
L+ 0)A@)\/ Alte)[€] ([€10(0, )] + |v:(0,€)]) -

Thus the estimate (4.12) is vaild for all zones, and the proof of Theorem 2.7 is concluded. [

N AN IR
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