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We discuss on the worldwide famous Sudoku by using mathematical
approach. This paper is the 6th paper in our series, so we use the same

notations and terminologies in [1] —[5] without any descriptions.

10. Classification of intersectable systems III.
This section is a continuous section of previous sections 8 and 9. We

consider some basic relations among some types in the section 8.

Proposition 50. (Type 15) For each intersectable 9—system o =(S,T) of Type 15,
wehavethatT,=1in STRF(f,f,) for each f€SOL(f,).

Proof. Since w=(S,T) is Type 15 we can put S={s,55,53,54,55,56)57,55,59} and T
={ttptstplslelntsty) such that

(1) alls;,1<i<9,arerows,

(2) allt;,1=j=<9, are columns,

Q) s;Ns;=¢ forix;,1<i<9,1</<9,

@) t;nt;=¢ forixj;1=<i<9,1=<;=<9,

5) s;nt;x¢ fori,j,1<i<9,1<;=<9,
6)s=U{s;:i=12,.,9}, t= U{¢;: j=1,2,.,9}.
Takeany sudoku matrix K=(Ka)aE,1XJZESMTX(f,fO) and put K =T,K)

=T(S,T)K). Wehave
K, for ae(J; X J,—sUt)U(sNt)
7 K.=!K,nNK,_, foract—s
K.NK, , for acs—t
By (1)—(6) we can easily show that
@) s=J1 X J,=t
By (8) we have
9) sUt=J,X J,=sNt,
(10) (Jix Jo,—sut)u(snt)=J1 X Jo,
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(1) s—t=¢,t—s=¢.
By (7) and (9),(10),(11) we have
12) K,=K, for ac J, X J,.

(12) means that T,=1. Hence we have Proposition 50.

Let X bea subset of J, and Y bea subset of J,with | X | = | Y| =n. Weput
that X’=J,—XandY’'=],-Y. Weput that S={s;:ie X}, s;={i}x J, and
T={t;:jeY}, t;=],x{j}. AlsoweputthatS’'={s;:i’e X}, s,-/={z }x J,and T’
={t; ey}, t; =], x{j'})

Thus o =(S,T) and o’=(S’,T’) are intersectable n —system and intersectable
(9—n)—system, respectively. Wesay that o’ is a dual intersectable system of .

Proposition 51. If o’=(S",T’) is a dual intersectable (9 —n)—system of

an intersectable n—system o =(S,T), then T,,=T, in STRF(f,f,) for each
fEeSOL(fy).

Proof. By definitions we have that

XuX'=],XnX' =9,

2 Yuy'=J,,YnY'=¢,

@ X =1Y|=n 0=n=9,

4) s=U{s;;ieX}and t=U{t;: jeY},

(5) s’=U{s; i’eX}and t'=U{t;:j’eY’}.

Takeany sudoku matrix K=(Ka)aejlszeSMTX(f,f0). Weput K*=T,K)

)
)
)
)

=TST)K)and K*=T,(K)=T(S", T’(K). Wehave
K, for a(Jyx J,—sUt)U(sn?)
6) Ki={K.NK,_;, for act—s ,
K.NK, ; for acs—t
K, for ag(J, X J,—s'Ut)U(s'Nt’)
7 K¥={K.,.NK, _; for act'—s’
K.NK,_, for acs’—1t'
By (4) we have
8) s=U{s;=li}x JyrieX}= iieX)X J,=XX J,,
9) t=U{t;=] 1 x{j }-JEY}=]1X< u{{jl:jeYh)=J,xY,
(10) sUt=XXJ,UuJ XY.
By (1),(2),(10) we have
JiXJ,—sUt=(XUX)x(YUY)— XX J,UJ, XY
=XXYUXXY' UX'XYUX' XY - XX(YUY)NU(XUX')XY
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=XXYUXXY'UX'XYUX'XY' - XXYUXXY' UX'XY
=X'XY',ie,

(11) J1X J,—sUt=X'XY".

By (8),(9) we have

(12) snt=XXY.

By (11),(12) we have

(13) (J1 X Ja—sUHU(sNH)=XXYUX'XY".

By (1),(2),(8),9),(12) we have

(14) s—t=s—sNt=XXJ,—XXY=XX(],-Y)=XXY’,

(15) t=s=t—sNt=]; XY —XXY=(]; - X)XY=X'XY.

By (5) we have

(16) s’=U{s; ={i"}x Jp:i’'eX}=(U{{i’}:i’€X'NX Jo=X'X ],

7) ¢'=U{t; =] x{i"):i’eY =i x(U{{j}: /' €Y)= ] XY,

18) s'Ut'=X'xJ,UuJ, xY".

By (1),2),(18) we have

JiXJ,—s'Ut'=(XUX)X(YUY ) —X'X J,UuJ, XY’

=XXYUXXY UX'XYUX'XY - X'X(YUY)U(XUX')XY’
=XXYUXXY' UX'XYUX' XY —X'XYUX'XY'UXXY’
=XXY,1ie,

(19) J1x J,—s'Ut'=XXY.

By (16),(17) we have

) s'’Nt'=X'XY".

By (19),(20) we have

21) (J1 X J,=s'Ut)U(s'Nt)=XXYUX'XY".

By (1),2),(16),(17),(20) we have

22) s'=t'=s"=s'Nt'=X'XJ,— X' XY'=X'"X(],-Y')=X'XY,

@23) t'=s'=t'—s'Nt'=], XY =X'XY'=(], - X ) XY'=XXY".

By (13),(21) we have

(24) (J1XJo,—sUhU(snt)=(J, X J,—s'Ut’)u(s'nt’).

By (14),(15),(22),(23) we have

)
(

By (7),(24),(25),(26) we have
K, for as(J1 X J,—s'Ut)U(s'Nt")=(J1 X J,—sUt)U(snt)
QN K¥={K.NK,_,=K.,NK;_; foract —s'=s—t
K.NnK,_=K,NK,_, foracs'—t'=t—s
By (6) and (27) we have
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(28) Ko=Ky forae J1 X J,.

(28) means that T,=T, .. Hence we complete the proof of Proposition 51.

Corollary 52. (Typell, Type12, Type 13,Type 14)

(a) Each intersectable 8—system o of Type 14 and the its dual intersectable
1—system o’ of Typel induce the same sudoku transformation T, =T, .

(b) Each intersectable 7—system o of Type 13 and the its dual intersectable
2—system w’ of Typeb induce the same sudoku transformation T,=T,, .

(c) Each intersectable 6—system o of Type 12 and the its dual intersectable
3—system o’ of Type9induce the same sudoku transformation 7,=T,,.

(d) Each intersectable 5—system w of Type 11l and theits dual intersectable
4—system w’ of Type 10 induce the same sudoku transformation T,=T,, .

This Corollary 52 comes from Proposition 51.

Corollary 53. (Type14) For each intersectable 8—system w =(S,T) of Type 14,
therearea row s and a column ¢such that7,=7,,°T, NT,,°T,, and
w;=(s—sNLs),wy=(sNt, t),ws=(t—sNtt)and o,=(sNts).

This Corollary 53 comes from Corollary 52 and Proposition 44.

In section 5 we define sudoku transformations T, , o€ BTOOL. Werecall
these definitions: BLK=7OWUcOLUbLK and rOW ={row(i):i€ ]}, cOL
={col(j):je ]}, bLK={blk(k):ke J}. For eachn,1=n=<9, we put SFS(n)
=|{(s,b):beBLK,sCband | s| =n}and SFS=U_,SFS(n). Alsowe put IS(n)
={(S,1):(S,T) is a pair o f intersectable n—system of BLK}and IS=U%_,IS(n).
Weput BTOOL=SFSUIS.

For eachn,1=<n =<9, we put SES(n,yOW)={(s,b):b=7OW,sCb and | s | =n},
SFS(n,cOL)={(s,b):b=cOL,sCband | s| =n}and SFS(n,bLK)
={(s,b):bbLK,scband | s| =n}. Thus we have that
SFS(n)=SFS(n,y,OW)USFS(n,cOL)USFS(n,bLK).

For eachn,1=n=<9, weput IG(n)=U{<R,C>:RcyOW,CccOL, | R| = |C|
=n}, IG=U}_IGn).

For each type K we put

IS(K)= {o=(S,T):w is an intersectable system o f type K}
We have the following relations among them: IS= UY_,IS(Type n),
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IS(1)=1S(Type 1)UIS(Type 2), I1S(2)=1S(Type 3)UIS(Type 4)UIS(Type 5),

IS(3)=IS(Type 6)UIS(Type T)UIS(Type 8A)UIS(Type8B)UIS(Type9),

I1S(4)=1IS(Type 10), IS(5)=IS(Type 11), IS(6)=IS(Type 12), IS(7)=1S(Type 13),
(8)

IS(8)=IS(Type 14) and IS(9)=IS(Type 15).

IG(1)=1IS(Type 1), IG2)=IS(Type 5), IG(3)=IS(Type 9), IG4)=IS(Type 10), IG(5)
— IS(Type 11), IG(6)=IS(Type 12), IG(7)=IS(Type 13), IG8)=IS(Type 14), IG(9)
— IS(Type 15).

We use the following names for sudoku transformations, which are popular
in Japan. For each w=SFS(n), wesay that T, isan n—koku—domei sudoku
transformation. For each w€IG(n), we say that T, is an n—igeta sudoku
transformation. For each o € IS(Type 2), we say that T, isa 1—igeta(Type?2)

sudoku transformation.

Proposition 54. We put ETOOL=SFSUIS(Type 2)UIG((2)UIG(3)UIG(4). Then
{T,:0eBTOOL}={T,:0cETOOL}in STRF(f,f,) for each feSOL(f,).
Proof. For eachUC BTOOL, we put TU]={T,: @ €U}. By Proposition 45 we
have that
(1) TUIS(Type 3)]TIS(Type 2)].
By Proposition47, Proposition 48, Proposition 49 and Proposition 50 we have that
(2) TUIS(Type 6)]={1},
3) TUIS(Type 1)]CTIIS(Type 2)]
4) TIIS(Type 8A)]={1},
(5) TUS(Type 15)]=({1}.
By Proposition 51 we have that
6) TIIS(Type 14)|=TIS(Type 1)],
(7) TUIS(Type 13)]=TLIS(Type 5)],
8) TIIS(Type 12)]=T1IS(Type 9)],
9) TUIS(Type 11)]=T1IS(Type 10)].
By Proposition 43 we have that
(10) IS=U D IS(Type n).
By (1)—(10) we have that
(11) TUIS]=T{ U} IS(Type n)|= U >\ TIIS(Type n)]
=TIS(Type V)JUTIIS(Type 2)JUTIS(Type 4)JUTIIS(Type 5)]U{1}U
UTIIS(Type 8B)JUTIIS(Type 9)JUTIIS(Type 10)).
By definition we have that
(12) IG(2)=1S(Type5), IG(3)=IS(Type 9), IG(4)=IS(Type 10).

— 117 —



JeAsith - i IE

By (11), (12) we have
(13) TIIS|=TIIS(Type )JUTIIS(Type 2)JUTIIS(Type 4)JUTI IS(Type 8B)]U{1}U
UTIIG2)]UTIIG3)]UTIIG(4)].
Since BTOOL=SFSUIS > ETOOL=SFSUIS(Type2)UIG(2)UIG(3)UIG4), by
(13) we have that
(14) TTBTOOL]=T{ETOOL}UTIIS(Type VIUT IS(Type 4)JUTIS(Type 8 B)]U{1}.
Weput TTETOOL] =T[ETOOL]U(T,°T,:T,,T,€T[ETOOL]J. Alsowe put
TIETOOL];,= {T1 N T2:T1,TZEYIETOOL]*}. By definitions we have
(15) TTETOOL);,oTIETOOL]' ST ETOOL].
By Proposition 39 we have that
(16) TTETOOL);,=,TTETOOL] in STRF(f,f,) for each feSOL(f).
Since{T,oT1:T,,T,€T ETOOL]J}o <TI[ETOOL], by Proposition 40 we have that
(17) TETOOL)'=,TTETOOL]in STRF(f,f,) for each feSOL(f).
By (16), (17) we have that
(18) TIETOOL];,=,TIETOOL]in STRF(f,f,) for each feSOL(f).

Claim 1. TTBTOOL] < pc TTETOOL];,.

Proof of Claim 1. We definea decreasing map p:7IBTOOL-TETOOL];,
such that

(19) p(T)<T for eachTeT[BTOOL)].

Takeany TeT[BTOOL)]. By (14) we have the following 5 cases.

Casel. TETIETOOL)].
In this case, we put p(T)=T. By (15)it is well defined and p(T)<T.

Case2. TeTIS(Type 1)].

Then we have an intersectable system w =(S,T) of Typel suchthatT=T,.
Since w is of Typel, wehavea row s and a column ¢ such that S={s}, T={¢#}. By
Proposition 44, we have that o, =(s—sN#4s), 0, =(sNti), o5=(t—sNHt), 0,
=(sNnts)and

20) T,,°Ty,NT, T, =T,=T.

Since w,,wy030,ESFS, then weput o(T)=T,,°T, NT,,°T,, ETTETOOLJ, .
Then it is well defined and by (20), o(T)<T.

Case3. TeTIS(Type 4)].
Then we have an intersectable system w =(S,T) of Type4 suchthatT=T,. By
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Proposition 46 we have intersectable systems w; and w, of Type 2 such that
@1) T,,0Ty,NTyoT,,<T,=T.

Since o, and w, areof Type2, then we put p(T):T(,,ZoTa,1 NT,-T.,,

€ TTETOOL];,. Then it is well defined and by (21), o(T)<T.

Cased. TeTIS(Type 8B)].

Then we have an intersectable system w =(S,T) of Type8B suchthatT=T,,.
By Proposition 49 we have intersectable systems o; and o, of Type 2 such that

@2)1,n7,=T,=T.

Since w, and @, areof Type2, then we put o(T)=T, NT,, € TIETOOL]J;,. Then
it is well defined and by (22), o(T)<T.

Caseb. Te{l)

In thiscaseT=1. Takeany w€ ETOOL and put p(T)=T,TETOOL];,.
Then it is well defined. Since T, is a sudoku transformation, we have that
o)=T,=1=T.

By using the above cases, we can definea map p:7]BTOOL]-T[ETOOL];,

with (19). Hence we have Claim 1.

By Claim 1 and Proposition 37 we have that

(23) STBL™* %% in < STBLTBTOOL in STRF(f,f,) for each fESOL(fy).
By (18) we have

(24) STBL™ 0% in = STBLTETOOL in STRF(f,f,) for each fFESOL(f).
By (23) and (24) we have that
(25) STBLTETOOLI < STBLTBTOOLl in STRF(f,f,) for each fE€SOL(fy).
Since BTOOLDETOOL, then TTBTOOL]D>TIETOOL). By Corollary 38 we have
(26) STBLTETOOLI > STBLTBTOOL] in STRF|f,f,) for each fE€SOL(f).
By (25) and (26) we have that
(27) STBLTETOOLI— TR TBTOOL] jp STREF(f,f,) for each feSOL(fy).
By (27) we have that
(28) TTBTOOL]=;TIETOOL]in STRF(f,f,) for each feSOL(f).

(28) means Proposition 54. Hence we complete the proof of Proposition 54.

Proposition 55. T,°T,=T, for each we BTOOL.
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Proof. Takeany we BTOOL. Takeany sudoku matrix K
=(Ko)ac),x),ESMTX(f,fo). Weput K'=T,(K), K"=T,(K’) and K’=(K;)QE,1X]2,

K" =(K)acs xj,- Since BTOOL=SFSUIS, we have the following

cases.

Claim1. T,T,=T, for eachweSFS

Since SFS=U%_,SFS(n), then w=SFS(n) for some n. Thus we put o =(s,b),
scb,beBLK,|s | =n.

nNSF(s,b)K) if | K,|=1|s|=n

K if | Kl x|s|=n

nNSF(s,b)K') if | K,| =1|s| =n

K’ if |K;|=|s|=n

) K’=Tw<K)=|

(2) K”=Tm<K’)={

Casel. |K,| =1|s| =n.
We conside casel. By (1)
(3) K'=nNSF(s,b)K).

By (3) we have
K, for acs
4) K.=!K,—K, for acb—s
K, for acs ] X J,—b

By (4) we have
5) K,=K, for eachacs.
By (5) we have that K= U{K,:acs}=U{K,:aes)=K,, ie,

6) K.=K,.
By the condition of case 1l and (6) we have that
M K=K | =1s|=n.

By (2) and (7) we have that
8) K”=nNSF(s,b)K’).

By (8) we have that
K, for acs
9 K., =|K.—K. foracb—s
K, for ae ] X J,—b

By (4),6) and (9) we have that
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K.,=K, for acs
10) K, = | K, K,=(K,—K,)—K.,=K,—~K,UK.,=K,— K, for ach—s.
K, for ac J X J,—b

By (4) and (10) we have that
11) K,=K,forac],x J,,ie,
(13) K”"=K'.
(13) means that Claim 1 holds for case 1.

Case2. |K,| = |s| =n.

In this case by (1) we have that

(13) K =K.

By (13) we have

14) K,=K,.

By the condition of case2 and (14) wehavethat | K,| = | K,| = | s | =n,ie,
15) | K,| = |s]| =n.

By (2) and (15) we have that

(16) K"=K".
(16) means that Claim 1 holds for case 2.

Thus, by casel and case2, we have Claim 1.

Claim2. T,T,=T, foreachwelS
SinceweIS=U?%_;IS(n), then IS(n)for some n. Thus  =(S,T) is an

itersectable n —system such that S={sy,s,,...,8,}, T={t,t2....t,} snd s=U"_;s;, ¢

Uit
a7 T,=TST1).
By (17) we have

K, for ae(J1X J,—sUt)U(sNt)
(18) K.=K.,NnK,_, for acs—t ,

K,NnK,_, for act—s

K, for ag(J;xX J,—sUt)U(sNi)
19 K, =!K,nK,_, for acs—t

K.nK,_, for act—s

Cased. ae(J; X J,—sUt)U(sNt).
In this case, by (19) we have
20) K,=K,.
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Cased, acs—t.
In this case, by (18) we have

1) K.,=K.,nK,_,.

By (19) we have

(22) K,=K.nK,_,.

By (21) and (22) we have

K,=K.nK, =K.n(U{K;:pet—s})=K.,nN(U{K;NK, :Bt—s]))
=K.nN(U{Ks:Bet—s)NK, )=K.N(K, .NK, )=(K.NK, J)n(K, .NK, )
=K.NK,_,NK,_,=K.NK,_ )NK,_.=K.,nK,_ =K, ie,

23) K, =K.,

Caseb, act—s.
In this case, by (18) we have

24) K.=K.nK,_,.
By (19) we have
(25) K,=K.nK,_,.
By (24) and (25) we have
K,=K.NK, ,=K.n(U{K;:pes—t})=K,N(U{K;NK,_;:Bss—1))
=K.N(U{Kz:Bes—t)NK, )=K.n(K, ,nK, )=(K.nK, )n(K, ,NK, )
=K.,nK, nK, ,.=(K.NnK,_ )nK, ,=K.,nK, ,=K,ie,
25) K,=K,.

By (20),(23),(25) we have
(26) K, =K, for eachacsJ, X J,.
(26) means that K”=K’. Hence we have Proposition 55.
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