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We discuss on the worldwide famous Sudoku by using mathematical
approach. This paper is the 5th paper in our series, so we use the same

notations and terminologies in [1] —[4] without any descriptions.

9. Classification of intersectable systems II.
This section is a continuous section of previous section 8. We consider some

basic relations among some types in the section 8.

Proposition 45. (Type 3) For each intersectable system w =(S,T) of Type 3, we
have an intersectable system o, =(S,,T;) of Type?2 such thatT,= T,, in

STREF(f,f,) for each feSOL(f).
Proof. Wetake an intersectable system (S,T) of Type 3. First, we assume that
S={s1,8,} and T={#,,t,} such that
(1) s; and s, are 3 X 3 blocks,
(2) ¢, and ¢, are columns,
(3) siNs;=9,
@) tint,=9¢,
(5) s;Nt;>x¢ for eachi,j,1<i<2,1<j=<2.
By the above conditions (1)—(5) there exist the unique 3 X 3 block # and the unique
column » such that
6)s;Nu=¢ and s,Nu=2¢,
(7 tinv=¢ and t,Nv=29,
8) s;Us,Uu=1#Ut,Uv.
Weput S;={«} and T, ={v}. Sinceunv=¢ by (8), w,=(S,,T}) is an intersectable
system of Type2. Takeany sudoku matrix K=(Ku)acyx;,ESMTX(f,f0o) and

weput K'=T,K)=T(S,T)K) and K"=T, (K)=T(S,,T,)(K). Thus by definitions,

we have
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Ka fO?’ CYE<]1X]2—(51U32>U<tlut2)>U<<31U$2)n(t1Ut2))
9 K.=1KeNK; ys,-5,us, Jor a€s Us,—HUI ,
K.NK, ys,—1,0, Jor agtiUly,—sUsy

K, for ae(J; X J,—uUv)U(uNnv)
10) K, ={K.nK,_, for acu—v
K.nK,_, for acv—u

By (1)—(8) we have
(11) JiX Jo=(s1Usy)U (i Uty)=(J1 X Jo—51Us,Uu)U(s;UsUu—(s1USy)U(EULy)),
(12) s;Us,Uau—(s,Usy))U(tUty)=u—t,Ut,=unw,
(13) (s1Usy)N(HUty)=s;UsyUu—uUv.
Thus, by (11)—(13) we have
(JiX Jo—=(s1Usy)U (£, U))U((s1Usy)N (£ U 2Ly))
=(J1XJo—s1Us,Uu)U(unv)U(s;Us,Uu—uUv)
=(JiXJ;—uUv)U(uNv), that is,
(14) (J1X Ja—(s1Uso)U(tUty))U((s1Usg)N(HUL))=(J1 X J,—uUv)U(Nw).
Moreover, by (1)—(8) we have
(15) syUsy,—HUt,=v—u,
(16) tHUty—s Usy=u—w.
By (9), (10), (14), (15), (16) we have
( 7 K.,=K, for eachacJ, X J,.
By (17) we have that T ,(K) = wl< K) for each K=(K,X)QE]1XJZESMTX(f,fO),ie
18 T,=T,,.
Thus, in this case we show the required one.
Secondly, we must consider the case,
(19) tand ¢, arerows.

In this case(19), by the similar way as the case (2) we can show (18). Hence we

complete the proof of Proposition 45.

Proposition 46. (Type4) For each intersectable system o =(S,T) of Type4 there
exist intersectable systems w,;=(S,,T;) and w,=(S,T5) of Type 2 such that
T,z2T,, Ty NTy T, ,1e, TNS,T)ZT(S,T2)°T(S,T1) N T(S1,T1)°T(S2,T) in
STREF(f,f,) for each feSOL(f).

Proof. Wetakean intersectable system (S,T) of Type 4. First, we assume that
S={sy,s,} and T={¢,,t,} such that

(1) s;isa 3x 3 block and s, is a row,
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(2) t; and ¢, are columns,

(3) siNsy=9,

@) thint,=9¢,

(5) s;Nt;x¢ for eachi,j,1=i<2,1<;=2.

By (1)—(5) we can choose sets Ay ={iy,isis}C ], Ay={iyisis)CJ1, A3={inisis)"Jy
and sets By ={j1,j2Js}CJ2 Ba={JsJ5J6} = J2» Bs={jznJs s} CJ> such that

6) {A1,A5 A5} ={{1,2,3},{4,5,6},{7,8,9}},

7) {B1,B, B3} =1{1,2,3},{4,5,6},{7,8,9}},

We put intersectable systems (S1,T) and (S,,T,) of Type 2 as follows:
(12) S,={s,} and T, ={v,}, where v;=A,X B,
(13) Sy={u} and T, ={v,}, where u=J,X{js} and vy=A3X B.
Takeany sudokumatrix K =(K,)acs,x7,ESMTX(f,f;) and we put K’
=T(S,T)K). Thus we have
(14) s=s5,USy, =1 Uty
K, for ae(J; X J,—sUt)U(sNt)
15) K,= | K.,NK,_, for act—s
K.NnK,_;, for acs—t
Weput K*=T(S,,T,)(K) and K*=T(S,T,)(K*). Thus we have
K, for ac(J; X Jo—uUv,y)U(uNwvy)
16) Ki= |K.NK, ,, for acvy—u ,
K.NK, _, for acu—v,
K; for ae(J1 X Jo—s,Uv)U(saNvy)
17) K=K NK5,_, for acv,—s,
K.nNK; _,, for acs,—uv,
We put K*=T(S,,T,)(K) and K*¥=T(S,,T,)(K*). Thus we have
K, for ae(J1 X J,—s,Uv)U(s,Noy)
(18) Ki=|K.NK,,_, for acv,—s,

)

K.NK, ,, foracs,—uv,
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K: for as(J X J,—uUvy)U(unoy)
(19) K¥=|KinK;_,,  for acv,—u
KinK;_, for acu—uv,
We put K' =(T(Sy,T))e (S, TN TS, T T(S, To) K)= KN K*, i.e,
20) K,=KZNKE for acs], X J,.
We must show
21) K'<K'.

Claim 1. K,cK, for eachae(J,X J,—sU#U(sN¥).
Proof of Claim 1. Since T(S,,T5)oT(S1,T1) N T(S1,T4)o T(S,,T5,) is a sudoku
transformation by Propositions 19, 20 and 42, we have
(22) K'<K.
Takeany ae(J; X J,—sUt)U(sNt). By (22) we have
(23) K.CK,.
By (15) we have
24) K,=K,.
By (23) and (24) we have
(25) K.:CK,,.
Hence, by (25), we have Claim 1.

Claim 2. K:c K, for eachacss,—v;.
Proof of Claim 2. By (1)—(13) we can easily show that
25) vi—sy=viN(tUu)—s,=(v1NEt—=Ss)U(v Nu—S,),
(26) (viNt—sy)U(vy—u)=t—s.
Since (v;Nt—s;)N(v,Uu)=¢, by (16) we have
27) K,=K, for eachasv,Nt—s,.
Sincev;Nu— s,Cu— v,y by (16) we have
(28) K,=K.NK,,_, for eachacev,Nu—s,.
By (25),(26),(27),(28) we have
K =K ni- UK, nu—s,= Ky ni-s,U(Ky nu—s,N Ky, )CK, nt-5,UK,, ,=
K(vlm_%)U(vZ_u):Kt_s. Le,
(29) K, _,,CK, ;.
Since(s,—v,)N(v,Uu)=¢, by (16) we have
(30) K;,=K, for eachass,—v;.
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Takeany ayes,—v;. By (17) we have
Bl) Ke=K,NK; _, .

By (29),(30),(31) we have that Ky =K, N K, _,, =K, NK, _,,CK,NK,_, ,thatis,
(32) Ky c K, NK,;_,.

Since a,es,—v;Cs—t, by (15) we have
(33) K;0=KaonK¢_s-

By (32),(33) we have
(34) KZT]CK,;O.

By (20),(34) we have that
(35) KLO=K§;nKﬁ*§cK§;cK;O .

(35) means that Claim 2 holds.

Claim 3. K\,cK, for eachas(s;Nu)U(s,Nu).
Proof of Claim 3. Since(s;N#)U(syNu)Cu—v,, by (16) we have
36) K.=K,n K, . for each ae(s;Nu)U(syNu).
Since(s;Nu)N(v;Usy)=¢ and s;NuCv;N S, then we have
@7) (sinu)U(saNu)(J1 X Jo—v1Usy)U(v1Nsy).
By (37) and (17) we have
(38) K=K, for eachae(s;nu)U(s;Nu).
By (1)—(13) we have
39) vo—uct—s.
Takeany eye(s;Nu)U(s;Nu). By (36),38),(39) we have
40) Ky =K, =K, NK,_ ,cK,NK, ;.
Sinceaye(s;Nu)U(s;Nu)Cs—t, by (15) we have
@4l) K, =K.NK,_,.
By (40),(41) we have
(42) KZT]CK;O.
By (20),(42) we have
(43) K;O=KZ;nKﬁiCK22CK;O .
(43) means that Claim 3 holds.

Claim 4. K.c K, for eachacv,Nt—s,.

Proof of Claim 4. Since v,N{—s,Cv;— sy, by (18) we have

— 103 —



JeAsith - i IE

44) Ki=K.nK,,_, for eachacv;nt—s,.
Since(viNt—s)N(v,Uu)=¢, by (19) we have
(45) K¥=K?* for eachasv,Nt—s,.
Sinces,—v;Cs—t, wehave

(46) K,,_, CK,_;.

Takeany ayev,Nt—s,. By (44),45),(46) we have
(47) Kffg=Kﬁ0=KaoﬂK52_,,1CKaoﬂKs_t .
Sinceayev,Nt—s,Ct—s, by (15) we have
48) K. =K, NK,_,.

By (47),(48) we have

(49) K‘fjﬂcK;o.

By (20),(49) we have

(50) K,’;O=Kﬁ‘f}nKZZCK§‘f)CK;O

(50) means that Claim 4 holds.

Claim 5. K.c K, for eachacv,nt.

Proof of Claim 5. By (37),(18) we have

(51) Ki=K, for eachae(s;Nu)U(syNu).

Since viNu—s,Cv,—S,, by (18) we have

(52) Ki=K.nK,,_, foreachacv;Nu—s,.

By (1)—(13) we can easily show that

03) u—vy={(siNu)U(s;Nu)jU{viNu—s,},

(04) s—t=(s;Nu)U(syNu)U(s;—vy).

By (51),(52),(53),(54) we have that

K, K(s nu)U(s, nu)UKvlnu ;=K s inupusynn U (Ko nu—s,N K, )
CK s, nmu(s,nn U EKs,—o, = K5 nupus,nupuis,—o) =Kt , that is,

(55) K;_,,cK,_,.

Since(voN#)N(v1Us,)=¢, by (18) we have

(56) Ki=K, for eachacv,nt

Sincev,Nt=v,—u, by (19) we have

67) K¥=KinK?

u— 1)2

for eachacsv,nt

Takeany ayesv,nt. By (55),(56),(57) we have
(58> Kﬁ:f)zKﬁonKﬁ—vzzKaonKﬁvaCKaonKs—t .
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Since aysv,NtCt—s, by (15) we have
(59) K;0=K¢,OOK§,,.

By (58),(59) we have
60) KiK.

By (20),(60) we have
(61) Kf,ozKi;nKﬁﬁcKﬁ‘ch;o )

(61) means that Claim 5 holds.

We have the decomposition of J; X J, into five parts as follows:

JiX Jo={(JixXJo—sUt)U(snt)jU{s;—viJU{(siNu)U(s2Nu)lU{viNE—sy}U{vaN )
By the above decomposition and Claims 1—5, we have Proposition 46 in the case
with (1) and (2).

Secondly for another case of Type4, by the similar ways we can show
Proposition 46. Hence we complete the proof of Proposition 46.

Proposition 47. (Type 6) For each intersectable system o =(S,T) of Type6, we
havethatT,=1in STRF(f,f,) for each feSOL(f,).

Proof. First we put S={s,5,55} and T={#,£,,¢;} such that

(1) s1,54,5;5 are 3 X 3 blocks,

(2) ty,tyt; are columns,

3) s;Ns;=¢ forixj, 1<i<3, 1=<j<3,

@) t;nt;=¢ forixj, 1<i<3, 1<j<3,

(5) s;Nt;x¢ fori,j,1<i<3,1=<j=<3.
By (1)—(5) we can easily show that

6) s=s,UsyUss=t,Ut,Ut;=t.

Takeany sudokumatrix K =(K,)acs,x7,ESMTX(f,fo) and we put K'=T,(K)

=T(S,T)K). By definition we have
K, for ae(J X J,—sUt)U(sNt)
7 K.={K.nK,_, for acs—t
K.nK,_, for act—s
By (6) we have
@) (JixJo=suhu(snt)=(J1X Jo—=s)Us=]J X ]y,
9 s—t=¢, t—s=¢.
By (7),(8),(9) we have
10) K,=K, for ac ], X J,, ie,
(11 T,=1.
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Thus we have (11) for the case of conditions (1) and (2).
By the same way we can show (11) for the other case of Type6. Hence we have
Proposition 47.

Proposition 48. (Type7) For each intersectable system o =(S,T) of Type7 there
exists an intersectable systems w,=(S,,T;) of Type2 suchthatT,= T, in

STREF(f,fo) for each feSOL(f).

Proof. Wetake an intersectable system (S,T) of Type7. First, we assume that
S={sy,55,55} and T'={#,t5,¢5} such that

(1) syisarowand s,s;3are3 X3 blocks,

(2) ty,tyt; are columns,

3) s;Ns;=¢ forixj1<i<3,1=<j=<3,

@) t;nt;=¢ forixj1<i<3,1<j=<3,

(5) s;Nt;>¢ for eachi,j,1=i<3,1=j=3.
By (1)—(5) we can choose a set Ay ={iy,inis}C ]y, Ay={iyisis)CJ1, As={irnigis)CJ;
and sets By ={j1,jaJ3}CJ 2 Ba={JsJ5J6} < J2» Bs={jznJsJs}CJ, such that

(6) {A1,A5A45}=1{{1,2,3}{4,5,6},{7,8,9}},

(7) {B1,B» B3} ={{1,2,3},{4,5,61{7,8,9}},
8) s1={ir} X ],
9) s,=A,X By,
(10) s3=A3X By,
A1) ty=J1 X {1}
(12) t,=7, X {]2}
(13) t3=J1 X {js},
(14) s=s;Usy,Us3, t=tUt,Uts.
We put an intersectable system ®;=(S;,T;) of Type 2 as follows:
(15) Sy={s;} and T, ={v,}, where v;=A; X B;.

Takeany sudokumatrix K =(K,)acs,x7,ESMTX(f,fo) and we put K'=T,(K)

=T(STVK)and K'= T, (K)=T(S,T,)(K). Thus we have

K, for ae(J1X J,—sUt)U(sNt)
(15) K.=1K.,NnK,_, for acs—t
K.NnK,_, for act—s

b

L& for ag(JyX J,—s;Uvy)U(siNovy)
16) K. = |K«NK, o, for aes;—v,

K.NK,_,  for acv,—s
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By (1)—(15) we can easily show that
(A7) (J1xX Jy=sUHhU(snt)=(J1 X Jo—sUv)U(s1Nvy),
(18) s—t=s,—vy,
(19) t—s=v,—s;.
By (15)—(19) we have that
20) K,=K, for ac ], X J,, ie.,
21) T
Thus we have (21) for the case of conditions (1) and (2).
By the same way we can show (21) for the other case of Type7. Hence we have
Proposition 48.

Proposition 49. (Type 8) Type 8 has two different types, Type 8A and Type 8B.

(a) For each intersectable system w =(S,T) of Type 8A, wehaveT,=1 in
STREF(f,f,) for each feSOL(fy).

(b) For each intersectable system w =(S,T) of Type 8B, we have intersectable
systems w,=(5,,T}) and w,=(S,,T,) of Type2 suchthat7,=T, NT,, in
STRF(f,f,) for each feSOL(fy).

Proof. We consider an intersectable system o =(S,T) of Type 8. For example
we consider the following case: We put S={s,,55,55} and T={¢,,t,;} such that

(1) s;isa 3x 3 block, and s,,s; are rows,

(2) ty,tyt; are columns,

Q) s;ns;=¢ forixj;1<i<3,1<;=<3,

@) t;nt;=¢ forixj,1<i<3,1<j<3,

(5) s;Nt;x¢ fori,j,1<i<3,1<j<3,

6) s=s,UsyUss, t=1 Uty U L.

By (1)—(5) we can choose sets Ay ={iyisis}C ], Ay={iyisis)CJ1, Ay={inisis)TJy
and sets By ={jy,jpJ3}CJ o Ba={JsJ5J6} CJ2» Bs={js,jsjo} ]2 such that

7) (A1 AnAg)=((12,3,{4,56},(7.89)),

(8) {B1,By B3} ={{1,2,3},{4,5,61{7,8,9}},
9) s;=A;X B,

(10) s,={i*} X J,, i*"€ AU A, i*xi*,

oo
=
—

(11) s3={i"} X Jy i"€ AU A3, i* i,
(12) ty=Jy X {1},

(13) ty=J1 X{Js},

(14) t3=J, X{Js}

(15) vy=Ay,X By, v3=A3X B,
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Takeany sudokumatrix K =(K,)acs,x7,ESMTX(f,fo) and we put K'=T,(K)

=T(S,T)K). Thus we have

K, for ae(Ji X J,—sUt)U(sNt)
16) K.=|K.NK,_, for act—s

K.NK,_, for acs—t

By (10) and (11) we have two cases:
Type8A: (i) i*.i*e A, or (ii) ii*€ A,
Type8B: (i) i*€ Ay i€ As0r (iv) i€ Ay, i*E As.

We consider Type8A. We assume the condition (i). We put

(17) i*=iyand ™ =is.

Claim1l. K, =],
Proof of Claim 1. By (1)—(15),(17) we have
(18) £ — s ={(igJ1):(T6:J2)s(E6rJ3)} U V3.
By (SMTX) we have
19) fla)e K ,cJ;for ac ], X J,.
By (18), (19) we have
(20) f(vs)={fla):acvjc U{K:acvs)=K, CK, C];.
Since v is a 3 X 3 block, by (SDM) we have
21) f | vy:v3—];is bijective.
By (21) we have
(22) f(vs)=Js.
By (20), (22) we have
(23) K, s=1];.

Thus we have Claim 1.

Claim 2. K, ,=];.
Proof of Claim 2. We assume that
(24) K ;= Js.
Since K, _,C J5, by (24) we have
(25) J3— K, ;x9.
By (1)—(17) we have
(26) s—t=(S;—vy)U(S3—vy).
By (19), (26) we have
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27) f(sz—v))C K, ,,C T3,

(28) f(ss—vy)CK,,_,,CJs5.
By (26), (27), (28) we have

(J3—f(s2—vz))N (]3_f<33_1}2))3<]3_K527v2>n(]3_K337v2>:]3_Ks27v2UKs3fvz
=/;—K sy—vg)U(s3—vy) = =J;— K, ,1e,

(29) (]3_f<32_vz))n(]S_f<s3_02))3.]3_K37t'
Since sy,55arerows and v, is a 3 X 3 block, by (SDM) we have

(30) f | sy:5,— ] 1s bijective,

(31) f | s3:s5— ] is bijective,

(32) f | vy:vy—]5is bijective.
By (30),(31) we have
(B3) Js=J(S2)=J(S2—va)U f(S2Nvy), f(S2—v2)N f(s2N0g)=
(34) J3=f(s3)=f(s3—v3)U f(s3N03), f(s3—vy)N f(s3N0y)=
By (33), (34) we have

(35) Js— f(sa—v2) = f(s2N0y),

(36) Js— f(s3—vy) = f(s3N0y).
By (29), (35), (36) we have

@7) f(saNwvy)N f(s3Nvy)DJ3—

Since J;— K, ;> ¢ by (25), takeany kye J;— K,_;. By (37) there exist a,, a3 such
that

(38) ayesy;Nuy asessNugand flag) =ky= fas).
Since s,Ns;=¢ by (3), by (38) we have

(39) @y as.
By (38), we have

(40) ay, azev, and flay) = flay).
(39)and (40) mean that f | v,:v,—J; is not bijective. This contradicts to (32).

) .
) .

Hence we have Claim 2.

By (16), Claim 1, Claim 2 we have
K, for ae(J X J,—sUt)U(sNt)
K.=!K,.nK,_ ,=K.NJ];=K, foract—s ie.,
K.NK,_;=K.,NJ;=K, for acss—t
41) K,=K, for ac J; X J,.
(41) means that
(42) T,=1.

Thus, we have the required one for the condition (i. By the same way we can
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show (42) for the condition (ii). Thus we have(a) for Type 8A.

We consider Type 8B. We assume the condition (iii). We put
(43) i*=i,and i* =i,.
We put intersectable systems w,=(S5,,T}), ®,=(S,T5,) of Type2 as follows:
(44) 51={32}: T1={Uz},
(45) Sy={s3}, Ty={vs}.
Weput K*= Tml(K) =T(S,T1)(K). Thus we have

K, for ae(J1 X Joa—s,Uvp)U(s3Nwy)
46) Kx= |K.NK, for ass,—v, ,
K.NK,,_,, for acv,—s,

Weput K*=T, (K)=T(S,T,)(K). Thus we have

K, for ac(J1x Jy—s5Uv3)U(s3N03)
47) Ki=|K.NK, for aes;—w; ,
K.NK,,_,, for acvy,—s,

Weput K'=K*nK*.

Claim3. K'<K'.

Proof of Claim 3. By (1)—(15) and (43) we have the decomposition of J; X J, into
5—parts as follows:

(48) J1x J,=AUBUCUDUE;
() A=(J1X J,—sUBHU(snD),
(i) B=s,—v,
(iii) C=wvy— Sy,
(iv) D=s3— s,
(

v) E=v3—s4

Case (i). SinceT,, andT,, aresudoku transformations by Proposition 42, by
Proposition 19 T, NT,, is also a sudoku transformation. Thus we have
49) K'=K'nK*=(To,nT, JK)<K .

Takeany ae A. By (49) we have
(50) K\cK,.
By (16)
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51) K,=K,.
By (50),(51) we have
52) K:cK,.

Case (ii). Takeany aeB. By (1)—(15) and (43) we have
(83) acss,—v,Cs—t

(54) ae(J1X J,—s3Uv3)U(s3Nvy),

(85) vy—s,Ct—s.
By (16),(46),(47),(53),(54) we have

56) K.=K.,nK,_,,

(57) Ke=K.NK,,,,

(58) Ki=K,.
By (55),(56),(57),(58) we have
K.=K.nK,=(K.nK,,_,)nK,=K.,NK,,_,,cK.NK,_ =K, ie,

59 K.cK,.

Case(iii). Takeany a=C. By (1)—(15) and (43) we have
60) acvy,—s,Ct—s,

61) ae(J1X Jy—s3Uv3)U(ssNvy),

(62) s,—v,Cs—1.
By (16),(46),(47),(60),(61) we have

63) K.,=K.NK,_,,

64) Ko=K.NK;,_,,,

65) Ki=K,.
By (62),(63),(64),(65) we have
K},:KznKﬁz(KanK%f@)nKa:KanKszfvchanstt:K;r Le

66) K:CK.,.

Case(iv). Takeany aeD. By (1)—(15) and (43) we have
67) ass;—vsCs—t,

68) ac(J1X J,—s,Uvy)U(s,N0y),

(69) v3—s;Ct—s.
By (16),(46),(47),(67),68) we have
(70) K,=K, nKt o

(711) K
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(72) Kﬁ:KanKvgfsg'

By (69),(70),(71),(72) we have
Ki=KinKi=K.N(K.0K, .)=K.0K, ,cK.NK, =K, ie,
(73) K\,C K,

Case(v). Takeany aeD. By (1)—(15) and (43) we have
(74) acv;—ssCt—s,

(75) ae(J1X Jo—s,Uv)U(s2N0y),

(76) s3—wv3Cs—t.
By (16),(46),(47),(74),(75) we have
(77 K.=K.,nK,_,,
(78) K
(79) K#—K NnK
By (76),(77),(78),(79) we have
K.=KiNK;=K.NK.NK,_,)=K.NK,_, CK.NK, ,=K, ie,

S3—V3*

80) K\ K.

By (52) in case (i), (59) in case (ii), (66) in case (iii), (73) in case (iv), (80)in case(v)and
(48) we can show Claim 3.

Claim 3 means that (b) holds.

Thus, we show Proposition 49 for the conditions (1) and (2). By the same way we

can show Proposition 49 for the other conditions. We complete the proof of
Proposition 49.
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