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Abstract

From radial curvature geometry’s standpoint, we prove a dphere theorems of
the Grove—Shiohama type for certain classes of compactefingnifolds.

1. Introduction

Beyond a doubt, one of the most beautiful theorems in glol@inBnnian geometry
is the diameter sphere theorem of Grove and Shiohama [3héin proof, Toponogov’s
comparison theorem (TCT) was very first applied seriouslyetoer with the critical
point theory, introduced by themselves, of distance famsti That is, if a complete
Riemannian manifoldX has a critical point, sag € X \ {p}, of the distance function
dp to a pointp € X, thenq is the cut point ofp. And henced,, is not differentiable at
g. However, they overcame the analytical obstruction by ypglthe original TCT to
the triangle A(pxy) with the interior angleZ(pxy) < = /2 atx. That is the point, i.e.,
they took the manifold into their hands by directly drawiregsients on it.

Our purpose of this article ito prove a sphere theorem of the Grove—Shiohama
type for a certain class of forward complete Finsler mamfolvhose radial flag curva-
tures are bounded below k. Of course, our major tools to prove it are a TCT for
such a class and the critical point theory, more preciselgn®v’s isotopy lemma ([2]).
Such a TCT is easily proved by modifying the TCT establishe{b] (see Section 2 in
this article), and the isotopy lemma holds from a similaruangnt to the Riemannian
case. The fact that, compared with the Riemannian cases trerfew theorems on the
relationship between the topology and the curvature of &l&inmanifold is thewor-
thy of note E.g., Shen’s finiteness theorem ([10]), Rademacher’stgupmched sphere
theorem ([9]), and the finiteness of topological type and feeaimorphism theorem to
Euclidean spaces of the author with Ohta and Tanaka in [7].

To state our sphere theorems of the Grove—Shiohama typensieFicase, we will
introduce several notions in the geometry and radial cureageometry: LetNl, F, p)
denote a pair of a forward complete, connectaejimensionalC*>-Finsler manifold
(M, F) with a base poinfp € M, andd: M x M — [0, c0) denote the distance function
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induced fromF. Remark that theeversibility F(—v) = F(v) is not assumed in general,
and henced(x, y) # d(y, x) is allowed.

For a local coordinatex{)j_, of an open subse® C M, let (x', v/);_; be the
coordinate of the tangent bundie® over O such that
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This is a Riemannian approximation Bf in the directionv. For two linearly independ-

ent vectorsv, w € TyM \ {0}, the flag curvatureis defined by

9(R*(w, v)v, w)
gv(vv v)gu(wa w) - gu(va w)Z’

Km(v, w) =

where R denotes the curvature tensor induced from the Chern cdonecRemark
that Ky (v, w) depends on thdlag {sv + tw | s,t € R}, and also on thdlag pole
{sv|s > 0}.

Given v, w € T4M \ {0}, define thetangent curvatureby

Tu(v, w) := gx(DYY(x) — DYY(x), X(x)),

where the vector fieldX, Y are extensions ob, w, and D! X(x) denotes the covari-
ant derivative of X by v with reference vectow. Independence offy (v, w) from
the choices ofX, Y is easily checked. Note thafy = O if and only if M is of
Berwald type(see [11, Propositions 7.2.2, 10.1.1]). In Berwald spat@sany x, y €
M, the tangent space3M, F|r,m) and (TyM, F|r,m) are mutually linearly isometric
(cf. [1, Chapter 10]). In this sensé& measures the variety of tangent Minkowski
normed spaces.

Let M be a complete 2-dimensional Riemannian manifold, whichoiméomorphic
to R? if M is non-compact, or t&2 if M is compact. Fix a base poiri € M. Then,
we call the pair ¥, p) a model surface of revolutioif its Riemannian metrias? is
expressed in terms of the geodesic polar coordinate ar@uad

d8? = dt? + f(t)>d6?,  (t,6) € (0,a) x S,
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where O< a < oo, f: (0,a) > R denotes a positive smooth function which is extensible
to a smooth odd function around 0, ag ={ve TF~)I\7I | |lv]| = 1}. Define theradial
curvature function G [0, a) — R such thatG(t) is the Gaussian curvature #t),
where 7: [0,a) — M is any (unit speed) meridian emanating frofn Note that f
satisfies the differential equatioh” + Gf = 0 with initial conditions f(0) = 0 and
f/(0) = 1. It is clear that, iff(t) =t, sint, and sini, then M = R2, S2, and H4(—1),
respectively. We callNl, p) a von Mangoldt surfacéf G is non-increasing on [G).
A round sphere is the only compact, ‘smooth’ von Mangoldt axef i.e., f satisfies
limypa f/(t) = —1. If a von Mangoldt surface has the propeey oo and if it is not
a round sphere, then limy f(t) =0 and limya f'(t) > —1. Therefore, such a surface
(M, p) has a singular point, saff € M, at the maximal distance frond € M such
that d(p, §) = a, and henceM is an Alexandrov space. Its shape can be understood
as a ‘balloon’ (See [4, Example 1.2]). On the other hand, lpElcéds and 2-sheeted
hyperboloids are typical examples of non-compact von Maitgalirfaces. An atypical
example of such a surface is found in [8, Example 1.2].

We say that a Finsler manifold\, F, p) has theradial flag curvature bounded be-
low by that of a model surface of revoluti¢M, p) if, along every unit speed minimal
geodesicy: [0,]1) — M emanating fromp, we have

Km(y(t), w) = G(t)

forall't € [0,1) andw € T,y M linearly independent tg (t). Also, we say that¥l, F, p)
has theradial tangent curvature bounded below by a constaat(—oo,0] if, along every
unit speed minimal geodesie: [0, 1) — M emanating fromp,

Tm(y(t), w) =6

for all w e T,yM.
We setBf(p) :={x e M |d(p, x) <r},

(1.2) Gp(x) :={y() € TxM | y is a minimal geodesic segment fromto x},

wherel :=d(p, X), Ln(c) := foa max{ F(¢), F(—¢)} ds, and rag := sup.y d(p, X).
Now, our main result is stated as follows:

Theorem 1.1. Let (M, F, p) be a compact connected n-dimension&P-Einsler
manifold whose radial flag curvature is bounded belowlbgnd radial tangent curva-
ture is equal to0. Assume that
(1) F(w)?* = gy(w, w) for all x € B ,(p), v € Gp(x), and w € TM;

(2) go(w, w) > F(w)? for all x e M\ B;r/z(p), v € Gp(x) and w € TyM;

(3) the reverse curvé(s) := c(a—s) of ¢ is geodesic and k(c) < rad, for all minimal
geodesic segments {0, a] - M \ {p}.

If rady, > /2, then M is homeomorphic to the sphese.
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REMARK 1.2. We give here related remarks for Theorem 1.1: Exceptfdc) <
rad,, all conditions in the theorem are sufficient ones that make TCTs hold (see
Corollary 2.8 and Lemma 2.9 in Section 2). The biggest obtttn when we estab-
lish TCTs in Finsler geometry is the covariant derivativerethoughF is reversible.
Thanks to the conditions (1) and (2), we can overcome therwtigin, i.e., by the (1)
and f’(t) = cost > 0 on [0,7/2), we can transplant the strictly convexnes®Bgf,(p) C
M =S2to B*Z(p) (See Section 4), where the convexity Bp,»(p) arises from the posi-
tive second fundamental form fdr' > 0 on [0,7/2). As well as, the strictly concaveness
of M\ B, /2(P) is transplanted tdv \ Btjj(p) by the (2) andf’(t) = cost <0 on ¢zr/2,7].
Note that one may construct non-Riemannian spaces satisll) and (2) (cf. [7, Ex-
ample 1.3]). The geodesic property orin the condition (3) and/y (y(t), w) = 0 just
only imply gy(DZC,;'/) = 0. Note thath’C # 0 in general. We can repladsy(c) < rad,
in (3) with the following weaker assumption:

<m for ¢ satisfyingc([0, a]) N (M \ +/2(p)) # 0;
m(©) <rad, for c emanating fromg aBrad (p) to any point in B;[/Z(p).

Here, note thab Brad (p) = {q} (see Lemma 3.4). Remark that didvh < = from the
Bonnet—Myers theorem ([1, Theorem 7.7.1]).

We can remove the (3) in Theorem 1.1 as follows:

Corollary 1.3. Let (M, F, p) be a compact connected n-dimension&r-€Einsler
manifold whose radial flag curvature is bounded belowlbgnd radial tangent curva-
ture is equal to0. Assume that
(1) F(w)?> g,(w, w) for all x € B /2(p) v € Gp(X), and w € Ty M;

(2) g,(w, w) > F(w)? for all x e M\ B /Z(p) v e Gp(x) and w € TyM.
If F is reversible anddiam(M) = rad, > /2, then M is homeomorphic t8".

If F is of Berwald type, the geodesic property orfof the (3)) and7u(y(t),w) =
0 in Theorem 1.1 are automatically satisfied. Hence, we haesmoore corollary:

Corollary 1.4. Let(M,F, p) be a compact connected n-dimension&t-Berwald
space whose radial flag curvature is bounded belowlbyssume that
(1) F(w)?> g,(w, w) for all x € B /Z(p) v € Gp(x), and w € Ty M;

(2) g,(w, w) > F(w)? for all x e M\ B /z(p) v e Gp(x) and w € TyM;
(3) Lm(c) < rad, for all minimal geodesic segments [0, a] — M \ {p}.
If rady, > /2, then M is homeomorphic t8".
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2. TCTs

To prove Theorem 1.1, we need Toponogov’s comparison then(@CT) in Finsler
geometry. In [6], we recently established a TCT for a certaéss of Finsler manifolds
whose radial flag curvatures are bounded below by that of aMangoldt surface. In
this section, we modify the TCT in the case where a model sarfa the unit sphere.

2.1. Angles, triangles, and a counterexample.Let (M,F, p) be a forward com-
plete, connected*°-Finsler manifold with a base poinp € M, and denote by its
distance function. It follows from the Hopf—Rinow theorehat the forward complete-
ness guarantees that any two pointshihcan be joined by a minimal geodesic seg-
ment. Owing tod(x, y) # d(y, X) generally, we need a distance with the symmetric
property to define the ‘angles’: Define

dm(Xu y) = maX{d(X, y)! d(yv X)}

Since [d(p, X) —d(p, ¥)| < dn(X, y), we may define the angles with respectdg as
follows.

DEFINITION 2.1 (Angles). Letc: [0,a] — M be a unit speed minimal geodesic
segment (i.e.,F(¢) = 1) with p ¢ c([0, a]). The forward and thebackward angles

Z(pos)c(@), Z(po(s)c(0)) € [0, ] at o(s) are defined via
d(p, c(s + h)) —d(p, c(s))

- .
cos Z (pc(s)c(a)) := — lrm 4 (C(9), 6 1 ) for s€ [0, a),
cos Z (pe(s)c(0)) := lr!Tc]) dlp. c(s) —d(p.c(s =) o (0, al.

dm(c(s — h), c(s))
REMARK 2.2. The limits in Definition 2.1 are as follows:

d(p, c(s + h)) —d(p, c(s)) _ 1

g @@ oot )~ "G S [ v € Gylels)),
L d(p, c(s)) —d(p,c(s—h)) _ 1 :
g, o) x "Ne ) v e Gy(e9))

where A := max1, F(—¢(s))}. These are, of course, ir-1, 1] (see [6, Lemma 2.2]).
DerINITION 2.3 (Forward triangles). For three distinct poirgsx, y € M,

A(PX, PY) == (P, X, ¥; ¥, 0, C)

will denote theforward triangle consisting of unit speed minimal geodesic segments
emanating fromp to x, o from p to y, andc from x to y. Then the corresponding
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c(0)

Fig. 1. The forward angle.

Y=c@)

X =c()

Fig. 2. The forward triangle.

interior anglesz)x, (Zy at the verticex, y are defined by

x:=Z(pc0)(@), Zy:= Z(pa)c(0)),

Ny

respectively, whera := d(X, y).

DEFINITION 2.4 (Comparison triangles). Fix a model surface of revoluti
(M, p). Given a forward triangler (p%, pY) = (p, X, Y;y,0,€) C M, a geodesic triangle
A(PXY) C M is called itscomparison triangleif

d(p, %) = d(p,x), d(p, ) =d(p,y), d(X,¥) = Lm(c)

hold, whereL (c) = Od(x’y) max{F (¢), F(—¢)} ds.
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There are many forward triangles admitting their comparisgangles, but TCT
does notalways hold for all of them:

EXAMPLE 2.5 ([5]). For an even numbey, let M be R? with thel9-norm. Then,
M is Minkowskian. Take a forward triangl& (pX, pY) C M, wherep := (0, 0), X :=
(1,0),y:= (0, 1) M, and letc(t) := (1 —t, t) denote the side of\(pX, py) joining
x to y. Assume that is sufficiently large. Then, we observe that both ang?e:s and

<Zy are nearly 0, respectively. We are able to think BF,(p) as a reference surface
for M, because flag curvatutéy = 0. It is clear thatA (pX, py) admits its comparison

triangle A(PXYy) C R2. Since A(PX, pYy) is nearly equilateral A(pXy) is too. Hence,
7x < /% and Zy < £§ hold. Therefore, TCT does not hold for the(p%, ).

2.2. Modified TCTs. From Example 2.5, we understand that some strong con-
ditions are demanded to establish a TCT in Finsler geom@&tking this into account,
we have the following:

Theorem 2.6 ([6, Theorem 1.2]) Assume tha{M, F, p) is a forward complete
connected C-Finsler manifold whose radial flag curvature is boundedadwelby that
of a von Mangoldt surfacéM, p) satisfying f(p) = 0 and G(p) O for unique p €
(0, ). Let A(PX, PY) = (p, X, ¥; ¥, 0, €) C M be a forward triangle satisfying that
for some open neighborhootf'(c) of c,

(1) c([0,d(x, y)) € M\ Bf(p);

(2) gu(w, w) = F(w)? for all z€ N(c), v € Gp(2) and w € T, M;

(8) Tm(v, w) =0 for all z € N(c), v € Gp(2) and w € T,M, and the reverse curve
C(s) := c(d(x, y) — s) of c is also geodesic.

If such A(pX, pY) admits a comparison trianglé\(pXy) C M, then we have/ x > /%
and (Zy > /Y.

REMARK 2.7. The application of Theorem 2.6 will be referred to [7}erkl, we
proved the finite topological type and a diffeomorphism tieeo to R".

Corollary 2.8. Assume thatM, F, p) is a compact connected°GFinsler mani-
fold whose radial flag curvature is bounded below hy Let A(PX, PY) = (p, X, V;
v, 0,C) C M be a forward triangle satisfying thafor some open neighborhooti’(c)
of ¢,

(1) ([0, d(x, y)I) € M\ B »(p);

(2) gy(w, w) = F(w)? for all ze€ N(c), v € Gp(2) and w € T, M;

(3) Tw(v, w) =0 for all z € N(c), v e Gp(2) and w € T,M, and the reverse curve
c(s) := c(d(x, y) — s) of c is also geodesic.
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0By (p) N(c)

Fig. 3. The forward triangle of TCT.

If such A(P%, pY) admits a comparison trianglé\ (px¥) in (S2, p), then we haveZ x >

/X and (Zy > /¥. Here (S?, p) denotes the unit spheree,, its Riemannian metric &
is expressed as&d = dt? + f(t)2d6?, (t, 0) € (0, w) x S%, such that {t) = sint.

Proof. In Theorem 2.6,f'(t) < 0 on (o, o0), becausef’(p) = 0 and G(p) # 0
for unique p € (0, o). Hence, the corollary is immediate from Theorem 2.6, since
f’(t) = cost <0 on (r/2,7) and f’(wr/2) = 0 for uniquer/2 € (0, ). O

Lemma 2.9. Assume tha{M, F, p) is a compact connected°GFinsler manifold
whose radial flag curvature is bounded below hyLet A(pX, PY) = (p. X, Y;¥,0,¢) C
M be a forward triangle satisfying thafor some open neighborhoot’(c) of c,

(1) (0, d(x, ))) € B »(P) \ {P};

(2) F(w)? = gy(w, w) for all z e N(c), v € Gp(2) and w € T, M;

(3) Tm(v, w) =0 for all z € NV(c), v € Gp(2) and w € T,M, and the reverse curve
€(s) := c(d(x, y) —s) of c is also geodesic.

If such A(pPX, py) admits a comparison triangleA (pXy) in (S2, ), then we have
x> /% and Zy = /3.

Proof. SetA := maxF(w), F(—w)}. The assumption (2) yields? > g,(w, w).
Hence, one can prove this lemma by the almost similar argumernhat in [6]. See
Section 4 in this article for a detailed explanation of that. ]
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3. Proof of Theorem 1.1

Let (M, F, p) be the same as that in Theorem 1.1. Hence, our model surfaee a
reference surface is the unit sphe,(), i.e., its Riemannian metrids? is expressed
asds? = dt* + f(t)?d6?, (t, 0) € (0, ) x S§, such thatf(t) = sint.

Lemma 3.1. The setS?\ By(p) is strictly convex for all te (7/2,7), i.e., for any
distinct two pointsk, y € dB;(p) and minimal geodesic segment[0,a] — S? between
them we have&((0, a)) C S2\ B(p), where a:= d(X, ¥).

Proof. Use the second variation formula. OJ

Hereafter, by the Bonnet—Myers theorem ([1, Theorem 7.7\4§ may assume,
without loss of generality,

(3.1) rag, < .

Lemma 3.2 (Key lemma) For any distinct two points xy € M \ B;F/Z(p), then

c([0, d(x, y)I) N 9B ,(p) = ¢

holds for all minimal geodesic segments ¢ emanating from y.tdn particular the
set M\ B/ ,(p) is convex.

Proof. Suppose that([0, d(x, y)]) N aB;/Z(p) # 0 for some minimal geodesic
segmentc emanating fromx to y. Then, we consider five cases:

CAse 1: Assume that there exish, s1, S € [0,d(X, V) Wwith 0 < g <5 <
such that

c([S0, $1)) € M\ B 5(p),  c(([s1, S2I) C 9B} 5(p).

For sufficiently smalle > 0 with ¢ < 5, — 5, take the forward triangleA (pc(so),

po(si —¢)) C M. Note thatc([so, st — €]) € M\ B ,(p). Sinced(p, c(s)) > 7/2
andd(p, c(s; —€)) > /2, we have, by the assumption and (3.1), that

(P, &(s0)) — d(p, o1 = &) = dm(C(S0), (51 - ¢))
= Lm(€) <7 < d(p, c(s0)) + d(p, c(s1 — €)),

and henceA(pc(s), pe(sy — €)) admits a comparison triangIA(f)c/(E.f)E@l\—_a/)) C s2
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Fig. 4. The limit argument.

By Corollary 2.8, we hav&_(po(si —e&)c(s)) = 45(51\—_8/). It follows from [13, Prop-
osition 2.1] (see Fig. Y that

% = Z(pdisy)c(so) = im Z(polsy — £)c(s0) = £C(51).

Set A(PC(so)c(s1)) := limejo A(PC(So)C(s: — ), and letji: [0, d(c(So), (s1))] — S2
denote the side 0&([36(56)6(51)) joining c(fg.?) to CE). If 45(5[) = /2, then

([0, d(c(so), C(SL))]) C 8By /2(P)

becaused B, »(f) is geodesic. This contradict(p, c(sp)) > /2. If Zc(s) < /2,
then there exista € (0, d(c(S), ¢(S1))) such thatii(a) € 3B, /2(p). This contradicts the
structure of the cut locus @8 becauseZ(ji(a) ﬁcTsI)) < and dB;,2(p) is geodesic.

CAsE 2: Assume that there exiss, &4, Ss € (0,d(x, y)] with 0 < 3 < 51 < S5
such that

c([ss, sa]) C 9B 5(P), (s, S5]) € M\ B ,(p).

1In the right picture of Fig. 4, the circle marks on the segraesthanating fronp to c(s;) mean
that the segments have the same length.
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Consider the forward trianglé\(po(ss + ¢€), pc(ss)) € M, wheree > 0 is sufficiently
small with e < s5—s. Applying the similar limit argument in Case 1 #h(pc(s: + ¢),
pc(ss)), we have the triangleA (pe(ss)c(ss)) = lim, o A(f)(?(s?;s/)cf(\sg)) satisfying
46—(5;) < /2. The angle condition yields the same contradiction as ith&@ase 1.
Caske 3: Assume that there exisg, s1,S € [0,d(X,Y)] with 59 < 5 < 5 such that

c([0, d(x, Y)]) N 9B, 5(p) = {c(s1)}, (S0, S1)), C((S1, S2)) € M\ B ().

Then, we get a contradiction from the same argument as Case Qase 2.
CAsE 4. Assume that there exisp, s; € (0, d(x, y)) with 59 < 5 such that

c((s0. s1)) € B o(p) \ P}, c(s0), c(s1) € 9B 5(p),
and that

(3.2) Z(polsoelsy) < 5. Z(polselso) < -

Take a subdivisiomg:=5) <r; <--- <rg_1 <ry:= 5 Of [$,51] such thatA(pc(ri_y),
pc(ri)) admits a comparison triangla' := A(f)c(ri_l)cf(?f)) C S? for eachi =1,2,... k.
Applying Lemma 2.9 toA(pc(ri-1), pc(ri)), but for eachi =2, 3,...,k—1, we have

(3.3) Zclri_a) = Z(BAn 0)elm),  Zen) = Z(petemn a)-

For sufficiently smalle, § > 0 with ¢ <r; —rg and § < ryx —r¢_;, take two forward

triangles A(pc(ro + €), pc(ri)), A(pc(rk-1), pc(rk —8)) € M. Note that these two tri-
angles admit their comparison triangles

A= A(PC(ro + )C(r),  As := A(PC(reen)C(r — 9)) C S2,

respectively. Without loss of generality, we may assufte= lim,jo A, and Ak =
lims ;0 A because limo A, and lim o As are isometric toA' and AK, respectively.
By Lemma 2.9, Zc(ro + £) > Z(Pc(ro + £)c(rn)). £c(r1) = Z(pe(ra)c(ro + ), and

— ——— — .
that Zc(rg_1) > Z(pc(r_1)c(rk — 8)), Zc(rg — &) > Z(pc(rk — 8)c(rk_1)). Hence, it
follows from (3.2) and [13, Proposition 2.1] that

B4) 5> Zelro) = lim Zelro+#) = Z(BTTD),  Ze(r) = Z(BET)T),
and that

Z)C(I'k_l) > l(ﬁc(rk—l)cf(?;))!
(3.5) T

N D im Ze(re — 8) = Z(Perclre 1)-

N
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0Bz(p)

Fig. 5. The limit argument in (3.4).

Starting from A®, we inductively draw a geodesic triangle'*1 c S2 which is
adjacent toAl so as to have a common sigie(r;), where 0:= 6(c(ro)) < 6(c(ry)) <
-e- < 9(0’(?;)). Since?c(ri) +Z)c(ri) < for eachi =1, 2,...,k—1, we obtain, by
(3.3), (3.4), (3.5),

(3.6) Z(pe(r)elri—y) + Z(pe(r)e(ri—a) < 7.

Let &: [0, Lm(Cliso,s1)] — S? denote the broken geodesic segment consisting of minimal
geodesic segments froo{r; 1) to c(ri), i = 1, 2,..., k. Seté(s) := (t(E(s)), 0((9))).
By (3.6), we have the unit speed, but not necessarily minehahis moment, geodesic
ii: [0,a] — S2 emanating fromc(ro) to c(rx) and passing undef([0, Lim(Cls, s1)]), i-€-,
0(n) € [0,9(6(?[))] on [0,a] and t(£(s)) > t(7(u)) for all (s,u) € (0, Lm(Cl[so,s:7)) % (0,8)
with 6(£(s)) = 6(7(u)) (see Fig. 6). Sinca < Lm(Cl[s,s,]) < 7 by the assumption and
(3.1), 7 is minimal with Z(7(0) p n(a)) < 7. This contradicts the structure of the cut
locus of S? because) B, »(p) is geodesic.

CAse 5: Assume thatc is passing throughp. Take a sequencéc : [0, I;] —
M\ {p}}ien Of minimal geodesic segments emanating fronx = ¢;(0) convergent to
c. Applying the same argument as that in Case 4 to eadbr sufficiently largei, we
get a contradiction. Note that [im Lm(G) = Lm(c) < rad,, butx,y e M\ B;r/z(p).
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—_— —_—

() C(ro)
oB z(P)

D

Fig. 6. The segmeng.

Therefore,c([0, d(x, y)]) N aB:/Z(p) = @ holds for all minimal geodesic segments
c emanating fromx to y. The second assertion is clear from the first assertionl’]

Corollary 3.3. Let A(PX, pY) = (p, X, ¥;¥,0,€) C M be a forward triangle for
x € M\ B/ ,(p) and ye B} ,(p) satisfying

{z} 1= c((0, @) N 3B, ,(p) # 2,

where a:= d(x, y). Then the forward triangle A(pX, P2 C M admits its comparison
triangle A(px2) C S? such that Z x > /X and 7z > /7. Additionally if the forward

. o . . . — -
triangle A(pz PYy) C M admits its comparison triangle\(pz§) c S?, then Zz > /%

e
and Zy > Zy.

Proof. Apply the same limit argument in the proof of Lemma ®02forward
triangles. ]

Lemma 3.4. The function dp, -) attains its maximum at a unique pointegM.
In particular, M \ B7T+/2(p) is a topological disk.



1156 K. KonDO

Proof. Suppose that there exist two distinct poirtsy € 9B ady (p). Then, the
forward triangle A(PX, Py) € M admits its comparison triangle\(p%y) C S2. Let
c: [0, d(x, y)] = M and&: [0, Lm(c)] — S? be sides ofA(pX, py) and A(PXy) em-
anating fromx to y and fromX to y, respectively. By Corollary 2.8 and Lemma 3.1,

d(p, c(s)) > rad, holds for all's € (0, d(x, y)). This contradicts the definition of rad
The second assertion follows from the uniqueness and Lemfa 3 ]

DEerFINITION 3.5. We say that a poink € M is a (forward) critical point for
p € M if, for every w € T,M \ {0}, there exista € G,(x) such thatg,(v, w) < 0. Here
see (1.1) for the definition of,(x).

By similar arguments to the Riemannian case, we have Granmsetopy lemma [2]:

Lemma 3.6. Given0 <ry <ry < oo, if B (p)\ B+(p) has no critical point for
p € M, then Brt(p) \ B/ (p) is homeomorphic t@B* (p) x [ry, r2].

Lemma 3.7. There are no critical point for p inB /Z(p)\ . In particular,
Bn/z(p) is a topological disk.

Proof. SinceM \ B /Z(p) is convex (Lemma 3.2)9 B;’/z(p) has no critical point

for p. Suppose that there exists a critical poing B]T/Z(p) \{p} for p. Letge M
be the same as that in Lemma 3.4 such th@t, q) = rad,, andc: [0,a] — M a unit
speed minimal geodesic segment emanating fopito X, wherea := d(q, x). Then,
c([0,a]) N aBn/z(p) # 0. From the cases in the proof of Lemma 3.2, it is sufficient to

consider the case whe(0,a)) N 0B /z(p) is one point, say

{qu} == c((0,@)) N 9B, ,(p)-

Since bothg = ¢(0) andx = c(a) are critical points forp, we have

@7 Z(peOx(@) < 7. Z(poa)e(0) < 3.

T
2'
Note thatc does not pass through, because, by the definition of critical points, there
exist at least two minimal segments emanating frpmo x andc is minimal. Now, take a
subdivisionsgg :=0< s < --- < &1 < & :=a of [0, 8] such thatc(s;) = q; € aB;“/z(p)
and thatA(pc(s_1), pc(s)) admits a comparison triangla’ := A(f)c(s,l)c’(t{)) c §?

for eachi = 2, 3,..., k. By Corollary 3.3,A(pc(s), pc(sy)) admits its a comparison
triangle Al := A(pc(so)c(st)) C S? satisfying

(3.8) Zc(s0) = Z(P)C(S),  Zc(s1) = Z(PCE)C(So)-
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Moreover, by Corollary 3.3 again, we have
— L — — <~ L — —
(3.9) Zc(s1) = Z(Pe(s)e(s2),  £e(sp) = Z(Pe(sp)e(s)).

In particular, by (3.7) and (3.8), we have

(3.10) Z(p(R)S(5) < %

Applying Lemma 2.9 toA(pc(s-1), pc(s)) for eachi = 3, 4,...,Kk,

(3.11) Zc(s-1) = 2(pc(s 1)0(3)),  Zc(s) = Z(pe(3)S(s 1)-

In particular, by (3.7) and (3.11), we have

(3.12) Z(PC(S)C(s)) <

N

Starting fromA®, we inductively draw a geodesic triangle’ 1 c S2 which is adjacent
to Al so as to have a common sidi(s), where 0:= 0(c(S)) < 0(c(sy)) < - -+ <
0(C(39). Since Zc(s) + Zc(s) < = for eachi = 1,2,...,k—1, we obtain, by (3.11),
(3.8), (3.9),

(3.13) Z(pS(s)C(s 1)) + Z(PS(s)C(S 1)) < 7.

Let &: [0, Lm(c)] — S? denote the broken geodesic segment consisting of minin@! ge
desic segments from(s_1) to ¢(S), i = 1, 2,..., k. Seté(r) := tE@)), 6(E(r)). By
(3.13), we have the unit speed geodesic[0, b] — S? emanating fromi(0) = c’(\sg)
to 7(b) = ¢(sq) and passing undef([0, Lm(C)]), i.e., 6(7) € [0, 8(c(s4))] on [0, b] and
t(E(r)) > t(H(u)) for all (r, u) € (0, Lm(c)) x (0, b) with 8(£(r)) = 6(7(u)). Sinceb <
Lm(c) < 7 by (3.1), 7 is minimal with Z(#(0),5(0)) < =, wherey and& denote min-
imal geodesic segments (i.e., sub-meridians) emanatorg f¥ to CF(E.?) and fromp to
c(f\s;), respectively. Sincg) lives underé ([0, Lm(c)]), we have, by (3.12) and (3.10),

(314)  £((0). (AP, M) = 5. £ (i), (A(P. GE) <

N

Sinced(p,c(s0)) > /2 > d(p,C(sc)), there existdy € (0,b) such thatij(bg) € 3By /2(f).
Let i: [0, 7] — S? be an extension of to the antipodal point:TsE),, to CTSE) = 7(0),
and setij(u) := (t(u), (u)). SinceS?\ By(i7(0)) is strictly convex for allu € (/2, 7)
(by the same proof of Lemma 3.1x(ﬁ(radp), (8/0Y)l(raq)) > 7/2 holds. This implies

(3.15) t'(rady) < 0,
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where note thatj emanates fronc(so) to ¢(so).. Since 7i((bo, rad,)) C By,2(p) and
f’(t) = cost > 0 on (0,7/2), it follows from [12, (7.1.15)] that

(3.16) t(u) = f(t(w) f'tu))o’(t(u)® > 0

holds on o, rad,). Hence, by (3.15) and (3.16)(u) is decreasing onbp, rad,]. Since
b € (b, rad),

£(i(0), 5 (t(0))) >

Nltl

This contradicts the right inequality in (3.14). TheretoB;, -(P) \ {p} has no critical
point for p. By Lemma 3.6,B /Z(p) is a topological disk. ]

By Lemmas 3.4 and 3.7M is homeomorphic ts". O

4. Appendix: Proof of Lemma 2.9

Let (M, F, p) be a forward complete, connect&@f°-Finsler manifold with a base
point p € M, and letd denote its distance function and Cpit(the cut locus ofp. Set
B (x) :={y e M |d(y, x) <r}. Take a pointg € M \ (Cut(p) U {p}) and smallr > 0
such thatB,, () N (Cut(p) U{p}) = @ and thatB*(q) := B (q) N B, (q) is geodesically
convex (i.e., any minimal geodesic joining two pointsBff(q) is contained inB*(q)).
Given a unit speed minimal geodesic segmen{(—¢, ¢) — B*(q), we consider the
C*-variation

0.9 = o, expieE) ). (69 €[00 x (e

wherel := d(p, ¢(0)). Sincex := ¢(0) ¢ Cut(p), there is a unique minimal geodesic
segmenty : [0, ] — M emanating fromp to x. By setting J(t) := (d¢/0s)(t, 0), we
get the Jacobi fieldl alongy with J(0) = 0 and J(I) = ¢(0). Note thatJ(t) # 0 on
(0,17 from the minimality of y, and that

gy (v (1), €0))
|

(4.1) JE(t) == J(t) — ty(t), telo,l]

is the g;-orthogonal componend-(t) to y(t) (see [6, Lemma 3.2]). Moreover, since
y is unique, it follows from the proof of [6, Lemma 2.2] that

(4.2) — cos Z (pxde)) = cos Z (pxd—e)) = 27 gy0) (7 (1), (0)),

where i := max{1, F(—¢(0))}. Hence,n —_Z(pxc(s)) = <Z(pxc(—s)). In the following
discussion, we set

(4.3) w =1 — Z(pxoe)) = Z(pxd—¢)).
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Hereafter, we assume that the radial flag curvatureMfK, p) is bounded below
by 1. Hence, its model surface is the unit sphe§g, @) with its metric d5* = dt? +
f(t)>do?, (t, 6) € (0, w) x S, such thatf(t) = sint. For smalls > 0 with § < 1,
we set

fs(t) = sin(v1— 8t)

ﬂH
S

on [0,7/+/1—8]. Then, f; satisfiesf;'+(1—6) fs = 0 with f5(0) =0, f{(0) = 1. Thus,
we have a new spher&%,6) with the metricds? = dt?+ f5(t)2d6? on (0r/+/1—§)x
Si. Since the curvature 4§ of (SZ, 0) is less than 1, we may also emplo§Z(6) as
a reference surface favl.

Let c, x = ¢(0), y andl = d(p, x) be the same in the above. Fix a poihte
S2 with ds(6, X) = |, whereds denotes the distance function induced fraigg. Let
7:[0,1] — S2 be the minimal geodesic segment frao X, and take a unit parallel
vector field E along 7 orthogonal tof/. Define the Jacobi fielK alongy by

(4.4) X(t) := f_(l) fs () E().

Lemma 4.1 ([6, Lemma 3.4]) For any Jacobi field X alongy which is g-
orthogonal toy and satisfies ¥0) =0 and gq)(X(1), X(1)) =1, we have

|
(X, X) > (X, X) + %/0 f5(t)? dt.

Here I, and I; denote the index forms with respect o, ; and i1y, respectively.
Fix a geodesi&: (—¢, £) — S2 with €(0) = X such that
2(70),80) = w, [&] = »:= max(1, F(—¢(0))},
wherew is as that in (4.3). Consider the geodesic variation

o(t, s) 1= exni( expél(c(s))) (t,s) €[0,1] x (—¢, ¢).

By setting J(t) := (9¢/ds)(t, 0), we get the Jacobi field alongj with J(0) = 0 and
J(1) = €(0). And the Jacobi field

Jht) = j(t)—(”() o), ; 0)

along y is orthogonal tof/(t) on [O,1].
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Lemma 4.2. Assume that
(1) Bx(a) C B;x(p);
(2) F(v)? = gyq)(v, v) for all v e TyM.
If w € (0, ), then there exists; := §1(f, r) > 0 such that for any § € (0, 1),

(3, 9 =134, 31 = 8Cigyny(3+(1), 34() > 0
holds where G := 1/(2f(lp)?) f('f f(t)2dt and b := d(p, q).
Proof. By the assumption (2) in this lemma,
(4.5) 12 = g;)(€(0), €(0))-
Indeed, (4.5) is immediate in the case where= 1. If A = F(—¢(0)), then

(. -H0) -0\ _ 1
1> gy(l)(,:(_c(o))’ F(—C(O)))  F(=¢(0))
By (4.2) and (4.3)g,0)(7(), €(0)) = ; cose. Then, J*() = &4 sine- X() holds,

where X is the same as that in (4.4). Since bath and X are Jacobi fields ois?,
JL(t) = £a sinw - X(t) on [0,1]. Hence

591)(€(0), €(0)).

(4.6) (3, JY = (xsinw)?11 (X, X).
On the other hand, it follows from (4.1) and (4.5) that
g n(34(), 3°()) = gy1)(€(0), &(0)) — (1 cosw)” < (1 sinw)’.

Then, we get a constart := (A sinw)? — g;¢)(3*(1), I+(1)) = 0. Sinceg,g(I+(),
J4 () > 0 for w € (0, w), we have, by Lemma 4.1,

S - (34, J4) 8 ! )
W = atm, oy fa(')z/o By dt
hence
L@t 3N = —g(3t0), JL(I)){G(X, %)~ g /' fs(t)zdt}
“n 02 Jo

= {a— (. sinwP) (X, X) + 8'9“"(?:0()'3’ b / 2t

By (4.6) and (4.7),

] I
h(3* 3 - 1% 34 = al(%, %) + 3'9”')(?:('()'3’ H'))/O f5(0)?

5-g0@ 0, 30) [
T AL
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where note that > 0, and thatl;(X, X) = +/1—§/tan(v1—6l) > 0, becausd <
/2 < /21— 6§ by the assumption (1) in this lemma. Sinfte- lp| < maxd(q, x),
d(x,q)} <r, and sincd, lp < /2 (from the (1)), taking smalle8i(f,r) > O if neces-
sary, we get the desired assertion in this lemma fors all (0, ;). O

Lemma 4.3. Assume that
(1) B,(a) C B, x(p);
(2) F(v)? = gy0)(v, v) for all v e TyM;
(3) Tu(r(1), €(0)) = 0.
For eachs € (0,481), 0 € (0,7/2), if w € [0, —0], then there exists’' := ¢'(M, |, f, ¢,
8,0) € (0,¢) such that I(s) < L(s) holds for all se [—¢’, ¢']. Here L(s) := d(p, c(s))
and L(s) := ds(8, &@s)).

Proof. We will state the outline of the proof, since the priofvery similar to
[6, Lemma 3.6] thanks to Lemma 4.2. SR(S) := L(s)—{L(0)+ L’(0)s+ L"(0)s?/2}.
Then, there existE, := C,(M, 1) > 0 such that

1
L(s) = L(0) + L'(0)s + EL”(O)SZ + R(S)
SR 3
<I| + sA cosw + EI'(J , J7) + Cyls|®.

Note thatL’(0) = »cosw and L”(0) = 1;(J+, J+) hold by [6, Lemma 3.3], (4.2), (4.3),
and the assumption (3) in this lemma. Similarly,

- 2. . .
L(s) > | + sA cosw + Eh(Ji, JH) —Csls®

for someCs := C(f,1) > 0 and alls € (—&, ¢). Sinceg;(I+(), I+(1)) > 0 for all
w € [0, — 0], there existsCq := C4(M, 0) > 0 such thatg, (3 (1), I+(1)) > C4 > 0.
From Lemma 4.2L(s) — L(s) > s%{§C,C4 — 2(C; + C3)s}/2 holds. Therefore, we get
L(s) < L(s) for all s e [—¢, ¢'], if & := min{e, 8C1C4/2(C5 + Ca)}. O

Thanks to Lemma 4.3 and the structure §§f we may prove Lemma 2.9 by the
same arguments in Sections 4, 5, and 6 in [6]. ]

REMARK 4.4. Although we do not consider caseswf= 0, or 7 in Lemma 4.3,

. <~ — <~
Lemma 2.9 holds in cases of x — 7, Zy=0,o0r Zx =0, Zy = 7 because the
reverse curve of the geodesic segmentis geodesic.
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