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Abstract 

Congenital heart defect (CHD) is the most frequent form of major birth defects in newborns, 

common CHDs can not always be found and cured during pregnancy or at birth, and they must be 

monitored throughout life. Thus, if life-style related diseases could not be monitored continuously 

during a long period in the early stage, they might be difficult to be diagnosed appropriately in an 

early step. Furthermore, auscultating and analyzing heart murmurs from different positions during a 

physical examination are the vital diagnosis for CHDs. The needs for the primary health care 

physicians to improve the cardiac auscultation skill, and computer-aided analysis skill of heart 

murmurs, are still strong in the primary screening examination, and become stronger for the general 

users to perform the auscultation at home.  

The aim of this study is to develop a multichannel cardiac murmurs analysis method and 

monitoring system on CHD. Firstly, the background of CHD, HS and common murmurs, reviews of 

cardiac murmurs analysis were introduced in Chapter one. Next, four electronic stethoscopes were 

fixed on the auscultation cloth, the HSs collection method which reflected the cardiac valvular 

opening and closure sounds at the same time was proposed, this measuring system helped to make 

the relation between four cardiac valvular opening and closure sounds and murmurs clear in Chapter 

2. The acquired data were transformed to analysis server by network for data transmission, save and 

analysis. 

Heart murmurs are pathological sounds produced by turbulent blood flow due to cardiac defects.
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In order to make the murmurs features easy to use for general users, the murmur index extraction 

methods based on quantitively analysis of cardiac murmurs was proposed in Chapter 3. Although, 

there are some evaluation studies about cardiac murmurs, the quantitative analysis of evaluation 

indexes has not been decided. In our study, the evaluation indexes of energy analysis under five 

frequency bands, and murmurs duration time parameters at systolic and diastolic periods were 

extracted. Firstly, the approach on analysis of the pathologic cardiac murmurs based on the wavelet 

packet decomposition technique was proposed. The HS signals were divided into five bands and the 

energy ratios at each frequency band were calculated and compared. Based on the analysis of clinic 

HSs data, three evaluation indexes of cardiac murmurs (ICM) were proposed for the analysis of the 

pathologic murmurs. Finally, the threshold values between the innocent and pathologic murmurs 

were determined based on the statistical results of the normal HSs. The statistic results showed that 

ICM of multichannel signals not only evaluated the murmur quantitatively, but also revealed the 

murmurs generating reason by analyzing signals from four positions simultaneously.  

Furthermore, in order to further quantitatively analyze the cardiac murmurs at each cardiac 

cycle, the murmurs time duration indexes extraction based on cardiac vibration state by describing 

the shape of different-scale window moment waveform (MW) was proposed in Chapter 3. Firstly, 

homomorphic MW extraction was proposed and the HS cycle and S1S2 segmentation were 

implemented by locating the maximum and minimum of MW respectively. Secondly, considering the 

segmentation points of HS S1S2 and cycle as MW centers respectively, to extract the systolic MW 

(SMW) and diastolic MW (DMW), furthermore, extracting systolic murmur index (SMI) and 

diastolic murmurs index (DMI) which were proposed based on SMW and DMW. Finally, many 

experiments show that the murmurs indexes are efficient to judge the murmurs occurring periods and 

murmurs time duration. Importantly, DMF can be computed by moment analysis very fast and 

-diagnosis or aided-diagnosis in an artificial intelligence 

cardiac murmur analysis system.  

The noises coming from various sources contaminate HS signals and affect HS auscultation, in 

order to improve the auscultation, an unexpected noise reduction method based on frequency slice 

wavelet transform (FSWT) that can consummate the filtrating in time and frequency domain 
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simultaneously was proposed. This method was assessed by signal noise ratio (SNR), correlation 

coefficient (CC) and mean square error (MSE) evaluation indicators and comparing with the total 

variation de-noise (TVD) and discrete wavelet transform (DWT) methods, experimental results 

showed HCA method was much more effective for external (ambient noise, speech noise, 

stethoscope device power interference) and certain internal (respiratory or lung sounds, and skin 

movements) disturbances noise reduction. 

Finally, the multichannel murmurs monitoring system which is composed of multichannel HSs 

measuring system, analysis server and analysis result display was designed. The measuring system 

which consists of multichannel cardiac signals recorders acquires the signals and sends them to 

analysis server though internet network by computer. And the data transmission (upload and 

download) and analysis were implemented by the analysis server. The analysis results which show 

the multichannel heart murmur analysis indexes are useful and efficient to diagnose the CHDs, 

meanwhile, further reveal the heart murmurs physiological and pathological information. And the 

results data were not only saved in the server, but also displayed in the website for murmurs 

auscultation and diagnosis. Therefore, monitoring on CHDs by clinical HSs auscultation and analysis 

remain important for general daily health care. The pre-monitoring for CHD sounds will greatly 

improve the prevention of clinical CHD in advance, and helpful to the primary screening 

examination, and becomes stronger for the general users to perform the auscultation at home. 
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Chapter 1 

Introduction  

In this introduction chapter the background, review of cardiac murmur analysis and aim of this 

thesis which develop a multichannel heart murmur analysis method and monitoring system on 

congenital heart disease (CHD) are introduced. 

1. Background 

Heart disease is the leading or the second cause of death for people in the world, according to 

American Heart Association report, in the United States, killing nearly 787,000 people alone in 2011, 

and the total cost is estimated to be 298 billion dollar [1]. 80% of the total mortality occurs in low 

and middle-income countries. And a type of heart disease called CHD is the most frequent form of 

major birth defects in newborns affecting close to 1% of newborn babies (8 per 1,000) [2]. 

1.1 Congenital heart disease 

CHDs are structural problems that arise from abnormal formation of the heart or major blood 

vessels, and defects range in severity from tiny pinholes between chambers that may resolve 

spontaneously to major malformations that can require multiple surgical procedures before school 

age and may result in death in utero, in infancy, or in childhood. CHDs are serious and common 

conditions that have significant impact on morbidity, mortality, and healthcare costs in children and 

adults. And continental variations in birth prevalence have been reported, from 6.9 per 1000 births in 

Europe to 9.3 per 1000 in Asia [3]. There are many types of CHDs. Some are simples, such as 

atrioventricular septal defects (ASD), ventricular septal defects (VSD). Other heart defects are more 
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complex, they include combinations of simple defects, and the most common complex heart defect is 

Tetralogy of Fallot (TOF). And, the most common types of defects in children are (at a minimum) 

VSD and the most common lesions seen in adults are ASD and TOF [4]. In the following, there are 

some pathology informations of ASD, VSD and TOF in detail [4]. 

An ASD is a hole in the part of the septum that separates the atria and the upper chambers of the 

heart. The hole allows oxygen-rich blood from the left atrium to flow into the right atrium, instead of 

flowing into the left ventricle as it should. Many children who have ASDs have few, if any, 

symptoms. In Fig. 1, A shows the structure and blood flow inside a normal heart. B shows a heart 

with an ASD. The hole allows oxygen-rich blood from the left atrium to mix with oxygen-poor blood 

from the right atrium. 

A VSD is a hole in the part of the septum that separates the ventricles-the lower chambers of the 

heart. The hole allows oxygen-rich blood to flow from the left ventricle into the right ventricle, 

instead of flowing into the aorta and out to the body as it should. In Fig. 2, A  shows the structure 

and blood flow inside a normal heart. B  shows two common locations for a VSD. The defect 

allows oxygen-rich blood from the left ventricle to mix with oxygen-poor blood in the right ventricle. 

Large VSDs allow a lot of blood to flow from the left ventricle to the right ventricle. As a result, the 

left side of the heart must work harder than normal. Extra blood flow increases blood pressure in the 

heart failure and poor 

growth. If the hole isn't closed, high blood pressure can scar the arteries in the lungs. 

The most common complex heart defect is TOF, which is a combination of four defects: 

pulmonary valve stenosis, a large VSD, an overriding aorta, and right ventricular hypertrophy. In 

TOF, not enough blood is able to reach the lungs to get oxygen, and oxygen-poor blood flows to the 

body. In Fig. 3, A  shows the structure and blood flow inside a normal heart. B  shows a heart with 

the four defects of TOF. Babies and children who have TOF have episodes of cyanosis, which can be 

severe. In the past, when this condition wasn't treated in infancy, older children would get very tired 

during exercise and might faint. TOF must be repaired with open-heart surgery, either soon after birth 

or later in infancy. The timing of the surgery will depend on how narrow the pulmonary artery is. 



3 

Children who have had this heart defect repaired need lifelong medical care from a specialist to make 

sure they stay as healthy as possible. 

CHDs are not always found during pregnancy or at birth, they also can not be cured, and they 

must be monitored throughout life [2]. Thus, if life-style related diseases could not be monitored 

continuously during a long period in the early stage, they might be difficult to be diagnosed 

appropriately.  

Fig. 1. Cross-section of a normal heart and a heart with an ASD. 

Fig. 2. Cross-section of a normal heart and a heart with a VSD. 
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Fig. 3. Cross-section of a normal heart and a heart with TOF. 

1.2  Heart sounds and common murmurs 

HSs are produced by acoustic vibrations of the valvular, muscular, vascular and blood 

circulation. There are four important areas used for listening to heart sounds. Those are: aortic area 

(A), pulmonic area (P), tricuspid area (T), mitral area (M) (Apex), shown in Fig. 4. The four cardiac 

valves are classified into two types-the atrioventricular (mitral and tricuspid) and the semilunar 

(aortic and pulmonic) valves. This is an important distinction. During systole, atrioventricular 

(tricuspid and mitral) valves are closed and semilunar valves are open, while in diastole the opposite 

is true. 

Fig. 4. Auscultation sites. 
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The heart sound (HS) signals provide vital clinical information, such as fundamental sounds, 

systolic murmurs, diastolic murmurs, and so on to physicians for analyzing and diagnosing different 

heart abnormalities. A common notation for a sound heard at an auscultatory site is to use the first 

initial of the site and the number 1 or 2 to describe the first heart sound (S1) and second heart sound 

(S2) respectively. In general both the S1 and S2 can be heard at all sites, but some pathologic and 

normal sounds are heard best at one site or another. The structure schematic drawings of normal heart 

sound (NHS) shown in Fig. 5 and abnormal HS shown in Fig.6. 

S1 S2 S1 S2 S1 S2 S1 S2

diastolesystole

Fig. 5. The structure schematic drawing of normal heart sound (NHS). 

S1 S2 S1 S2 S1 S2 S1 S2

Holosystolic Murmur

diastolesystole

Fig. 6. The structure schematic drawing of abnormal HS. 

A heart murmur is an extra or unusual sound hearing during a heartbeat. The doctor may hear 
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abnormal HSs when listening to the chest with a stethoscope. Hearing and detecting heart murmurs 

during a physical examination is the vital diagnosis for common clinical heart diseases, including the 

CHD, if the heart murmurs are detected, physicians will refer to go to a cardiologist for further 

diagnosis. The murmur patterns of NHS and common CHDs are showed in Fig. 8.  

S1 S2 S1

NHS

S1 S2 S1

ASD

S1 S2 S1

VSD

S1 S2 S1

TOF

Fig. 7. Murmurs patterns of NHS and common CHDs. 

In order to describe and compare the characters of the murmurs, the time occur of murmurs, 

murmur property, intensity, and position, also including the relation between murmur and breadth, 

body position when the objects are detected, are pay attention to.  

2. Review of cardiac murmurs analysis 

CHD sounds including abundant helpful physiological and pathological information, especially 

the murmurs of clinical CHD. In consequence, monitoring on heart diseases by clinical HS

auscultation and cardiac murmur analysis remain important for general daily health care.  

Heart murmurs are pathological sounds produced by turbulent blood flow due to certain cardiac 

defects, and they are the most common reasons for referral to the pediatric cardiologist. In children, 

about 50-70% of these murmurs are clinically insignificant [5], but if the child is crying, 

uncooperative to the examiner or breathing loudly, some other murmurs may occur. Because of the 

difficulty of mastering auscultation skills, innocent and organic heart murmurs cannot be readily 

distinguished. Therefore, heart murmur quantitative analysis is necessary. Recently, the demand for 
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evaluation of the murmurs from auscultation of cardiac sounds has been addressed by researchers 

and clinicians [6-9]. To detect and analyze the heart murmurs, many approaches have been carried 

out, including a multivariate matching pursuit method [8] used to model the murmurs by 

decomposing them into a series of parametric time-frequency atoms, and then the model parameters 

used to identify the cardiac sound signals. An adaptive singular spectrum analysis approach [9] was 

applied to the changes in the statistical properties of the sound data for detection of murmurs. 

Since the heart murmurs show clearly different characteristics in the frequency domain 

compared with the time domain, many researchers have focused on the characteristic extraction by 

local frequency analysis method, such as the wavelet decomposition (WD) or wavelet packet 

decomposition [10-15, 24], the neural network [7, 16-19], support vector machine [20-22]. Sepehri, 

et al. [19], studied a method for automatic screening of congenital heart diseases in children with 

neural network classifier. The pathological murmurs of CHD were identified by examining the HS

energy over special frequency bands called Arash-Bands. However, the Arash-Bands determined for 

each CHD in the study were overlapped with the frequencies 16-121 Hz. Based on our study, the 

main energy distributions either for normal or abnormal HSs are concentrated in the frequency range 

of 10-100Hz. We also found that frequency band is much influenced by measurement situations, ages, 

body types, mixed heart defects, etc. We have tried many methods but it seems difficult to identify 

some murmurs by the Arash-Bands. Furthermore, Samjin Choi, et al. [10, 24] proposed insufficiency 

murmur identification and valvular disorders detection using wavelet packet decomposition, and HS 

signals with frequency range 20-700Hz were preferred; furthermore, the features were extracted from 

WP coefficient calculated for each subdivision. However, the subjects in these two studies were from 

the medical text book [27] or internet web [28]. It is not clear whether WP coefficient calculated for 

each subdivision with the frequency range 20-700Hz can identify the CHD signals in general 

auscultation environment in hospital. 

Furthermore, in time domain HS and murmurs feature analysis aspect, the features, such as, 

sound intensity, content, timing, duration, shape, systolic and diastolic intervals, amplitude ratio of 

S1 and S2, and the ratio of diastolic duration to systolic duration, which contain abundant 

physiological and pathological information are extracted in [29-30]. And then, in frequency domain 
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aspect, the frequency components and their width bands, maximum of amplitude of heart sound were 

proposed [31-36]. Many features presented in previous literatures can be also expressed by the 

time-frequency analysis and moment analysis of signals, such as, time center and duration, the 

frequency center and frequency bands etc. However, time-frequency analysis need a lot of 

computation, it is not easy adapt to the situations based on real-time processing systems, especially 

for those systems of mobile platform. The moment method [37-38] which can be used to realize the 

segmentation analysis of HS pattern and feature extraction is validated actually simper and faster 

than the wavelet method. However, firstly, the time window size of moment is an important 

parameter need to be determined, a fixed size in [37] is not easy to adapt to all situations. Further, the 

different time window moments of the HSs have different characteristics; these characteristics can be 

used to obtain the rhythm features of HSs more accurately. And then, the homomorphic segmentation 

by multichannel signals will improve the automatic segmentation accuracy much more than single 

channel signals.  

3. Aim of this thesis 

As we summarized from previous research, there are several problems of clinical cardiac 

murmurs analysis and monitoring. Aim at above problems, in this thesis we focused on the 

development of multichannel cardiac murmurs analysis method and monitoring system on CHD.

Firstly, due to the closure and opening of the human cardiac valves and blood flowing are 

occurring at the same time, especially, the cardiac murmurs from different body positions which are 

related with different disease, therefore, the one channel signal auscultation and analysis are not 

enough to diagnose the heart diseases accurately and comprehensively. So the multichannel clinical 

signals are even more valuable to obtain more abundant pathology information and corresponding 

positions information, which are great significance in clinical diagnosis and in-home heart healthcare. 

These part is introduced in Chapter one. 

Meanwhile, the HS data which the previous research used usually obtained from the textbook 

and internet, which may not reflect the clinical HS auscultation problems, and the patients who 

suffered CHDs are always children and adolescents, and if the child is crying, uncooperative to the 
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examiner or breathing loudly, it is very difficult to collect high-quality clinical HSs. Therefore a 

portable multichannel acquisition system with auscultation clothes which can collect high-quality 

clinical HSs synchronously by a simple and effect way is introduced in Chapter 2. 

And then, because of the difficulty of mastering auscultation skills, innocent and organic heart 

murmurs cannot be readily distinguished. Therefore, the study of computer-aided cardiac murmurs 

analysis is very important for CHD diagnosis. While, as we summarized from previous research, 

most of the research focus on HS or murmurs feature extraction and diseases classification by 

qualitative analysis, the quantitative analysis of clinical multichannel cardiac murmurs has not been 

pay attention to, therefore, in this thesis, in order to evaluate the clinical CHD murmurs 

quantitatively, the murmur index extraction methods based on murmur energy and heart vibration 

state are implemented in Chapter 3. 

Furthermore, the unexpected noises from external and internal disturbances always affect the 

clinical auscultation and analysis seriously. Therefore, noise reduction method based on frequency 

slice wavelet transform (FSWT) that can consummate the filtrating in time and frequency domain 

simultaneously will be proposed in this study in Chapter 4. 

At last, CHDs are not always found during pregnancy or at birth, they also can not be cured, and 

they must be monitored throughout life [2]. Thus, if life-style related diseases could not be monitored 

continuously during a long period in the early stage, they might be difficult to be diagnosed 

appropriately. Therefore, based on the murmurs index extraction analysis and unexpected noises 

reduction, a monitoring system on CHDs is developed to monitor continuously during a long period, 

further which will greatly improve the prevention of clinical CHD in advance, and helpful to the 

primary screening examination, and becomes stronger for the general users to perform the 

auscultation at home.  

4. Outline 

The contents of this study are to develop a multichannel cardiac murmurs analysis method 

and monitoring system on CHD. In the following, the contents in each chapter will be described 

in detail. 
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In chapter 1, the introduction of this study is introduced, they consist of background of CHD, 

HS and common murmurs, reviews of cardiac murmurs analysis and the aim of these thesis. 

In chapter 2, the clinical HSs acquisition is introduced. At first, the existing single channel HS 

acquisition system which consists of an IC recorder, a microphone, a traditional chest piece, an 

earphone and a computer for analysis and display is introduced. However, this single channel system 

costs much more time to collect clinical HS from different positions at the same time, especially, if 

the child is crying, uncooperative to the examiner or breathing loudly, it is very difficult to collect 

high-quality clinical HSs. in order to solve the above problems, a multichannel signals acquisition 

system which is composed of computer, audio amplifier, and multichannel physiological signal 

recorders and auscultation cloth with four stethoscopes is developed. Moreover, the clinical HS data 

statistics is implemented.  

In chapter 3, since the heart murmurs are pathological sounds produced by turbulent blood flow 

due to cardiac defects. In order to quantitively analyze cardiac murmurs, a murmur index extraction 

method based on murmur energy analysis is proposed in this chapter. This approach which analyses 

both low and high frequency sub-bands of HS signals based on the wavelet packet decomposition 

technique is very simple. The HS signals are divided into five bands and the energy intensity at each 

frequency band is calculated and compared. Based on the analysis of clinic HS data, three evaluation 

indexes for cardiac murmurs are proposed for the analysis of the pathologic murmurs. Finally, the 

threshold values between the innocent and pathologic murmurs are determined based on the 

statistical results of the normal HSs. A pulmonary HS case study on the NHS and CHD signals is 

performed to validate the usefulness and performance of the proposed method. At last, the 

quantitative indexes of cardiac murmurs (ICM) parameters are calculated with the same method. The 

statistic results show that ICM parameters of multichannel signals can not also evaluate the murmur 

quantitatively, but also reveal the murmurs generating reason by analyzing signals from four 

positions simultaneously.  

Furthermore, the dual moment feature (DMF) of systole and diastole HS signals as new indexes

that can be used to evaluate heart vibration states by describing the shape of different-scale window 

moment waveform (MW). Firstly, the homomorphic segmentation of multichannel HS cycle (T) and 
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fundamental HS (S1S2) is proposed based on homomorphic envelops waveform (HEW) and 

homomorphic MW extraction with window length (l=T/2), the HS cycle segmentation is 

implemented by locating the maximum of MW and meanwhile the HR is also calculated, and the 

S1S2 segmentation is implemented by locating the minimum of MW. Secondly, considering the 

segmentation points of HS S1S2 and cycle as MW centers respectively, to extract the systolic MW

with window length T/8, and diastolic MW with window length 3T/8, furthermore, extracting DMF 

as systolic murmur index (SMI) which is proposed based on SMW with window length T/4 with one 

cycle time length, and also extracting diastolic murmur index (DMI) based on diastolic MW. Finally,

many experiments show that the original clinical HS signal included more murmur components when 

the DMF is high and its value over 0.2. Importantly, DMF can be computed by moment analysis very 

-diagnosis or aided-diagnosis in an artificial 

intelligence cardiac murmur analysis system.  

In chapter 4, the noises coming from various sources contaminate HS signals and affect heart 

disease detection. Therefore, in this chapter, a novel noise reduction method based on FSWT that can 

consummate the filtrating in time and frequency domain simultaneously will be proposed in this 

study. The image process idea of time frequency representation (TFR) is used instead of designing 

filter directly. This method is assessed using signal noise ratio (SNR), correlation coefficient (CC) 

and mean square error (MSE) evaluation indicators and comparing with the total variation de-noise 

(TVD) and discrete wavelet transform (DWT) methods, experimental results show that the proposed 

histogram curve adjustment (HCA) method was much more effective for external (ambient noise, 

speech noise, stethoscope device power interference) and internal (respiratory or lung sounds, and 

skin movements) disturbances noise reduction. Finally, a case of clinical HS is implemented to 

validate the proposed method which can cancel the HS noise and interference adaptive, simple and 

correctly. 

In chapter 5, the multichannel murmurs monitoring system which is composed of multichannel 

HSs measuring system, analysis server and analysis result display was designed. The measuring 

system which consists of multichannel cardiac signals recorders acquires the signals and sends them 

to analysis server though internet network by computer. And the data transmission (upload and 
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download) and analysis were implemented by the analysis server. This monitoring on CHDs by 

clinical HSs auscultation and analysis remain important for general daily health care. The 

pre-monitoring for CHD sounds will greatly improve the prevention of clinical CHD in advance, and 

helpful to the primary screening examination, and becomes stronger for the general users to perform 

the auscultation at home. 

In chapter 6, the conclusions of this study are presented. 
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Chapter 2 

Clinical Heart Sound Acquisition  

The stethoscope [1-3], which has been invented more than few hundred years ago, is one of the 

oldest medical diagnosis instruments, and a lot of researchers on the stethoscopic signal analysis for 

diagnosis of the cardiac conditions were continued for a number of decades. In the recent year, the 

high concern about health management and medical instruments for health care and diagnosis in 

daily life. Stethoscope, in addition to other health care instruments such as weight scale, a clinically 

thermometer and a sphygmomanometer, have come into wide use for inexperienced users. Since the 

stethoscope could auscultate the HS, respiratory sounds, as well as lung sound, and screen the most 

cardiorespiratory diseases, it might become a cheap and efficient home health care instrument in the

near future.  

However, the auscultation of HS through either a conventional acoustic or electronic 

stethoscope needs a long-term practice and experience, which could take years to acquire the 

auscultation skills. Although the stethoscope becomes the symbol of clinicians, primary care 

clinicians are documented to have poor auscultatory skill to actuality. Therefore, if the HS can be 

recognized or diagnosed with support of the software techniques, the above problems might be taken 

advantage of as a high-quality home medical and health care instrument. 

1. The existing heart sound acquisition system 

Recent years, we are focusing on developing a single channel single acquisition system [4-9], 
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which is composed of an IC recorder (Olympus Voice-Trek V-51), a microphone (audio technical R, 

AT9904), a traditional chest piece (Littman, ClassicIISE), an earphone, while auscultating HS, we 

can also hear in the same time.  

Chest
Piece Microphone IC Recorder Earphone

Computer

USB

Heart sound recording system

Analysis & Display

Fig. 1. Block diagram of single channel HS measurement and analysis system. 

(a) big chest piece (b) small chest piece

Fig. 2. Big and small chest pieces. 

Table 1. Specification of the IC recorder. 

IC recorder (Olympus Voice-Trek V-51) 

Sampling Frequency  44.1kHz 

Frequency Band 20Hz~20kHz 

Bit Rate 128kbps 

Sampling Bit 16 

Memory  1GB 
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Table 2. Specification of the microphone (audio technical R , AT805F).

Microphone (audio-technicalR, AT805F) 

Frequency  30Hz~10,000Hz 

Sensitivity (0dB=1V/Pa, 1kHz) -46±3dB 

Impedance  2k

The system adopt the normal standard chest piece (Littman, ClassicIISE), which is used by 

many general doctors and is produced by America 3M company showed in Fig. 2, and the small one 

used for children and big one used for adults. The specifications of IC recorder and microphone are 

shown in Table 1~2. The HS is recorded by IC recorder and then transmitted into a computer by USB 

interface. And these signals will be analyzed and displayed on the computer with software 

MATLAB.  

This single channel system is light, simple and convenient in clinic auscultation, and it realizes

that HS can be recognized or diagnosed with support of the software techniques. However, there are 

some problems during clinical HSs acquisition with it, especially for clinical CHD HSs acquisition. 

Firstly, single channel system costs much more time to collect clinical HS from different positions. 

Furthermore, this will affect the patients to have a good rest situation. Secondly, it can not be used to 

acquire the multichannel signals at the same time. Lastly, the patients who suffered CHD are children 

or adolescents, if the child is crying, uncooperative to the examiner or breathing loudly, it is very 

difficult to collect high-quality clinical HSs. in order to solve the above problems, a multichannel 

signals acquisition system is developed, the detail will be introduced in next section. 

2. Multichannel acquisition system 

Multichannel measuring system with auscultation clothes and electronic stethoscope is applied 

to obtain the HS from patients and healthy person who has no history of heart disease. This 

measuring system is composed of computer, audio amplifier, and multichannel physiological signal 

recorder and auscultation cloth with four stethoscopes. This measuring system is also can be used for 
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healthy person at sports state.  

So how to collect the high quality multichannel signals simultaneously is a key point for HS 

measuring. Because when the objects are auscultated, they are always hyperactive, uncooperative to 

hands, there may be some noises from our movement or the friction between chest piece and skin. In 

addition, 

front of the chest, the auscultation clothes made by the existing vest for male and female are showed 

in Fig. 3~4. Therefore, how to design the auscultation clothes for female is important for measuring 

system. The auscultation clothes simple graph is showed in Fig. 5. In order to keep the chest piece 

and auscultation positions contact closely and tightly, the elastic band is used for fixing the 

auscultation positions. And the clothes sample is showed in Fig. 6. This auscultation cloth has the 

advantages of good softness, convenient wearing, close-

restricted by the size of the clothes, because they are designed based on existing vest. And the 

auscultation effect is very good, HS sample recorded from healthy person wearing auscultation cloth 

showed in Fig. 7. This auscultation cloth is also can be used for healthy person at sport situation.

Fig. 3. Male vest.                Fig. 4. Female vest. 
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Aortic Area
Pulmonic Area

Tricuspid Area

Mitral AreaPocket for holding
the recorders

Elastic
Band

        Fig. 5. Simple graph of auscultation clothes.        Fig. 6. Auscultation clothes sample. 

There are two kinds of multichannel physiological signal recorders, one is BIOPAC MP150 data 

acquisition system which is produced by America BIOPAC company. And the measuring system 

with BIOPAC showed in Fig.7.  

MICA-800C
Microphone Amplifier

MICA-800C

BIOPAC
MP150

BIOPAC
MP150 & UIM100C

Ethernet Line

Auscultation cloth with
stethoscope chest pieces

PC for analysis

A P

T M

Fig. 7.  Measuring system with BIOPAC. 

This system offers Ethernet- ready data acquisition and analysis, and also can recorder multiple 

channels with different sample rates; it records at speeds up ti 400 kHz (aggregate). HS recorded by 

the auscultation cloth with chest-pieces which are transferred to microphone amplifier, and then these 

signals are sent to BIOPAC MP150 data acquisition system, and sent to PC. These multichannel 



21 

signals can be displayed in PC, shown in Fig. 8(a)~(b). In this multichannel measuring system, the 

microphone amplifier is MICA-800C. And the clinical multichannel HS measuring is showed in Fig. 

9. 

Fig.8 (a). HS real-time display graph of BIOPAC acquisition system (NHS). 

Fig.8 (b). HS real-time display graph of BIOPAC acquisition system (VSD). 

Fig. 9. Measuring system with BIOPAC for clinical HS recording. 
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However, as shown in Fig.9, the BIOPAC multichannel measuring system is too heavy to take 

to different places, furthermore, it is very expensive for healthcare at hospital and at home. Therefore, 

the other multichannel physiological signal recorder which is composed with two IC recorders fixed 

with a light plastic case, shown in Fig. 10(a)~(c). the specification of IC recorders and microphones 

are the same with single channel system, which are given in table 1~2. This physiological signal 

recorder is much more simple operation, portable. The linical measuring system is showed in 

Fig.11-12. 

Fig. 10. Measuring system with IC recorders fixed by plastic case for clinical HS recording,
(a) Measuring system with IC recorders (b)~(c) IC recorders fixed by plastic case(front~side).

Auscultation cloth
with stethoscope chest
pieces and microphone

Two IC recorders
fixed by a plastic case

USB of recorders

PC for analysis

A P

T
M

Fig. 11. Measuring system with IC recorders. 

(a) (b) (c) 
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Auscultation cloth with
stethoscope chest pieces and

microphone

Two IC recorders fixed by a
plastic case

Auscultation positions

P

T M

A

Fig. 12. Multichannel signals measuring system. 

The clinical HSs, which collected by IC recorders multichannel signals measuring system, were 

showed in Fig.13~16. The NHS multichannel signals from A, P, T and M, which is showed in Fig. 13, 

show the basic HSs clearly, the CHD multichannel signals in Fig.14~16, show the strong murmurs at 

P positions, which are systolic murmurs,  

In clinical, the doctor may hear HSs or murmurs from some different sites in front of the chest 

or from the back with a stethoscope. Because the defects can be located in different places on the 

atrial, ventricular or valves. So if we can obtain the multichannel signals synchronously, much more 

pathology and corresponding positions information can be collected and maybe great significance in 

clinical diagnosis and in-home heart healthcare. There are the four channels clinical HSs of NHS, 

ASD, VSD and TOF from clinic showed in Fig. 14~16, respectively. These clinical HSs show that 

this multichannel measuring system is effective for clinical acquisition. 
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Fig. 13. Multichannel NHS. 

Fig. 14. Multichannel ASD signals. 
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Fig. 15. Multichannel VSD signals. 

Fig. 16. Multichannel TOF signals. 
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is necessary to develop a much more convenient and effective measuring system. 

From these original clinical HSs, we can see the CHD (ASD, VSD and TOF) sounds contain 

much more information about systolic murmurs, splitting sounds, and so on, which can be seen in 

Fig. 14~16. And as for different diseases, the signals from these four channels are different, for 

example, for NHS, the foundational S1 and S2 can be recognized clearly of the cycle. For ASD, we 

can find there are heart murmurs in the signals of A and P areas, and there maybe S2 splitting sounds. 

For VSD, the holosystolic crescendo murmur from P area can be seen clearly. And for TOF, the 

holosystolic murmur from P area can be seen clearly, because of its complexity, there also some 

decrescendo murmurs from A, T and M areas. 

3. Clinical HS data statistics  

Clinical HS from patients who suffer cardiac diseases are mixed with many kinds of heart 

murmurs and noises from various sources contaminate HS signals. Therefore, the clinical HS 

complexity is much more than the pure HS from standard HS database. In recent, the standard HS 

databases, such as 3M Littman database, which are aimed at single disease, and the quantity is small, 

this situation can not meet the needs of the clinical HS research with diversity and complexity. 

Furthermore, abundance and diversity clinical HS data provide rich data resource for clinical analysis, 

and lay a foundation for comparison, optimization and verity of software algorithm.  

In view of these current situations, from the year 2007 to 2014, we have collected lots of clinical 

HSs from college students and patients who have signed informed consents. There are 101 cases

NHSs from college students who have no heart disease history, and there are 206 cases abnormal 

 Army, 

Cardiothoracic Surgery, in AHS, there are 87 cases which are common CHDs (ASD, VSD and TOF).

This system is used for the multichannel visual auscultation from A, P, T and M positions, for 

obtaining high-quality clinical HS, it provides reliable data source for further clinical HS analysis.

4. Summary  

This chapter introduced the development of two electric stethoscope devices for easy operation 
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in home health care. Firstly, the existing single channel acquisition system consists of an IC recorder, 

a microphone, a traditional chest piece, an earphone and a computer for analysis and display was 

introduced. However, in order to collect the multichannel signals at the same time, we also design the 

auscultation clothing. And the multichannel acquisition system which is composed of computer, 

audio amplifier, and multichannel physiological signal recorder and auscultation cloth with four 

stethoscopes was introduced. While there are two kinds of multichannel physiological signal 

recorders, one is BIOPAC MP150 signal recorder and the other is two IC recorders fixed with a 

plastic case, considering the simplicity and convenience, the multichannel physiological signal 

recorders which consist of two IC recorders fixed with a plastic case is recommended to use. Finally, 

the clinical HS data statistics is implemented. These HS data are used in the next chapters, and 

provide very valuable resource for our next research. 
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Chapter 3 

Multichannel Cardiac Murmurs Analysis Method and Murmurs 

Indexes 

CHDs are problems with the heart's structure or function that is formed before birth [1], 

with a rate of eight out of every 1,000 newborns. It is known that this kind of defects can be cured 

with a high probability if the diseases could be detected in an early stage. Therefore, the research on 

the early detection of CHDs is one of the most important medical research areas [2]. There are many 

types of CHDs. Some are simple and some are more complex. ASD is one of the CHDs, a hole in the 

part of the septum that separates the atria. The hole makes oxygen-rich blood from the left atrium to 

flow into the right atrium, instead of flowing into the left ventricle as it should. ASDs can be small, 

medium, or large. Medium and large ASDs allow more blood to leak from one atrium to the other. 

VSD is another type of CHD, with a hole in the part of the septum that separates the ventricles. Small 

VSDs do not cause problems and may close on their own. However, large VSDs allow much blood to 

flow from the left ventricle to the right ventricle. As a result, the left side of the heart must work 

harder than normal and extra blood flow increases blood pressure in the right side of the heart and 

the lungs. Furthermore, the most common complex heart defect is TOF, which is a combination of 

four defects: Pulmonary valve stenosis, a large VSD, an overriding aorta and right ventricular 

hypertrophy. ASD, VSD and TOF account for the majority of the CHD [3].  

Heart murmurs are pathological sounds produced by turbulent blood flow due to certain cardiac 

defects, and they are the most common reasons for referral to the pediatric cardiologist. In children, 
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about 50-70% of these murmurs are clinically insignificant [4], but if the child is crying, 

uncooperative to the examiner or breathing loudly, some other murmurs may occur. Because of the 

difficulty of mastering auscultation skills, innocent and organic heart murmurs cannot be readily 

distinguished. Therefore, the study of computer-aided cardiac murmurs analysis is very important for 

CHD diagnosis. Furthermore, without professional medical knowledge and skills, HS auscultation of 

HS is difficult. Therefore, HS and murmurs analysis with computer-aid become more and more 

important. And murmurs intensity, frequency character, the murmurs occurrence periods and 

murmurs time duration are the important points for clinical HS auscultation, so how to make these 

murmurs characters not only for doctors but also be used for general user are the aim of murmurs 

analysis. While, as we summarized from previous research, most of the research focus on HS or 

murmurs feature extraction and diseases classification by qualitative analysis, the 

quantitative analysis of clinical multichannel cardiac murmurs has not been pay attention to, 

therefore, in this thesis, in order to evaluate the clinical CHD murmurs quantitatively, the murmur 

index extraction methods based on murmur energy and heart vibration state are implemented in 

Chapter 3. 

In this chapter, the murmur methods of multichannel heart murmur analysis are introduced. 

Firstly, the pre-processing is introduced in section 1. And then index extraction based on murmur 

energy analysis by wavelet packet decomposition (WPD) technique is proposed in section 2.

Furthermore, in section3, the murmur index extraction based on cardiac vibration states is proposed.

At last, the summary of this chapter is presented. 

1. Pre-processing 

In this chapter, the original HS signal x(t) recorded by measuring system with 16-bit accuracy 

and 20kHz or 40kHz sampling frequency. Firstly, the recorded signal was converted into 20 kHz. 

Next, Daubechies10 (DB10) wavelet was used as a mother wavelet for the wavelet decomposition. In 

order to evaluate the murmur at different frequency ranges, the resulting signals with band limit of 

5-1250 Hz were reconstructed by the components from d11 to d4. At last, the normalization was 

applied by setting the variance of the signal within a value of 1.0, and the resultant signals can be 

expressed as s(t). 
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2. Murmurs indexes extraction based on energy analysis

Heart murmurs are pathological sounds produced by turbulent blood flow due to cardiac defects.

In order to quantitively analyze cardiac murmurs, the murmurs index extraction methods based on 

murmurs energy analysis was proposed [5-7]. Firstly, In order to extract the murmurs indexes for 

analyzing the entire cardiac murmurs at different frequency bands, the approach on analysis of the 

pathologic cardiac murmurs based on the wavelet packet decomposition technique were described. 

The HS signals were divided into five bands and the energy ratios at each frequency band were

calculated and compared. Based on the analysis of clinic HSs data, three evaluation ICM were

proposed for the analysis of the pathologic murmurs. Finally, the threshold values between the 

innocent and pathologic murmurs were determined based on the statistical results of the normal HSs. 

The statistic results showed that ICM of multichannel signals not only evaluated the murmurs

quantitatively, but also revealed the murmurs generating reason by analyzing signals from four 

positions simultaneously. 

The cardiac murmurs for different heart defects usually contain different frequency components. 

If the sound signal can be decomposed in different requested frequency ranges in a suitable way, the 

corresponding energy intensities can be evaluated quantitatively. In this study, the cardiac signal is 

decomposed and reconstructed at each requested frequency band by the WPD technique and their 

murmurs energy intensities are calculated and used for the cardiac murmurs evaluation. a block 

diagram of the study on cardiac murmurs evaluation based on the wavelet packet (WP) technique for 

assessing the murmurs distribution and levels is depicted in Fig.1. 

Wavelet-based preprocessing

Cardiac sound signals

Calculate the WPE ratios at five frequency bands

Extract evaluation indexes of cardiac murmurs

x(t)

s(t)

EPj(j=1, ,5)

Fig. 1. A block diagram of the study on cardiac murmurs evaluation based on the WP technique
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2.1 Frequency band definition 

By considering the frequency ranges of the innocent and pathologic murmurs in the frequency 

domain, in this study, the wavelet packet decomposition at level 11 is employed to split frequency 

bandwidths of HS signals. Through clinical auscultation observation and energy intensities analysis 

at each level (d11~d4), the interested parts and useful combinations are implemented, and five 

frequency bands are defined and shown in Table 1, they are named as very low frequency (VLF), 

standard frequency (SF), low frequency (LF), middle frequency (MF) and high frequency (HF). 

Their corresponding wavelet detail coefficient levels, center frequencies and energy ratios are 

represented in Table 1. 

Table 1. Murmurs frequency bands definition. 

Frequency 
band number (j) 

1 2 3 4 5   

Frequency band VLF SF LF MF HF   
Wavelet detail coefficients d11+d10 d9+d8 d7 d6 d5+d4  

Frequency band 
corresponded to sampling 

frequency (Hz) 
4.88-19.53 19.53-78.1 78.1-156.25 156.25-312.5 312.5-1250

2.2 Murmurs index evaluation based on wavelet packet energy  

The wavelet packet analysis is an extension of the DWT and is one of the most efficient 

decomposition that could be performed on the signal. Daubechies type wavelet (DB10) is used to 

build a wavelet filter [6]. Further the reconstructed signals at each decomposition level are applied by 

FFT. Fig.1 shows the plots of some typical HSs treated by WP analysis method. Fig.2(a)-(d) are the 

examples of NHS, ASD, VSD and TOF signals obtained by reconstruction of the components at VLF, 

SF, LF, MF and HF band as defined in Table 1. A simple sum of all the VLF, SF, LF, MF and HF 

components represent the original HS signal.  

The NHS signal plots at each frequency band show the 1st and 2nd sounds clearly and the energy 

is mainly distributed at the SF band. As for ASD, the signal plots show that the murmurs appeared 

mainly at LF and MF bands. As for VSD and TOF, the murmurs have stronger energy distributions at 



33 

MF and HF frequency bands.  

Fig.2 (a)-(d) show that the energy of all types of HS signals is mainly concentrated at SF band. 

Further, compared to NHS, CHD signals have higher energy intensities at the higher frequency bands.

To quantify the cardiac murmurs, WP energy ratio is proposed and defined as the following: 

                     (1)

is the reconstructed signal at the corresponding frequency band j, N is the signal length and j 

=1, 2, 3, 4, 5 are corresponding to frequency bands VLF, SF, LF, MF and HF respectively. 

The energy distributions for these four conditions (NHS, ASD, VSD and TOF) are calculated at 

each frequency band defined in Table 1. The energy distribution histograms at SF, LF, MF and HF 

frequency bands are plotted in Fig.3 to Fig.7, the observed are from the pulmonary area (P) position. 

The y-axis shows the number of samples or frequency of the observations in the interval and the 

x-axis is the energy ratio  in percentage. There are about 40% to 90% energy distributed at SF 

frequency band, 5% to 20% at LF band, 1% to 15% at MF and 0.1% to 3% at HF band. 
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Fig.2. HS signal examples of NHS, ASD, VSD, TOF and their reconstructed signals at different 
corresponding frequency band, Original, VLF, SF, LF, MF and HF. 

The averages and the standard deviations for these four conditions are summarized in Table 2.

Statistical analysis was performed to show whether there is a significant difference in means among 

these four conditions (NHS, ASD, VSD and TOF) using the one-way ANOVA F-test. The very low 

P-values (<0.0001) were taken as statistically significant. It is obvious that the distributions of NHS 

are following the normal probability distribution. The energy distributions of ASD are similar to 

NHS. Furthermore, the energy distributions of other CHDs are spread over a wide range and the 

energies maintain higher values at MF and HF bands compared to those in NHS.  

(a) NHS (b) ASD

(c) VSD (d) TOF
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Fig. 3. Energy distribution at SF frequency.    Fig. 4. Energy distribution at LF frequency.

   Fig. 5. Energy distribution at MF frequency.   Fig. 6. Energy distribution at HF frequency. 

Table 2 shows over 50% of energy in average concentrated at SF band for all conditions. This 

shows that the main component of HS is in the SF band. Further, Fig.3 and Table 2 indicate that the 

pathologic murmurs feature high energy distributions at LF, MF and HF.  

Table 2. Means and variances of the energy ratios at four frequency bands.  

Group 
(Emean±Estd)

NHS ASD VSD TOF 

EVLF(%) 34.67±17.3 27.5±16.3 29.96±17.9 28.38±22.5
ESF(%) 63.58±17.1 67.75±15.0 55.55±14.8 54.65±16.9
ELF(%) 1.60±1.0 3.90±2.1 9.57±6.4 10.82±8.0
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EMF(%) 0.14±0.1 0.73±0.6 3.57±3.9 4.16±3.8
EHF(%) 0.02±0.02 0.12±0.1 1.36±2.5 1.99±2.4

On the other hand, the energy distribution at VLF band is considered to be a vibration or 

systaltic movement in the body due to the heartbeat. The energy distribution histograms at VLF band 

are shown in Fig.7. It was found that the HSs recorded from the infant usually contain high energy 

components at VLF band. Because the infant has little fat, the pulsation of the heart easily leads to a 

movement of the whole chest region. This movement, especially due to the abnormal heart pulsation 

is captured by another stethoscope which shows the high energy component at VLF band. Since there 

are still many uncertainties for this VLF band, this study has mainly concentrated on the four bands, 

SF, LF, MF and HF. 

Fig. 7. Energy distribution at VLF. 

2.3 Result and discussion for one channel signal 

As discussed above, the main energy of HS is concentrated at SF band and the pathologic 

murmurs represent the high energy density at LF, MF and HF bands. Based on this fact and our 

investigation, the evaluation ICM are proposed and defined as the following: 
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Fig.8 shows the plots of ICMLF for NHS and CHDs. The average and standard deviation of 

ICMLF for NHS are obtained as 2.66+1.95. The threshold for cardiac murmurs (TCM) at LF band is 

defined by TCMLF = 2.66+1.95 = 4.61, depicted as a broken line in the figure. It means that it could 

be diagnozed to be the pathologic murmurs if the obtained energy level is higher than this threshold

TCMLF. From Fig.8, it is found that four of the 12 ASD samples are below the threshold TCMLF, 

indicating four subjects in false diagnosis. On the other hand, only two of the 27 VSD and one of the 

8 TOF samples are below the threshold.  

Fig. 8. Distributions of the indexes of cardiac murmurs at LF band (ICMLF). 
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Fig. 9. Example of pulmonary sound due to a normal breath, indicated by case Pa in Fig. 8. 

Fig. 10. Example of pulmonary sound due to a normal breath, indicated by case Pb in Fig.8.
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Fig. 11. Example of pulmonary sound due to a normal breath, indicated by case Pc in Fig. 8.

Points Pa~Pc in Fig.8 has the high values of ICMLF in NHS at LF band, which are beyond the 

threshold of TCMLF. These HS signals are further analysed and the results are plotted in Fig.9~11. It 

is confirmed that the strong energy component at LF band is the basic heart sounds (such as S1, S2). 

The breath component can also be found at LF band, such as case Pb, which is also have strong 

intensity at MF showed in Fig.12. General auscultation of HS, usually includes respiratory sound, 

and the pulmonary sound components are mainly distributed at LF and MF bands. 

Regarding the MF band, Fig.12 shows the plots of ICMMF for NHS and CHDs. The average and 

ICMMF is 0.24+0.19 and the threshold of the cardiac murmurs at MF 

band is set as TCMMF = 0.43. It is found that there are 3 ASD, 1 VSD and no TOF samples below the 

level of TCMMF. However, the misdiagnosed number for TOF has been improved with the 

comparison of the results obtained at LF band. 
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Fig. 12. Distributions of the indexes of cardiac murmurs at MF band (ICMMF). 

Fig. 13. Example of pulmonary sound due to a normal breath, indicated by Pd in Fig. 12. 

Points Pd and Pb in Fig.12 has the high values of ICMMF in NHS. Its time waveforms 

reconstructed at four expected frequency bands are plotted in Fig13 and Fig.10. It is clear that the 

breath sounds represent the strong components in LF, MF and HF bands.  

The plots of ICMHF are shown in Fig.14. The average and standard deviation of ICMHF for NHS 
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samples shown in Fig.14. The misdiagnosed cases are reduced significantly. This indicates that the

cardiac murmurs evaluation index at HF band ICMHF can be an evaluable index for quantitative 

diagnosis of HS murmurs. It is also evident that the diagnosis accuracy could be improved if the HS

is recorded by a momentary stop of the breath, and in a quiet environment.  

Fig. 14. Distributions of the indexes of cardiac murmurs at HF band (ICMHF). 

Fig. 15. Example of pulmonary sound due to a normal breath, indicated by Pe in Fig. 14. 
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Fig. 16. Example of pulmonary sound due to a normal breath, indicated by Pf in Fig. 14. 

Points Pd~Pf in Fig.14 has the high values of ICMHF in NHS. Its time waveforms reconstructed 

at four expected frequency bands are plotted in Fig.13 and Fig.15~16. It is clear that the breath 

sounds represent the strong components in LF, MF and HF bands. The energy distributions of the 

breath component have almost the same intensity at both LF and MF frequency bands. 

Based on the experimental investigation, the evaluation indexes of cardiac murmurs (ICMLF,

ICMMF and ICMHF) are discussed. Performance measures such as True Positives (TP), False 
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measures of ICMHF yielded the highest sensitivity of 95.7% (the correct rate of CHD cases), 

performance measures of ICMMF yielded the highest specificity of 94.3% (the correct rate of normal 

cases) and accuracy of 93.9% (the correct rate of total cases), respectively, significantly better than 

that with ICMMF and ICMLF. 

Table 3. TN, FN, TP, FP, sensitivity (Se), s  and accuracy (Acc) of evaluation indexes of
cardiac murmurs ICML. 

ICML TN FN TP FP Se (%) Sp (%) Acc (%) 
ICMLF 32 7 40 3 85.1 91.4 87.8 
ICMMF 33 4 43 2 91.5 94.3 92.7 
ICMHF 32 2 45 3 95.7 91.4 93.9 

As mentioned above, the energy distribution at VLF band is considered to be a vibration or 

systaltic movement in the body due to the heartbeat shown in Fig.6. In Fig.13, the two samples below 

the threshold of TCMHF=0.06 might be misdiagnosed as normal samples. Further analysis on these 2 

CHD samples and comparing with NHS revealed that the energy ratios EVLF of these two ASD cases 

are less than 34% (see Table 4). This means these two can be distinguished from NHS by EVLF (%). 

However, based on the records of these two ASD, the patient was diagnosed as a single ostium 

primum atrial septal defect without mitral regurgitation or left ventricle to right atrium shunting, 

while the other ASD cases in this study are ostium secundum atrial septal defects. Patients with 

smaller ostium primum atrial septal defects (little or no mitral regurgitation or left ventricle to right 

atrium shunting) are usually asymptomatic [1]. 

Table 4. Energy ratios values at different frequency bands of CHD heart sound below the threshold 
TCMHF. 

Sample No. EVLF (%) ESF (%)    ELF (%) EMF (%) EHF (%) 
NHS (Eave±Estd) 34.67±17.4 63.58±17.1 1.60±1.0 0.14±0.11 0.018±0.02

ASD(1) 2.31 93.02 4.30 0.33 0.04 
ASD(12) 29.35 68.37 2.04 0.22 0.01 

Considering the analysis result of evaluation indexes ICMHF and the two special cases of CHD

(ASD) at VLF band, we can attain improved performance measures with sensitivity of 100% and 

accuracy of 96.3%, respectively. 
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2.4 Result and discussion for four channel signals 

In clinical, the medical personnel may hear HSs or murmurs from some different sites in front 

of the chest or from the back with a stethoscope. Basically, there are four auscultation positions (A, P, 

T and M), which are also introduced in chapter 1 and 2. Hearing and detecting heart murmurs during 

a physical examination is the vital diagnosis for common clinical heart diseases, including the CHD, 

if the heart murmurs are detected, physicians will refer to go to a cardiologist for further diagnosis. 

According to the same heart murmur evaluation method in the section 2.3, we also make the 

statistic data of ICM at LF, MF and HF bands. There are the four channels statistics of NHS, ASD, 

VSD and TOF from clinic showed in Table 5~7, respectively. And the The NHS threshold (mean+std) 

of TCMLF, TCMMF and TCMHF at four positions are showed in Table.8 

Table 5. Means and variances of the ICMLF at four positions. 

ICMLF

(mean±std)
A P T M 

NHS 2.90±2.2 2.66±2.0 1.67±1.7 4.04±2.4
ASD 4.07±2.0 5.82±3.5 5.21±4.7 5.09±3.1
VSD 9.53±7.5 15.66±10.0 9.14±7.2 9.64±7.4
TOF 9.66±7.4 20.70±14.9 13.03±9.2 6.62±3.2

Table 6. Means and variances of the ICMMF at four positions. 

ICMMF

(mean±std)
A P T M 

NHS 0.28±0.3 0.24±0.2 0.18±0.2 0.42±0.3
ASD 0.62±0.4 1.07±0.8 1.49±1.5 1.16±0.8
VSD 2.15±1.9 5.23±5.6 2.09±2.3 1.80±1.4
TOF 1.97±2.0 8.06±6.9 2.80±3.2 1.00±0.7

Table 7. Means and variances of the ICMHF at four positions. 

ICMHF

(mean±std)
A P T M 

NHS 0.04±0.04 0.03±0.03 0.04±0.06 0.09±0.1
ASD 0.25±0.3 0.18±0.1 0.63±0.7 0.37±0.3
VSD 0.67±0.6 1.49±2.0 0.75±0.7 0.79±0.6
TOF 0.45±0.4 4.26±5.1 1.66±2.9 0.83±1.4
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Table 8. The threshold of TCMLF, TCMMF and TCMHF at four positions. 

TCML

ICML(mean+std)
A P T M 

TCMLF 5.132 4.606 3.363 6.466 
TCMMF 0.539 0.427 0.353 0.713 
TCMHF 0.079 0.060 0.100 0.219 

And in order to observe the comparison clearly, the histograms are drawn according to the data 

in Table 5~7, and showed in Fig. 17~19, respectively. 

From Fig. 17~19, as for ICM at LF, MF and HF, we can find the main change trends are 

consistent, the ICM of CHDs are higher than NHS at differing in degree. Further, this fact shows the 

heart murmur evaluation parameters are effective between NHS and CHDs. Furthermore, the 

discussion murmur indexes at different positions of CHDs respectively in detail, based on the Fig. 

17~19 and the blood flow figures which is introduced in chapter 1. 

Fig. 17. Mean values of the ICMLF at four positions. 
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Fig. 18. Mean values of the ICMMF at four positions. 

Fig. 19. Mean values of the ICMMF at four positions. 
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much more murmurs at P, T and M positions. 

As for VSD, the ICM parameters are little higher than NHS at these four positions, and we also 

can find at P position, the index is especially higher, that is because VSD is a hole in the part of the 

septum that separates the ventricles-the lower chambers of the heart. The hole allows oxygen-rich 

blood to flow from the left ventricle into the right ventricle, instead of flowing into the aorta and out 

to the body as it should. This means much more mixing blood flow through the tricuspid valve (T) 

and mitral valve (M) to pulmonary valve (P). As a result, the left side of the heart must work harder 

than normal. Extra blood flow increases blood pressure in the right side of the heart and the lungs, 

which cause much more murmurs at P position.  

As for TOF, the ICM parameters from P position data which is the highest. That is because TOF is 

a combination of four defects: pulmonary valve stenosis, a large VSD, an overriding aorta, and right 

ventricular hypertrophy. In TOF, not enough blood is able to reach the lungs to get oxygen, and 

oxygen-poor blood flows to the body. That because partial obstruction of right ventricular outflow 

and pulmonary valve (P), when the blood flow from the narrow pulmonary valve, which cause much 

more murmurs.  

2.5 Summary  

Heart murmurs are pathological sounds produced by turbulent blood flow due to cardiac defects.

This section has described a new approach on analysis of the pathologic cardiac murmurs based on 

the wavelet packet decomposition technique which analyses both low and high frequency sub-bands 

of HS signals, collected from clinical subjects in general environment. The HS signal was divided

into five bands and the energy intensity at each frequency band was calculated and compared. Based 

on the analysis of clinic HS data, three evaluation indexes for cardiac murmurs were proposed for the 

analysis of the pathologic murmurs.  

Finally, the threshold values between the innocent and pathologic murmurs were determined

based on the statistical results of the normal HSs. A pulmonary HS case study on the NHS and CHD 

signals was performed to validate the usefulness and performance of the proposed method. The 

performance measures of ICMHF yielded the highest sensitivity of 95.7%, specificity of 91.4% and 
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accuracy of 93.9%, respectively. Furthermore, considering the analysis result of evaluation indexes

ICMHF at HF (312.5-1250Hz) and the two special cases at VLF band (4.88-19.53Hz), we can obtain 

the improved performance measures with a sensitivity of 100%, and accuracy of 96.3%, respectively. 

At last, the ICM parameters are calculated with the same method. The statistic results show that 

ICM parameters of multichannel signals not also can evaluate the murmur quantitatively, but also 

reveal the murmurs generating reason by analyzing signals from four positions simultaneously.

3. Murmurs indexes extraction based on heart vibration states 

In order to further quantitatively analyze the cardiac murmurs at each cardiac cycle, the murmur 

index extraction based on cardiac vibration state by describing the shape of different-scale window 

MW was proposed in this section. Firstly, the introduction of moment method is presented. And then 

the homomorphic segmentation of multichannel HS cycle (T) and fundamental HS (S1S2) is 

proposed based on homomorphic MW (HMW) extraction with window length l (T/2), the HS cycle 

and S1S2 segmentation were implemented by locating the maximum and minimum of MW 

respectively. Secondly, considering the segmentation points of HS S1S2 and cycle as MW centers 

respectively, to extract the systolic MW and diastolic MW with different window lengths (T/8 and 

3T/8), furthermore, extracting DWF such as SMI and DMI which were proposed based on systolic 

MW (SMW) and diastolic MW (DMW) with window length T/4. Finally, many experiments show 

that the murmur indexes are efficient to judge the murmur occurring periods and degree. Importantly, 

auto-diagnosis or aided-diagnosis in an artificial intelligence cardiac murmur analysis system. And 

the details are introduced as bellows. 

The understanding of moment is derived from the image processing technology. In image 

processing, the moment properties are relative with the shape of object directly. The moment of 

signal is also relative with these properties, such as waveform, strong, weak, or other important 

characteristics of the signal changing. Yan [8] put forward the moment segmentation method of HSs 

in 2009, a lot of experimental analysis found that MW has obvious advantages, its computation is 
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processing.  

In this section, taking the similar idea of [8], we proposed the different-scale window MW of 

clinical HSs on different time window sizes. However, we found some new ideas based on the 

reference [8]. 

The homomorphic envelop waveform extraction based on multichannel signals is proposed, 

which is helpful to highlight the common characters of basic HSs and weaken the influence of 

heart murmurs or other incidental noises. 

The time window size of moment is an important parameter need to be determined, a fixed size 

in [8] is not easy to adapt to all situations, so we put forward the adaptive method of the time 

window size which is changeable with each HS cycle. 

The different time window moments of the HSs have different characteristics, these 

characteristics can be used to obtain the rhythm features of HSs more accurately, and we can use 

different-scale window MW to reveal the new feature information of clinical HSs from many 

clinical data.  

We also found that a new property of different-scale window MW on different time windows can 

realize the heart murmurs intensity evaluation.  

3.1 The heart sound segmentation of multichannel signals 

In this section, the HS segmentation of multichannel HSs signals is implemented based on 

homomorphic envelops waveform (HEM) and different-scale window MW can be expressed by the 

Viola integral method [9].  

The original HS signals were recorded by the multichannel signals measuring system with 

16-bit accuracy and different sampling frequencies (20 kHz and 40 kHz). So the resulting signals 

were pre-processed wavelet method introduced in section 1. At last, the normalization was applied by 

setting the variance of the signal within a value of 1.0. The normalization is applied and the resultant 

signals can be expressed as s(t).  
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3.1.1 Envelop waveform extraction 

We set a signal s(t), the random noise signal as n(t), and the output signal as x(t)=s(t)+n(t). It is 

easy to express their variances by 2(x)= 2(s)+ 2(n), Where ( ) denotes as the variance of a signal. 

The output signal 2(s) is defined as envelope waveform of HSs, here we assume 2(n) is only an 

unknown constant, and the mean is 0, and variance is 1. Therefore, output signal can be viewed as 
2(x). The envelop waveform (EW) of the signal was denoted as e(t, ), which is defined as the 

variance signal of actual output signal x(t) and expressed as e(t, ) = 2(x) , Where  is neighborhood 

of time t, called the width  time scale[8], and then 

                         (5)

                              (6)

Therefore,  e(t, ) can be computed by       

               (7)

And the EW of each channel is showed in Fig. 20~21. In order to test the existence of cycles 

and locate each of them for an approximate periodic signal, it is necessary to introduce the 

calculation of the multi-scales MW. For two time scales and l, the multi-scales moment of 

characteristic waveform I(t, , l

                        (8)

          (9)

Normalization of moment calculation Eq. (8) is stated as: 

                       (10) 
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Here, call I(t, , l), N(t, , l) as the characteristic moment of e(t, ), set 

                      (11)

                    (12)

where 

3.1.2 Homomorphic envelop waveform extraction of multichannel signals 

In this section, in order to highlight the common characters and weaken the influence of heart 

murmurs or other incidental noises at some channels to obtain the segmentation much more 

accurately, the HEW extraction method is proposed. The HEW is obtained from multichannel signals, 

and it is expressed as: 

                 (13)

where  [8], and the plots of HEW are shown in Fig.20~21. 

Fig. 20. Original multichannel signals, each EW and HEW of NHS.
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Fig. 21. Original multichannel signals, each EW and HEW of abnormal HS (TOF). 

3.1.3 Moment waveform extraction based on homomorphic envelop waveform

The MW extraction of he(t, ) is expressed as: 

                       (14)

                    (15)

Where 

Based on the experimental data, in this study, =0.05, we usually assume an initial time window 

size l = 0.45 [8]. And get a preliminary MW, then to calculate the main frequency of the waveform 

using FFT to obtain the cycle time (T), and then the window size l can be determined as the half 

period of the cycle to obtain the MW (l = T/2). and the MW extractions are showed in Fig. 24~25(b). 
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From these plots, we can find that the HEW extraction method successfully obtain a homomorphic

envelop from these four channels, which highlight the basic HS components (S1 and S2) and the 

major murmurs from four channels, while the incidental noises which occurred can be weakened. 

The MW based on HEW extraction is helpful for improving accuracy rating of cycle and HS 

segmentation. 

3.1.4 Calculate heart rate with FFT analysis 

The normal resting adult human heart rate (HR) ranges from 60-100 bpm. Tachycardia is a fast 

HR, defined as above 100 bpm at rest. Bradycardia is a slow HR, defined as below 60 bpm at rest. 

During sleep a slow heartbeat with rates around 40-50 bpm is common and is considered normal. 

When the heart is not beating in a regular pattern, this is referred to as an arrhythmia. These 

abnormalities of heart rate sometimes indicate disease [10] . 

As discussed above, the HR can be calculated based on homomorphic moment segmentation 

accurately. And =0.05, l =0.45. Hence, Fmax=max(fft (HN( ))), and HR=60*Fmax

3.1.5 Calculation of heart sound cycle and heart sound segmentation 

The HS segmentation including cycle segmentation and HS rhythms (S1S2) segmentation based 

on MW with window lengths l which is determined as the half period of the cycle (T) (l =T/2). 

According to the characteristics of moment, the HSs cycle calculation are determined by the 

maximum points of MW, while, the HS rhythms (S1S2) segmentations are determined by the 

minimum points which between in one HS cycle, they are showed in Fig. 22~23 (b), and the green 

lines are the cycle segmentation, the blue lines are the HS rhythms (S1S2) segmentation. Both the 

cardiac cycle segmentation and basic HS segmentation are performed accurately between NHS and 

abnormal HS cases. The homomorphic segmentation method improves the segmentation accuracy 

greatly. And the statistic results will be introduced as bellows. 
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Fig. 22. HEW extraction and homomorphic segmentations based on HEW of NHS. 

(a) HEW extraction (b) cycle, S1S2 segmentation based on MW (l=T/2). 

Fig. 23. HEW extraction and homomorphic segmentations based on HEW of abnormal HS (TOF).

(b) HEW extraction (b) cycle, S1S2 segmentation based on MW (l=T/2). 

1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
Original signal HEW

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

Time (Sec)

HEW MW Cycle-Seg S1S2-Seg

(a)

(b)

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1
Original signal HEW

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

Time (Sec)

HEW MW Cycle-Seg S1S2-Seg(b)

(a)



55 

The homomorphic segmentation flow chart is showed in Fig. 24. 

Wavelet-based preprocessing

Cardiac sound signals

Envelop waveforms (EW) extraction by Eq.(5~7), here =0.05.

Homomorphic envelop waveforms (HEW) extraction by Eq.(13)

Moment waveforms (MW) extraction by Eq.(15), here l=0.45

Segmentation of
1st and 2nd heart sound (S1

and S2) based on MW

Minimum
points

Calculation of heart sounds
cycle (T) based on MW

Maximum
points

Calculate heart rate (HR)
with FFT analysis

Fig. 24. The HS segmentation flow chart. 

3.2 Murmurs indexes extraction based on dual moment features 

Using Eqs. (5~12), the moment extraction are implemented. Based on Eq. (10), the systolic and 

diastolic MW are can be expressed as 

                                  (16)

                                 (17)

Where for systolic MW, l=T/8, and for diastolic MW, l=3T/8. And the MW extractions are 

showed in Fig. 25~26 (c~d). The different window length moments have different characteristics, 

these characteristics can be used to obtain the systolic and diastolic features of HSs more accurately, 

at systole and diastole of one heart cycle, the MW shape are showed in Fig. 27~28 (b~c) in detail. 

And the shapes of these parts which are marked in the dotted boxes are similar with the Gaussian 

distribution of the signals. 
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Fig. 25. Systolic and diastolic MW of NHS with different window lengths 

 (a)Original NHS, (b) HEW extraction, (c) MW(l =T/8), (d) MW(l =3T/8). 

Fig. 26. Systolic and diastolic MW of VSD with different window lengths 

(a)Original VSD signal, (b) HEW extraction, (c) MW(l =T/8), (d) MW(l =3T/8). 
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Fig. 27. Systolic and diastolic MW of NHS with different window lengths 

(a) EW extraction, (b) MW(l =T/8), dotted box shown the systolic MW shape, 

 (c) MW(l =3T/8) , dotted box shown the systolic MW shape. 

Fig. 28. Systolic and diastolic MW of VSD with different window lengths 

(a)EW extraction, (b) MW(l =T/8), dotted box shown the systolic MW shape, 

 (c) MW(l =3T/8) , dotted box shown the systolic MW shape. 
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3.2.1 The introduction of moment method 

Moment is the invariant features or stable features of an image, as well as moment can be the 

invariant features of the signal. Nevertheless, it depends on scales of the observation, the time 

window size is hence important to choose. Here we briefly introduce moment analysis and 

calculation method of [8], and we define the general p-moments of an energy limited signal f (x) of a 

real variable about a value t as   

                      (18)

Where the normalization from is expressed 

Fig. 29. Schematic diagram of signal moment 

The Gaussian signal  is shown in Fig.29, and 
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moment has different characteristics, and these characteristics have relative stability, as shown in 

Fig.27(c~d) and Fig.28(c~d) very clearly.

and t is taken as the center of the window. So there is the following moment form:  

19

Where we only use p = 2. 2u is the different-scale MW signal on a time window l-length.  

3.2.2 Murmurs indexes extraction 

Furthermore, Different signals show different MW, which are show in Fig. 30, in Fig.30, when 

there are strong systolic murmurs from P position, and there are a certain degree murmur existed at 

other three channels. The MW shapes, which are marked with dotted boxes, are showed in Fig.30. 

the shape from P position is different with other three channels (A, T and M) signals, meanwhile, the 

MW shapes of the other three channels signals are similar with each other, while, with the difference 

of the murmurs (A, T and M) intensity, the shapes are a little different.  

Fig. 30. The four-channel VSD original sound signals and their MW. 
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According to this property, we find that the shape of MW could be used to judge presence of 

heart murmurs or ambient noises, murmur intensity at each HS cycle. So if there is no too much 

interference of noise in signal, the shape of the moment waveform can detect the existence of the 

heart murmurs effectively. We hence defined the SMI and DMI by dual moment features of the 

signals. For SMI, the S1S2-Seg points are considered as the time centers which are called ti. And for 

DMI, the Cycle-Seg points are considered as time centers which are called tj, which are showed in 

Fig.31.  

Fig.31. S1S2 and cycle segmentation points as the time centers (ti, tj). 

Therefore, based on the systolic MW, , and the diastolic MW . The time 

centers are showed in Fig.32. The SMI and DMI are expressed as 

                        (20)

Where l1=T/4, i = (1~N), N is the number of the HS cycles. ti is the time centers of systolic MW.

(21)

And, l1=T/4, j = (1~N), N is the number of the HS cycles. tj is the time centers of diastolic MW. 
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A block diagram of the proposed murmurs index of multichannel HSs based on cardiac 

vibration state describing by DMF with different window lengths is presented in Fig.32. 

Wavelet-based preprocessing

Cardiac sound signals

Envelop waveforms (EW) extraction by Eq.(6~7), here =0.05.

Obtain systolic MW by Eq.(16),
here l=T/8.

Obtain diastolic MW by Eq.(17),
here l=3T/8.

Systolic murmurs index
(SMI) by Eq.(20), here l1=T/4

Murmurs indexes based on cardiac vibration states

Diastolic murmurs index
(DMI) by Eq.(21), here l1=T/4

Moment waveforms (MW) extraction by Eq.(12)

Fig. 32. A block diagram of murmurs indexes based on cardiac vibration states 

3.3 Result and discussion 

In this study, the multichannel the HS data were collected from 82 test subjects who have signed 

an informed consent. The subjects included 35 healthy young students and 47 clinical CHD patients 

(3 month to 10 years old, several are 24~27 years old), and the clinical CHS subjects are including 

12 ASD, 27 VSD and 8 TOF. Moreover, the data are from four auscultation sites, so there are 140 

normal samples, and 168 CHD samples.  

3.3.1 Heart rate of clinical four channel signals  

HR, or heart pulse, is the speed of the heartbeat measured by the number of contractions of the 

heart per unit of time typically beats per minute (bpm). The HR can vary according to the body's 

physical needs, including the need to absorb oxygen and excrete carbon dioxide. Activities that can 

provoke change include physical exercise, sleep, anxiety, stress, illness, ingesting, and drugs. 
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From Table 9 and Fig.33, we can find that the RH of NHS is from 60-78 bmp, which meet the 

normal human RH standard, and the RH of CHD subject are higher than NHS, meanwhile, the 

varying range are greater than NHS. The patients who suffered CHD can not absorb oxygen and 

excrete carbon dioxide smoothly, further causing arrhythmia and other cardiac abnormalities. 

Therefore, HR is a useful diagnostic feature. 

Table 9. Means and variances of the HR between NHS and CHD 

Subjects NHS ASD VSD TOF 
HR(bpm) 

(mean±std) 
69±9 88±16 94±14 90±23

Fig.33. RH of NHS and CHDs 

3.3.2 Homomorphic segmentation of clinical four channels signals 

As for the ASD cases, there is one case which is collected from a two years old child. The 

original multichannel signals are showed in Fig.34. Because the ASD patient is too young, it is 

difficult to collect the clinical data successfully. And also, there are strong breath sounds and noise 

which may be from the pediatric physical movement, showed at the A, P and T in Fig.34, and the 

signal from M position is very weak which is not collected well. There are some fault homomorphic 

cycle and HS segmentations of this ASD case. As a result, this ASD case is deleted from the 

segmentation accuracy statistic.  
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Fig.34. The original of the multichannel ASD signals (deleted sample) 

The automatic cycle segmentation and S1S2 segmentation accuracy are calculated and 

summarized in Table 10~11. From table 10~11, we can find that the clinical multichannel automatic 

segmentation accuracies are very high. 

Table 10. The statistic of cycle automatic segmentation accuracy  

Cases  
Subject  

data 
Cycle  
data 

Error 
cycle data 

Correct 
cycle data 

Automatic 
Segmentation 

accuracy  
NHS 35 284 0 284 100% 
ASD 11 120 0 120 100% 
VSD 27 323 5 318 98.1% 
TOF 8 78 0 78 100% 

Table 11. The statistic of S1S2 automatic segmentation accuracy 

Cases  
Subject  

data 
Cycle  
data 

Error 
cycle data 

Correct 
cycle data 

Automatic 
Segmentation 

accuracy  
NHS 35 284 0 284 100% 
ASD 11 120 0 120 100% 
VSD 27 323 8 315 97.5% 
TOF 8 78 0 78 100% 
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There are several error cycle and S1S2 automatic segmentations of two VSD cases. The detail 

discussion will be introduced as bellows.  

The first VSD case is from a patient who is 5 years old and suffered perimembranous type VSD. 

The homomorphic cycle (green bar) and S1S2 (red bar) segmentation of this multichannel VSD (case 

1) signals is showed in Fig.35~36, the part in the black dotted box is error segmentation of cycle or 

S1S2. Fig.36 shows the homomorphic cycle segmentation of this VSD signals, the part in the red 

dotted box is strong body movement noise which influence the extreme points searching, and further 

cause the error homomorphic cycle segmentation. Fig.36 shows the homomorphic S1S2 

segmentation of this VSD signals, the part in the black dotted box is strong breath sounds which 

influence the extreme points searching, and further cause the error homomorphic S1S2 segmentation. 

The second VSD case is from a patient who is 3 years old and suffered basilar type VSD. 

Fig.37~38 shows the homomorphic cycle and S1S2 segmentation of this VSD signals, respectively, 

the part in the dotted box is strong friction sound from the auscultation head and body, also there are 

electronic interference which influence the extreme points searching, and further cause the error 

homomorphic cycle and S1S2 segmentation.  

In this section, the automatic moment segmentation method is implemented, and the statistic 

results showed the high segmentation accuracy, shown in Table 10~11, the NHS, ASD and TOF 

segmentation accuracy are 100%. Because of the noise from the clinical collection of multichannel 

HS and some electronic interference, which we should improve in the clinical HS skill, that will 

decrease the error segmentations.  
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Fig. 35. The homomorphic cycle segmentation of multichannel VSD (case 1) signals, the part in 

the red dotted box is noise which influence the homomorphic cycle segmentation 

Fig.36. The homomorphic S1S2 segmentation of multichannel VSD (case 1) signals, the part in 

the black dotted box is error segmentation of S1S2 
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Fig.37. The homomorphic cycle segmentation of multichannel VSD (case 2) signals, the part in 

the dotted box is noise which influence the homomorphic cycle segmentation 

Fig.38. The homomorphic S1S2 segmentation of multichannel VSD (case 2) signals, the part in 

the black dotted box is error segmentation of S1S2 
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3.3.3 Murmurs indexes of clinical four channels signals 

The systolic murmurs can be seen obviously in the CHD subjects. According to Eq.(18~19), we 

can compute the murmurs indexes (SMI, DMI) of systole and diastole. The mean and variance are 

calculated in Table 12~13. From Table 12~13 and Fig. 39~40, we can find that the murmurs indexes 

of CHD subjects at four positions are higher than 0.19. And the parameters in diastole are almost 

near with the NHS subjects, that is to say, there are no or few diastolic murmurs in the CHD subjects, 

from these statistic results, the murmurs existing can be judged. Furthermore, the murmurs intensity 

at these four positions can be evaluated by these indexes. In order to evaluate the murmurs intensity 

level in a simple way, the systolic and diastolic murmurs index level limit (MIL) are defined as 

follows 

(20)

(21)

SMI and DMI are the standard deviations of SMI and DMI, are the

mean values of SMI, DMI, SMI, DMI at four positions. The statistic results are showed in Table 

14~15.  

Table 12. The murmurs indexes in systole (SMI± SMI). 

SMI 
(mean±std)

A P T M 

NHS 0.17±0.02 0.15±0.02 0.15±0.02 0.16±0.02
ASD 0.21±0.03 0.19±0.03 0.19±0.02 0.20±0.02
VSD 0.21±0.04 0.23±0.04 0.21±0.04 0.21±0.03
TOF 0.24±0.04 0.26±0.05 0.23±0.04 0.23±0.04

Table 13. The murmurs indexes in diastole (DMI± DMI). 

DMI 
(mean±std)

A P T M 

NHS 0.17±0.03 0.17±0.03 0.16±0.02 0.17±0.02
ASD 0.17±0.01 0.16±0.02 0.15±0.01 0.15±0.01
VSD 0.17±0.02 0.18±0.03 0.17±0.02 0.17±0.02
TOF 0.17±0.02 0.19±0.03 0.17±0.02 0.17±0.03
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Fig. 39. The histogram statistics of double moment feature values in systole  

Fig. 40. The histogram statistics of double moment feature values in diastole  

Table 14. The MIL of systole (SMI) and diastole (DMI). 

Parameters 
NHS 0.158 0.020 0.18 0.168 0.025 0.19 
ASD 0.198 0.025 0.22 0.158 0.0125 0.17 
VSD 0.215 0.038 0.25 0.173 0.0225 0.20 
TOF 0.240 0.043 0.28 0.175 0.025 0.20 
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Table 15. the MIL definition of systole and diastole.

MIL
No murmur 

level 0 level 1 level 2 level 3 

MIL 0~0.20 0.20~0.25 0.25~0.30 Over 0.30 

3.4 Summary  

In order to further quantitatively analyze the cardiac murmurs at each cardiac cycle, the murmur 

index extraction based on cardiac vibration state by describing the shape of different-scale window 

MW was proposed in this section. Firstly, the homomorphic segmentation of multichannel HS cycle 

(T) and fundamental HS (S1S2) is proposed based on homomorphic MW extraction with window 

length l (l=T/2), the HS cycle and S1S2 segmentation were implemented by locating the maximum

and minimum of MW respectively, and the HR was also calculated, the cycle automatic segmentation 

accuracy yielded the highest of 100%, the lowest accuracy was even up to 98.1%. Meanwhile, the 

S1S2 segmentation accuracy yielded the highest of 100%, the lowest accuracy was even up to 

97.5%.  

Secondly, considering the segmentation points of HS S1S2 and cycle as MW centers 

respectively, to extract the systolic MW and diastolic MW with different window lengths (T/8 and 

3T/8), furthermore, extracting DWF such as SMI and DMI which were proposed based on systolic

and diastolic MW with window length T/4. And many experiments showed that the original clinical 

HS signal included more murmur components when the DMF was high and its value over 0.20. The 

MIL was defined to evaluate murmur quantitatively, MIL which is less than 0.20, it is defined that 

there is no murmur, and MIL is belong to 0.20~0.25, it is murmur level 1, and belong to 0.25~0.30, it 

means murmur level 2, and If MIL is more than 0.30, it is defined that the murmur level is 3. These 

simple evaluation limits are used to estimate the clinical CHD murmur quantitatively. 

Finally, many experiments show that the murmur indexes are efficient to judge the murmur 

occurring periods and degree. Importantly, DMF can be computed by moment analysis very fast and 

-diagnosis or aided-diagnosis in an artificial intelligence 

cardiac murmur analysis system.  
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Chapter 4 

Unexpected Noise Reduction for Improvement of Auscultation  

The medical automatic diagnosis based on the mobile platform or home health care will become 

more and more widely acknowledge. The heart disease is yet one of the most important causes of 

death in the world population. Therefore, more attention has been paid to an artificial intelligence 

PCG analysis system on computer or mobile platform. Heart auscultation is a simple, non-invasive 

and cost-effective technique to provide an important source of clinical information related to heart 

mechanical action. PCG records HS which contain two main components S1and S2, and murmurs by 

electronic stethoscope on chest skin can be used to detect heart diseases with high accuracy.  

1. Unexpected noise problems of clinical heart sound 

In a PCG automatic diagnostic system, the main obstacle is the PCG signal noise [1-3]. The 

noises coming from various sources contaminate HS signals and affect heart disease detection. The 

noises mainly include two groups, external factor and internal factor [2]. The external disturbances, 

shown in Fig.1~2, include a wide frequency and intensity spectrum of signal from ambient noise in 

surrounding environment, noise of contact between stethoscope diaphragm and skin, device power 

interference, and its distortion. Whereas, the internal disturbances, shown in Fig.3~4, consists of 

mainly signals caused by digestive and respiratory processes, such as sounds from internal organs, 

respiratory or lung sounds, and skin movements. Moreover, there are many other types of noises, 

such as vocal, physiological, sensor and so on. While, some HS signals which also have similar 

character to noise may indicate the occurrence of heart diseases, and affect the effect of auscultation 
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seriously [3]. Therefore, noise reduction method development is of great importance and it is the 

research subject of many research fields. 

Fig.1. Original Normal HS and the signals at different frequency bands (SF, LF, MF, HF), the 
door slam noises shown in red box 

Fig.2. Original CHD HS and the signals at different frequency bands (SF, LF, MF, HF), the 
electronic noise and car horns noise shown in red box 
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Fig.3. Original Normal HS and the signals at different frequency bands (SF, LF, MF, HF), the 
strong breath sounds shown in red box 

Fig.4. Original CHD HS and the signals at different frequency bands (SF, LF, MF, HF), the 
strong breath sounds shown in red box 

2. Reviews of noise reduction methods 

The most common methods of noise reduction can be summarized into two categories. One is 

filtrating in time domain, the other is in frequency domain. Recently, to cancel these unwanted 

components, the DWT or continuous wavelet transform, tunable-Q wavelet transform etc. are used to 

filtrate noise due to the fact wavelet transform can provide good resolution or localization in both 

time and frequency domains [3-11]. However, the artificially designed center frequency of this 

wavelet transform may not adaptive to a signal; this is a common problem in wavelet transform. The 
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characteristics of a mother wavelet function always affect the performance of time-frequency 

analysis, and its optimal wavelet parameter is not easy to choose. On the other hand, generally, 

wavelet-based noise cancellation will damage the original signal because HS signal often includes 

many different frequency components at the same time or many different time components in same 

(or close) frequency. In fact, all of the existing wavelet transforms use multiple-levels decomposition 

to realize frequency subdivision, but it is regretted that the designed frequency subdivision always 

make the original signal fragmentation. Recent years, TVD method is also used in HS analysis [18], 

but TVD is much -18]. Fortunately, FSWT can provide 

more and better control in time and frequency domains [12-15]. 

The filtering properties of FSWT are presented in our study. According to the real power 

spectral density of a signal, the center frequency of a signal is easy to implant in FSWT directly, 

therefore the frequency slice processing of signal is an important idea, and noise reduction of clinical 

HS signal become the main focus in this paper. FSWT is first used to get the TFR of PCG signal, and 

then an image process method of TFR is proposed to solve our problem. 

2.1 Introduction of frequency slice wavelet transform method 

In our study [12-15], FSWT is defined as a new kind of TFR of a signal. For any 2( ) ( )f t L R , 

the FT of a window function p(t) exists, and the FSWT is simplified as:  

                  (1)

Where, the scale 0 is a constant or a function of  and t

a function (the following is same). Here we call and t as the observed frequency and time, and u is 

the assessed frequency. ( )p  is also called frequency slice function. And FSWT has inverse

transformation. If the ( )p  satisfies (0) 1p , then the original signal f (t) can be reconstructed by, 

                  (2)

FSWT has many better properties [12] than traditional wavelet transform, such as symmetry, 
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controllability, easy-to-design, dynamic scale, filter, and the reconstruction independency etc. Due to 

these new features, FSWT is more flexible to fit ever-changing signals than the classical methods. 

HS de-noise is the main task in this paper, but we do not directly design any filter even if the 

original signal includes high noise. As a new filter method of FSWT application recommended in 

this paper, the image process idea of TFR is introduced to implement the signal filter in 

time-frequency domain directly, where we only need to choose a simple parameter to control the 

filter processing.  

2.2 A natural assumption  

The time or frequency components of a PCG signal are usually overlap and its noise will 

aggravate the situation. One way to detect these complexities presented in a PCG signal is to study 

the time-frequency relationship. We have a sample assumption about these time or frequency 

components as following. Assumption: Each of time-frequency components of PCG are connected at 

local area on its TFR image.  

Fig. 5. The original clinical normal HS signal and its time-frequency representation (TFR) 
image with real-life noise. 

Fig. 5 shows the connected time-frequency components of each S1 and S2 of a normal clinical 

HS signal clearly. The ambient noises are usually presented in extensive frequency bands randomly 

and in low energy state on TFR plane, and this character is used to signal filtrating significantly in 

this paper. 
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Fig. 6. The original clinical abnormal HS signal and its time-frequency representation (TFR) image 
of ventricular septal defect with real-life noise. 

Fig. 6 shows the S1 and S2 of an abnormal HS signal for each high energy area with frequency 

band from 20 Hz to 80 Hz. The heart murmurs mainly distribute in high frequency bands, and the 

low frequency bands are probable the background or device noise. The different connect types of 

TFR image are clear to show the different clinical information of HS signals.   

3. Noise reduction methods 

3.1 Noise reduction by discrete wavelet transform method 

Wavelet analysis provides both time and frequency localization and the resultant wavelet 

coefficients can be used as features in classifiers. The wavelet representation of a signal is sparse 

compared to time domain representation due to energy compaction property of wavelet transform. In 

order to decompose the heart rate variability signal into time-frequency components, a basis function 

at scale a and location b is defined as  

                              (3)

Eq. (3) defines continuous wavelet transform. It is sampled on a dyadic grid to obtain the DWT. The 

basis function of DWT at scale 2-m and the time instant n is given by,  

                        (4)
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Using the dyadic wavelets, and DWT of the signal x(t) is given by, 

                        (5)

The inverse of DWT is given by, 

                   (6)

To decompose a signal, the basis function shape must be similar to that of the signal. The HS 

signal is decomposed using db10 into 10 layers.  

DWT have been successfully applied in many fields [3, 4, 7]. DWT can decompose the original 

signal into different scales components, and these decomposed components do not have same sample 

resolution, low frequency bands have low sample resolution. The detail algorithm of DWT noise 

reduction method is expressed as bellows, 

(1) Obtain the maximum value Tm of wavelet decomposition vector (Tv) according to Eq. (5).       

(2) Choose an adjustment parameter >0. 

(3) Adjust the TFR image as .        

(4) Reconstruct the signal from  by Eq. (6). 

This property may be disadvantage to low frequency bands that may include high energy. The 

common filter method based on DWT used to cut or adjust the high frequency components, and then 

reconstruct the estimated signal by inverse DWT.  

3.2 Noise reduction by total variance de-noise method 

TVD is an approach for noise reduction developed so as to preserve sharp edges in the 

underlying signals. It is also often used for image filtering and restoration, in this study it was used to 

compare with the proposed method. TVD method was introduced by Rudin, Osher, and Fatermi [16], 

and it is an effective filtering method for recovering piecewise-constant signals [17-18]. The 

derivation is based on the min-max property and the majorization-minimization (MM) procedure.  

TVD assumes that the noisy data y(n) is of the form  

                    (7)
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Where x(n) is a piecewise constant signal and w(n) is white Gaussian noise, TVD estimates the signal 

x(n) by solving the optimization problem: 

         (8)

The regularization parameter >0 controls the degree of smoothing. Increasing  gives more weight 

to the second term which measures the fluctuation of signal x(n) [19].  

TVD is a method to smooth signals based on a sparse-derivation signal model. And it is 

formulated as minimization of non-differentiable cost function. Unlike a conventional low-pass filter, 

the output of the TVD filter can only be obtained through a numerical algorithm. TVD is most 

appropriate for piecewise constant signals, however, it has been modified and extended so as to be 

effective for more general signals [19]. 

3.3 Noise reduction by histogram curve adjusting method 

Histogram curve adjusting of an image is frequently used in image processing, and the contrast 

enhanced map is an often used tool that make image of interest objectives more clearly and this idea 

is used in this paper. HCA method is implemented to modify TFR image computed by FSWT, and 

de-noise the PCG signal. The histogram curves are very similar to the exponential damping curve, 

shown as in Fig.7: s0 is a standard NHS original signal (from 3M database), adding white noise from 

10% to 50% respectively. The curve descends more slowly means it contains much more noises, this 

property is therefore used to noise reduction by adjusting damping speed of HCA, the detail 

algorithm is expressed as bellows, 

(1) Compute the maximum according to Eq. (1).        

(2) Choose an adjustment parameter >0. 

(3) Adjust the TFR image as .        

(4) Reconstruct the signal from  by Eq. (2). 
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Fig. 7 Histogram curves of FSWT from a standard NHS original signal s0, adding white noise from 
10% to 50% respectively. 

From Fig.7, we can find that, the energy which is divided in to 256 parts 

which expressed as greyscale values, and the y-axis means the occurring times at one energy scale.  

And the validation performances are implemented in the next section, which is used to 

determine the optimal adjustment parameters for these three noise reduction methods. 

4 Validation 

evaluation indicators SNR and CC of the noise reduction method are performed in this paper, SNR is 

defined as  

1010log ( )signal

noise

P
SNR

P
                                (9)

Where Psignal is power of original signal, Pnoise is the power of noise signal. CC was defined 

as: 
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2 222 ( ) ( )
( )( )

YY
YY

NCC
Y Y

Y Y
N N                  (10)

-noising by noise reduction 

methods, and N as the length of signal,  

At last, the noise reduction methods are evaluated by MSE between the original signal Y and 

de-

21
N

MSE Y Y
N                            (11)

5 Comparison of noise reduction methods 

5.1  Comparison of standard HS noise reduction 

The effects of these noise reduction methods at different noise levels are investigated to acquire 

the optimal de-noising information. Firstly, SNR and CC are employed to evaluate the capability of 

noise reduction for attenuating noise. SNR and CC variation trend for noise reduction at different 

noise level are shown in Fig.8~10

searching the maximum SNR and CC at each noise level, and shown with blue star marks in 

Fig.8~10. Based on many experiments statistic, the appropriate parameters are recommended in a 

is decreasing with the increase of no

8~10, in another word, TVD and WDT are more sensitive to their adjustment parameters than HCA. 
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Fig.8. DWT method: SNRs and correlation coefficients tendency with different adjustment 

optimal adjustment parameter at each noise level. 

Fig. 9. TVD method: SNRs and correlation coefficients tendency with different regularization 

optimal regularization parameter at each noise level. 
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Fig. 10. HCA method: SNRs and correlation coefficients tendency with different adjustment 

adjustment parameter at each noise level. 

Table1. Optimal parameters at five noise level with three de-noised methods. 

Noise level 10% 20% 30% 40% 50% 
15.0±0.7 6.6±0.8 4.0±1.2 2.3±0.9 2.2±1.0
1.3±0.5 1.8±0.8 2.7±0.7 3.3±1.1 4.0±1.1
31.1±6.8 13.2±3.9 8.0±2.7 5.8±2.1 4.6±2.1

Furthermore, the assessment parameters comparison of HCA, TVD and DWT for same signal 

with same noise levels from 10% to 50% respectively shown in Fig.11, the extremely improvement 

of performance of HCA method can be seen obviously, compare with TVD and DWT methods, HCA 

method further enhances the SNR and CC, and reduce the MSE. With the increase of noise level, the 

improvement can be seen much more obviously. 
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Fig.11 The SNR, CC and MSE curve at different noise levels with HCA, TVD and DWT methods. 

And then, in order to show the effects of these noise reduction methods, we chose to add two 

noise levels (plus 10% and 30%), respectively, to normal HS (from 3M database) which has no noise, 

and the results showed in Fig.12. When the noise level is 10%, the effects of these three de-noised 

methods are almost similar from time domain waveform, shown in Fig.18 (a). While, compare to 10% 

noise situation, when noise level is 30%, we found there are some obvious different of these 

de-noised signals in Fig.12 (b), from the de-noised signal with TVD method, which seemed there are 

strongest correlation with the original signal especially for low frequency bands, but the peak parts of 

the signal were squared severely for high frequency parts. About the de-noised signal with DWT 

method, the waveform is kept well compared with TVD, but there are lots of residual noises. At the 

same time, the de-noised signal with HCA method, we also can found several residual noise parts, 

but from the sense of hearing, the basic HS can be heard most clearly and comfortable in three 

methods.  
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Fig.12 Time domain noised signals (green) and de-noised signals (blue) by HCA, TVD and DWT 
methods. (a) Plus 10%noise (b) Plus 30%noise 

5.2 Comparison of clinical noise reduction 

In order to further illustrate the effectiveness of the proposed HCA noise reduction method, the cases

of clinical HSs which were introduced in section 1, door slam noises and strong breath sounds were

verified by these three noise reduction methods in this study, shown in Fig. 13~18.  

Fig. 13. Noise (in Fig.1) reduction by DWT.  Fig. 14. Noise (in Fig.4) reduction by DWT.
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Fig. 15. Noise (in Fig.1) reduction by TVD.  Fig. 16. Noise (in Fig.4) reduction by TVD. 

Fig.17 Noise (in Fig.1) reduction by HCA.  Fig.18 Noise (in Fig.4) reduction by HCA. 
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not be reduced efficiently. The TVD method compares to general signals, which is appropriate for 

 As for DWT and HCA, we used the same FSWT decomposition and 

reconstruction techniques, the effectiveness are similar, but from the sense of hearing, the HCA 

method can give a good audio effect, that is because the energy distribution at LF, MF and HF bands

(ELF, EMF, EHF), which summarized in Table 2~3 showed, there noise which in high frequency bands 

are still remained with method DWT. 

Table 2. The energy ratio at LF, MF and HF frequency bands of case 1 (door slam noise) in Fig 1.

Methods ELF(%) EMF(%) EHF(%) 
DWT 1.77 0.23 0.0027 
TVD 2.45 0.46 0.0433 
HCA 2.07 0.18 0.0017 

Table 3. The energy ratio at LF, MF and HF frequency bands of case 2 (strong breath sounds) in Fig 
2. 

Methods ELF(%) EMF(%) EHF(%) 
DWT 3.11 0.58 0.0105 
TVD 4.09 1.24 0.158 
HCA 3.08 0.49 0.0102 

Finally, in order to further illustrate the effectiveness of the proposed HCA noise reduction 

method, a case of clinical normal HS which was measured in a real life noisy environment was 

verified in this study, shown in Fig. 19~20. The noisy signals contain ambient noise, device power 

interference, noise of slamming the door (from 1 second to 1.5 seconds), vocal, and so on in the 

clinical signal. By comparing the time diagrams and phase space maps before and after noise 

reduction, we can find the proposed HCA method is much more effective for noise reduction and its 

phase space map curve is most smooth. We found the ambient noise, device power interference and 

vocal noises are removed clearly, and noise of slamming the door was almost reduced. It not only 

ma -quality hearing effects. This effectiveness is 

very useful to clinical HS auscultation for medical care personnel and general users. 
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Fig.19. Time diagrams. (a) The raw clinical HS signal. (b) De-noised signal with HCA method. 
(c) De-noised signal with TVD method. (D) De-noised signal with DWT method. 

Fig.20. The phase space maps of HS signal. (a) The raw clinical HS signal. (b) De-noised signal with 
HCA method. (c) De-noised signal with TVD method. (D) De-noised signal with DWT method.
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method is much more effective for external (ambient noise, speech noise, stethoscope device power 

interference) and internal (respiratory or lung sounds, and skin movements) disturbances noise 

reduction. Finally, a case of clinical HS is implemented to validate the proposed method can cancel 

the HS noise and interference adaptive, simple and correctly. 

ensures the high-quality hearing effects, these performance advantages are very useful to clinical HS 

auscultation for medical care personnel and general users. Furthermore, it also even benefits for other 

physiological signal auscultation and further analysis of home medical and health care system. 
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Chapter 5 

Multichannel Heart Murmur Monitoring System 

Heart disease is the leading or the second cause of death for people in the world, according to 

American Heart Association report, in the United States, killing nearly 787,000 people alone in 2011, 

and the total cost is estimated to be 298 billion dollar [1]. 80% of the total mortality occurs in low 

and middle-income countries. In the recent year, the high concern about health management and 

medical instruments for health care and diagnosis in daily life. Due to the development of technology 

of medical treatment, the life duration of human beings has increased constantly and brings some 

new requests on in-home health care and management. The diseases CHDs are the most frequent 

form of major birth defects in newborns affecting close to 1% of newborn babies (8 per 1,000), 

CHDs are not always found during pregnancy or at birth, they also can not be cured, and they must 

be monitored throughout life [2]. Thus, if life-style related diseases could not be monitored 

continuously during a long period in the early stage, they might be difficult to be diagnosed 

appropriately.  

A report [3] showed that among the patients who had heart murmurs and were referred by 

primary care physicians, just about 25% of them could be found to have pathology directly by 

echocardiography testing or closer examination. That means an expensive testing based on clinical 

assessment such as the CE, PCG, and PCI is probably not cost-efficient prior to the primary 

screening examination, especially in low and middle-income countries. In consequence, screening 

for heart diseases by clinical HS auscultation and HS analysis remain important for general daily 



91 

health care. CHD sounds including abundant helpful physiological and pathological information, 

especially the clinical CHD sounds. Thus, prescreening for CHD sounds will be greatly improve the 

prevention of clinical CHD in advance, and helpful to in the primary screening examination, and 

becomes stronger for the general users to perform the auscultation at home. 

In this chapter, it will introduce the multichannel heart signals measuring system and Matlab 

GUI monitoring system. The detail content will be introduced in section 1 and section 2. 

1. System design 

The multichannel heart murmur monitoring system, shown in Fig.1, consists of the measuring 

system, shown in Fig.2, which was introduced in Chapter 2, the analysis server part and the 

monitoring system which will be introduced in Section 2 of this Chapter in detail. 

Network

Hospital,healthcenter, institute
at home and abroad

Software
analysis

Software
analysis

Multichannel Cardiac Murmurs Monitoring System

Multichannel
cardiac signal

recorder User

Measuring system

Analysis server
(data transmission and analysis)

Analysis display

Fig.1. The multichannel heart murmur monitoring system. 
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Auscultation cloth with
stethoscope chest pieces and

microphone

Two IC recorders fixed by a
plastic case

Auscultation positions

P

T M

A

Fig. 2. Multichannel heart murmur measuring system. 

2. Analysis engine 

This GUI monitoring system functions showed in Fig.3, which include file reading (A), original 

multichannel signals display (B), each channel listening selection (C), including the original signals 

and de-noised signals which implemented in Chapter 3, multi-signals analysis (D) and multichannel 

parameters information (E). Meantime, the multi-signals parameter information (HR, DMFS, DMFd, 

ICMLF, ICMMF, and ICMHF) from four positions (A, P, T and M) can be displayed timely, it is easy 

and convenient to understand and use.  

The four channels signals are analyzed based on analysis methodologies which were discussed 

in Chapter 4 in detail. In order to detect cardiac sound simple and conveniently, the mean value plus 

variance of feature parameters (MIL, TCMLF, TCMMF and TCMHF) of NHS are chose as standard 

values. As for cardiac murmur intensity level, If DMF is less than 0.20, it means that there is no 

murmur, defined as level 0, and DMF is belong to 0.20~0.25, it is murmur level 1, and belong to 

0.25~0.30, it means murmur level 2, and If DMF is more than 0.30, it is defined that the murmur 

level is 3. These simple evaluation limits are used to estimate the murmur strength quantitatively. As 

murmur evaluation, if the ICM values of detected signals are less than standard values (green bar in 

Fig.5 and Fig.7, middle column), they are considered that there may be no murmurs at these bands. 

However, if ICM values are more than standard values (red bar in Fig.7, middle column), they are 
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see 

there are no significant differences between the four channel signals. Therefore, these analysis 

parameters may contribute to multi-

NHS and CHDs clinical signals samples will be discussion in Section 2.1~2.4 in detail, from the 

parameters. We can find much more information about the multi-signals from their four positions. 

This health care in-home system is not only suitable for doctors and parents to monitor the CHD 

 but it also can be used for healthy persons to monitor their cardiac sound 

condition daily at home. 

Fig.3. The GUI monitoring system. 

3. Murmurs analysis indexes display 

3.1 Discussion of normal heart sound (NHS) case 

In this section, the cases of NHS with the GUI monitoring system will be discussed in detail. As 

for NHS case, which is showed in Fig.4~5, the HR is 90bpm, which is within the normal range 
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(60~100) bpm. The cardiac murmur evaluation parameters which showed in Fig.5 (middle column), 

are displayed with green bar meaning there are no murmur at these frequencies. And the murmur 

appearance period and intensity level parameters which showed in Fig.5 (right column), are revealed 

the MIL is 0 (level 0) that means there are no murmur at systolic and diastolic periods. The judgment 

values of the multichannel signals from the four positions are displayed in Fig.4.  

Fig.4. The GUI monitoring system of four channels NHS case (WBD). 
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Fig.5. The multichannel cardiac murmur diagnosis parameters of NHS case (WBD). 

Furthermore, there are another NHS case, which is showed in Fig.6~8, the HR is 72bpm, which 

is also within the normal range (60~100) bpm. The cardiac murmur evaluation parameters which 

showed in Fig.7 (middle column), the multichannel signals from A, P and T positions are displayed 

with green bar meaning there are no murmur at these three frequencies (LF, MF and HF), while at M 

position it shows there are murmurs at LF and MF frequencies, that because there are some body 

organ sounds which appeared near the end part (red box part) showed in Fig.8. And the murmur 

appearance period and intensity level parameters which showed in Fig.7 (right column), are revealed 

the MIL is 0 (level 0) that means there are no murmur at systolic and diastolic periods. The judgment 

values of the multichannel signals from the four positions are displayed in Fig.6.  
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Fig.6. The GUI monitoring system of NHS case (CSY). 
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Fig.7. The multichannel cardiac murmur diagnosis parameters of NHS case (CSY). 

Fig.8. Waveforms of NHS case (CSY) at different frequencies in Mitral position (M), and the part 
in the red box showed the body organ sounds at LF and MF bands. 
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3.2 Discussion of atrioventricular septal defect (ASD) case 

The common CHDs (ASD, VSD and TOF) cases will be discussed as following. As for ASD

case, which is showed in Fig.9~12, the HR is 84 bpm. The murmur appearance period and intensity 

level parameters which showed in Fig.10 (right column), are revealed that there are level 1 systolic 

murmurs at A, P and M positions, and there are no diastolic murmurs, while there are no murmurs 

from T position, which showed in Fig.10~11 marked with red box. However, the cardiac murmur 

evaluation parameters from T position signal which showed in Fig.10 (middle column), there are

murmurs at MF and HF bands, that because there are some strong external sounds which appeared 

from 3.5~4 seconds (red box part) showed in Fig.11~12. And the judgment values of the 

multichannel signals from the four positions are displayed in Fig.9.  

Fig.9. The GUI monitoring system of ASD case (MSJ). 
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Fig.10. The multichannel cardiac murmur diagnosis parameters of ASD case (MSJ). 
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Fig.11. The multichannel signals of ASD case (MSJ), the basic HS (S1 and S2), systolic murmur 
(SM) are marked, and the strong external noise at T and M positions are marked with red box.

Fig.12. Waveforms of ASD case (MSJ) at different frequencies in Tricuspid position (T), and the part 
in the red box showed the strong external sound at MF and HF bands. 
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3.3 Discussion of ventricular septal defect (VSD) case 

As for VSD case, which is showed in Fig.13~16, the HR is 84 bpm. The murmur appearance 

period and intensity level parameters which showed in Fig.14 (right column), are revealed that there 

are level 1 systolic murmurs from A position, and level 1~2 systolic murmur from P position, 

furthermore, there are some systolic murmurs from T and M positions. However, there are no 

diastolic murmurs from these four positions. The systolic murmurs from P position are strongest, 

which is also described with the cardiac murmur evaluation parameters showed in Fig.14 (middle 

column), there are murmurs at LF, MF and HF bands shown in Fig.16 (red box part). And the 

judgment values of the multichannel signals from the four positions are displayed in Fig.13.  

Fig.13. The GUI monitoring system of VSD case (XY). 
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Fig.14. The multichannel cardiac murmur diagnosis parameters of VSD case (XY). 

Fig.15. The multichannel signals of VSD case (XY), the basic HS (S1 and S2), systolic murmur (SM) 
are marked, and some systolic murmurs at T and M positions. 
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Fig.16. Waveforms of VSD case (XY) at different frequencies in Pulmonary (P) position, and the 
part in the red box showed the strongest at LF, MF and HF bands. 

3.4 Discussion of Tetralogy of Fallot (TOF) case 

As for TOF case, which is showed in Fig.17~19, the HR is 66 bpm. The murmur appearance 

period and intensity level parameters which showed in Fig.18 (right column), are revealed that there 

are level 2 systolic murmurs from A position, level 2~3 systolic murmur from P position, level 2 

from T position, and level 1~2 from M position, furthermore, there are level 1 diastolic murmurs 

from P positions. However, there are no diastolic murmurs from A, T and M positions. The systolic 

murmurs from P position are strongest, which is also described with the cardiac murmur evaluation 

parameters at LF, MF and HF bands showed in Fig.18 (middle column). And the judgment values of 

the multichannel signals from the four positions are displayed in Fig.17.  

-1

0

1

-0.5
0

0.5

-0.5
0

0.5

1 2 3 4 5 6 7 8 9
-0.4
-0.2

0
0.2
0.4

Time [sec]



104 

Fig.17. The GUI monitoring system of TOF case (ZZL). 
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Fig.18. The multichannel cardiac murmur diagnosis parameters of TOF case (ZZL). 
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Fig.19. The multichannel signals of TOF case (ZZL, the basic HS (S1 and S2), systolic murmur (SM) 
are marked, and some diastolic murmurs at P position. 

4. Summary 

In this chapter, the multichannel murmurs monitoring system which is composed of 

multichannel HSs measuring system, analysis server and analysis result display was designed. The 

measuring system which consists of multichannel cardiac signals recorders acquires the signals and 

sends them to analysis server though internet network by computer. And the data transmission 

(upload and download) and analysis were implemented by the analysis server.  

Furthermore, the analysis result display realized by the GUI monitoring system, the functions 

which consist of the file reading, original multichannel signals display, each channel listening 

selection, including the original signals and de-noised signals, multi-signals analysis and 

multichannel parameters information, are introduced. Meantime, the four-channel murmurs indexes

information from four positions can be displayed timely, it is easy and convenient for researchers, 

medical staff and general users to understand and use.  
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Furthermore, the murmurs of four channels signals are analyzed based on analysis 

methodologies which were proposed in our study. The multichannel murmur parameters which were 

proposed can be used to diagnose the clinical murmurs. Firstly, the judgment of whether the cardiac 

murmurs is existed or not. And then, the appearance periods of the cardiac murmurs, such as systole 

or diastole murmurs. Further, the murmur intensity level is also can be decided in this study. 

Meanwhile, the murmur evaluation at LF, MF and HF bands was also discussed. The NHS and 

common CHDs cases were discussed in this Chapter. Finally, these murmur indexes are contributed 

future study. We also found much more 

information about the multi-signals from their four positions.  

This monitoring on CHDs by clinical HSs auscultation and analysis remain important for 

general daily health care. The pre-monitoring for CHD sounds will greatly improve the prevention of 

clinical CHD in advance, and helpful to the primary screening examination, and becomes stronger 

for the general users to perform the auscultation at home. 
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Chapter 6 

Conclusions  

Heart disease is the leading or the second cause of death for people in the world, the mortality 

occurs in low and middle-income countries. And a type of heart disease called congenital heart 

defects (CHD) is the most frequent form of major birth defects in newborns, CHDs are not always 

found during pregnancy or at birth, they also can not be cured, and they must be monitored 

throughout life. Thus, if life-style related diseases could not be monitored continuously during a long 

period in the early stage, they might be difficult to be diagnosed appropriately in an early step. 

Furthermore, the need for the primary health care physicians to improve the cardiac auscultation skill 

is still strong in the primary screening examination, and becomes stronger for the general users to 

perform the auscultation at home.  

The aim of this study is to develop a multichannel cardiac murmurs analysis method and 

monitoring system on CHD. Firstly, the background of CHD, HS and common murmurs, reviews of 

cardiac murmurs analysis were introduced in Chapter one. Next, the HSs measuring system which 

consisted of four electronic stethoscopes, two IC recorders, auscultation cloth and a note computer 

was introduced in Chapter 2. The acquired data were transformed to analysis server by network for 

data transmission, save and analysis. 

Heart murmurs are pathological sounds produced by turbulent blood flow due to cardiac defects.

In order to quantitively analyze cardiac murmurs, the murmur index extraction methods based on 

murmur energy analysis was proposed in Chapter 3. Firstly, In order to extract the murmur indexes 
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for analyzing the entire cardiac murmurs at different frequency bands, the approach on analysis of 

the pathologic cardiac murmurs based on the wavelet packet decomposition technique were

described. The HS signals were divided into five bands and the energy ratios at each frequency band 

were calculated and compared. Based on the analysis of clinic HSs data, three evaluation indexes of

cardiac murmurs (ICM) were proposed for the analysis of the pathologic murmurs. Finally, the 

threshold values between the innocent and pathologic murmurs were determined based on the 

statistical results of the normal HSs. The performance measures of ICMHF yielded the highest 

sensitivity of 95.7%, specificity of 91.4% and accuracy of 93.9%, respectively. Furthermore, 

considering the analysis result of evaluation indexes ICMHF at HF (312.5-1250Hz) and the two 

special cases at VLF band (4.88-19.53Hz), we can obtain the improved performance measures with a 

sensitivity of 100%, and accuracy of 96.3%, respectively. The statistic results showed that ICM of 

multichannel signals not only evaluated the murmur quantitatively, but also revealed the murmurs 

generating reason by analyzing signals from four positions simultaneously. 

Furthermore, in order to further quantitatively analyze the cardiac murmurs at each cardiac 

cycle, the murmur index extraction based on cardiac vibration state by describing the shape of 

different-scale window moment waveform (MW) was proposed in Chapter 3. Firstly, the 

homomorphic segmentation of multichannel HS cycle (T) and fundamental HS (S1S2) is proposed 

based on homomorphic MW extraction with window length l (T/2), the HS cycle and S1S2 

segmentation were implemented by locating the maximum and minimum of MW respectively. And

the HR was also calculated, the cycle automatic segmentation accuracy yielded the highest of 100%, 

the lowest accuracy was even up to 98.1%. Meanwhile, the S1S2 segmentation accuracy yielded the 

highest of 100%, the lowest accuracy was even up to 97.5%. Secondly, considering the segmentation 

points of HS S1S2 and cycle as MW centers respectively, to extract the systolic MW and diastolic 

MW with different window lengths (T/8 and 3T/8), furthermore, extracting DWF such as systolic 

murmur index (SMI) and diastolic murmur index (DMI) which were proposed based on systolic and 

diastolic MW with window length T/4. And many experiments showed that the original clinical HS 

signal included more murmur components when the DMF was high and its value over 0.20. The MIL 

was defined to evaluate murmur quantitatively, MIL which is less than 0.20, it is defined that there is 

no murmur, and MIL is belong to 0.20~0.25, it is murmur level 1, and belong to 0.25~0.30, it means 
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murmur level 2, and If MIL is more than 0.30, it is defined that the murmur level is 3. These simple 

evaluation limits are used to estimate the clinical CHD murmur quantitatively. Finally, many 

experiments show that the murmur indexes are efficient to judge the murmur occurring periods and 

degree. Importantly, DMF can be computed by moment analysis very fast and simple, and therefore 

-diagnosis or aided-diagnosis in an artificial intelligence cardiac murmur

analysis system.  

The noises coming from various sources contaminate HS signals and affect HS auscultation, in 

order to improve the auscultation, an unexpected noise reduction method based on frequency slice 

wavelet transform (FSWT) that can consummate the filtrating in time and frequency domain 

simultaneously was proposed. This method was assessed by signal noise ratio (SNR), correlation 

coefficient (CC) and mean square error (MSE) evaluation indicators and comparing with the total 

variation de-noise (TVD) and discrete wavelet transform (DWT) methods, experimental results 

showed HCA method was much more effective for external (ambient noise, speech noise, 

stethoscope device power interference) and internal (respiratory or lung sounds, and skin movements) 

disturbances noise reduction. 

Finally, the multichannel murmurs monitoring system which is composed of multichannel HSs 

measuring system, analysis server and analysis result display was designed. The measuring system 

which consists of multichannel cardiac signals recorders acquires the signals and sends them to 

analysis server though internet network by computer. And the data transmission (upload and 

download) and analysis were implemented by the analysis server. The analysis results which show 

the multichannel heart murmur analysis indexes are useful and efficient to diagnose the CHDs, 

meanwhile, further reveal the heart murmurs physiological and pathological information. And the 

results data were not only saved in the server, but also displayed in the website for murmurs 

auscultation and diagnosis. Therefore, monitoring on CHDs by clinical HSs auscultation and analysis 

remain important for general daily health care. The pre-monitoring for CHD sounds will greatly 

improve the prevention of clinical CHD in advance, and helpful to the primary screening 

examination, and becomes stronger for the general users to perform the auscultation at home. 
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