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Stupp et al., 2002

Reya et al., 2001; Ward et al., 2007

Cairns et al., 2011

ATP

Warbarg Wolf et al., 2010

de novo

Menendez et al., 2007 Monoacylglycerol lipase MAGL

de novo

Nomura et al., 2010

Fatty acid binding protein FABP 7

De Rosa et al., 2012

FABP7

Mita et al., 2007; 2010



Fatty acid synthase FASN acetyl-CoA malonyl-CoA

palmitate de novo

Wakil et al., 1989 FASN

Cabarcas et al., 2010 2 Menendez et al., 

2009 Menendez et al., 2007

FASN Zhao et al., 2006 Wang 

et al., 2001 Swinnen et al., 2002 Rashid et al., 1997

Piyathilake et al., 2000 iPS

FASN de novo

FASN iPS

Vazquez-Martin et al., 2012 FASN

de novo

FASN

FASN adult neurogenesis

Knobloch et al., 2013 FASN
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4

4-1. 

No. H21-49-3

4-2. 

GSC G144 G179 Dr. Peter Dirks Arthur and Sonia Labatt Brain 

Tumor Research Center, Toronto, Canada Pollard et al., 

2009 GSC sphere

GSC Y10 80  Y02 70  Y04

63 Y14 71

Sadahiro et al., 2014 GSC

trypsin 1.33 

mg/mL hyaluronidase 0.67 mg/mL  kynurenic acid 0.17 mg/mL 37°C

50 EGF 20 

ng/mL FGF 20 ng/mL neurosphere

accutase neurosphere 1% laminin 37  overnight

dish Hormone mix EGF 20 ng/mL FGF

20 ng/mL B27 Carlsbad CA USA 3 4

accutase 1:5 1:8

Dulbecco’s modified Eagle’s medium DMEM



10 FBS 9 21 B27 Invitrogen 

Carlsbad, CA, USA FBS HyClone Laboratories, Inc. Logan, UT, USA

Sigma-Aldrich Corporation St. Louis, MO, USA

4-3. De novo

De novo [14C]-glucose PerkinElmer, Boston, MA, USA

[14C]-acetate PerkinElmer

FBS

[14C]-glucose  [14C]-acetate 24 8

PBS

bicinchoninic acid Pierce, Rockfold, IL, USA

Bligh-dyer Bligh et al., 1959

0.5 ml 0.25 ml 2

20 0.2 ml

0.2 ml PBS voltex 3000 rpm 20

/

19:1 5 ml Ultima gold liquid scintillation counting 

cocktail PerkinElmer Aloka 

radioisotope counter machine DPM/ g protein

4-4. PCR

RNeasy plus Mini kit Qiagen total RNA



total RNA

Promega NANODROP LITE Thermo Scientific, Hudson, NH, USA

mRNA Transcriptor High Fidelity reverse transcriptase 

kit Roche Diagnostics, GmbH, Mannheim Germany oligo d T

cDNA

PCR qPCR Applied Biosystems StepOnePlusTM real-time PCR 

system Applied Biosystems, Carlsbad, CA, USA Taqman® 

Applied Biosystems nestin Hs04187831_g1 CD133 prominin1

Hs01009250_m1 Sox2 Hs00415716_m1 FABP7 Hs00361426_m1 18SmRNA

Hs03928985_g1 18SmRNA Ct Ct

Ct Ct

Ct Applied Biosystems StepOnePlusTM real-time PCR system 

software v2.0 Applied Biosystems

4-5. NOD-SCID mouse

NOD-SCID 5 20 25 g NOD/SCID 

30G

1 100,000 PBS2 l Bregma

1 mm 2 mm 2.5 mm 2

5

22

FASN Sigma-Aldrich, 1:100 1



rabbit IgG Vector Laboratories, Burlingame, CA, 

USA, 1:200 2

diaminobenzidine DAB avidin-biotinylated peroxidase complex ABC

Vector Laboratories

4-6. 

70

FASN Sox2

Morihiro et al., 2013

HISTOFINE pH 9

Microwave 40 Protein 

block Protein Block Serum-Free Ready-To-Use Dako 10

rabbit anti-FASN antibody Sigma-Aldrich, 1:100 60

alkaline phosphatase-conjugated donkey anti-rabbit IgG Jackson 

ImmunoResearch Laboratories West Grove PA USA 1:50 30

Vulcan Fast Red Chromogen Kit 2 BIOCARE MEDICAL

Concord CA USA FABP7

alkaline phosphatase ALP

denaturing solution kit BIOCARE MEDICAL 5

ALP goat anti-Sox2 antibody Santa Cruz 

Biotechnology Dallas Texas USA 1:100 60

ALP-conjugated donkey anti-goat IgG Jackson ImmunoResearch 

Laboratories 1:50 30 PermaBlue/AP

Diagnostic BioSystems Pleasanton CA USA Sox2



4% 

15

5% 40 rabbit 

anti-FASN 1:100  mouse anti-nestin Millipore Corporation Billerica, MA, USA, 

1:200 goat anti-Sox2 1:500 antibody or mouse anti-CD133 Miltenyi Biotec Inc., 

Auburn, CA, USA, 1:50 4°C Alexa Fluor® 

488 goat anti-rabbit IgG, Alexa Fluor® 488 goat anti-mouse IgG, Alexa Fluor® 568 

goat anti-rabbit IgG, or Alexa Fluor® 568 donkey anti-goat IgG Invitrogen, 0.5 g/ml

1 4', 6-Diamidino-2- phenylindole

DAPI Sigma-Aldrich MO USA Fluoromount Diagnostic 

BioSystems CA USA LSM710, Carl Zeiss, 

Oberkochen, Germany ImageJ

4-7. 

100 mM Tris-Cl pH 6.8 4% SDS 20% glycerol 200 mM -mercaptoethanol

buffer BCA Protein 

assay Pierce Rockfold IL USA 15–30 µg

12%SDS-polyacrylamide SDS-PAGE

Immobilon-PSQ polyvinylidene difluoride membrane Millipore, USA 5% 

skimmed milk anti-FASN Sigma-Aldrich, 

1:1000 anti-CD133 Miltenyi Biotec, 1:100 anti-FABP7 Owada et al., 2006, 

1:1000 anti-nestin Millipore, 1:5000 anti-Sox2 Millipore-Chemicon 1:1000



anti- -actin Santa Cruz Biotechnology, 1:2000 4

HRP 2 Millipore MA USA 1

ECL reagents GE Healthcare UK Ltd, Amersham Place, England

4-8. 

Cerulenin GSCs MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3- 

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]

MTS CellTiter 96 Aqueous nonradioactive cell proliferation 

assay kit Promega, Madison, WI, USA

96 8,000

cerulenin 0 24 48 72 MTS MTS

2.5 490 nm ARVOTM X Multilabel Plate Reader 

PerkinElmer

4-9. 

GSCs Matrigel BD Bioscience, San Jose, CA, USA

8 m Transwell inserts Corning Life Sciences, Corning, NY, 

USA 200 g/ml Matrigel

DMEM/F-12 FGF EGF DMEM/F-12 FGF

EGF B27 hormone mix GSCs 1

20,000 48

1%

5



4-10. sphere

sphere Singh Singh et al., 2003 GSCs 

Y02 Y04 Y10 cells 96 8,000 0.2 ml

37ºC 7

4-11. 

2 student’s t-test

5% P < 0.05



5

5-1. GSCs de novo

de novo Brown et al., 2007

GSCs dif-GSCs de novo

DMEM-F12 14[C]-glucose

GSCs G144 Y10 G179 65.38 ± 4.45 DPM/ g

48.16 ± 3.76 DPM/ g 86.52 ± 11.30 DPM/ g

dif-G144 dif-Y10 dif-G179 32.32 ± 0.82 DPM/ g

12.38 ± 0.48 DPM/ g 34.09 ± 1.38 DPM/ g GSCs de novo

Fig. 1A 14[C]-acetate G144 Y10 G179

271.73 ± 18.26 DPM/ g 235.82 ± 30.84 DPM/ g 323.07 ± 29.91 DPM/ g

dif-G144 dif-Y10 dif-G179 99.62 ± 0.98 DPM/ g 52.86 

± 5.33 DPM/ g 110.08 ± 29.65 DPM/ g Fig. 1B

dif-GSCs GSCs de novo
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qPCR
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De Rosa et al., 2012; Morihiro et al., 2013; Bresci

2013; Berezovsky et al., 2014
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G144, Y10 and G179 cells were incubated with 
or 8 h to measure glucose or acetate incorporation 

SEM for three independent experiments for each cell
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Cerulenin G144 qPCR
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Fig. 
(A) qPCR results showing the expression of 
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< 0.05, # P < 0.0
administration of cerulenin

. Effects of cerulenin on stemness
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