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Abstract 

How to select the appropriate frequency band to classify EEG signal by motor imagery is discussed in this paper. 

Our proposal is an improvement of the conventional Bayesian Spatio-Spectral Filter Optimization (BSSFO). Defect 

of BSSFO is on the way to generate the renewal particle of the filter bank, such a random number generation. To 

avoid a local optimum, an evolutional update method of particles is introduced. It is shown that performance of the 

EEG classification ability is improved.  

Keywords: spatio-spectral filter, EEG, classification, .optimization, mutual information,  common spatial filter 

                                                 
*
For the title, try not to use more than 3 lines. Typeset the title in 12 pt Times Roman, uppercase and boldface. 

1. Introduction 

Recently, researches using brain computer interface 

(BCI) have been actively studied. To precisely identify 

EEG signal, it is necessary to remove the artifact and 

noise by using appropriate spatial and spectral filter, 

Refs. 1-2. Furthermore, the best frequency bands 

identifying EEG signals depend on individuals and 

measurement environment, Ref. 3. Bayesian Spatio-

Spectral Filter Optimization (BSSFO) is known as a 

powerful method to solve these problems, Ref. 4. 

However, BSSFO has also drawbacks that the obtained 

solution by it falls into sub-optimum. To overcome this 

drawback, we propose improvements of the 

preprocessing and update method of the filter bank in 

Ref. 4, to result in confirming effectiveness of our 

proposal. 

2. Classification System 

The classification system of EEG signals proposed by K. 

Suk, et al. Ref. 1 that is improved in this paper by us is 

shown in Fig.2. According to the flow of Fig.1, the 

contents are described in the following subsections. 

2.1 Preprocessing 

Laplacian smoothing is applied to all the EEG signals to 

reduce artifacts and noise as follows. The weight of the 

data in attention electrode surrounded by a green circle is 

4 and that of each of four surrounding electrodes 

surrounded by red circles is -1. (See Fig.1)  These 

weights are changed to optimal values in Section 3 by us 

(Improvement 1). 

 
Fig. 1 Explanation of the weights of the EEG electrodes 

in smoothing of the EEG signal in the extended 

international 10/20 system used in this study 
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2.2 Spectral Filtering 

 The filter used in this paper is a fifth-order Butterworth 

bandpass-filter. The EEG signals of all the data sets are 

bandpass-filtered between 4 Hz and 40 Hz covering both 

the )H148(rhythm z  and  )H3014(rhythm z .     

2.3 Common Spatial Pattern 

Common Spatial Pattern (CSP)   proposed by H. Ramoser, 

et al. in Ref. 2 is used in this paper. CSP is applied to the 

signals after bandpass filtering.  CSP algorithm is for 

searching for the spatial weight to multiply to the EEG 

signals. The spatial weight W  is gotten by solving the 

optimization problem of following a generalized 

eigenvalue problem: 
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where 
1 and 

2 are covariance matrices of  each class. 

1  and 
2  are calculated as follows: 
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where Xmeans EEG signal matrix, and following:    
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where N is the number of signal samples, C means the 

number of electrodes.  The first and last row vectors are 

taken as spatial patterns for class 1 and class 2, 

respectively.  

2.4  Bayesian Spatio Spectral Filter Optimization 

(BSSFO) 

Algorithm : BSSFO filter optimization algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Data:  ΩX, , K, m,  

 D

ii 1
x


X : Set of EEG signal,  D: amount of trial, 

                D

ii 1
 Ω : Set of class labels, where  1,1i ,  

                 K : The number of particles,  

                 m: The half number of spatial patterns to be  

determined in a spatial pattern learning algorithm 
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Fig. 2  Whole structure of the EEG classification system proposed by K. Suk, et al. Ref. 1 
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for k=1 to K do 

   XhZ  new
kk

     /*  Perform a bandpass filter */ 
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                                  /*  Perform a CSP algorithm */ 
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2.5 Feature Extraction 

After spectral and spatial filtering, we get the feature 

vector 
kF  of kth particle as follows:   
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Using 
kF , mutual information );( ΩFkI  between

kF  and 

class label Ω  is calculated as follows: 
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where )( kFH and )|( cFk H are defined as following 

equations. 
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where D and cD are the total number and class c of 

trials and  is the covariance matrix. The weight 
k of 

the classification result weight of particle k is calculated 

as follows: 
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2.6 Classifier  

A Gaussian kernel-based SVM is used in this paper. An 

optimal filter bank S  with the set of class-discrimination 

frequency bands selected by the following rule:  

                    ),(   kkS                                       (11) 

where },,2,1{ Kk  and  denotes a threshold 

parameter that is determined empirically. The class label 

is determined by the following rule:  
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where |S| denotes the size of the optimal filter bank S, 

kf  denotes the feature vector from the input signal-trial 

EEG 


ix , and )(  k
c
k f is the result of a SVM which 

classifies the EEG into the class c, in the kth frequency 

band.  

3. Improvement of the method 

 We propose two improvements of the method 

mentioned above. 

3.1 Improvement 1 

The first is that in the Laplacian smoothing, the weight 

value 4 of the data in attention electrode surrounded by a 

green circle in Fig. 1 is changed to 5 to enhance the 

signal of the attention electrode. . 

3.2 Improvement 2 

The second is that the improvement as to the update 

method of the particles which are for band start and end 

positions of bandpass filter. Use of the update method of 

the conventional method results in that particles with 

semi higher amount of information are remained, as a 

result, particles would be biased. For improvement, 

remove the half of all particles from the lower amount of 

information. Then, two particles with higher amount of 

information are selected stochastically, crossing them, 

new particles are generated. After that, particles between 

1/4 and half from highest amount of information are re-

initialized shown in Fig. 3.  

Re-initializing of particles is to generate particles by 

use of following probability density function: 
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The crossing method of two particles is as follows:  
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where the weights 
21,  are set to 0.9 and 0.1, 

respectively, in next simulation to avoid generation of 

particles that both particles become far away.  

 

 

 

 

 

 

 

4. Computer simulation 

4.1 Data set, simulation condition and results 

EEG data set used in this simulation is Data set Iva in 

the BCI Competition III, in Ref. 5. The conditions to 

take these data is shown in Table 1. Table 2 , 3, and 4 

show the simulation results that update method of 

particles of both conventional and improvement 2  are 

common, but without preprocessing, with conventional 

preprocessing, and with preprocessing improvement 1, 

respectively. In all cases, our proposed method is 

superior to conventional one. 

 

Table 1 Simulation condition 

EEG data 

the number of sampling 200 

sampling rate 100 [Hz] 

used time of EEG data 0.5[s]~2.5[s] 

the number of electrodes 118 

BSSFO 

the number of particles 15 

width of frequency band 4 ~ 40 {Hz] 

The number of loop 

algorithm  
10 

  

Table 2 Simulation results of both update methods of  

particles without preprocessing 

update method 
subjects av

era

ge aa al av aw ay 

conve 

ntional 

aver

age 

70.5

4 

99.8

2 

60.5

6 

76.2

5 

56.6

7 

72.

77 

Improv

ement 

2 

aver

age 

72.8

6 

99.6

4 

63.2

1 

70.5

8 

69.1

3 

75.

08 

Table 3 Simulation results of both update methods of  

particles with conventional preprocessing 

update method 
subjects ave

rag
e aa al av aw ay 

conve 

ntional 

avera

ge 
40.29 87.5 56.68 64.06 49.6 

61.

43 

Improve

ment 2 

avera

ge 
53.57 91.61 53.67 65.54 50.36 

63.

95 

 

Table 4 Simulation results of both update methods of  

particles with preprocessing with  improvement 1 

update method 
subjects ave

rag
e aa al av aw ay 

conve 
ntional 

avera
ge 

72.23 98.75 60.51 677.1 55.36 
72.
79 

Improve

ment 2 

avera

ge 
73.3 99.64 61.99 74.91 69.88 

75.

9 

5. Conclusion 

In this paper, we intended to improve the update method 

of particles of the conventional method “BSFFO” that 

mean improvement of frequency bandpass filters and 

also to improve the preprocessing method. As a result, it 

is verified that our method is useful.  
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     Fig. 3  Our proposed update method of particles  
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