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Abstract 

 

In this study, to tackle the goal-navigated unknown 

environment exploration problem, a novel method which 

uses a neuro-fuzzy reinforcement learning system with 

continuous input-output spaces is proposed. When the 

position of the explorer is specified, learning process 

becomes to a Markov Decision Process (MDP) and the 

aliasing problem does not occur. So it is available to find 

the optimum. Specially, an action decision method using 

Gaussian function is proposed to output the movements in 

the arbitrary direction. Comparing with the conventional 

discrete action vectors, i.e., usually being 4 directions (up, 

down, left, and right), the proposed continuous actions 

may cause the reduction of the length of the shortest path.  

    Using different environments such as a U form maze, a 

simple exploration plane, and a complex exploration plane 

with obstacles, the effectiveness of the proposed system 

was confirmed by simulation experiments. 

 
1.  Introduction 

 

Artificial Intelligence (AI) attracts scientists and 

ordinary people from last century and becomes more 

available to be realized for the rapid development of 

computer technology recently. Suppose that a machine, 

e.g., a robot is not equipped with pre-knowledge of the 

environment, AI lets it learn adaptive behaviors to deal 

with the unknown environment. Reinforcement Learning 

(RL), a typical AL method, is a kind of machine learning 

algorithm which results the learner (robot) to find the 

optimal solution via exploration and exploitation, i.e., a 

trial-and-error method [1].  

There are 4 elements in RL: 

 State: the state of the environment (observed by the 

learner, or the supervisor), the input to a RL system; 

 Policy: how to output (act) considering the state 

(situation); 

 Action: the output of the RL system, the behavior of 

the learner; 

 Reward or punishment: the influence from the 

environment to the learner. 

 

Suppose there are limited states in the environment, the 

transmission of state happens according to the current 

state and the action executed by the learner. The learning 

process, which is to find the optimal transmission of states, 

becomes to be a Markov Decision Process (MDP). RL 

algorithms are given to find the optimum solution by 

modifying the policy using the reward/punishment from 

the environment. 

When the input and output spaces are observed 

discretely, RL problems are easy solved. However, they 

are usually continuous spaces in the real world. In [2], 

Samejima & Omori proposed an Adaptive Basis Division 

(ABD) algorithm to decide the states of the environment. 

In [3]-[6], Kuremoto et al. used a Self-Organized Fuzzy 

Neural Network (SOFNN) to classify the input as the 

states. However, few works provide method to deal with 

continuous actions spaces in RL. The reason can be 

considered that when the action space is continuous, the 

state-action value function, i.e., Q function becomes 

infinite, MDP is not impossible, and the trial cannot be 

finished.  

In this paper, an action reconstruction method using 

Gaussian distribution of discrete Q function is proposed. 

The proposed method is based on the neuro-fuzzy 

reinforcement learning system proposed in our previous 

works [3]-[6], i.e., discriminate the observed state with 

SOFNN, and then output Q values with assumed action 

vectors. The continuous action is generated according to a 

Gaussian distribution with the mean of Q values and a 

certain standard deviation. Additionally, different from the 

previous works used local observation information, world 
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coordinate data (absolute position) is utilized. Simulation 

experiments of 2-D goal –navigation problem with kinds 

of environments were performed to verify the 

effectiveness of the proposed method.  

     
2. RL system with SOFNN 

 

     A reinforcement learning system using the Self-

Organized Fuzzy Neural Network (SOFNN) [3]-[6] is 

shown in Fig. 1 and Fig. 2. 

 
Fig1: A RL system with SOFNN 

 

 
Fig2: SOFNN 

 

For an n-D input state space  )(),...,(),( 21 txtxtx nx , a 

fuzzy inference net is designed with a hidden layer 

composed by units of fuzzy membership 

functions  )(txB i
k
i

, i.e., Eq. (1), to classify input states. 
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Here k
ic , k

i denotes the mean and the deviation of ith 

membership function which corresponding to ith 

dimension of input )(txi
, respectively. 

Let )(tK be the largest number of fuzzy rules, we have 

Eq. (2) : 
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where ))(x( tk means the fitness of the rule kR for an 

input set )(x t .   

To determine the number of membership functions and 

rules of fuzzy net, a self-organized fuzzy neural network 

(SOFNN) which is constructed adaptive membership 

functions and rules driven by training data and thresholds 

automatically. The self-organizing process of SOFNN is 

given as follows. 

Only one membership function is generated by the first 

input data (for example, the position of agent) , the value 

of its membership’s center equals to the value of input 

data, and the value of width of all Gaussian function units 

is fixed to an empirical value. The number of rule for 

membership functions is one at first, and the output of the 

rule 1R equals to ))1((1 x = ))1((
1

1
i

n

i

i xB


according to Eq. 

(2).  

For the next input state  )(),...,(),( 21 txtxtx nx , a new 

membership function is generated if Eq. (3) is satisfied. 
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Here ))((, txB isi
denotes the value of existed 

membership functions calculated by Eq. (4) and 

)(,...,2,1 tLs i  indicates the sth membership function 

with the maximum number )(tLi . F denotes a threshold 

value of whether an input state is evaluated enough by 

existing membership functions.  

A new rule is generated automatically when a new 

membership function is added according to Eq. (3). The 

membership function with the highest values in each 

dimension of input connects to the new rule. Iteratively, 

the fuzzy net is completed to adapt to input states. 

State-action value functions in different observing time 

t are given by following: 
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where w is the weight of connection, tKk ,...2,1 is 

the number of fuzzy rules, mj ,...2,1 is action number, a 

is the candidate action. 

The learning rule of Q Learning (QL) and sarsa 

learning [1] becomes to: 
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where  is the learning rate,  is the temporal 

difference error (TD error) given as following. 
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3. Continuous Action 

      

Suppose there are 4 pseudo action directions: up, 

down, left, and right as shown in Fig. 3. The origin of the 

coordinate axes indicates the current position of the 

explorer in a 2-D unknown environment. The direction of 

the movement from the current position is given by a 

Gaussian distribution of Q values. The mean of the 

probability function (x, y) is the mean of Q values (see Fig. 

3), and the standard deviation is a constant. A dot shown 

in the Fig. 3 indicates a random position generated 

according to the Gaussian distribution, and it is utilized as 

the direction of the continuous action. The length of the 

movement can be defined as 1.0 each step. 

 

4. Simulation Experiments and Results 

 

4. 1 Simulation I: A U Form Maze 

 

A simple maze with U form was used in simulation I 

(Fig. 4(a)). The explorer starts from S position and intends 

to find goal G. Dark area and lines indicates obstacles, and 

explorer without any pre-knowledge to decide moving up, 

down, left, or right (1 step 1 direction, 1.0 length). This 

simulation is designed to compare the performance of the 

RL system with SOFNN when the input in different cases: 

local observation (conventional method), and coordinate 

information (proposed method). The input and output 

spaces are discrete. 

 
Fig3: Decide the action direction using a Gaussian 

distribution of Q function 

 

 
              (a) A U form maze              (b) A simple maze 

Fig4: Exploration environments used in simulations 

 

 The average exploration steps of one trial during 

learning process are used to compare the performance of 

the different input method. In Table 1, the input used 

coordinate information (proposed method) shows its 

priority to conventional local observation method in both 

kinds learning algorithm Q learning and Sarsa learning. 

 

Table 1: Result of Simulation I (average exploration 

steps of one trial during learning process) 

 Local 

observation 

(conventional) 

Coordinate data 

(proposed) 

Q Learning  1201.98 139.69 

Sarsa 

Learning 
1471.56 55.24 

 

4.2 Simulation II: A Simple Maze 

  A simple maze exploration problem as shown in Fig. 

4(b) was designed in simulation II to investigate the 

effectiveness of the proposed method, i.e., using 

coordinate data in discrete space or continuous space. The 

final routes found by different methods are shown in Fig. 

5. It can be confirmed that both of Q learning (QL) and 



sarsa learning (SL) made the explorer achieved at the goal, 

however, the continuous output resulted longer distance 

compare with the discrete output method (Table 2). 

      
(a) QL (continuous output)    (b) SL (continuous output) 

Fig5: Final routes found by different methods 

 

Table 2: Result of Simulation II (average exploration 

steps of one trial during learning process) 

 Discrete 

(proposed) 

Continuous 

(proposed) 

Q Learning  13.0 26.06 

Sarsa 

Learning 
13.0 13.91 

 

4.3 Simulation III:  Autonomous Robot  

 

The proposed system was used to control an 

autonomous robot e-puck in the simulator Webots [7]. Fig. 

6 shows a snap shot of the exploration simulation. The 

average route length for one trial of the robot during 

learning process is shown in Table 3. Discrete output with 

Q Learning showed better performance than continuous 

one, meanwhile, Sarsa Learning opposite. 

 

Table 3: Result of Simulation III (average exploration 

steps of one trial during learning process) 

 Discrete 

(proposed) 

Continuous 

(proposed) 

Q Learning  60.22 85.16 

Sarsa 

Learning 
127.37 106.02 

 

 
Fig6: A robot e-puck explores an unknown environment 

with obstacles  

(URL of video: http://www.nn.csse.yamaguchi-

u.ac.jp/home/wu/image/webots2014tsubaki.avi ) 

 

5. Conclusions 

 

A neuro-fuzzy reinforcement learning system was 

improved by using coordinate information as input. To 

deal with the real world exploration problem for 

autonomous robots, continuous action was generated by a 

Gaussian distribution function of the state-action value 

function (Q value). Simulation results showed the 

effectiveness of the proposed method. 
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