

A Neuro-Fuzzy Reinforcement Learning System for Autonomous Robot Dealing with Continuous

Space

1
Takashi Kuremoto,

1
Kazuhiro Tsubaki,

1
Masanao Obayashi,

1
Shingo Mabu, and

2
Kunikazu Kobayashi

1
Yamaguchi University

2-16-1, Tokiwadai, Ube, Yamaguchi, 755-8611, Japan

Phone/FAX: +81-836-9500

E-mail: {wu, m.obayas, mabu}@yamaguchi-u.ac.jp
2
Aichi Prefectural University

1522-3, Ibaragabasama, Nagakute, Aichi, 480-1198, Japan

E-mail: kobayashi@ist.aichi-pu.ac.jp

Abstract

In this study, to tackle the goal-navigated unknown

environment exploration problem, a novel method which

uses a neuro-fuzzy reinforcement learning system with

continuous input-output spaces is proposed. When the

position of the explorer is specified, learning process

becomes to a Markov Decision Process (MDP) and the

aliasing problem does not occur. So it is available to find

the optimum. Specially, an action decision method using

Gaussian function is proposed to output the movements in

the arbitrary direction. Comparing with the conventional

discrete action vectors, i.e., usually being 4 directions (up,

down, left, and right), the proposed continuous actions

may cause the reduction of the length of the shortest path.

 Using different environments such as a U form maze, a

simple exploration plane, and a complex exploration plane

with obstacles, the effectiveness of the proposed system

was confirmed by simulation experiments.

1. Introduction

Artificial Intelligence (AI) attracts scientists and

ordinary people from last century and becomes more

available to be realized for the rapid development of

computer technology recently. Suppose that a machine,

e.g., a robot is not equipped with pre-knowledge of the

environment, AI lets it learn adaptive behaviors to deal

with the unknown environment. Reinforcement Learning

(RL), a typical AL method, is a kind of machine learning

algorithm which results the learner (robot) to find the

optimal solution via exploration and exploitation, i.e., a

trial-and-error method [1].

There are 4 elements in RL:

 State: the state of the environment (observed by the

learner, or the supervisor), the input to a RL system;

 Policy: how to output (act) considering the state

(situation);

 Action: the output of the RL system, the behavior of

the learner;

 Reward or punishment: the influence from the

environment to the learner.

Suppose there are limited states in the environment, the

transmission of state happens according to the current

state and the action executed by the learner. The learning

process, which is to find the optimal transmission of states,

becomes to be a Markov Decision Process (MDP). RL

algorithms are given to find the optimum solution by

modifying the policy using the reward/punishment from

the environment.

When the input and output spaces are observed

discretely, RL problems are easy solved. However, they

are usually continuous spaces in the real world. In [2],

Samejima & Omori proposed an Adaptive Basis Division

(ABD) algorithm to decide the states of the environment.

In [3]-[6], Kuremoto et al. used a Self-Organized Fuzzy

Neural Network (SOFNN) to classify the input as the

states. However, few works provide method to deal with

continuous actions spaces in RL. The reason can be

considered that when the action space is continuous, the

state-action value function, i.e., Q function becomes

infinite, MDP is not impossible, and the trial cannot be

finished.

In this paper, an action reconstruction method using

Gaussian distribution of discrete Q function is proposed.

The proposed method is based on the neuro-fuzzy

reinforcement learning system proposed in our previous

works [3]-[6], i.e., discriminate the observed state with

SOFNN, and then output Q values with assumed action

vectors. The continuous action is generated according to a

Gaussian distribution with the mean of Q values and a

certain standard deviation. Additionally, different from the

previous works used local observation information, world

mailto:mabu%7D@yamaguchi-u.ac.jp

coordinate data (absolute position) is utilized. Simulation

experiments of 2-D goal –navigation problem with kinds

of environments were performed to verify the

effectiveness of the proposed method.

2. RL system with SOFNN

 A reinforcement learning system using the Self-

Organized Fuzzy Neural Network (SOFNN) [3]-[6] is

shown in Fig. 1 and Fig. 2.

Fig1: A RL system with SOFNN

Fig2: SOFNN

For an n-D input state space)(),...,(),(21 txtxtx nx , a

fuzzy inference net is designed with a hidden layer

composed by units of fuzzy membership

functions)(txB i
k
i

, i.e., Eq. (1), to classify input states.

2

2

2

)(
exp)(

k
i

k
ii

i
k
i

ctx
txB

 (1)

Here k
ic , k

i denotes the mean and the deviation of ith

membership function which corresponding to ith

dimension of input)(txi
, respectively.

Let)(tK be the largest number of fuzzy rules, we have

Eq. (2) :

if ()(1 tx is))((11 txBk , ,... ,)(txn
is))((txB n

k
n

) then

))(x(tk =))((
1

txB i

n

i

k
i

 (2)

where))(x(tk means the fitness of the rule kR for an

input set)(x t .

To determine the number of membership functions and

rules of fuzzy net, a self-organized fuzzy neural network

(SOFNN) which is constructed adaptive membership

functions and rules driven by training data and thresholds

automatically. The self-organizing process of SOFNN is

given as follows.

Only one membership function is generated by the first

input data (for example, the position of agent) , the value

of its membership’s center equals to the value of input

data, and the value of width of all Gaussian function units

is fixed to an empirical value. The number of rule for

membership functions is one at first, and the output of the

rule 1R equals to))1((1 x =))1((
1

1
i

n

i

i xB

according to Eq.

(2).

For the next input state)(),...,(),(21 txtxtx nx , a new

membership function is generated if Eq. (3) is satisfied.

FtxB isi
s

))((max ,
 (3)

Here))((, txB isi
denotes the value of existed

membership functions calculated by Eq. (4) and

)(,...,2,1 tLs i indicates the sth membership function

with the maximum number)(tLi . F denotes a threshold

value of whether an input state is evaluated enough by

existing membership functions.

A new rule is generated automatically when a new

membership function is added according to Eq. (3). The

membership function with the highest values in each

dimension of input connects to the new rule. Iteratively,

the fuzzy net is completed to adapt to input states.

State-action value functions in different observing time

t are given by following:

k

k
k

kQ
kjQ

jj
t

tw
atQ

t

t

))((

))((
),),((

x

x
w)x(

 (4)

k

k
k

kQ
kjQ

jj
t

tw
atQ

t

t

))1((

))1((
),),1((

1

1

x

x
w)x(

 (5)

where w is the weight of connection, tKk ,...2,1 is

the number of fuzzy rules, mj ,...2,1 is action number, a

is the candidate action.

The learning rule of Q Learning (QL) and sarsa

learning [1] becomes to:

0

))((/)(
K

k
kktQ

kj
Q
kj

tt
ww tt

1

x)x(

otherwise

aa jt
 (6)

0

))1((/)1(111

K

k
kktQ

kj
Q
kj

tt
ww tt

1

x)x(

otherwise

aa jt 1
 (7)

where is the learning rate, is the temporal

difference error (TD error) given as following.

)),)),(((),)),(((tt Q
tt

Q
ttt

QL
TD atQatQr wxwx(max (8)

),)),(((),)),1(((1
11

tt Q
tt

Q
ttt

sarsa
TD atQatQr wxwx

(9)

3. Continuous Action

Suppose there are 4 pseudo action directions: up,

down, left, and right as shown in Fig. 3. The origin of the

coordinate axes indicates the current position of the

explorer in a 2-D unknown environment. The direction of

the movement from the current position is given by a

Gaussian distribution of Q values. The mean of the

probability function (x, y) is the mean of Q values (see Fig.

3), and the standard deviation is a constant. A dot shown

in the Fig. 3 indicates a random position generated

according to the Gaussian distribution, and it is utilized as

the direction of the continuous action. The length of the

movement can be defined as 1.0 each step.

4. Simulation Experiments and Results

4. 1 Simulation I: A U Form Maze

A simple maze with U form was used in simulation I

(Fig. 4(a)). The explorer starts from S position and intends

to find goal G. Dark area and lines indicates obstacles, and

explorer without any pre-knowledge to decide moving up,

down, left, or right (1 step 1 direction, 1.0 length). This

simulation is designed to compare the performance of the

RL system with SOFNN when the input in different cases:

local observation (conventional method), and coordinate

information (proposed method). The input and output

spaces are discrete.

Fig3: Decide the action direction using a Gaussian

distribution of Q function

 (a) A U form maze (b) A simple maze

Fig4: Exploration environments used in simulations

 The average exploration steps of one trial during

learning process are used to compare the performance of

the different input method. In Table 1, the input used

coordinate information (proposed method) shows its

priority to conventional local observation method in both

kinds learning algorithm Q learning and Sarsa learning.

Table 1: Result of Simulation I (average exploration

steps of one trial during learning process)

 Local

observation

(conventional)

Coordinate data

(proposed)

Q Learning 1201.98 139.69

Sarsa

Learning
1471.56 55.24

4.2 Simulation II: A Simple Maze

 A simple maze exploration problem as shown in Fig.

4(b) was designed in simulation II to investigate the

effectiveness of the proposed method, i.e., using

coordinate data in discrete space or continuous space. The

final routes found by different methods are shown in Fig.

5. It can be confirmed that both of Q learning (QL) and

sarsa learning (SL) made the explorer achieved at the goal,

however, the continuous output resulted longer distance

compare with the discrete output method (Table 2).

(a) QL (continuous output) (b) SL (continuous output)

Fig5: Final routes found by different methods

Table 2: Result of Simulation II (average exploration

steps of one trial during learning process)

 Discrete

(proposed)

Continuous

(proposed)

Q Learning 13.0 26.06

Sarsa

Learning
13.0 13.91

4.3 Simulation III: Autonomous Robot

The proposed system was used to control an

autonomous robot e-puck in the simulator Webots [7]. Fig.

6 shows a snap shot of the exploration simulation. The

average route length for one trial of the robot during

learning process is shown in Table 3. Discrete output with

Q Learning showed better performance than continuous

one, meanwhile, Sarsa Learning opposite.

Table 3: Result of Simulation III (average exploration

steps of one trial during learning process)

 Discrete

(proposed)

Continuous

(proposed)

Q Learning 60.22 85.16

Sarsa

Learning
127.37 106.02

Fig6: A robot e-puck explores an unknown environment

with obstacles

(URL of video: http://www.nn.csse.yamaguchi-

u.ac.jp/home/wu/image/webots2014tsubaki.avi)

5. Conclusions

A neuro-fuzzy reinforcement learning system was

improved by using coordinate information as input. To

deal with the real world exploration problem for

autonomous robots, continuous action was generated by a

Gaussian distribution function of the state-action value

function (Q value). Simulation results showed the

effectiveness of the proposed method.

Acknowledgment

This work was supported by JSPS KAKENHI Grant No.

26330254 and No.25330287.

References

[1] R. S. Sutton, and A. G. Barto, Reinforcement learning:

an introduction, The MIT Press, Cambridge, 1998

[2] K. Samejima and T. Omori, “Adaptive Internal State

Space Construction Method for Reinforcement

Learning of a Real-World Agent”, Neural Networks,

Vol.12, pp.1143—1155, 1999

[3] T. Kuremoto ， M. Obayashi ， and K.

Kobayashi, ”Adaptive Swarm Behavior Acquisition

by a Neuro-Fuzzy System and Reinforcement

Learning Algorithm”, International Journal of

Intelligent Computing and Cybernetics, Vol.2，No.4，
pp.724-744, 2009

[4] T. Kuremoto， Y. Yamano, M. Obayashi，and K.

Kobayashi, ”An Improved Internal Model for Swarm

Formation and Adaptive Swarm Behavior

Acquisition”, Journal of Circuits, Systems and

Computers, Vol.18，No.8，pp.1517-1531, 2009

[5] T. Kuremoto，Y. Yamano, L-B. Feng, K. Kobayashi,

and M. Obayashi, ”A Neuro-Fuzzy Network with

Reinforcement Learning Algorithm for Swarm

Learning”, Lecture Notes in Electronic Engineering,

Vol.304，pp.815-823, 2011

[6] T. Kuremoto, Y. Yamano, L-B. Feng, K. Kobayashi,

and M. Obayashi: “Adaptive Swarm Behavior

Acquisition Using a Neuro-Fuzzy Reinforcement

Learning System”, IEEJ Transactions on EIS (in

Japanese), Vol.133-C, No.5, pp.1076-1085, 2013

[7] Webots: https://www.cyberbotics.com/

http://www.nn.csse.yamaguchi-u.ac.jp/home/wu/image/webots2014tsubaki.avi
http://www.nn.csse.yamaguchi-u.ac.jp/home/wu/image/webots2014tsubaki.avi
http://www.iee.or.jp/index-eng.html
http://www.iee.or.jp/index-eng.html
https://www.cyberbotics.com/

