
How an Adaptive Learning Rate Benefits Neuro-Fuzzy

Reinforcement Learning Systems

Takashi Kuremoto*,1, Masanao Obayashi
*
, Kunikazu Kobayashi

**
, Shingo Mabu

*

* Graduate School of Science and Engineering, Yamaguchi University

 Tokiwadai 2-16-1, Ube, Yamaguchi, 755-8611, Japan

{wu, m.obayas, mabu}@yamaguchi-u.ac.jp
** Schoo of Information Science and Technology, Aichi Prefectural University

 Ibaragabasama 1522-3, Nagakute-Shi, Aichi, 480-1198, Japan

{wu, m.obayas, mabu}@yamaguchi-u.ac.jp

Abstract. To acquire adaptive behaviors of multiple agents in the unknown

environment, several neuro-fuzzy reinforcement learning systems (NFRLSs) have

been proposed Kuremoto et al. Meanwhile, to manage the balance between

exploration and exploitation in fuzzy reinforcement learning (FRL), an adaptive

learning rate (ALR), which adjusting learning rate by considering “fuzzy visit value”

of the current state, was proposed by Derhami et al. recently. In this paper, we intend

to show how the ALR accelerates some NFRLSs which are reinforcement learning

systems with a self-organizing fuzzy neural network (SOFNN) and different learning

methods including actor-critic learning (ACL), and Sarsa learning (SL). Simulation

results of goal-exploration problems showed the powerful effect of the ALR

comparing with the conventional empirical fixed learning rates.

Keywords: neuro-fuzzy system, swarm behavior, reinforcement learning (RL), multi-

agent system (MAS), adaptive learning rate (ALR), goal-exploration problem.

1 Introduction

As an active unsupervised machine learning method, reinforcement learning (RL)

has been developed and applied to many fields such as intelligent control and robotics

since 1980s [1] – [3]. The learning process of RL is given by the trials of exploration

and exploitation of a learner (agent) in unknown or non-deterministic environment.

Valuable or adaptive actions which are optimized output of RL systems are obtained

according to the modification of action selection policies using the rewards (or

punishments) from the environment. Generally, there are four fundamental

components in RL: state (observed information from the environment, input); policy

(usually using probability selection to keep exploitation to an unknown environment);

action (the output of the learner changing the current state) and reward

(perceived/obtained by the learner during the transition of the state).

1 A part of this work was supported by Grant-in-Aid for Scientific Research (JSPS No.

23500181, No. 25330287, No. 26330254).

mailto:mabu%7D@yamaguchi-u.ac.jp
mailto:mabu%7D@yamaguchi-u.ac.jp

2

In the history of RL research, there are some severe problems need to be solved

theoretically:

(1) The explosion of state-action space in high dimension problems (the curse of

dimensionality);

(2) The balance between exploration and exploitation;

(3) Learning convergence in partially observable Markov decision process

(POMDP).

To tackle the first issue, linear approximation method [2], normalized Gaussian

radial basis function classification method [3], fuzzy inference systems [4] – [8], etc.

are proposed. Specially, neuro-fuzzy systems with a data-driven type self-organizing

fuzzy neural network (SOFNN) proposed in our previous works showed their

adaptive state identification ability for different RL algorithms such as actor-critic

learning [5] [6], Q-learning, and Sarsa learning [7].

Meanwhile, Derhami et al. proposed to use adaptive learning rate (ALR) and

adaptive parameter of state transition function to obtain a suitable balance of

exploration and exploitation [8]. Effectiveness of the ALR has been confirmed by its

application to a fuzzy controller with Q learning algorithm with simulation results of

some benchmark problems such as boat problem and mountain-car problem in [8].

Furthermore, the third problem of RL mentioned above is more serious to a multi-

agent system (MAS). Even the exploration environment is stable, the existence of

other agents nearby the learner agent is uncertain. In [4] – [8], Kuremoto et al.

proposed to calculate the reward of suitable distance between agents to modify the

action policy and showed its higher learning convergence comparing with RLs by

individuals independently.

In this paper, we adopt Derhami et al.’s ALR to Kuremoto et al.’s neuro-fuzzy

reinforcement learning systems to improve the learning performance of agents in

MASs. Goal-exploration problems were used in simulation experiments and the

comparison between results with conventional empirical fixed learning rate and ALR

is reported.

2 Neuro-Fuzzy Reinforcement Learning Systems

2.1 Reinforcement Learning

Markov decision process (MDP) is used in reinforcement learning (RL) algorithms.

Let a state space n
n Rxxx ),...,,(21X , an action space m

m Raaa ),...,,(21A , a

state transition (from the current stat ts to the next state 1ts) policy  with

probability][XA X: 10
,1

, P t

tt

a

ss


 
, and a reward function 1

0

RrR
t

t 




, where

is the reward 1Rrt  obtained during the state transition. The RL algorithm is to find

3

an optimal policy * that can yield the maximum discounted expected reward *R ,

i.e. the maximum value function of state }{ (X) t
t

t

assPassP
rγEREV

tttttt







0

),|(),|(11

}{ ,

or the maximum value function of state-action }|(X){ A)(X, VEQ  .

To avoid a mass calculation to whole MDP state transition, and deal with unknown

transition probabilities, there is an efficient RL algorithm named temporal difference

learning (TD-learning) [2] to yield the maximum value functions. A TD error
1R is defined by Eq. (1), and it is used to update state value function in the

learning process, for example, Eq. (2).

)()(11 ttt VVr xx
   (1)

 )()(tt VV xx (2)

where 10   and 10  are a damping rate and a learning rate, respectively.

When action value is also considered during the state transition, the modification of

the state-action value function)(tt ,asQ can be used to instead of state value

function)(tV x
 .

)()()(ttttttttt ,asQasQr,asQ,asQ    ),((111 (3)

)111  ttttt asras ,,,,(appears in Eq. (3), so this learning rule is named as “sarsa

learning” [2].

2.2 An Actor-Critic type Neuro-Fuzzy Reinforcement Learning System

To deal with continuous state space, an actor-critic type neuro-fuzzy reinforcement

learning system is proposed by Kuremoto et al. [5] [6]. The system is able to be used

as an internal model of an autonomous agent which output a series of adaptive actions

in the exploration of the unknown environment. The information processing flow is as

follows:

Step 1 Agent observes states tx from the environment;

Step 2 Agent classifies the inputs into k classes)(tk x by Fuzzy net;

Step 3 Agent outputs an action according to the value function)(tm xA (i.e. Actor);

Step 4 Agent receives rewards from the environment after the action is executed;

Step 5 TD-error, concerning with the state value function)(txV in Critic, is

calculated;

Step 6 Modify the action value function using TD-error (Eq. (1)).

Step 7 Return to Step 1if the state is not the terminal state, else end the current trail.

4

For an n-dimension input state space  )(),...,(),(21 txtxtx nx , a fuzzy inference net is

designed with a hidden layer composed by units of fuzzy membership

functions  )(txB i

k

i
, i.e., Eq. (4), to classify input states.

 
 













 


2

2

2

)(
exp)(

k

i

k

ii

i

k

i

ctx
txB



 (4)

Here k

ic , k

i denotes the mean and the deviation of ith membership function which

corresponding to ith dimension of input)(txi
, respectively.

Let)(tK be the largest number of fuzzy rules, we have Eq. (5) :

if ()(1 tx is))((11 txBk , ,... ,)(txn
is))((txB n

k

n
) then

))(x(tk =))((
1

txB i

n

i

k

i


 (5)

where))(x(tk means the fitness of the rule kR for an input set)(x t .

To determine the number of membership functions and rules of fuzzy net, a self-

organized fuzzy neural network (SOFNN) which is constructed adaptive membership

functions and rules driven by training data and thresholds automatically [5] [6]. The

self-organizing process of SOFNN is given as follows.

Only one membership function is generated by the first input data (for example, the

position of agent) , the value of its membership’s center equals to the value of input

data, and the value of width of all Gaussian function units is fixed to an empirical

value. The number of rule for membership functions is one at first, and the output of

the rule 1R equals to))1((1 x =))1((
1

1

i

n

i

i xB


according to Eq. (5).

For the next input state  )(),...,(),(21 txtxtx nx , a new membership function is

generated if Eq. (6) is satisfied.

FtxB isi
s

))((max ,
 (6)

Here))((, txB isi
denotes the value of existed membership functions calculated by

Eq. (4) and)(,...,2,1 tLs i indicates the sth membership function with the

maximum number)(tLi
. F denotes a threshold value of whether an input state is

evaluated enough by existing membership functions.

A new rule is generated automatically when a new membership function is added

according to Eq. (5). Iteratively, the fuzzy net is completed to adapt to input states.

The weighted outputs of fuzzy net are used to calculate the value of states (Critic)

and actions (Actor) according to Eq. (7) and Eq. (8), respectively.

5






k
k

k
kk

t

ttv

V
))((

))(()(

)(
x

x

x(t)



 (7)






k
kj

k
kkj

j
tw

ttw

A
))((

))(()(

)(
x

x

x(t)


 (8)

Here
kjk wv , are the weighted connections between fuzzy net rules))((tk x and critic

function 1))((RtV x , actor function m
j RtA ))((x . jA denotes the jth action selected by

agent according to a stochastic policy Eq. (9), where j = 1, 2, …, m.

 
  
  



m
m

j

jt
TtA

TtA
taaP

/)(exp

/)(exp
(|

x

x
)x (9)

Here 0T is a constant named temperature of Boltzmann distribution.

Actor function m
j RtA ))((x belongs to an m-dimension real number space in a

goal –exploration problem. When the input space is a continuous Euclidean space, for

example, a 2-D plane, the number of states and the number of actions may be infinity.

To overcome this problem, the speed of action can be limited to 1 grid (mass) per step,

and the direction may be given by the linear combination of discrete action values in 4

directions:))(()),(()),(()),((tAtAtAtA rightleftdownup xxxx . In fact, we used two bigger

Action values to design candidate actions in x axis and y axis. For example,

))((tAright x in x axis is chosen by Eq. (9), and))((tAup x in y axis, then the velocity

angle is given by Eq. (10)

))((

))((
arctan

tA

tA

right

up

x

x
 (10)

The movement of the agent is calculated by adding Eq. (11) from the current

coordinates.

)

))(())((

))((
,

))(())((

))((
(

2222 tAtA

tA

tAtA

tA

upright

up

upright

right

xx

x

xx

x



 (11)

TD learning rule given by Eq. (1) become to Eq. (12) and Eq. (13),

where
wv  , denote learning rates for connections of Critic and Actor.

)()()()1()x()x(tttvtv kTDvkk  (12)






0

)())((
)()1(

)x(x tt
twtw

kTDw
kjkj



otherwise

aa jt 
 (13)

When multiple agents explore an unknown environment at the same time,

6

cooperative exploration, i.e., swarm learning may provide more efficient performance

comparing with individual learning. Let))((ttD qp
x),(x express the Euclidean distance

between agent p and agent q, i.e. Eq. (14).





n

i

q
i

p
i

qp txtxttD
1

2))()(())((x),(x (14)

where ni ,...2,1 is the element number of input vectors.

Then we give a positive reward swarmr to the agent when Eq. (15) is satisfied, or a

negative reward swarmr in the opposite.

 disttDdis qp max_))((min_  x),(x (15)

swarmt rrr 1t (16)

Here disdis max_min_ , , denotes near limit distance, far limit distance, respectively.

2.3 Adoption of Adaptive Learning Rate

 Learning rates in Eq. (12) and Eq. (13) are decided empirically as fixed values

conventionally. However, they need to be reduced to improve the learning

convergence during the iterations of exploration process. It is indicated by Derhami et

al. that the visited states should use smaller learning rates, meanwhile, less visited

states with larger learning rates to modify the exploration policy [8]. So they proposed

an adoptive learning rate (ALR) to balance the exploitation/exploration as follows.

Let k
t be the accumulation firing strength of rule)(()x tk , the visit value to the

state

)x t(is normalized by Eq. (17).

 
 








t

t

K

k

k
t

K

k

k
t

k

k

t

tFV

1

1

(

(



)x

))(x





 (17)

where)(1 (t)kk
t

k
t x  ,

00 

k
t ,

  1(0 )x tFV .

The ALR then is given by Eq. (18).

),
))((

min()))(((max
min 




tFV

K
t

tkALR
t

x
x  (18)

where
tK is the number of fuzzy rules,

maxmin , are the boundaries of ALR.

7

2.4 A Sarsa Learning type Neuro-Fuzzy Reinforcement Learning System

When a RL agent is in a partially observable Markov decision Process (POMDP),

there may be different adaptive actions need to be output though the observed states

are the same. Actor-critic type neuro-fuzzy reinforcement learning system was hard to

find the optimal solution in POMDP [7]. So a sarsa learning (SL) type neuro-fuzzy

reinforcement learning system is proposed recently [7].

The mathematical description of Fuzzy net is as same as which in actor-critic

learning type system. Two steps states are observed in sarsa learning algorithm (See

sarsa learning rule Eq. (3)), and these state-action value functions are given by

following:






k

k

k

kQ
kjQ

jj
t

tw
atQ

t

t

))((

))((
),),((

x

x
w)x(




 (19)













k

k

k

kQ
kjQ

jj
t

tw
atQ

t

t

))1((

))1((
),),1((

1

1

x

x
w)x(




 (20)

where tKk ,...2,1 is the number of fuzzy rules, mj ,...2,1 is action number.

The learning rule of QL becomes to:









 


0

))((/)(
K

k
kk

sarsaALR
tQ

kj
Q
kj

tt
ww tt

1

x)x(

o t h e r w i s e

aa jt 
 (21)










 




0

))1((/)1(111

K

k
kk

sarsaALR
tQ

kj
Q
kj

tt
ww tt

1

x)x(

o t h e r w i s e

aa jt 1
 (22)

where ALR
t

ALR
t 1,  are adaptive learning rates described by Eq. (17) and Eq. (18), TD

error is given by Eq. (23).

),)),(((),)),1(((11

11
ttt Q

tt
Q
ttt

Q
TD atQatQr wxwx   

 (23)

3 Simulation Experiments

To confirm how ARL can benefit the learning performance of neuro-fuzzy type

reinforcement learning systems, a goal-exploration problem was used to in the

simulation experiment (Fig. 1). The problem is assumed that agents explore a goal

area in an unknown 2-D square surrounded by walls. All candidate actions may be

chosen before the learning processes, and RL algorithms aforementioned find

adaptive actions of agent to explore the goal or exploit its experience to move to the

goal. Adaptive actions mean that agents choose to avoid obstacles, other agents and

wall, and find the shortest path from their start positions to the goal area.

8

Agents observed the state of environment by the information of its position (x, y)

in Simulation I, and their vicinities in 4 directions: up, down, left, right in Simulation

II. In the last case, if the one step ahead is a path that an agent can arrive it by one

time motion, then the value of the direction is 0, oppositely, if there is a wall, or other

0

 20

 40

 60

 80

 100

0 50 100 150 200 250 300 350 400 450 500

Individual Learning with fixed learning rate
Individual Learning with ALR (proposed)

cycles

step

(a) Comparison of individual learning results

0

 20

 40

 60

 80

 100

0 50 100 150 200 250 300 350 400 450 500

Swarm Learning with fixed learning rate
SWARM Learning with ALR (proposed)

step

cycle
(b) Comparison of swarm learning results

Fig. 2. Learning curves of different learning methods by the actor-critic type system.

G

10.0

4.5

2.5

5.6

5.0

7.0 10.0

1.0

1.9

a1(2.0, 1.0)

a2(1.5, 2.0)

1.0

X-axis

Y-axis

Fig. 1. Simulation environments for goal-directed exploration experiment.

9

agent (s), or an obstacle, then the input is 1. So the number of states in the

environments of Simulation I is yx in a grid scale, and more in the continuous

space. In the case of Simulation III, the number of states is 4 bits, 16 states (i.e., 0010,

0011, …).

3.1 Simulation I: A Maze-like Environment

An exploration environment is shown in Fig. 1. There were walls on the four sides,

obstacles in the exploration area, and a goal area was fixed. Two agents a1 and a2

start from (2.0, 1.0) and (1.5, 2.0) to find the goal area between (9.0, 9.0) to (10.0,

10.0). Each agent observed its position and position of others in the square, and

moved 1.0 length per step toward an arbitrary direction. The method to decide the

direction of one time movement was to choose 2 orthogonal directions whose value of

action function were higher than others. According to Eq. (10) and Eq. (11) the action

direction and its value were calculated. Agents did not have any information of the

goal position before they arrived at it.

When the distance rewards defined by Eq. (14) – Eq. (16) were not considered, 2

agents learned to search the goal as fast as they can individually (individual learning);

0

 500

 1000

 1500

 2000

 2500

 3000

0 50 100 150 200 250 300 350 400 450 500

Individual learning with fixed learning rate
Individual learning with ALR

cycle

step

(a) Comparison of individual learning results

0

 500

 1000

 1500

 2000

 2500

 3000

0 50 100 150 200 250 300 350 400 450 500

Swarm learning with fixed learning rate
Swarm learning with ALR (proposed)

cycle

step

(b) Comparison of swarm learning results

Fig. 3. Learning curves of different learning methods by the sarsa learning

system.

10

meanwhile, when agents used the swarm rewards in the same environment to modify

their policies, the learning was called swarm learning.

Actor-critic type neuro-fuzzy reinforcement learning system described in Section

2.2 was used as a conventional system [5] [6]. When adaptive learning rate (ALR)

shown in Section 2.3 was adopted in, the change of the learning performance was

investigated.

The values of parameters used in these simulations were shown in Table 1. The

number of learning iterations (cycles) for one simulation was set to be 500. In one

trial (cycle), i.e., an exploration from the start to the goal, the limitation steps of

exploration was 5,000. Because the stochastic property of RL, the simulation results

were given by the averages of 5 simulations.

Table 1. Parameters used in Simulation I and Simulation II

Description Symbol Quantity

Dimension of input vector n 2

The number of actions m 2

Standard deviation of membership
k

i 0.1

Threshold of fitness F 0.4

Initial weight between rules and critic kv 1.0

Initial weight between rules and actor kjw 0.25

TD learning coefficient for critic v , ALR
v 0.3, (0.001-0.6)

TD learning coefficient for actor w , ALR
w 0.3, (0.001-0.6)

Discount of TD error γ 0.9

Temperature of Bolzmann distribution T
2.0 (0.2 after 100

cycles)

Reward for goal arrived rgoal 1000.0

Reward for wall or agent crashed ro -10.0

Reward for corner crashed rc -20.0

Reward for swarm formed rswarm 0.5

Reward for swarm unformed ra-swarm -|dis|

Minimum distance between agents min_dis 1.0

 Maximum distance between agents max_dis 3.0

When we confirmed the learning curves of these different learning methods, not

only swarm learning with ALR but also individual learning with ALR showed their

prior learning performance comparing with the conventional fixed learning rate. The

average results are shown in Fig. 3. In detail, the average lengths of the path explored

by agents were 1182.01 using fixed learning rate and individual learning, 41.62 using

ALR and individual learning, 26.61 using fixed learning rate and swarm learning,

22.64 using ALR and swarm learning calculated by the last 100 cycles data (from

cycle 400 to cycle 500).

11

3. 3 Simulation II: A POMDP Environment

An exploration environment with an obstacle as shown in Fig. 4 (a) was used in

Simulation II. The sarsa learning type neuro-fuzzy reinforcement learning system was

(a) Using a fixed learning rate 03.0

(b) Using ALR]3.0 ,001.0[ALR
t

Fig. 5. Learning curves of different learning methods by the sarsa learning system.

36 1 6

36

2

2

6

1

goal

s1

G

1

1

ｓ

10

10

s2

(a) Exploration environment (b) Minimum path (broken arrow lines)

 and quasi-minimum path (solid arrow lines)

Fig. 4. A goal-exploration problem for sarsa learning type neuro-fuzzy reinforcement

learning system.

G

s

12

adopted as the action learning method of autonomous agents. Two agents were input

in 4 dimensions, i.e., up, down, left, and right directions with values 0 and 1. The

actions were also in 4 directions 1 grid/step (4,3,2,1, ja j). The optimal path of the

agents should be a transition of a same state (0, 0, 0, 0) even from the start position (2,

2) and (3, 2) to the goal area from (30, 30) to (36, 36) avoiding to crash the 10x10

obstacle in the center of the exploration square. So it was an environment under

partially observable Markov decision process (POMDP) and the optimal solution was

difficult to be found, alternatively, quasi-optimal solution was available as shown in

Fig. 4 (b).

The dramatic improvement for the learning performance by ALR was confirmed

with the learning curves of sarsa learning type neuro-fuzzy reinforcement learning

system dealing with the POMDP problem as shown in Fig. 5. Swarm learning effects

stand out clearly and ALR accelerated learning convergence efficiently.

4 Conclusions

Adaptive learning rate (ALR) was adopted into neuro-fuzzy reinforcement learning

systems in this paper. The concept was founded on the balance management of

exploration and exploitation of reinforcement learning process. Higher learning rate

serves larger modification of value functions dealing with unexplored states.

Simulations of goal-navigated exploration problem showed the effectiveness of the

proposed method. And adequate distance between agents also accelerated the

exploration process. It is expected to apply these effective RL learning systems to

autonomous agent in web intelligence or robots in real environment in the future.

REFERENCES

1. L. P. Kaelbling, M. L.Littman: Reinforcement Learning: A Survey, J. Artificial Intelligence

Research, 4 237—285 (1996)

2. R. S. Sutton, and A. G. Barto: Reinforcement learning: an introduction, The MIT Press,

Cambridge (1998)

3 K. Samejima and T. Omori: Adaptive internal state space construction method for

reinforcement learning of a real-world agent, Neural Networks, 12, 1143--1155 (1999)

4. X. S. Wang, Y. H. Cheng and J. Q. Yi: A fuzzy Actor–Critic reinforcement learning network,

Information Sciences, 177, 3764--3781 (2007)

5. T. Kuremot, M. Obayashi, and K. Kobayashi: Adaptive swarm behavior acquisition by a

neuro-fuzzy system and reinforcement learning algorithm, International Journal of

Intelligent Computing and Cybernetics, 2(4), 724-744 (2009)

6. T. Kuremoto, Y. Yamano, M. Obayashi, and K. Kobayashi: An improved internal model for

swarm formation and adaptive swarm behavior acquisition, Journal of Circuits, Systems,

and Computers, 18(8), 1517-1531 (2009)

7. Kuremoto T., Yamano Y. Feng L.-B, Kobayashi K., and Obayashi M.: “A fuzzy neural

network with reinforcement learning algorithm for swarm learning”, Lecture Notes in

Electronic Engineering (LNEE), Vol.144, pp.101-108, 2011.

8. V. Derhami, V. J. Majd, and M. N. Ahmadabadi: Exploration and exploitation balance

management in fuzzy reinforcement learning, Fuzzy Sets and Systems, 161(4), 578－595

(2010)

http://www.springer.com/computer/foundations/book/978-3-540-28226-6
http://www.springer.com/computer/foundations/book/978-3-540-28226-6
http://www.springer.com/computer/foundations/book/978-3-540-28226-6

