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Abstract. To acquire adaptive behaviors of multiple agents in the unknown 

environment, several neuro-fuzzy reinforcement learning systems (NFRLSs) have 

been proposed Kuremoto et al. Meanwhile, to manage the balance between 

exploration and exploitation in fuzzy reinforcement learning (FRL), an adaptive 

learning rate (ALR), which adjusting learning rate by considering “fuzzy visit value” 

of the current state, was proposed by Derhami et al. recently. In this paper, we intend 

to show how the ALR accelerates some NFRLSs which are reinforcement learning 

systems with a self-organizing fuzzy neural network (SOFNN) and different learning 

methods including actor-critic learning (ACL), and Sarsa learning (SL). Simulation 

results of goal-exploration problems showed the powerful effect of the ALR 

comparing with the conventional empirical fixed learning rates.  

Keywords: neuro-fuzzy system, swarm behavior, reinforcement learning (RL), multi-

agent system (MAS), adaptive learning rate (ALR), goal-exploration problem. 

1   Introduction 

As an active unsupervised machine learning method, reinforcement learning (RL) 

has been developed and applied to many fields such as intelligent control and robotics 

since 1980s [1] – [3]. The learning process of RL is given by the trials of exploration 

and exploitation of a learner (agent) in unknown or non-deterministic environment. 

Valuable or adaptive actions which are optimized output of RL systems are obtained 

according to the modification of action selection policies using the rewards (or 

punishments) from the environment. Generally, there are four fundamental 

components in RL: state (observed information from the environment, input); policy 

(usually using probability selection to keep exploitation to an unknown environment); 

action (the output of the learner changing the current state) and reward 

(perceived/obtained by the learner during the transition of the state).  

                                                           
1 A part of this work was supported by Grant-in-Aid for Scientific Research (JSPS No. 

23500181, No. 25330287, No. 26330254). 
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In the history of RL research, there are some severe problems need to be solved 

theoretically:  

(1) The explosion of state-action space in high dimension problems (the curse of 

dimensionality); 

(2) The balance between exploration and exploitation; 

(3) Learning convergence in partially observable Markov decision process 

(POMDP). 

To tackle the first issue, linear approximation method [2], normalized Gaussian 

radial basis function classification method [3], fuzzy inference systems [4] – [8], etc. 

are proposed. Specially, neuro-fuzzy systems with a data-driven type self-organizing 

fuzzy neural network (SOFNN) proposed in our previous works showed their 

adaptive state identification ability for different RL algorithms such as actor-critic 

learning [5] [6], Q-learning, and Sarsa learning [7]. 

Meanwhile, Derhami et al. proposed to use adaptive learning rate (ALR) and 

adaptive parameter of state transition function to obtain a suitable balance of 

exploration and exploitation [8]. Effectiveness of the ALR has been confirmed by its 

application to a fuzzy controller with Q learning algorithm with simulation results of 

some benchmark problems such as boat problem and mountain-car problem in [8].  

Furthermore, the third problem of RL mentioned above is more serious to a multi-

agent system (MAS). Even the exploration environment is stable, the existence of 

other agents nearby the learner agent is uncertain. In [4] – [8], Kuremoto et al. 

proposed to calculate the reward of suitable distance between agents to modify the 

action policy and showed its higher learning convergence comparing with RLs by 

individuals independently.  

In this paper, we adopt Derhami et al.’s ALR to Kuremoto et al.’s neuro-fuzzy 

reinforcement learning systems to improve the learning performance of agents in 

MASs. Goal-exploration problems were used in simulation experiments and the 

comparison between results with conventional empirical fixed learning rate and ALR 

is reported.  

2   Neuro-Fuzzy Reinforcement Learning Systems 

2.1   Reinforcement Learning 

Markov decision process (MDP) is used in reinforcement learning (RL) algorithms. 

Let a state space n
n Rxxx ),...,,( 21X , an action space m

m Raaa ),...,,( 21A , a 

state transition (from the current stat ts to the next state 1ts ) policy  with 

probability ][XA X: 10
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, where 

is the reward 1Rrt  obtained during the state transition. The RL algorithm is to find 
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an optimal policy * that can yield the maximum discounted expected reward *R , 

i.e. the maximum value function of state }{ (X) t
t

t

assPassP
rγEREV

tttttt



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or the maximum value function of state-action }|(X){ A)(X, VEQ  . 

To avoid a mass calculation to whole MDP state transition, and deal with unknown 

transition probabilities, there is an efficient RL algorithm named temporal difference 

learning (TD-learning) [2] to yield the maximum value functions. A TD error 
1R  is defined by Eq. (1), and it is used to update state value function in the 

learning process, for example, Eq. (2). 

 

  )()( 11 ttt VVr xx
                    (1) 

  )()( tt VV xx                     (2) 

 

where 10    and 10  are a damping rate and a learning rate, respectively. 

When action value is also considered during the state transition, the modification of 

the state-action value function  )( tt ,asQ can be used to instead of state value 

function )( tV x
 . 

 

 )()( )( ttttttttt ,asQasQr,asQ,asQ     ),(( 111     (3) 

  

)111  ttttt asras ,,,,( appears in Eq. (3), so this learning rule is named as “sarsa 

learning” [2]. 

2.2   An Actor-Critic type Neuro-Fuzzy Reinforcement Learning System 

To deal with continuous state space, an actor-critic type neuro-fuzzy reinforcement 

learning system is proposed by Kuremoto et al. [5] [6]. The system is able to be used 

as an internal model of an autonomous agent which output a series of adaptive actions 

in the exploration of the unknown environment. The information processing flow is as 

follows:  

Step 1 Agent observes states tx from the environment;  

Step 2 Agent classifies the inputs into k classes )( tk x by Fuzzy net; 

Step 3 Agent outputs an action according to the value function )( tm xA (i.e. Actor); 

Step 4 Agent receives rewards from the environment after the action is executed; 

Step 5 TD-error, concerning with the state value function )( txV in Critic, is 

calculated; 

Step 6 Modify the action value function using TD-error (Eq. (1)). 

Step 7 Return to Step 1if the state is not the terminal state, else end the current trail. 
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For an n-dimension input state space  )(),...,(),( 21 txtxtx nx , a fuzzy inference net is 

designed with a hidden layer composed by units of fuzzy membership 

functions  )(txB i

k

i
, i.e., Eq. (4), to classify input states. 
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Here k

ic , k

i denotes the mean and the deviation of ith membership function which 

corresponding to ith dimension of input )(txi
, respectively. 

Let )(tK be the largest number of fuzzy rules, we have Eq. (5) : 

 

if ( )(1 tx is ))(( 11 txBk , ,... , )(txn
is ))(( txB n

k

n
) then    

     ))(x( tk  = ))((
1

txB i

n

i

k

i


                          (5) 

 

where ))(x( tk means the fitness of the rule kR for an input set )(x t .   

To determine the number of membership functions and rules of fuzzy net, a self-

organized fuzzy neural network (SOFNN) which is constructed adaptive membership 

functions and rules driven by training data and thresholds automatically [5] [6]. The 

self-organizing process of SOFNN is given as follows. 

Only one membership function is generated by the first input data (for example, the 

position of agent) , the value of its membership’s center equals to the value of input 

data, and the value of width of all Gaussian function units is fixed to an empirical 

value. The number of rule for membership functions is one at first, and the output of 

the rule 1R equals to ))1((1 x = ))1((
1

1

i

n

i

i xB


according to Eq. (5).  

For the next input state  )(),...,(),( 21 txtxtx nx , a new membership function is 

generated if Eq. (6) is satisfied. 

 

FtxB isi
s

))((max ,
                           (6) 

 

Here ))((, txB isi
denotes the value of existed membership functions calculated by 

Eq. (4) and )(,...,2,1 tLs i  indicates the sth membership function with the 

maximum number )(tLi
. F denotes a threshold value of whether an input state is 

evaluated enough by existing membership functions.  

A new rule is generated automatically when a new membership function is added 

according to Eq. (5). Iteratively, the fuzzy net is completed to adapt to input states.  

The weighted outputs of fuzzy net are used to calculate the value of states (Critic) 

and actions (Actor) according to Eq. (7) and Eq. (8), respectively.  
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Here
kjk wv , are the weighted connections between fuzzy net rules ))(( tk x and critic 

function 1))(( RtV x , actor function m
j RtA ))((x . jA denotes the jth action selected by 

agent according to a stochastic policy Eq. (9), where j = 1, 2, …, m.  
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Here 0T  is a constant named temperature of Boltzmann distribution.  

Actor function m
j RtA ))((x  belongs to an m-dimension real number space in a 

goal –exploration problem. When the input space is a continuous Euclidean space, for 

example, a 2-D plane, the number of states and the number of actions may be infinity. 

To overcome this problem, the speed of action can be limited to 1 grid (mass) per step, 

and the direction may be given by the linear combination of discrete action values in 4 

directions: ))(()),(()),(()),(( tAtAtAtA rightleftdownup xxxx . In fact, we used two bigger 

Action values to design candidate actions in x axis and y axis. For example, 

))(( tAright x in x axis is chosen by Eq. (9), and ))(( tAup x in y axis, then the velocity 

angle is given by Eq. (10) 

))((

))((
arctan

tA

tA

right

up

x

x
                       (10) 

The movement of the agent is calculated by adding Eq. (11) from the current 

coordinates. 
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TD learning rule given by Eq. (1) become to Eq. (12) and Eq. (13), 

where
wv  , denote learning rates for connections of Critic and Actor. 
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otherwise

aa jt 
         (13) 

 

When multiple agents explore an unknown environment at the same time, 
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cooperative exploration, i.e., swarm learning may provide more efficient performance 

comparing with individual learning. Let ))(( ttD qp
x ),(x express the Euclidean distance 

between agent p and agent q, i.e. Eq. (14). 
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where ni ,...2,1 is the element number of input vectors.  

Then we give a positive reward swarmr to the agent when Eq. (15) is satisfied, or a 

negative reward swarmr in the opposite.  

 

 disttDdis qp max_))((min_  x),(x               (15) 

swarmt rrr 1t                         (16) 

 

Here disdis max_min_  , , denotes near limit distance, far limit distance, respectively. 

2.3   Adoption of Adaptive Learning Rate 

 Learning rates in Eq. (12) and Eq. (13) are decided empirically as fixed values 

conventionally. However, they need to be reduced to improve the learning 

convergence during the iterations of exploration process. It is indicated by Derhami et 

al. that the visited states should use smaller learning rates, meanwhile, less visited 

states with larger learning rates to modify the exploration policy [8]. So they proposed 

an adoptive learning rate (ALR) to balance the exploitation/exploration as follows. 

Let k
t be the accumulation firing strength of rule )(( )x tk , the visit value to the 

state
 

)x t( is normalized by Eq. (17). 

 
 








t

t

K

k

k
t

K

k

k
t

k

k

t

tFV

1

1

(

(



)x

))(x





                     (17) 

where )(1 (t)kk
t

k
t x   ,
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k
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  1(0  )x tFV . 

The ALR then is given by Eq. (18). 

),
))((

min()))((( max
min 




tFV

K
t

tkALR
t

x
x              (18) 

where 
tK is the number of fuzzy rules, 

maxmin , are the boundaries of ALR. 
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2.4  A Sarsa Learning type Neuro-Fuzzy Reinforcement Learning System 

When a RL agent is in a partially observable Markov decision Process (POMDP), 

there may be different adaptive actions need to be output though the observed states 

are the same. Actor-critic type neuro-fuzzy reinforcement learning system was hard to 

find the optimal solution in POMDP [7]. So a sarsa learning (SL) type neuro-fuzzy 

reinforcement learning system is proposed recently [7].  

The mathematical description of Fuzzy net is as same as which in actor-critic 

learning type system. Two steps states are observed in sarsa learning algorithm (See 

sarsa learning rule Eq. (3)), and these state-action value functions are given by 

following: 
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where tKk ,...2,1 is the number of fuzzy rules, mj ,...2,1 is action number. 

The learning rule of QL becomes to: 
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where ALR
t

ALR
t 1,  are adaptive learning rates described by Eq. (17) and Eq. (18), TD 

error is given by Eq. (23). 
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11
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       (23) 

3   Simulation Experiments 

To confirm how ARL can benefit the learning performance of neuro-fuzzy type 

reinforcement learning systems, a goal-exploration problem was used to in the 

simulation experiment (Fig. 1). The problem is assumed that agents explore a goal 

area in an unknown 2-D square surrounded by walls. All candidate actions may be 

chosen before the learning processes, and RL algorithms aforementioned find 

adaptive actions of agent to explore the goal or exploit its experience to move to the 

goal. Adaptive actions mean that agents choose to avoid obstacles, other agents and 

wall, and find the shortest path from their start positions to the goal area. 
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Agents observed the state of environment by the information of its position (x, y) 

in Simulation I, and their vicinities in 4 directions: up, down, left, right in Simulation 

II. In the last case, if the one step ahead is a path that an agent can arrive it by one 

time motion, then the value of the direction is 0, oppositely, if there is a wall, or other 
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(a) Comparison of individual learning results 

 

0

 20

 40

 60

 80

 100

0  50  100  150  200  250  300  350  400  450  500

Swarm Learning with fixed learning rate
SWARM Learning with ALR (proposed)

step

cycle  
(b) Comparison of swarm learning results 

 

Fig. 2.  Learning curves of different learning methods by the actor-critic type system.  
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Fig. 1. Simulation environments for goal-directed exploration experiment. 
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agent (s), or an obstacle, then the input is 1. So the number of states in the 

environments of Simulation I is yx  in a grid scale, and more in the continuous 

space. In the case of Simulation III, the number of states is 4 bits, 16 states (i.e., 0010, 

0011, …). 

 

3.1 Simulation I: A Maze-like Environment  

An exploration environment is shown in Fig. 1. There were walls on the four sides, 

obstacles in the exploration area, and a goal area was fixed. Two agents a1 and a2 

start from (2.0, 1.0) and (1.5, 2.0) to find the goal area between (9.0, 9.0) to (10.0, 

10.0). Each agent observed its position and position of others in the square, and 

moved 1.0 length per step toward an arbitrary direction. The method to decide the 

direction of one time movement was to choose 2 orthogonal directions whose value of 

action function were higher than others. According to Eq. (10) and Eq. (11) the action 

direction and its value were calculated. Agents did not have any information of the 

goal position before they arrived at it.  

When the distance rewards defined by Eq. (14) – Eq. (16) were not considered, 2 

agents learned to search the goal as fast as they can individually (individual learning); 
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(a) Comparison of individual learning results 
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(b) Comparison of swarm learning results 

 

Fig. 3.  Learning curves of different learning methods by the sarsa learning 

system.  
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meanwhile, when agents used the swarm rewards in the same environment to modify 

their policies, the learning was called swarm learning.  

Actor-critic type neuro-fuzzy reinforcement learning system described in Section 

2.2 was used as a conventional system [5] [6]. When adaptive learning rate (ALR) 

shown in Section 2.3 was adopted in, the change of the learning performance was 

investigated. 

The values of parameters used in these simulations were shown in Table 1. The 

number of learning iterations (cycles) for one simulation was set to be 500. In one 

trial (cycle), i.e., an exploration from the start to the goal, the limitation steps of 

exploration was 5,000. Because the stochastic property of RL, the simulation results 

were given by the averages of 5 simulations. 

Table 1. Parameters used in Simulation I and Simulation II 

Description Symbol Quantity 

Dimension of input vector n 2 

The number of actions m 2 

Standard deviation of membership 
k

i  0.1 

Threshold of fitness F 0.4 

Initial weight between rules and critic kv  1.0 

Initial weight between rules and actor kjw  0.25 

TD learning coefficient for critic v , ALR
v  0.3, (0.001-0.6) 

TD learning coefficient for actor w , ALR
w  0.3, (0.001-0.6) 

Discount of TD error γ  0.9 

Temperature of Bolzmann distribution T 
2.0 (0.2 after 100 

cycles) 

Reward for goal arrived rgoal 1000.0 

Reward for wall or agent crashed ro -10.0 

Reward for corner crashed      rc -20.0 

Reward for swarm formed rswarm 0.5 

Reward for swarm unformed ra-swarm -|dis| 

Minimum distance between agents min_dis 1.0 

  Maximum distance between agents max_dis 3.0 

 

When we confirmed the learning curves of these different learning methods, not 

only swarm learning with ALR but also individual learning with ALR showed their 

prior learning performance comparing with the conventional fixed learning rate. The 

average results are shown in Fig. 3. In detail, the average lengths of the path explored 

by agents were 1182.01 using fixed learning rate and individual learning, 41.62 using 

ALR and individual learning, 26.61 using fixed learning rate and swarm learning, 

22.64 using ALR and swarm learning calculated by the last 100 cycles data (from 

cycle 400 to cycle 500). 
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3. 3 Simulation II: A POMDP Environment 

An exploration environment with an obstacle as shown in Fig. 4 (a) was used in 

Simulation II. The sarsa learning type neuro-fuzzy reinforcement learning system was 

 
(a) Using a fixed learning rate 03.0   

 

(b) Using ALR ]3.0 ,001.0[ALR
t  

 

Fig. 5.  Learning curves of different learning methods by the sarsa learning system.  
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Fig. 4.  A goal-exploration problem for sarsa learning type neuro-fuzzy reinforcement 

learning system. 
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adopted as the action learning method of autonomous agents. Two agents were input 

in 4 dimensions, i.e., up, down, left, and right directions with values 0 and 1. The 

actions were also in 4 directions 1 grid/step ( 4,3,2,1, ja j ). The optimal path of the 

agents should be a transition of a same state (0, 0, 0, 0) even from the start position (2, 

2) and (3, 2) to the goal area from (30, 30) to (36, 36) avoiding to crash the 10x10 

obstacle in the center of the exploration square. So it was an environment under 

partially observable Markov decision process (POMDP) and the optimal solution was 

difficult to be found, alternatively, quasi-optimal solution was available as shown in 

Fig. 4 (b).  

The dramatic improvement for the learning performance by ALR was confirmed 

with the learning curves of sarsa learning type neuro-fuzzy reinforcement learning 

system dealing with the POMDP problem as shown in Fig. 5. Swarm learning effects 

stand out clearly and ALR accelerated learning convergence efficiently. 

4  Conclusions 

Adaptive learning rate (ALR) was adopted into neuro-fuzzy reinforcement learning 

systems in this paper. The concept was founded on the balance management of 

exploration and exploitation of reinforcement learning process. Higher learning rate 

serves larger modification of value functions dealing with unexplored states. 

Simulations of goal-navigated exploration problem showed the effectiveness of the 

proposed method. And adequate distance between agents also accelerated the 

exploration process. It is expected to apply these effective RL learning systems to 

autonomous agent in web intelligence or robots in real environment in the future.   
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