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Abstract

Business Process Management (BPM) is very important to many organizations. BPM allows
organizations to improve their consistency and efficiency. Nowadays, the importance of work-
flow management has been increasing since business models are changing rapidly to adapt to

market changes and law revision.

Petri net is a graphical and mathematical model for concurrent and discrete event systems.
Actual business workflows in the real world can be represented with a restricted subclass of Petri
nets called as Workflow net (WF-net). We can check the consistency of a workflow by analysing
its corresponding WF-net. For example, “Will this workflow terminate correctly?”, “How many
states does this workflow have?”. In case of dealing with huge and complex workflows, automatic
checking is becoming more important. Petri net " s theory and applications allow us to analyse

actual workflows.

There is a subclass of WF-net, called Extended Free Choice WF-net (EFC WF-net for short).
Many actual workflows can be modeled as EFC WF-nets. On the other hand, there is another
subclass of WF-net, called Well-structured WF-net (WS WF-net for short). WS WF-net has
more checking algorithms than EFC WF-net. It is natural for us to try to transform EFC WF-net
to WS WF-net to check some properties.

Yamaguchi has defined a problem, called acyclic EFC WF-net refactoring problem: given
an acyclic EFC WF-net, transform it to an acyclic WS WF-net without changing its observable
behavior. If the acyclic EFC WF-net is refactored to an acyclic WS WF-net, we can use the
analysis methods of WS WF-nets to analyze the EFC WF-net.

Not all EFC WF-nets are refactored to WS WF-nets. So that, we judge to refactor a target
EFC WF-net. It is important to know sufficient conditions of refactorizability. If some conditions
are “true”, we apply refactoring algorithms to the EFC WF-net, and obtain the output WS WF-net
to check the consistency of the original EFC WF-net.

In this thesis, we focus sufficient conditions of refactorizabilty of WF-net and refactoring

algorithms to study refactoring actual workflows. This thesis is organized as follows :
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v Abstract

Chapter 1 presents background and overview of this thesis.

Chapter 2 presents the definitions of Petri net, and WF-net. Next, we show mainly two con-
cepts called soundness and branching bisimilarity. Soundness corresponds to workflows’ logical
correctness. Branching bisimilarity corresponds to equivalence between workflows’ behavior.

Furthermore, we propose WF-net refactoring problem and refactorizability problem.

Chapter 3 presents three sufficient conditions of refactorizability. The first two conditions are

based on paths in WF-net. The last one is based on places in WF-net.

Chapter 4 presents refactoring algorithm by using the sufficient conditions proposed in Chap-

ter 3. The algorithm enables us to refactor actual WF-nets automatically.

Chapter 5 presents three applications of refactoring. The first is Reachability Checking. The
second is State Number Calculation. The third is Response Property Checking.

Chapter 6 introduces an advanced concept “Timed Branching Bisimulation (TBB for short)”.
TBB is an extension of branching bisimilarity. Next, we propose new equlity criterion Timed
projection Inheritance. Furthermore, we propose new refactoring methods by reduction for timed

system based on the above equality.

Chapter 7 gives the conclusion of this thesis and presents the future works.

The results presented in this thesis reveal the sufficient conditions of EFC WF-net refactoring
and related refactoring algorithms. It enables us to analyze EFC WF-net to wider properties more
easily. In the future works, we will try to apply our method to upstream process in workflow

system design. It may reduce the costs in the process.
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xeX:

XcY:
XUY:
XNY:
XXY:
X-Y:

0:
N:
|XI:
Lx]:
[x]:

x is an element of set X.

Set X is contained in set Y.

Union of sets X and Y.

Intersection of sets X and Y.

Products of sets X and Y.

Difference of sets X and Y.

Empty set.

The set of natural numbers.

The cardinality of set X.

Floor function — the maximum integer not grater than x.

Ceiling function — the minimum integer not less than x.
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Chapter 1

Introduction

Business Process Management (BPM) is very important to many organizations. BPM allows or-
ganizations to improve their consistency and efficiency. Nowadays, the importance of workflow
management has been increasing since business models are changing rapidly to adapt to market

changes and law revision [1][2].

Petri net is a graphical and mathematical model for concurrent and discrete event systems [3][4][5].
Actual business workflows in the real world can be represented with a subclass of Petri nets called
as Workflow net (WF-net) [6][7]. We can check the consistency of a workflow by analyzing its
corresponding WF-net. For example, “Will this workflow terminate correctly?”’, “How many
states does this workflow have?”. In case of dealing with huge and complex workflows, auto-
matic checking is becoming more important. Petri net ~ s theory and applications allow us to

analyze actual workflows.

There is a subclass of workflow net, called Extended Free Choice WF-net (EFC WF-net
for short ). EFC WF-nets is known to be able to represent most real world workflows [8][9].
Unfortunately, it is difficult to solve analysis problem of EFC WF-nets using existing checking
algorithm. On the other hand, there is another subclass of WF-net, called Well-Structured WF-
net (WS WE-net for short). There exist more analysis methods for WS WF-net.

It is true that we can design workflows as WS WF-nets in the beginning of development.
However, in the latter stage, the workflows are often forced to change [10][11][12]. For example,
adding a new credit check process which is located beside existing processes concurrently. We
show a sample of workflow changing in Fig. 1.1. (a)A virtual e-commerce company operate
exclusive service for registered members, initially. (b)One day, the service disclosed for non-
members. Non-member needs credit check before contract. New WF-net is expected to have a
new credit check process and concurrent communication with existing processes. We can see

that the complexity of the net increases. As a result, workflows that correspond to EFC WF-net
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Order-Entry  StockCheck

OO0

(a) A virtual e-commerce company’s WF-net N, before changing.

Order-Entry  StockCheck

Evaluation

Order-Entry CreditCheck
{Non-member)

(b) A new WF-net Nyjsci0s.q has a new concurrent process to Nepcjose-

Figure 1.1: An Example of WF-net changing.

are generated involuntarily. It is natural for us to try to transform EFC WF-net to WS WF-net to

check some properties.

For many years, reduction techniques have been studied in Petri net research field. Reduction
of Petri nets involves simplifying a complex Petri net to a simpler one, and at the same time

preserves important properties concerned by designers.

Best [13][14] proposed reduction rule which removes EFC-structure from the original net,
it also preserves liveness [16] and boundness [16] property. Desel [15] proposed another rule
which removes dual of EFC-structure, it preserves well-formedness. Another six reduction rules
were studied and summarized by Murata [16]. Murata’s rules preserve liveness, safeness and

boundness.

In recent years, there are some remarkable progress about reduction of WF-nets. Polyvyanyy [17]
proposed a WF-net reduction algorithm. It searches for concurrent elements (modular decom-
position tree in Ref. [17]) in ordering relations graph corresponding to the original WF-net. It
outputs WS WF-net by reconstructing the concurrent elements of the net. The study differs in us-
ing ordering relation graph (a kind of state graph) from us. Our approach is more comprehensive

and intuitive, since we transform the paths in the WF-net, directly.

Yamaguchi [18] has defined a problem, called acyclic EFC WF-net refactoring problem :
given an acyclic EFC transform it to an acyclic WS WF-net without changing its observable

behavior. That is an analogy of Refactoring in software engineering [20].
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(b) A CB WF-net with PT-cross structure.

Figure 1.2: Examples of CB WF-net.

Not all EFC WF-nets are refactored to WS WF-nets. So that, we can decide to refactor the
target EFC WF-net. It is necessary to know sufficient conditions of refactorizability. If some
conditions are “true”, we can apply refactoring algorithms to the EFC-net, and obtain the output
WS WF-net to check the consistency of the original EFC WF-net. Yamaguchi [18] has proposed
one sufficient condition of refactorizability : Let Ny be an acyclic EFC but non-WS WZF-net
whose every label in Nx except 7 is unique. If Ny is CB then there is an acyclic WS WF-net Ny
such that (Nx, [p;1) ~» (Ny, [p}]) and every label in Ny except T is unique.

CB means that the net has PT or TP cross structure. Figure 1.2 (a) and (b) shows each case
of CB WF-net. Let us consider a sound acyclic EFC WF-net Ny shown in Fig. 1.3 (a). N has a

CB (PT) structure, i.e. places p,, p; and transitions 73, t4, and the structure is a cut-set of N;.

Since N, satisfies the above sufficient condition, it can be refactored to an acyclic WS WF-net
N,’ shown in Fig. 1.3 (b). Next, let us extend N, by adding a path p,tspo. The extended WF-net
does not any longer satisfy the sufficient condition, because the CB (PT) structure is not a cut-set
of the net. The complex structure often may reveal in actual workflows. We have to generalize

the sufficient condition to cope with real world’s problem.

By a new sufficient conditions proposed in this study, we can say that N,” is refactorizable,

and we can refactor it to WS WF-net shown in Fig. 1.3 (b) automatically.
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(b) Acyclic WS WF-net Ny’

Figure 1.3: An example refactoring which can be refactored for the first time by this study

In this thesis, we study about more general sufficient conditions of refactorizabilty of WF-net

and develop refactoring algorithm and its applications. This thesis is organized as follows :

In Chapter 2 presents the definitions of Petri net, and WF-net. Next, we introduce mainly
two concepts called soundness and branching bisimilarity. Soundness corresponds to workflows’
logical correctness. Branching bisimilarity corresponds to equivalence between workflows’ be-
havior. Furthermore, we propose WF-net refactoring problem and refactorizability problem. We
will explain its definition with own mathematical background elaborately.

Chapter 3 presents three sufficient conditions of refactorizability [21]. The first two condi-
tions are based on paths called “PT-handle” and “TP-handle” in EFC WF-net. The last one is
based on places called “implicit place” in EFC WF-net. We prove that the paths’ non-existence
and places existence are pre-conditions of refactorizability. And we give refactoring rules based

on above sufficient conditions.

Chapter 4 presents an refactoring algorithm by using partial rules proposed in Chap.3 [22].
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The algorithm composes from the rules. The rules are applied in sequence. The sequence is

optimized to deal with a large subclass of EFC WF-net.

Chapter 5 presents three applications of refactoring. The fist two cases are regarding reach-
ability analysis. It is common analysis to check correctness of workflow instances. The third
case 1s about state number calculation. It enables model checking to EFC WF-net properties.
Estimating state number is needed by developers for model checking.

Chapter 6 introduces an advanced concept “Timed Branching Bisimulation (TBB for short)”.
TBB is an extension of branching bisimilarity. Next, we propose a new equality criterion Timed
Projection Inheritance. Furthermore, we propose new reduction methods for timed system based

on the above equality [23].

Chapter 7 gives the conclusion of this thesis and gives future works.






Chapter 2

Preliminaries

This chapter presents definitions and basic properties about WF-net and its refactoring problem.

2.1 Petri net and Workflow net

Petri net [16][5] is the basis of WE-net. A (labeled) Petri net PN is a four tuple PN = (P, T, A, {),
where P and T are disjoint finite sets of places, transitions, respectively, A C (P X T) X (T X P)
is a set of arcs, and £ : T—AU{r} is a labeling function of transitions, where A denotes the
set of all possible labels except a designated label T The label of transitions may be used to
abstract the transition from the action. Let x be a place or a transition, ex and xe are defined as

ox = {y|(y, x) € A} and xe = {y|(x, y) € A}, respectively.

A (labeled) WF-net is a labeled Petri net which represents a workflow.

Definition 2.1 (WF-net [6]) A labeled Petri net N=(P, T, A, {) is a (labeled) WF-net iff (i) N has
a single source place p; (ﬁp,:(b and VYpe(P—{p;}) : ﬁp;&@) and a single sink place po (poﬁ:(/) and
Vpe(P—{po}) : pﬁ;t@), and (ii) Every place and transition is on a path from p; to po. (iii) Let ¢
be a transition, if £(f) = 7, the firing of t is unobservable. Otherwise, the firing of ¢ is observable.

O

Every label except 7 is unique. (i.e. for any pair #;, ¢; of transitions, if £(¢;) # T and {(¢;) # 7 then
) # (1))).

Let N=(P,T,A,{) be a WF-net. We represent a marking of N as a bag over P. A marking
is denoted by M=[pMP)|peP, M(p)>0]. Mx=My denotes that YpeP : Mx(p)=My(p). Mx>My
denotes that VpeP : Mx(p)>My(p). Mx+My denotes [p"|peP,n = Mx(p)+My(p)]. Mx—My
denotes [p"|peP,n = max(Mx(p)—My(p),0)]. A transition ¢ is said to be firable in a marking M
if M>et. Firing ¢ in M results in a new marking M’. M’ is defined M’ = M + te — of . This

9



10 2 Preliminaries

is denoted by M[N,)M’. M’ is said to be reachable from M if there exists a firing sequence of
transitions transforming M to M’. The set of all possible markings reachable from M is denoted
by R(N, M).

There are two important subclasses of WF-nets: WS and EFC. A structural characterization
of good workflows is that two paths initiated by a transition/place should not be joined by a
place/transition. WS is derived from this structural characterization. To give the formal def-
inition of WS, we introduce some notations. The WF-net obtained by connecting po with p;
via an additional transition ¢* is called the short-circuited net of N, denoted by N (=(P, TU{t"},
AU{(po, 1), (", pp)}, CU{(t", T)})). A path p = nyn, - - - ny is said to be elementary ift, for any two
nodes n; and n; on p, i#j=n;#n;. Let ¢ be an elementary circuit in N, and v an elementary path
from a node x to another node y in N. vis called a handle [16] of ¢ if v shares exactly two nodes,
x and y, with ¢. Let ¢ be an elementary circuit in N, and d a handle of ¢, & is an elementary
path from a node x to another node y in N. & is called a bridge [24] between ¢ and d iff ¢ shares
exactly x and d shares exactly y, with &. A handle (a bridge) from a node x to another node y is
called an XY-handle (an XY-bridge), where if xeP then X is P, otherwise X is T; if yeP then Y is

P, otherwise Y is T. For example, a handle from a place to a transition is a PT-handle.

Next, we gives the three subclasses of WF-net. They play a central role in this thesis.

Definition 2.2 (Well-structured(WS) WF-net) A WF-net N is WS, if there are neither TP-
handles nor PT-handles in N. O

Definition 2.3 (Free Choice(FC) WF-net) A WE-net N is FC, if Vp,, p,eP: pienp,e#0 =
|prel=Ipel=1. o
Definition 2.4 (Extended Free Choice(EFC) WF-net) A WF-net N is EFC,

lf Vpl,pQEP: plﬁﬂpzﬁ;é@ = plﬁ:pzﬁ O

Note that those subclasses are defined independent of labeling.

Acyclic FC WF-nets is a proper subclass of acyclic EFC WF-nets. And acyclic WS WF-nets
is a proper subclass of acyclic FC WF-nets. We can see the relations between the subclasses and

the images of their own structures in Fig. 2.1.

2.2 Soundness and Branching Bisimilarity

We introduce two important concepts in WF-nets: soundness and branching bisimilarity. Sound-

ness is a criterion of logical correctness [25][27][28], i.e. soundness is independent of labeling.
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acyclic WF-nets

4 N

EFC
)
4 FC
o

X X0

- /

Figure 2.1: The Relations between the subclasses of WF-net.

Definition 2.5 (soundness [6]) A WF-net N is sound iff
(i) YMEeR(N, [pr]): AM’eR(N, M): M'>[pol; (ii) YMER(N, [pr]):M=[pol=M=[pol; and (iii)

there is no dead transition in (N, [p;]). O

Soundness of EFC WF-nets can be checked in polynomial time on the basis of Rank Theorem
[15]. Any sound EFC WF-net is safe (Lemma 3 in Appendix A of Ref. [29]). Any acyclic WS
WE-net is sound [18]. As for acyclic FC WF-nets, we have the following necessary and sufficient

condition on soundness.

Property 2.1 An acyclic FC WF-net N is sound iff (i) No circuit of N has TP-handles; and (ii)
If N has PT-handles, then each PT-handle has a TP-bridge from the handle to the circuit [24]. O

Unfortunately, for acyclic EFC WF-nets, such a structural necessary and sufficient condition is

unclear.

Branching bisimilarity is widely used as an equivalence relation on WF-nets. Branching
bisimilarity intuitively equates WF-nets which have the same external behavior. The behavior
of a WF-net N (=(P, T, A, {)) is captured by the reachability graph of (N, [p,]). It is denoted by
G=(V,E), where V=R(N, [p;]), E={(M, {(t), M")IM, M'eV,teT, M[N, t)M'}, where (M, £(t), M")
means that an edge (M, M’) has a label £(¢). Let M, M’eV, acl(T). We write M[N,a)M’ if M’
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is reachable from M by following an edge labeled as a. We write M[N, 7*)M’ if M’ is reachable
from M by following any number of edges labeled as 7. We write M[N, (a))M’ if either (i) a=1
and M=M"; or (ii) M|N, a)M’.

Definition 2.6 (branching bisimilarity [30][31]) Let Gy and Gy be the reachability graphs of a
WEF-net (Ny, [p}1) and another WF-net (Ny, [p] 1), respectively. A binary relation

R (CR(Nx, [pf1)XR(Ny, [p}1)) is branching bisimulation iff (i) if MxRMy and My[Nx, a)My,
then AM,,, MY€R(Ny, [p¥1): My[Ny, v )M M [Ny, (@))M,, MyRM:., and M, RM: (ii) if MyRMy
and My[Ny, )M, then AM’,, Mi€R(Nx, [pX1): Mx[Ny, T"YM’s, M [Nx, (@))My, MRMy, M, RM;
and (iii) if MyRMy then (Mx=[p}] = My[Ny,)[p{]) and (My=[pj] = Mx[Nx,)[pg)).
(Nx, [py]) and (Ny, [p]]) are called branching bisimilar, denoted by (Nx, [p; 1)~»(Ny, [p} 1), iff

there exists a branching bisimulation R between Gy and Gy. O

2.3 Refactoring and Refactorizability Problem

The formal definition of refactoring and refactorizability problem is given as follows.

Definition 2.7 (refactoring problem [18])

Input: Acyclic EFC WF-net Nx=(Py, Tx, Ax, {x), where every label in Nx except 7 is unique,
i.e. for any pair 1, t; of transitions, if £(t;)#7 and €(t;)#7 then £(z;)#{(t;).

Output: Acyclic WS WF-net Ny=(Py, Ty, Ay, ly) such that (i) (Nx, [pF]) ~, (Ny,[p}]); and

(11) Every label in Ny except 7 is unique. O

Definition 2.8 (refactorizability problem [18])

Instance: Acyclic EFC WF-net Nx=(Py, Tx, Ax, {x), where every label in Ny except 7 is
unique, i.e. for any pair t;, ; of transitions, if £(#;)#7 and {(¢;)#7 then £(;)#{(t;).

Question: Is there an acyclic WS WF-net Ny=(Py, Ty,
Ay, Cy) such that (i) (Nx, [p{]) ~» (Ny, [p}1); and (ii) Every label in Ny except 7 is unique? O

Constraint (ii) prohibits duplication of any transition with an observable label. A transition firing
is performed by resources (workers and/or machines). If the transition is duplicated, it would

share the resources with its duplicate. This makes it difficult that those resources are scheduled.

Yamaguchi has given a necessary condition on the problem.
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Property 2.2 Let Nx be an acyclic EFC but non-WS WF-net whose every label in Ny except T
is unique. If Ny is not sound then there is no acyclic WS WF-net Ny such that (Ny, [pf]) ~p

(Ny, [p}]) and every label in Ny except 7 is unique. O

This property implies that if a given acyclic EFC WF-net is not sound, then we cannot refactor
it to an acyclic WS WF-net. Since soundness of EFC WF-nets can be checked in polynomial
time, the above necessary condition can also be checked in polynomial time.

Yamaguchi has also given a sufficient condition on the problem. He defined a subclass of
acyclic EFC but non-WS, named cross-bridged (CB for short). A CB WF-net is intuitively only
one of a key structure of EFC and its dual structure as a cut-set of the net. For the detail of CB,
refer to Ref. [18].

Property 2.3 Let Ny be an acyclic EFC but non-WS WF-net whose every label in Ny except T
is unique. If Ny is CB then there is an acyclic WS WF-net Ny such that (Nx, [pF1) ~, (Ny, [p]])

and every label in Ny except 7 is unique. |

2.4 Implicit Place

Definition 2.9 (Implicit place [8]) In a Petrinet N =((P, T, A, {), M), a place peP is called im-
plicit in (N, My) iff Vi pe, YMER(N, M) : M>ei\{p} = M>et. O

2.5 Remarks

This chapter presents mathematical definitions and properties about WF-net. In the next chapters,

we use them to explain new theorems and other results.






Chapter 3

Sufficient Conditions of Refactorizability
and Refactoring Rules

3.1 Refactorizability Problem

A WF-net [6] is a Petri net [ 16] which represents a workflow. There are two important subclasses
of WF-nets: extended free choice (EFC for short) and well-structured (WS for short). It is known
that most actual workflows can be modeled as EFC WF-nets; acyclic WS is a subclass of acyclic
EFC but has more analysis methods, e.g. polynomial time algorithm on the reachability problem
[32].

Yamaguchi [18] has defined a problem, called acyclic EFC WF-net refactorizability problem,
that decides whether a given acyclic EFC WF-net can be transformed to an acyclic WS WF-net
without changing its observable behavior. If the acyclic EFC WF-net is refactored to an acyclic
WS WF-net, we can use the analysis methods of WS WF-nets to analyze the EFC WF-net.

Property 3.1 ([18]) Let Nx be an acyclic EFC but non-WS WF-net whose every label in Ny
except 7 is unique. If Ny is CB then there is an acyclic WS WF-net Ny such that (Ny, [p;(]) ~p

(Ny, [p)1) and every label in Ny except 7 is unique. ]

He has also given a necessary condition and a sufficient condition on the problem. The
necessary condition is soundness. The sufficient condition is that a given WF-net has only one

of a key structure of EFC [16] and its dual structure [24] as a cut-set of the net.

Let us consider a sound acyclic EFC WF-net N; shown in Fig. 3.1 (a). Ny has a single EFC
structure, i.e. places p,, p; and transitions f3, 4, and the structure is a cut-set of N;. Since N,
satisfies Yamaguchi’s sufficient condition, it can be refactored to an acyclic WS WF-net N,’

shown in Fig. 3.1 (b). Next, let us extend N, by adding a path p;tspo. The extended WF-net

15
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(b) Acyclic WS WF-net Ny’

Figure 3.1: An instance of refactorizability problem.

does not any longer satisfy the sufficient condition, because the EFC structure is not a cut-set
of the net. In fact, we can refactor the extended WF-net like Fig. 3.1 (b), but we cannot say
whether it can be refactored by using only the sufficient condition. So it is necessary to improve

the sufficient condition.

We propose two superior sufficient conditions on the problem. We try to remove a restriction
from the previous sufficient condition: cut-setness. To do so, we make use of a key structural
objects , called handles and bridges. And we construct refactoring procedures based on the
conditions. Furthermore, we apply the procedures to a sample workflow reachability problem,
and confirm usefulness of the procedures for the enhancement of the analysis power of acyclic
EFC WF-nets.

The remainder of this chapter is organized as follows : In Sec. 3.2, we show two sufficient
conditions of refactorizability regarding handles. In Sec. 3.3, we gives another sufficient condi-

tions based on some kind of place. We give remarks in Sec. 3.4.
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3.2 Sufficient Conditions on Refactorizability Problem regard-
ing Handles

In this section, we propose two superior sufficient conditions on the soundizability problem. We
try to remove a restriction from the previous sufficient condition: cut-setness. To do so, we make

use of handles and bridges.

Analysis Let us first consider two instances of the refactorizability problem.

The first instance is an acyclic EFC WF-net Ny shown in Fig. 3.1 (a). Note that N, has
TP-handles but no PT-handle. The answer of this instance is yes, i.e. we can refactor N; to
an acyclic WS WF-net N, shown in Fig. 3.1 (b). In fact, there exists a branching bisimulation
relation between (Ny, [p;]) and (N,’, [p;]). It is illustrated in Fig. 3.2. Even if adding a path

PitsPo, the answer is still yes.

Next, the second instance is an acyclic EFC WF-net N, shown in Fig. 3.3 (a). Note that N,
has PT-handles but no TP-handle. The answer of this instance is also yes, i.e. we can refactor N,
to an acyclic WS WF-net N,” shown in Fig. 3.3 (b). Even if adding a path p;tpo, the answer
still yes.

From these analysis results, we deduce that PT-handles and TP-handles play a central role of

the refactorizability problem.

Sufficient Conditions In general, the short-circuited net of an acyclic sound EFC has PT-
handles and TP-handles. We restrict our analysis to two special cases: case of no PT-handle;
case of no TP-handle. The restriction helps us to comprehend the constitution of handles and
bridges in the net. For each case, we propose a sufficient condition of the soundizability problem.
Each condition is represented as a constitution of handles and bridges in the given net. In ’case
of no PT-handles’, we can refactor acyclic sound EFC WF-net to acyclic sound WS FC WF-net
by ¢g.s.- On the other hand, ’case of no TP-handles’, we can refactor acyclic sound FC WF-net
to acyclic sound WS FC WF-net by ¢p.s.;.» under condition of that the net with PT-handles has
TP-bridge with length one.

Case of no PT-Handle
We first propose a sufficient condition for acyclic EFC WF-nets with no PT-handle.

Theorem 3.1 Let Nx be a sound acyclic EFC WF-net, whose every label in Ny except 7 is
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Figure 3.2: Branching bisimulation between (Ny, [p;]) and (N/’, [p;]).

unique. If N_X has no PT-handle, then there is an acyclic WS WF-net Ny = (Py, Ty, Ay, {y) such
that (i) (Nx, [p{1)~s(Ny, [p}]), and (ii) every label in Ny except 7 is unique. m]

This theorem means that a sound acyclic EFC WF-net N is refactorable to an acyclic WS
WE-net if N has no PT-handle[26]. If N has no PT-handle then it has TP-handles. To remove the
TP-handles, we can apply a transformation rule, denoted by ¢,.,,» which has been proposed by
Best [13] (See Fig. 4). The definition of ¢p,, is given later. ¢ g, can transform an EFC structure
to its equivalent FC structure [16]. Using rule ¢z, repeatedly, we can obtain an acyclic FC WF-
net ¢%, (N) from N. In order to prove this theorem, we show the following: (i) ¢% (N) has no
PT-handle (Lemma 3.1); (ii) m has no TP-handle (Lemma 3.2); and (ii1) (¢, (N), [p/]) is
branching bisimilar with (N, [p,]) (Lemma 3.3).

The definition of ¢,y 1s given as follows.

Definition 3.1 (The rule ¢3.,) Let N and N’ be EFC nets, where N=(P,T,A) and N'=(P’,T’, A’).
The rule ¢p,., can transform N into N’ if there exists n places py, ps, -+, p, and m transitions
1, b, - - -, t, such that:

Condition on N:

(i) pro=pre=---=p,o={t, 0, 1)
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ts P, tg P4

(a) Acyclic EFC WF-net N,

(b) Acyclic WS WF-net N’

Figure 3.3: Another instance of refactorizability problem.

Construction of N’:
(i) P" = PU{p}
(1) T' = TU{t}

(iit) A" = A={(p;, t)li=1,2, -+ ,n, j=1,2,--- ,m}
U{(pi, O, (t, p), (p, t)li=1,2, -+ ,n, j=1,2,- -+ ,m}

Property 3.2 For an EFC WF-net N, ¢g.,(N) is sound iff N is sound. |

Proof : Any WF-net is sound iff its short-circuited net with initial marking [p,] is live and
bounded (Theorem 1 of Ref. [6]). N is sound iff (N, [pr]) is live and bounded. ¢p., preserves
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(b) FC structure

Figure 3.4: Best’s transformation rule ¢p,y;.

liveness and boundedness (Theorems 3.2, 5.2 and 5.3 of Ref. [13]). (N, [p;] is live and bounded
iff (Ppesi(N), [pr]) is live and bounded, i.e. ¢pg.5(N) is sound.

Q.E.D.
This property means that ¢, (N) is an acyclic FC WF-net.

Lemma 3.1 Let N be a sound acyclic EFC WF-net. If N has no PT-handle, ¢p.,(N) has no
PT-handle. O

Proof : We have to check the number of node disjoint paths from any place to any transition in
¢pes:(N). Let g denote a place such that ¢ € P—{py, p2,- -, p»}. Let u denote a transition such
that u € T—{t,,1,,--- ,t,} (see Fig. 3.4). Let p and ¢ respectively denote place and transition
added to N.

There are four cases. The first case (The place is p; and the transition is #;): There is a single
node disjoint path p;tpt; in ¢p.(N). Therefore the number of node disjoint paths from p; to ¢;
equals one. The second case (The place is p; and the transition is u): If there is a node disjoint
path from p; to u in N, let ¢; be an output transition of p on the path, there is a single node
disjoint path p;tpt; in ¢p.,(N). Therefore the number of node disjoint paths from p; to u equals
one. Otherwise there is no node disjoint path from p; to u in ¢ .5, (N). The third case (The place is
g and the transition is ¢;): If there is a node disjoint path from ¢ to 7; in N, let p; be an input place

of ¢ on the node disjoint path, there is a single node disjoint path p;tpt; in ¢p.(N). Therefore
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the number of node disjoint paths from g to 7; equals one. Otherwise there is no node disjoint
path from ¢ to f; in ¢p.(N). The last case (The place is g and the transition is u): Assume that
there exists a node disjoint path p from ¢ to u in N. If p includes p; then we can say from the
same reason as the second case that the number of node disjoint paths from p; to t equals one
in ¢p.5,(N). Therefore the number of node disjoint paths from g to u equals one. Otherwise the
number of node disjoint paths from g to u is not changed by ¢g., 1.€. equals one. If there is no
node disjoint path from ¢ to u in N, the number of node disjoint paths from g to u equals zero in
@ es:(N). In all the cases, the number of node disjoint paths from a place to a transition is at most
one. This means that ¢, (N) has no PT-handle. Thus ¢, (N) has no PT-handle. Q.E.D.

Lemma 3.2 Let N be a sound acyclic EFC WF-net. If N has no PT-handle, ¢p.,(N) has no
TP-handle. O

Proof : Since ¢j,,(N) is a sound FC WF-net, it has no TP-handle from Condition (i) of Property
1. Q.E.D.

Lemmas 1 and 2 mean that ¢}, (N) is a WS WF-net.

Lemma 3.3 Let N be a sound acyclic EFC WF-net. If N has no PT-handle, (@5, (N, [p1]) 18
branching bisimilar with (N, [p,]). O

Proof : Assume that there is a binary relation R C R(N, [p;]) X R(¢pes:(N), pr) such that

Bpest(N)
R =AMy, My, »)I My = My, xy)— [pl+ @ "t or My = Mgy, v}

if peMy,, ) otherwise

We divide this proof into two cases: (i) Before 1; fires; (ii) After ¢, fired. Case (i) (Before
t; fires): Let MeR(N,[p;]) until t; becomes firable. M is also a marking of ¢g.,(N). As-
sume that M[N,u)M’. Since ¢g.(N) has the same structure as N except for ¢ and p, we have

M| ¢pes:(N), uyM’. Therefore, we have M'RM’. Let MeR(¢pp.(N), [p;]) when 7 is firable. M is

also a marking of N. Assume that M[¢p,s(N), )M’ = M+[p]—¢Beg(N)t. Since ¢ is an unobserv-

able transition, i.e. M[¢g.(N),T)M’, we have M[N, (t))M. Since M=M'—[p]+ ¢(£v) t, we have

MRM'. Case (ii) (After t; fired): Let MeR(N, [p;]) when ¢, is firable. M+] p]—¢BEﬁ(N)t is a marking

of ¢p.,(N). Assume that
MIN. t)M’ = M=sti+t8. Tn ¢ (N), M+[p1="8" tlpee(N), 13M="8""14/"3".

. N DBesi(N) N & Besi(N) , , .
Since o,= o 't and r;e=f; e ', we have M'RM’. Let MeR(N, [p,]) after ¢; fired. M is also a
marking of ¢g,(IN). Assume that M[N, uyM’. Since ¢p.5,(N) has the same structure as N except

for ¢ and p, we have M|[¢g.;(N),uyM’. Therefore, we have M'RM’.
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It is obvious that [po]R[po] holds. From the above, R is branching bisimulation, i.e.
(dgest(N), [ pr]) 1s branching bisimilar with (N, [p;]). Since branching bisimulation is transitive,
we have (¢5,,(N), [p;]) is branching bisimilar with (N, [p;]). Q.E.D.

Now, we can prove Theorem 3.1 by these three lemmas.

Proof of Theorem 3.1: We only have to prove that ¢, (N) is WS and (¢3,,,(N), [p;]) is branch-
ing bisimilar with (N, [p;]). ¢3,,,(N) is WS by Lemmas 3.1 and 3.2. ¢}, (N) satisfies branching
bisimilarity by Lemma 3.3. Q.E.D.

Case of no TP-Handle

We propose a sufficient condition for acyclic EFC WF-nets with no TP-handle.

Theorem 3.2 Let Ny be a sound acyclic EFC WF-net whose every label in Nx except 7 is unique.
If Ny has no TP-handle and each PT-handle has a TP-bridge with length one, then there is an
acyclic WS WF-net Ny = (Py, Ty, Ay, {y) such that (i) (Ny, [pfD)~p(Ny,[p]1), and (ii) every

label in Ny except 7 is unique. O

If N has no TP-handle then it has PT-handles. To remove the PT-handles, we can apply a
transformation rule, denoted by ¢p,;, Which is proposed by Desel [15]. The definition of ¢p,y.;
is given later. Using rule ¢p.,.; repeatedly, we can remove the dual of EFC structure, called
TP-cross structure, and obtain an acyclic FC WF-net ¢, (N) from N. In order to prove this
theorem, we show the following: (i) ¢),,,,(N) has no PT-handle (Lemma 3.4); (ii) ¢,,,,,(N)
has no TP-handle (Lemma 3.5); and (iii) (¢},,,,,(V), [p;]) is branching bisimilar with (N, [p;])
(Lemma 3.6).

Definition 3.2 (The rule ¢p,,.;) Let N and N’ be EFC nets, where N=(P,T,A) and N'=(P",T’,A").
The rule ¢p.; can transform N into N’ if there exist m transitions fi,f, -, t, and n places
P1, P2, -+, Pn Such that:

Condition on N:

(i) (10 =10 == 1,8 = {1, s Pu)
Construction of N’:
(i) P' = PU{p}

(i) T" = Tufr}
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("1) A= A_{(tlv p])llzl’ 27 e, m, .]:17 2’ T n}
U{(ti’p)s (ps t)’(t,p])llzl, 2, e, m, j:1,2, e ,I’l}

Property 3.3 For an acyclic EFC WF-net N, ¢ps;(IV) is sound iff N is sound. ]

Proof : Any acyclic EFC WF-net is sound iff its short-circuited net is well-formed. N is sound iff
N is well-formed. @ peser preserves well-formedness (Theorem 7.1 of Ref. [15]). N is well-formed
U @peser(N) 1s well-formed, i.e. ¢dp,s(N) is sound. Q.E.D.

Property 3.4 For any sound acyclic EFC and non-FC WF-net N, there exists a TP-handle in N
O

Proof : N is illustrated in the upper part of Fig. 3.5. N includes an EFC structure, which is shown
in the dotted box. Since N is an acyclic WF-net, there exist three paths p; (from p; to a node x),
p2 (from x to p;), and p3 (from x to p,) such that p, and p3 share only x. Similarly, there exist
three paths p, (from #; to a node y), ps (from £, to y), and ps (from y to po) such that ps and ps
share only y. The lower part of Fig. 3.5 shows ¢, (N). Note that ¢, preserves soundness, and
&3, (V) has the same structure as N except for the part within the dotted box. As node types for
x and y, we have four cases: (1) x is a transition and y is a place; (2) x and y are places; (3) x and

y are transitions; and (4) x is a place and y is a transition.

Case 1: There is a TP-handle from transition x to place y in N. Case 2: There is a PT-handle
from place x to transition 7 in m. Since ¢, (N) is an acyclic sound FC WF-net, the PT-
handle has a TP-bridge b,. b, is also in N. There is a TP-handle from the start node of b; to
place y in N. Case 3: There is a PT-handle from place p to transition y in m. Since ¢y, (N)
is an acyclic sound FC WF-net, the PT-handle has a TP-bridge b,. b, is also in N. There is a
TP-handle from transition x to the end node of b, in N. Case 4: For the same reason as Cases 2
and 3, there exist TP-bridges b and b,. There is a TP-handle from the start node of b, to the end
node of b, in N. Therefore N includes a TP-handle in any case. Q.E.D.

This property means that any sound acyclic EFC WF-net with no TP-handle is a sound acyclic
FC WF-net. ¢p,; makes no new EFC structure, so ¢, ,(N) is also a sound acyclic FC WF-net.

In a similar way to Lemmas 3.1 and 3.2, we can obtain the following lemmas.

Lemma 3.4 Let N be an acyclic EFC WF-net. If N has no TP-handle and each PT-handle has a
TP-bridge with length one, then ¢7,  (N) has no PT-handle. O
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Sound acyclic EFC and non-FC WF-net N

Figure 3.5: Illustration of the proof of Property 3.4.

Proof : We can prove it in a similar way to Lemma 3.1.

Q.E.D.

Lemma 3.5 Let N be an acyclic EFC WFE-net. If N has no TP-handle and each PT-handle has a
TP-bridge with length one, then ¢, ,(N) has no TP-handle. O

Proof : Since ¢}, (N) is a sound FC WF-net, it has no TP-handle from Condition (i) of Prop-
erty 2.1.

Q.E.D.
Lemmas 3.4 and 3.5 mean that ¢7), ,(N) is a WS WF-net.

In a similar way to Lemma 3.3, we can obtain the following lemma.

Lemma 3.6 Let N be an acyclic EFC WF-net, If N has no TP-handle and each PT-handle has a
TP-bridge with length one, then (¢},,,,,(N), [p;]) is branching bisimilar with (N, [p;]).

Now, we can prove Theorem 3.2 by these three lemmas.
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(b) After transformation ¢pege;

Figure 3.6: Desel’s Transformation rule ¢p,ge;.

Proof of Theorem 3.2: We have to prove that ¢},,.,,(N) is WS and (¢7,,,,(N), [pr]) is branching
bisimilar with (N, [p/]). ¢},,,, (V) is WS by Lemmas 3.4 and 3.5. ¢}, ,(N) satisfies branching
bisimilarity by Lemma 3.6. Q.E.D.

3.3 Sufficient Condition based on Implicit Place

A WF-net is often updated to adapt to the change of business environment. This may cause
places that are redundant from the viewpoint of the behavior. Such places are called implicit [8].
Figure 3.7 (a) shows the WF-net representing an exclusive ordering system. One day, the system
was required to deal not only with members’ order but also non-members’ order. Since non-
members’ order needs credit check every time, designers change N, to another WF-net N, shown
in Fig. 3.7 (b). N, has an implicit place p;. Since the implicit place has no effects to WF-net’s

behavior, designers should remove the place to simplify the WF-net.

Let us consider FC WF-net N, shown in Fig. 3.7 (b) again. We cannot decide the refactoriz-
ability by using only the existing conditions. On the other hand, by removing implicit place p;
from N,, N, will become an acyclic WS WF-net N;. We expect that removing of implicit places

is a new approach to WF-net refactoring.
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(a) A WF-net N representing an ordering system.
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(b) The WF-net N, extended from N. It has an implicit place ps.

Figure 3.7: An example of generating implicit places.
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Figure 3.8: The WS WF-net N reafactored from N, by removing the implicit place.

Sufficient Condition based on Removing Implicit Place

We propose a sufficient condition on the refactorizability problem based on implicit places. We
first show that removing of implicit places is a reduction operation which forms branching bisim-

ilarity.

Lemma 3.7 For a sound acyclic EFC WF-net N and the WF-net N'(=(P\{p}, T, A\(ﬁpx{p})\({p}
X pﬁ), {)) obtained by removing an implicit place p from N, (N, [p,]) is branching bisimilar with
(N, [p1D). Q.E.D.
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Proof: Assume the following binary relations R between N R(N, [p,]) and R(N’, [p;]):

dif , g _ar
R ={M, M) M=M'U[p] or M=M’} (3.1)
if M>[p] otherwise

This relation R is a branching bisimulaion which is shown in the proof of Lemma 4 in Ref. [19].
Q.E.D.

Theorem 3.3 For a sound acyclic EFC WF-net N and the WF-net N’ obtained by removing
implicit places from N, if N is a WS WF-net, then N is refactorable to an acyclic WS WF-net

(N’ is a result of refactoring). O

Proof: By Lemma 3.7, removing an implicit place p from N preserves branching bisimilarity.
Therefore, N is branching bisimilar with N’. Since N’ is the WS WF-net, the result of the
refactoring. Q.E.D.

Examples of WF-Net Refactoring by Removing Implicit Places

Let us first consider a sound acyclic FC WF-net N, shown in Fig. 3.9 (a). N, is the same structure
as N, we discussed in Sect. 1. There is an implicit place p3 in (Ny, [p/]) because by Theorem 4.1,
t1 p3t; and t3 pst, are TT-handles in N,. We can refactor Ny. We removes pi1 from N,, we obtain a
WEF-net N5 shown in Fig. 3.9 (b). Ns is the same as N3. Ns is an acyclic WS WF-net. Since there
exists a branching bisimulation relation between (NVy, [p;]) and (Ns, [p;]) as shown in Fig. 3.9 (c).
In other words, N5 is a result of refactoring of N4s. Note that we cannot decide refactorizability
of N, by Property 1. Because N, has no TP-handle but PT-handle p,t;ps;t, has a TP-bridge
tspatyp1 with length three. Removing implicit places enables us to refactor EFC WF-nets which

we cannot deal with by the former conditions.

Although removing implicit places broadens out the set of refactorable EFC WF-nets, the
resultant WF-net is not necessary WS. Let us consider a sound acyclic EFC WF-net Ng shown
in Fig. 3.10 (a). There is an implicit place ps in the (N, [p;]). We removes ps from Ng, we can
obtain N;. There is a PT-handle p;t;p,ts5 in E so N7 is not WS. That is to say, we cannot decide
the refactorizability by using Theorem 3.3. Furthermore, N; has a PT-handle p;t; p,ts which has
a TP-bridge t;pst4p4 with length three. Thus we also cannot decide the refactorizability from
Teorem 3.1 and 3.2.

Role of Implicit Place in WF-net Refactoring

Removing implicit places can be regarded as preprocessing for the other refactoring operations.

It enables us to construct more general refactoring algorithms.
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Let us consider the FC WF-net N,, shown in Fig. 3.11 (a), representing another order system.
There is one implicit place ps. ps is a part of PT-handle has no TP-bridge. It is “obstacle”
for applying Teorem 3.2. We removes p,. Figure 3.11 (b) shows the result net N;3. From
Lemma 3.7, there is a branching bisimulaion between N, and N3. As a consequence the PT-
handle is removed. N,; satisfies Teorem 3.2. Ny, shown in Fig. 3.11 (c) is refactored from N3
by applying ¢peser-

Since branching bisimulaion is transitive, there is a branching bisimulaion between Nj, and

Ni4. It means that Ny, is refactored from Ny,.
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(c) Branching bisimulation relation between (N4, [p;]) and (Ns, [pr]).

Figure 3.9: An example of refactoring by removing an implicit place.
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(b) WF-net N; which is obtained by removing ps from Ng.

Figure 3.10: An instance of the refactorizability problem. This cannot be solved by removing
and implicit places and using ¢g.;; and @pee;.
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Regular Member

ta Ps t5 Psg te Py
Non Member Register Password Entry

(a) A WF-net N, which expresses an another order system

Regular Member ID Entry

Welcome Mes. Login OK

ta4 P5s ts Pg tg Py
Non Member Register Password Entry

(b) A FC WF-net N3 which refactored by removing implicit placep;

Regular Member ID Entry

ta 5 Pe te Pr
Non Member Register Password Entry

(c) A WS WF-net N4 which is refactored from N3 by applying ¢ peser

Figure 3.11: An example of applying two refactoring methods.

i
Welcome Me Login OK
—O—
Ps t
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3.4 Remarks

In this chapter, we proposed three sufficient conditions on refactorizability.

e A sound acyclic EFC WF-net N is refactorable to an acyclic WS WF-net if N has no
PT-handle.

e A sound acyclic EFC WF-net N is refactorable to an acyclic WS WF-net if N has no
TP-handles and every PT-handle in N has a TP-bridge with length one.

e A sound acyclic EFC WF-net N and the WF-net N’ obtained by removing implicit places
from N, if N” is a WS WF-net, then N is refactorable to an acyclic WS WF-net (N’ is a

result of refactoring).

In the next chapter, we will see that we can also decide these conditions in polynomial time,
because the conditions are whether a given WF-net has TP-handle and/ or PT-handle and/or

implicit place.



Chapter 4

Refactoring Algorithm

4.1 Background and Need

Once we model a workflow as a WF-net, we can simulate the behavior of the workflow by
using tokens on the WF-net. We can also use WF-nets’ abundant techniques to solve many
problems associated with the modeled workflow. It is known that most actual workflows can
be modeled as EFC WF-nets; acyclic WS is a subclass of acyclic EFC but has more analysis
methods, e.g. polynomial time algorithm on the reachability problem [32]. If an acyclic EFC
WE-net is refactored to an acyclic WS WF-net, we can use the analysis methods of WS WF-nets
to analyze the EFC WF-net.

In Chapter 3, we have proposed three refactoring rules. The first two rules are based on the
structure of the net. The last rule is based on implicit places. The previous work has dealt with
refactoring rules separately. If we use them together, we could further expand the possibility of

refactoring.

In this chapter, we analyze the relations among the three refactoring rules, and propose a
refactoring algorithm for applying those rules based on the analysis result. In Sect. 4.2, we
discuss the three refactoring rules and their relations between them. In Sect. 4.3, we give the

refactoring algorithm. We give remarks in Sect. 4.4.

4.2 Three Refactoring Rules and their Conditions

We first present the three refactoring rules proposed in Chapter 3. These rules have been treated

separately up to now. To use them together, we reveal the relation among them.

33
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pimplicit

(a) Before.

Y

(b) After.

Figure 4.1: Refactoring rule ¢;y,piici-

4.2.1 Refactoring Rules

Removing implicit place
The first refactoring rule named ¢;,piii; (See Fig. 4.1) is given as follows:

Definition 4.1 (The rule ¢;,,,;i;) Let N and N’ be sound acyclic EFC WF-nets, where N=(P, T, A)
and N'=(P’,T’,A’). The rule ¢ypiici; can transform N into N’ if there exists an implicit place

Pimplicit such that

Construction of N’:

() P = P\{pimplicit}
Gi) T =T

cen ) N N
(ii1) A" = A\ (®pimpiicie X { Pimpiicic}) Y A Pimpicit} X Pimplicit®)

A sound acyclic EFC WF-net can be refactored by ¢;,ici; under the following properties [35].
First, for a sound acyclic EFC WF-net N and the WF-net N'(=(P \ {p}, T,A\(ﬁpx{p})\({p}
Xpﬁ), 0)) obtained by removing implicit place p, (N, [p;]) is branching bisimilar with (N’, [p/]).
O
Second, for a sound acyclic EFC WF-net N and the WF-net N’ obtained by removing implicit
places from N, if N’ is a WS WF-net, then N is refactorable to an acyclic WS WF-net (N’ is a

result of refactoring). O
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Let us consider a sound acyclic EFC WF-net N, shown in Fig. 3.9 (a). There is an implicit
place p; in N;. Removing p; from N;, we can obtain N, shown in Fig. 3.9 (b). Since N, is an

acyclic WS WF-net, from lemma 3.7, N, is refactorable.

Removing EFC structures

The second refactoring rule is called ¢g, as bellows. Let N and N’ be EFC WF-nets, where
N=(P,T,A) and N'=(P’,T’,A’). The rule ¢, can transform N into N’ if there exist n places
P1, P2, > Pn and m transitions t,, », - - -, t,,, such that:

Condition on N:

() pro=pre=---=p,e= (0,0, 1)
Construction of N':

(i) P = PU{p}

(i) 77 =Tu{r}

(i) A7 = A\[(pp 1li=1,2, -+ ,m, j=1,2,++ ,m)
U{(pl’ t)’ (t’ p)’ (p’ tj)llzl’ 2’ e 3n’ J:1, 2, ct ,m}

O

An acyclic EFC WF-net is refactorable to an acyclic WS WF-net by ¢g,,, under the following
: Let Ny be a sound acyclic EFC WF-net, whose every label in Ny except 7 is unique. If Ny has
no PT-handle, then there is an acyclic WS WF-net Ny such that (i) (Nx, [pf1)~,(Ny, [p}]), and
(11) every label in Ny except 7 is unique.

This property means that a sound acyclic EFC WF-net N is refactorable to an acyclic WS
WEF-net if N has no PT-handle. If N has no PT-handle then it has TP-handles. To remove
the TP-handles, we can apply ¢g.s. @pes; can transform an EFC structure to its equivalent FC

structure [16]. Using rule ¢, repeatedly, we can obtain an acyclic FC WF-net ¢, (N) from N.

Removing TP-cross structures

The last refactoring rule is called ¢p,s.; as bellows.

Let N and N’ be EFC WF-nets, where N=(P,T,A) and N'=(P’,T’,A’). The rule ¢p.s; can
transform N into N’ if there exist m transitions t;, f, - - -, t, and n places py, p2, - - -, p, such that:

Condition on N:
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Py tm
(a) Before. (b) After.

Figure 4.2: Refactoring rule ¢g,.

(1) fe=r1e=-=f,e= {P1, P2y s Du)
Construction of N’:

(i) P" = PU{p}

(i) T' = TU{t}

(lll) A/ = A\{(tlv p])llzlaza ce,m, .]:19 27 e 7n}
Ul p), (p, O, &, pPli=1,2, -+ m, j=1,2,--+ ,n)

An acyclic EFC WF-net can be refactored by ¢p..; under the following : Let Nx be a sound
acyclic EFC WE-net whose every label in Ny except 7 is unique. If Ny has no TP-handle and
each PT-handle has a TP-bridge with length one, then there is an acyclic WS WF-net Ny such
that (i) (Nx, [p{1)~s(Ny, [pf]), and (ii) every label in Ny except 7 is unique.

If N has no TP-handle then it has PT-handles. To remove the PT-handles, we can apply épeser-
Using rule ¢p.; repeatedly, we can remove the dual of EFC structure, called TP-cross structure,
and obtain an acyclic FC WF-net ¢7,, ,(N) from N.

4.2.2 Relations among Refactoring Rules

To use the three refactoring rules together, we need to reveal the relation among them. We first
summarize the input and output of those rules into Table. 4.1. Note that we suppose there exists
branching bisimulaion between N and N’. ¢;pici; does not reduce the class of N necessarily. In
other words, @ypiicii 1s the weakest rule among the three ones. Meanwhile, it has no constraint
for the input EFC WF-net. That is the largest class of the input. Next, the input of ¢p,s.; is FC
WF-nets implicitly. We can obviously obtain the following property.
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tn P,
(a) Before. (b) After.

Figure 4.3: Refactoring rule ¢p,;-

Table 4.1: Summary of three refactoring rules.

Refactoring rule | Input | Output

Removing implicit | Sound acyclic EFC | Sound acyclic EFC
place @pmpiicic WF-net N WEFE-net N’
Removing EFC || Sound acyclic EFC | Sound acyclic WS
structure ¢peg WF-net N (N has no | WF-net N’

PT-handle)

Removing TP-cross || Sound Acyclic EFC | Sound acyclic WS
structure ¢ pese WEF-net N (ﬁ has no | WF-net N’

TP-handle, each PT-
handle in N has TP-
bridge with length
one)

Property 4.1 For any sound acyclic EFC and non-FC WF-net N, there exist TP-handles in N. O

By the contraposition, a sound acyclic EFC WF-net N is FC if N has no TP-handle. FC WF-nets
are a proper subclass of EFC WF-nets. So that, WF-nets which can be refactored by removing
TP-cross structures may be smaller than that of removing EFC structure. Through the above

analysis, we should use the three rules according to the following order.

1° Remove implicit places by ¢ piicir
2° Remove EFC structures by ¢p,

3° Remove TP-cross structures by ¢ peses
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[ START ]

'

| ALG1:Removing Implicit Place |

|

ALG2: Removing EFC Structure

ALG3:Checking
Existence of PT-
handle

ALG4:Checking
Each PT-handle
Has TP-bridge
with Length One

ALGS5: Removing TP-cross Structure

v v

Output: WS WF-net Output: “Negative”

. .
[ END ]

Figure 4.4: Flowchart of “3 gate refactoring”.

4.3 Refactoring Algorithm

Based on the analysis result, we construct an algorithm for using the three refactoring rules

together. We name it “3 gate refactoring” and show its flowchart in Fig. 4.4.

Firstly, to remove implicit places, We propose necessary and sufficient condition to find im-

plicit place.

Theorem 4.1 In a sound acyclic EFC WF-net N=(P, T, A, {), a place p is implicit iff for each

transition t; € . p and each transition 7y € . p, path t;pto is a TT-handle in N. O
The following property is used to prove Theorem 4.1.

Property 4.2 In a sound acyclic EFC WF-net N, for a place p, if ﬁ(pﬁ) = {p}, then place p is

not implicit. O

Proof: From the definition of implicit place, p must satisty VMeR(N, [p;]) : M Zﬁ(pﬁ)\{p}:(b =
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Mzz(pz):{p}, However, for [p;], [pol(€R(N, [p;]), p cannot satisfy at least one of [p;]>{p} and
[pol={p}. Thus p is not implicit. Q.E.D.

Proof of Theorem 4.1: Let us first prove the sufficient condition. Since removing p from
N causes none of new PT-handle, TP-handle and conflict structure, the resultant net N'=(P \
{p}, T, A\(ﬁ px{pH\(Up}x pﬁ), ¢) is a sound EFC WF-net. Since the short-circuited net of a sound
EFC WEFE-net is a live and safe Petri net (Theorem 1 and Lemma 1 of Ref. [29]), it can be regarded
as an interconnection of strongly-connected MG components [15]. Each strongly-connected MG
component can be divided into a cycle, TT-handles and TT-bridges. For each of the strongly
connected MG components, we can obtain a MG WF-net by removing *. This enables us to

analyze the behavior of the given WF-net through the analysis of those MG WEF-nets.

Since N and N’ are the sound EFC WF-nets, they can be divided into the same set of MG
WE-net except p. A MG WF-net of N including p is denoted by MG, and the MG WF-net of N’
corresponding to MG is denoted by MG’. t;pt, is a TT-handle from the condition. This means
that there exists a path from p; to pp which does not pass through p in MG. This path is also
included in MG’. Since each transition of acyclic MG WF-net fires only once exactly, 7, must fire
after #;. In MG, p is marked immediately after #; fired and it is marked until 7, fires. Therefore,
YMeR(MG, [p;]) : MzMoGtO\{p} > M ZMoGto holds. This means that p is implicit in MG. Since p
is implicit in anyone of the MG WF-nets, p is implicit in N.

Next, let us prove the necessary condition. It can be divided into the following three cases: (i)
p exists on a handle with more than length three; (ii) p exists on a bridge;or (iii) p exists neither
on handles nor bridges. Case (i): In the similar way as the sufficient condition, we first divide N
into MG WF-nets, and then analyze each of them. The length of the handle is three or more, so p
is not marked until 7, fires. Therefore, AMeR(MG, [p,]) : MZMoGIO\{ pl = MzMoGto holds. Thus,
p is not implicit. Case (ii): This case is similar as Case (i). f;pto is a part of the bridge in MG,
so there exists a path from ¢, to t, which does not pass through p. Since p may be marked after
t; fired, it means that 7, does not always fire after #;,. AMeR(MG, [p;]) : M ZMOGZO\{ pl=M ZMOGZO

holds. Therefore, p is not implicit.
Case (iii): p is an articulation point. Since it is neither the start point nor the end point of a
handle or a bridge ([ep| = |pe| = 1), from Property 4.2, it is not implicit. Q.E.D.
We first propose a polynomial time subroutine to decide whether a given place is implicit

based on Theorem 4.1.
< 1 Checking of implicit place >

Input © Sound acyclic EFC WF-net N, place p of N
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Output > Is p implicit ?

1° Obtain a Petri net N’ by removing p from N.

2° For every pair (1, to)e‘z pX pA‘, check whether there exists a directed path from #; to #y in

N’. If no, output no and stop.

3° Output yes and stop.

Now, we can construct below ALG1.
<ALG1 : Removing implicit places>>
Input © Sound acyclic EFC WF-net N(=(P, T, A, {))
Output * Sound acyclic EFC WF-net N’ without implicit place

1° For each place p € P
Apply < : Checking of implicit place > to p.

If the result is yes then remove p from N.

2° Output N as N’ and stop.

As a result, we obtain a sound acyclic EFC WF-net N’ with no implicit place. Next, to remove

EFC structure, we use ALG?2 below.
<ALG2 : Removing EFC structure>

Input: Sound acyclic EFC WF-net N

Output: Acyclic WS WF-net N’

Constraints: (1) (N, [pr]) ~» (N’, [ p;]); (i1) every label in N’ except 7 is unique.
1° For each place p € P: S, « {p}
For each place ¢ € P\ {p}: if(pﬁ:qﬁ) S, S,Ul{q}
2° For each place p € P:if(p € P) apply ¢p.y, to the EFC structure constructed by S, and § pﬁ

3° Output N and stop.

After applying ALG2, the resultant WF-net has no TP-handle. If N has no PT-handle, N is WS.
We must check the condition by ALG3 below.

<ALG3 : Checking Existence of PT-handle>>
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Input: Sound acyclic EFC WF-net N
Output: s there a PT-handle in N?

1° Construct the flow network Dy (=(Vy, Ey)) whose every edge has capacity 1, where
VN:PUT, EN:A.

2° For each vertex pair (v;, v;) (EVyXVy), if

e y; corresponds to a place p of N s.t. |pﬁ'|zz;
e v; corresponds to a transition f of N s.t. |ﬁt|22; and

e The maximum value of flow between v; and v; exceeds 1,
then output yes and stop.

3° Output no and stop.

If the ALG3’s output is “No”, “3 gate refactoring” outputs N as a WS WF-net and stop,
otherwise, apply ALG4. ALG4 checks the pre-conditions of ALGS. If ALG4 outputs “Yes”,
ALGS can refactor N. As a consequence, “3 gate refactoring” outputs WS WF-net N, otherwise,
outputs “Negative”. We show ALG4 and ALGS5 below.

<ALG4 : Checking Each PT-handle Has TP-Bridge with Length One>

Input: Sound acyclic EFC WFE-net N with no TP-handle (Sound acyclic FC WF-net with PT-
handles)

Output: Does each PT-handle have a TP-bridge with length one?
1° For each transitiont € T:S, « 0
For each transition u € T \ {r}: if( te = ue )S, <« S, U{t,u}

2° » Compute a Petri net N_X/ obtained by removing all TP-bridges with length one from Ny.

Ny = (P.T.A\ U,;er(S, X S,0),0)

3° Construct the flow network Dy (=(Vy, Ex)) whose every edge has capacity one, where
VN:PUT, EN:A.

4° For each vertex pair (v;, v;) (€VyXVy), if

e y; corresponds to a place p of N s.t. ng|22;

. . N
e v; corresponds to a transition # of N s.t. |ef[>2;
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e The maximum value of flow between v; and v; exceeds 1; and

. . =
e v; is reachable from v; in Ny ,
then output no and stop.

5° Output yes and stop.

Next, we give ALGS. it is also very similar to ALG2.

<ALGS : Removing TP-cross structure>

Input: Sound acyclic EFC WF-net N with no TP-handle and each PT-handle has a TP-bridge
with length one.

Output: Acyclic WS WF-net N’

Constraints: (1) (N, [pr]) ~» (N, [p;]); (i1) every label in N’ except 7 is unique.

1° For each transitiont € T
S {t}
For each transition u € T — {t}
if(te =ue)
S« S, Uf{u)
2° Foreachplacetr €T
if(treT)
Apply ¢ p.ser to the EFC structure constructed by S, and S ,ﬁ

3° Output N and stop.

Finally, combining those algorithms, we give a refactoring algorithm named ““3 gate refactor-

ing”.
<3 gate refactoring>>
Input: Sound acyclic EFC WF-net N

Output: Acyclic WS WF-net N’

1° Apply ALG1 to N

2° Apply ALG2 to N
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3° Apply ALG3 to N'. If the result is “No”, output N’ and stop.
4° Apply ALG4 to N’. If the result is “No”, output “Negative” and stop.
5° Apply ALGS to N’

6° Output N’ and stop

4.4 Remarks

In this chapter, we proposed a refactoring algorithm for EFC WF-net to WS WF-net, by combin-
ing the three refactoring rules.

As a future work, we refine and validate the algorithm and estimate its computational com-

plexity.






Chapter 5

Application Examples

5.1 Reachability Checking : Case 1

The proposed refactoring algorithm helps us to solve some problems of WF-nets. For example,

e WS WF-nets have simpler structure than EFC WF-nets. That helps us to understand the

behavior of the net.

e Some analysis methods can be applied to WS WF-nets, which can not be applied to EFC

WF-nets. They enable us to verify the specification of the net more precisely.

We show an example of website workflows. This example represents the above merits. In this
chapter, we try to solve the reachability problem for EFC WF-net with many workflow instances.
We know the reachability problem can be solve polynomial-time if the WF-net has only one
workflow instance. But, it is unclear whether the problem can be solved in polynomial time if

there exist two or more instances in the same WF-net. This seems intractable problem.

Market growth or law revision requires us to change a workflow definition even if there exist
workflow instances. Such a situation is called dynamic workflow change. We must appropriately
move all the instances in the old workflow definition to the new one. If not, “dynamic bugs”
would occur. For example, some instance is lost or becomes impossible to terminate normally. In
terms of WF-nets, dynamic workflow change is to replace a WF-net (N,;;, M,,;4) by another WF-
net (Nyew, Myew). 1f M,y is reachable from [(p9)F] in Ny, i.e. [(p2 Y[ Noia, #YMoia, then Mg,
must be reachable from [(p;“e‘”)k] in Ny, 1.€. [(p?’ew)k][Nngw, «)M,0,,- This is why reachability is

very important to verify the correctness of workflow instances.

Let us consider an EFC WF-net N,,; shown in Fig. 5.6. Assume that the initial marking

of N,y 1S [(p})z]. This means that there are two workflow instances. Let N,,; has a marking

M.y = [P},P%, Pé]

45
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Confirmation
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Figure 5.1: Old WF-net N,,;.
Free 2
member 4 Charged member
Password . :
setting Registration

Confirmation
password

Start
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information
2 t 2 2
Py 10 By
Data clear

Figure 5.2: New WF-net N,,, which is obtained by extending N,,;.

Let us change N,,; to another EFC WF-net N,,, shown in Fig. 5.2. N,,, has a transition #y,
labeled as Data clear and new places pg and p, are also added. This change is performed in run-
time. All the workflow instances in N,,; must be miraged to N,,,. Assume that M,,; is migrated
to a marking M., = [p?, p3. p3, pal of Noxo (See Fig. 5.3). Does M,, represent correct workflow
instances? We have to check whether M,,, is reachable from [(pf)z] . Unfortunately, since N,,,
has two workflow instances, we cannot apply Yamaguchi’s reachability analysis method [32] to
this problem. So we try to refactor N,,, to a WS WF-net and then apply Yamaguchi’s method
to the WS WF-net. We first apply algorithm ALG3 to N,,,. Step 1° generates the flow network
Dy, shown in Fig. 5.4. Step 2° checks maximum flow from any place to any transition. All the

values of maximum flow are at most 1. Thus this algorithm outputs No.
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Figure 5.3: Dynamic workflow change of (N1, [p1, p3. P§]) t© (New, [p?, P3. D3, PE1).

Next, we apply ALG2 to N,,,. Step 1 ° finds a set of places with common output transitions.

We have S, = {p3, p3, pz}. Step 2 ° applies ¢y to the EFC structure constructed by places

P, D3, pe and transitions #3, £Z, 5. The resulting net (N3, M,3) is shown in Fig. 5.5. N, is a

WS WF-net.

Next, we check the reachability by using the WS WF-net. Yamaguch has proposed a neces-

sary and sufficient condition on the reachability problem [32] for acyclic WS WF-net, and has

also given a polynomial-time algorithm to solve the problem [32] .

Property 5.1 Let N be an acyclic WS WF-net. A marking M is reachable from [p;*] in N iff (i)

let A5 be the incidence matrix of N, the equation Ay X = M —[p?"] has some rational-valued

solution for X; and (ii) M marks every proper trap of N [16].

O
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Figure 5.5: N, refactored from N,,,

Let us check whether M,,5 is correct (M,,s is reachable from [(pf 2]) by using our procedure.

Firstly, we check the equation has some rational-valued solution for X. The equation

A=X = M{s—1(p})’]
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Secondly, we check whether M,,; marks every trap of N, ..

The maximal trap Q.. in Poy\{pl, p3, pi, p3} ={p3. p3, p3. P2, P2, b3, Py P2} is 0. Therefore,
M,,s marks every proper trap of N,3. As a result, we can say the algorithm outputs yes. This
means that M, is reachable from [(p?)z] in N,s. This means that the workflow instances cor-
rectly moved to N,,3 from N,,, . On the other hand, we confirm whether the original net get the
same result about reachability. We see sequence of transition’s fire of N,,,. There is a mark-
ing Mo = [p7, p3. P;, pal if we fire transitions like ;5552126563 Thus M, is reachable from

[(pD)?].

5.2 Reachability Checking : Case 2

Let us consider another example of the reachability problem. In this example, we deal with an
ordering workflow with two instances. Assume that this workflow is modeled as a sound acyclic
EFC WF-net N5 shown in Fig. 5.6. Figure 5.6 (a) and (b) respectively represent the initial state

[p;?] and the current state [p1, ps, p7, p15]. Is the current state correct? Formally speaking,

Is [p1, ps, p7, p1s] reachable from [p;?] in N3?
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Certification Super Billi
check Recommend iing

Stock_check  Super_number

P, tis Py tig P

Shipping
Recommend

Pyt Pio tie

(a) The initial state [plz].

Certification Super

Stock_check  Super_number check Recommend  Billing

Pstiz Pig tis Pis

Shipping
Recommend

(b) The current state [p1, ps, p7, p15].

Figure 5.6: An example of the reachability problem. The input is a sound acyclic EFC WF-net
N;.

Yamaguchi [32] has proposed polynomial time procedures to solve the reachability problem
for (i) sound EFC WF-nets with a marking representing one workflow instance; and (ii) acyclic
WS WF-nets with a marking representing one or more workflow instances. Unfortunately, N;
is a sound EFC WF-net with a marking representing two workflow instances. Therefore, the

procedures cannot be applied to this example.

To solve this problem, we try to apply our 3 gate refactoring algorithm to N, and then apply
Yamaguchi’s procedure to the refactored WS WF-net. We first apply the 3 gate refactoring
algorithm to N3. Figure 5.7 shows the progress of the algorithm. In Step 1°, ALG1 is applied
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to N3. ALGI removes the implicit place p;;. Figure 5.7 (b) shows the acyclic EFC WF-net Ny
obtained by applying ALG1 to N;3. In Step 2°, ALG2 removes the EFC structure composed of
nodes 13, tg and p,, ps. In Step 3°, ALG3 finds a PT-handle pi¢tspotopiotiopi3tizpiatiapistis and
thus outputs “Yes”. In Step 4°, ALG4 finds a TP-bridge #,3 p5 for the PT-handle, and thus outputs
“Yes”. In Step 5°, ALGS removes the TP-cross structure composed of nodes ts, ;3 and ps, pi4.
Figure 5.7 (c) shows the acyclic WS WF-net N5 obtained by applying ALG2, ALG3, ALG4, and
ALGS to N,4. The 3 gate refactoring algorithm outputs N5 as a WS WF-net.

Next, we apply Yamaguchi’s procedure to the refactored WS WF-net Ns.

Firstly, we check the equation has some rational-valued solution for X. The equation

Av-X = [p1, ps, p7, pisl=[pr*]

has a rational-valued solution

X=(21111,0,1,0,0,0,0,0,0,1,0,1,1,0). Secondly, we check whether [p, ps, p7, P15]
marks every trap of Ns. The maximal trap Qs in Ps\{pi, ps. p7, pis} ={P1. P2, P3: P4, Po» Ps. Pos
P10> P12> P12: P13, P14» Pi6> P17, Po} is 0. Therefore, [p1, ps, p7, p15] marks every proper trap of ﬁs
As a result, the algorithm outputs yes. This means that [py, ps, p7, pi1s] is reachable from [p;?]
in Ns. We can say that [p;, ps, p7, pis] is reachable from [p;?] in N, i.e. the given workflow

instances are correct.
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(b) The WF-net N4 obtained by applying ALGI to Ni.
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(c) The WF-net N5 obtained by applying ALG2, ALG3, ALG4, and ALGS to Ny.

Figure 5.7: The progress of the 3 gate refactoring algorithm.
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5.3 State Number Calculation

In WF-nets’ analysis, it is important to know the state number to decide whether model check-
ing is applicable. For example, SPIN [33][34] is available to WF-nets with less than 1 million
states. The state number calculation problem is given as follows: Given a WF-net (N, [p,]), cal-
culate |R(N, [p;])|? As an example, let us consider an extension of WF-net Ng shown in Fig. 5.8.
Ng is a WF-net representing an ordering system. We extend Ng to a WF-net N7 to deal with
non-members’ order. For FC WF-nets, unfortunately, we cannot calculate the state number in
polynomial time. On the other hand, for acyclic bridge-less WS WE-nets, we can caluculate it in
polynomial time. Let us apply ALGI1 to FC WF-net N; for refactoring to a WS WF-net Ng, and
then calculate the state number by the method in Ref. [37][38][39].

Removing p; from N; by ALGI1, we can obtain Ng. Ng is WS. From Theorem 3.3, Ng is a
result of refactoring. We can convert Ny to the process tree shown in Fig. 5.9. We can calculate
the state number of (NVs, [p;]) as 18 by using the process tree. Now, we introduce one property

about removing implicit place.

Property 5.2 Let N be a sound acyclic EFC WF-net, and N’ a net obtained by removing implicit
places from N. If N’ is an acyclic WS WF-net, |R(N, [p;])| = IR(N’, [p;])| holds. O

Proof: As shown in Eq. (3.1), the binary relation R is one-to-one correspondence. Therefore,
we have [R(N, [p;]D] = |IR(N’, [pi])|. Q.E.D. Regarding above property, the state number will not
change, so the state number of (N7, [p;]) is also 18. As stated above, the state number serves as

a criterion for selecting analysis methods. SPIN is available for analyzing the behavior of Ng.
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Membership Payment method sel.

(a) A WF-net Ny representing an ordering system.

Membership Payment method sel.

(b) The FC WE-net N; obtained by extending Ng.

It represents the extended ordering system.

Membership Payment method sel.

(c) The WS WEF-net Ng obtained by
removing implicit place p;. Ng is a result of refactoring of N;.

Figure 5.8: An application example to state number calculation.
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Figure 5.9: The process tree of (NVg, [pr]).
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5.4 Response Property Checking

We present an application example of our refactoring algorithm to Response property checking.
A workflow consists of many activities. Some of the activities can always occur in any workflow
instance, but others can not. As an example, let us consider a workflow for order processing.

This workflow may be changed to adopt to the following new business rule.

Business rule R;: If the price of the ordered item is over $1,000, then the manager
always accepts the item.

There are two cases in this workflow. Case 1: If the price is under $1,000 (Order less than
a thousand), then the ID of the staff will be checked (ID check). Next, the staff orders the item
(Ordering), and then checks the booking of ordering item (Check). Finally, the staff accepts the
item (Regular acceptance). Case 2: If the price is over $1,000 (Order more than a thousand),
then the staff orders the item (Ordering), and then checks the booking of ordering item (Check).

Finally, the manager accepts the item (Manager acceptance).

However, there is another case in this workflow. Even if the price is over $1,000 (Order more
than a thousand), then the staff accepts the item (Regular acceptance) instead of the manager.
When this situation happens, we can say the business rule is violated.

It is important to check whether the workflow follows the business rule. To do so, we make
use of WF-net and its analysis techniques. The workflow can be modeled as an FC WF-net Ns

shown in Fig. 3.9 (a). In terms of WF-nets, business rule R; is rewritten as following property.

Ry: If 15 fired, then #; always fires.

To check such a property, called response property, Bin Ahmadon et al. [37] have proposed
a polynomial time procedure. Unfortunately, the procedure cannot be used for FC WF-nets. In
order to utilize the method, we should transform FC WF-net N5 to a WS WF-net N¢ by applying
ALG3. Since p;, is implicit, p, is removed from Ns. We can obtain Ng shown in Fig. 5.10 (b) and

Ng is WS. Thus Ns is refactorizable and Nj is the result of refactoring.

After the refactoring, we can utilize Bin Ahmadon et al.’s procedure to check whether R,
holds for Ng. As a result, for Ng, R, does not hold. This is because, if t; fires, t; cannot always
fire. This enables us to know whether the workflow follows the new business rule in polynomial

time.
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Order less than
athousand ID check Regular acceptance

Order more than Ordering Manager acceptance
a thousand

(a) A sound acyclic FC WF-net Ns.

Order less than
athousand ID check Regular acceptance

Order more than Ordering Manager acceptance
a thousand

(b) A sound acyclic WS WF-net Ng obtained by removing the implicit place p; in Ns.

Figure 5.10: An application example.

5.5 Remarks

We presented three application examples, “Reachability Checking”, “State Number Calculation”
and “Response Property Checking”. They reduce the costs in system design process. As future

work, we have to address them to upstream of system development.






Chapter 6

Refactoring of Timed System

6.1 Introduction

With the spread of systems which include time concept (e.g.communication protocol, bioin-
formatics) these days, the analysis of these systems has become indispensable. For many years,
some mathematical models have been studied to analize timed system [40]. Timed Petri nets [41]
are useful to model and analyze systems which include time concept, and have made a lot of con-
tributions. One of the analysis methods of timed Petri nets is model checking. Model checking
is an automatic and usually quite fast verification technique for finite state concurrent systems.
Model checking can analyze comprehensively, however, there is a state-space explosion problem.

Many researchers have tried to reduce this problem.

There are two approaches to reduce the state space of a timed Petri net. One is reduction
methods. The other is translation methods from timed Petri nets to timed automata. Reduction
methods make net size small to make state space small. Murata [16] has proposed a reduction
method for untimed Petri nets. Sloan et al. [42] have proposed a reduction method for time Petri
nets which maintain equivalence. However, there is no reduction method for timed Petri nets
which consider observability [8]. Observability means whether actions are observed or not. All
actions in a system are divided into observable and unobservable actions. When considering
observability, model checking would become available to larger-scale systems because users

should check only a part to observe, and state space can be reduced.

6.2 Timed Petri Nets and Timed Branching Bisimulation

Let A be a set. A" is an n-dimensional vector on A. The usual operators +, —, < and = are used on

A" with A = N, Q, R, where N is the set of natural number, Q is the set of quotient, R is the set of

59
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real number. Ry is the set of positive real number. For a valuation v € A", d € A, v + d denotes
the vector with Yie[1..n], (v+d); = v;+d, and for A’ C A, v[A’ — 0] denotes the valuation v’ with
v/(x) = 0 for x € A’ and v'(x) = v(x) otherwise. C(X) denotes the simple-constraints over a set of
variables X. C(X) is defined to be the set of boolean combinations (with the correctives {A, V, —})
of terms of the form x — x’ >« cor x >« ¢ for x, ¥’ € X and ¢ € N and =€ {<, <, =, >,>}. Given a
formula ¢eC(X) and a valuation veA”, ¢(v) denotes the truth value obtained by substituting each
occurrence of x in ¢ by v(x). For a transition system we write transitions as s % §. LetActbe a
nonempty set of observable actions, and 7 a special action to represent unobservable events, with
T ¢ Act. We use Act, to denote Act U {t}. The time domain T'ime is a totally ordered set with a
least element 0. We say that Time is discrete if for each pair u,v € Time there are only finitely

many w € Time such that u < v < w.

Timed Labeled Transition System

Definition 6.1 (Timed Labeled Transition Systems) [43]
A timed labeled transition system (TLTS for short) is a tuple (S, 7, U), where: S is a set of

states, including a special state 4/ to represent successful termination; 7~ C S X Act, X Time X S
is a set of transitions; U C S X Time is a delay relation, which satisfies: (a)if 7 (s, act, u, r), then
U(s,u) and (b)if u < v and U(s, v), then U(s, u). O

Transition (s, act, u, s") expresses that state s evolves into state s” by the execution of action act

at (absolute) time u.

Labeled Timed Petri Nets

Definition 6.2 (Labeled Timed Petri Net) [41]
A labeled timed Petri net N (LTPN for short) is a tuple (P, T, &, My, D, Act,) where: P is a

set of places; T is a set of transitions; & C (Px T) U (T x P) is a set of arcs; M,, € N7 is the initial
marking; D : T — N is the function to assign delay time to a transitions. d; denotes D(t;). Act,

is the set of action. O

Let x be a place or transition. *x and x* respectively denote {y|(y, x) € &} and {y|(x,y) € &E}. x
is called a split if |x®| > 2. xis a called a join if |°x| > 2. vy € (Rx)? is a valuation such that each
value vy; is the elapsed time since the last time transition #; was enabled. 0 is the initial valuation
with Vie[1..n],0; = 0. A marking M of a LTPN is a mapping in N” and M(p;) is the number of
tokens in place p;. We represent M as a bag over P :M = [p™?)|p € P, M(p) > 0]. A transition
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t is enabled in a marking M iff M > °t. This is represented by the predicate T enabled1(t;, M)
is true iff M > °f#;. It is necessary to the following firing rule when a transition is enabled
after firing the other transition. The predicate T enabled2(t;, M, t;) is true if #; is enabled by the
firing of transition ¢; from marking M, and false otherwise. In this framework, a transition #;
is newly enabled after firing t; in marking M if “it is not enabled by M — °t; and is enabled by
M’ = M —"t;+1°”. Formally this is given by T enabled2(t;, M, t;)=(M —°t; +1,° > *ti)) A\((M —-"°t; <
*t) V (t, = t;)) The semantics of LTPNs can be given in term of TLTS.

Definition 6.3 (The semantics of LTPNs) [41]
The semantics of a LTPN N is a TLTS (Sy, 7n, Uy) where: Sy = NP x (Roo), Ty =

Sy X Act, X DX Sy, Uy = Sy X Time consists of the discrete and continuous transition relation;

e The discrete transition relation is defined for all t; € T by (M, vy) ml)(li)u (M, v)) ift:

MZ.ti/\M,:M—.ti'i'[i.
Vyi = d;

v = 0 if T enabled2(t;, M, 1,) 6.1)
Nk ™1 vy otherwise
e The continuous transition relation is defined by U((M, vy), u) iff:
M =M
Vy=Vn tu (6.2)
Vk e [1.T], My = *tx = Vy, < di)
O

If delay time D(t;) passes, transition #; will fire immediately. The firing order of simultaneous
firing of two or more transitions is nondeterministic.

The reachability graph of a LTPN is a labeled directed graph G = (V, E), where V is the set of
markings of the LTPN, and E is the set of arcs labeled with transitions representing all possible

transition firings.

Timed Branching Bisimulation Timed branching bisimulation (TBB for short) is an equiv-
alence relation on temporal behavior. For u € Time, the reflexive transitive closure of l>u is

denoted by =,.

Definition 6.4 (Timed Branching Bisimulation) [43]
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Assume a TLTS (S,7,U). A collection B of binary relations B, C S X S for u € Time is
a timed branching bisimulation if sB,t implies: (1) if s ﬂu s’, then (i)either act = T and s'B,t,
(ii) or t =, 725 ¢ with sB,fand s'B,t’; (2)if t gu t', then vice versa; (3)if s |, thent =, ¢ |
with sB,t’; (4) if ¢ |, then vice versa; (5) if u < v and U(s, v), then for some n > O there are
to, -+ ,1, € S witht = ty and U(t,,v) and uy < - -- < u,, € Time with u = uy and v = u,, such that

fori <n, t; =, t;y1 and sB,t; for u; < w < w;yq; (6) if u < vand U(t, v), then vice versa. O

6.3 Timed Behavioral Inheritance and the Reduction Opera-
tors

In this section, we propose reduction operators with consideration of observability. We define
the concept of timed behavioral inheritance. Then we give definitions of reduction operators for
safe LTPNs.

A Concept of Timed Behavioral Inheritance

At first, we define the concept of timed behavioral inheritance. Timed behavioral inheritance is
regarded as an extension of behavioral inheritance [8]. We add time concept to behavioral inher-
itance. This concept means the equivalence of the systems with time concept in consideration of

observability. We use the following operator called abstraction.

e For any I(C Q), the abstraction operator 7, is a function that renames all transition labels in
Ito 7. Formally, 7; : N = (P, T,E, D, My, Act,) such that YVt € T : (act(t) € I = Act.(t) =
7) and (act(t) ¢ [ = Act.(t) = Acty).

Using the operator, we give the definition of the concept:timed projection inheritance that is

one concept of timed behavioral inheritance. !

Definition 6.5 (Timed Projection Inheritance) Let Ny, Ny be LTPNs. Ny is a subclass under
timed projection inheritance of Ny iff there is a set I(e Act;) of transision labels that TLTS of
Nyx: (Sx, Tx, Uy) and TLTS of Ny: 7;(Sy, Ty, Uy) are TBB. ]

Theorem 6.1 If Ny is a subclass under timed projection inheritance of Ny, firing schedules of

transitions which have external action labels of Nx and Ny are equal. |

'"We add more two concepts to timed behavior inheritance, timed protocol inheritance and timed life-cycle inher-
itance. We will report them in the near future.
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Proof : If Ny is a subclass under timed projection inheritance of Ny, TLTS of Nx and TLTS
of Ny are timed branching bisimilar. From [43], timed branching bisimilarity is an equivalence
relation. From [41], an equivalence relation is that firing schedules of transitions which are left
completely unmodified by applying operators are equal. Therefore, firing schedules of transitions

which have external action labels of Nx and Ny are equal. Q.E.D.

Now, we represent an example of timed projection inheritance.Let us consider a LTPN
(No, [p1]) shown in Fig. 6.1. This LTPN corresponds to a sequential business process which
consists of three tasks: register, handle, and archive. The firing schedule of N, is as follows:

After 15 time unit from the initial state, ¢, fires and register is carried out. After 10 time unit

P1
" tl
register
D(t,)=15
P2
t2
handle
D(t,)=10
Ps
" t3
archive
D(t;)=5
P4

Figure 6.1: A LTPN N, representing business process

P1

t

register
P2
ty
[ D(t,)=10
D(t,)=10 check

Ps
archive

P4

Figure 6.2: A LTPN N, that task check is executed in parallel with task handle.
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P1
P1 t
register b register ==_D(t;)=15
D(t,)=15
P2
P2 ty
handle -t — L D(t,)=10
D(t,)=10 Timed  p(t,)=10
Ps Projection T
¢ Inheritance Ps
archive 3 _ Rename
D(ty)=5 archive
P4

P4

Figure 6.3: N, is a subclass of N, with respect to timed projection inheritance

from ¢, fired (after 25 time unit from the initial state), f, fires and handle is carried out. After
5 time unit from #, fired (after 30 time unit from the initial state), #; fires and archive is carried
out. Let us consider an extension of Ny. N; shown in Fig. 6.2 extends N, with additional tasks
check. task check is executed in parallel with task handle. N, is a subclass of Ny with respect to
timed projection inheritance(Fig. 6.3); if check is abstracted, we cannot distinguish N; and Nj.
Formally this is given by that TLTS of Ny: (So, 70, Up) and TLTS of T{check}(Nl): (S5, 7>, U,)
are TBB. N, is a subclass of N with respect to timed behavioral inheritance, so that each firing

schedule of task register, handle, and archive is equal.

The Reduction Operators for Safe Labeled Timed Petri Nets Based on Timed Behavioral
Inheritance

We propose reduction operators for safe timed Petri nets based on timed behavioral inheritance.
The reduction operators are applicable to safe LTPNs. We propose five reduction operators
and prove those five operators maintain timed behavioral inheritance. Table 6.1 shows N, 7(N)
obtained by applying abstraction operator, and N’ which derived from N We give definitions of

the five operators and propose a theorem on the operators at the end of this section.

Fusion of Series Transitions (FST)
e Preconditions: There exist two transitions V#; and V1, and a place " p; satisfying:

— Place Vp, is unmarked in the initial marking.
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Table 6.1: Reduction operators for safe timed Petri nets based on timed behavioral inheritance

T(N) N’
. . .. t T t
Fusion of Series Transitions (FST) act(t, [1)(t1)=a skt S(t1)=a
P1
ty T ty ty
act(t) &= p(i,)=b B 2 D(t,)=b act(t) 25y, )—ast
Fusion of Series Places (FSP) . P .
1
aelt \ /D(t‘) =0 %\ /D(tl)_o N
" gel gl
t 4
Fusion of Parallel Places (FPP) act(t D(m:a At 22 D ea 3t 25 1 ea
P: P2 P: P2 P
act(t,) ]t;(t) b act(t,) ;;(t =
2. 2)—
actt b act(t,) b
Lateral Fusion (LF) () D(tg) b 7 D(ty)=b
P1 P2
T
t, act(t t2 act(t,) t Sty t2 act(t,)
D(H)* D(ty)=a D(t)=a D(ty)=a
act(t, D act(t;) b ~
(tl) a D(t))=a
P1 P2
Reduction of Parallel Paths (RPP) \, act(t,) wact(ty | act(t) . “’;ﬁ )
D(ty)=b D(ty=c | D(t,)=b D(ty)=c
t, act(t % { tyact(t) | t,act(t % %tv-ae*t-)-
D(t)=x D(ty) y D(t)=x D(t,)=y
Py
act(t) ;;(t) . act(t) B(t -

- ={"p} =

Net,. Also, {¥py} ¢

Ver and (Vi) ¢ Ve

— Place Vp, is disconnected from all other transitions.

— Either V(*#))* = {1}, or D(V1;) = 0

— N’ is safe.

— Action act(Mt;) is unobserved.

e Operation: Action act(Mt;) is renamed to 7. Transitions ¥#; and V#, may be replaced by a

single transition

and with output set V'7}* =

N1, with delay time D(V't}) =
Nl- L]
2 .

D(™1;) + D(V1y), with input set V'*1; = Vo,
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Fusion of Series Places (FSP)

NZ]

e Preconditions: There exist a transition V¢, and places ¥ p, and V' p, satisfying:

Place " p; is unmarked in the initial marking.

Nety = [Vpiland V1,* = [V pa].

Dt)) = 0.

Action act(Mt,) is unobserved.

e Operation: Action act("t,) is renamed to 7. Places ¥ p; and " p, may be replaced by a single

place ¥ p/, with input set V'*p, = V*p; U (Y p, — ¥14*), and with output set ¥ p}* =V p,°.

Fusion of Parallel Places (FPP)

e Preconditions: There exist two transitions ¥, and Vt, and two places ¥ p; and ¥ p, satisfy-
ing:
— Places Vp; and ¥ p, have the same number of initial tokens.
=M ="y ={"n},and ¥p* = Vpo* = (V1)
e Operation: Places Vp; and Vp, may be replaced by a single place ¥ p, with input set

N"P'z = N*p,, and with output set N’p'2° = Npye.

Lateral Fusion (LF)

e Preconditions: There exist three transitions ¢;, ¥, and V#; and two places Vp; and "V p,

satisfying:

Places ¥ p; and ¥ p, have the same number of initial tokens.
— Vepr =Npy = {V13). Also, Vpi* = {¥1,}, Vpo® = (V1)
-Vt = (Vi) Vo = (Vo).

D(*t;) = D(*1y).

Action act(Mt,) is unobserved.

e Operation: Action act(N1,) is renamed to 7. Transitions V¢, and V1, may be replaced by a
single transition 7, with delay time D(V't;) = D("1,), with input set ¥'*z; = N1, U ¥*p,

and with output set V'7}* = Vr;* U Npy®.
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Reduction of Parallel Paths (RPP)

e Preconditions: There exist parallel paths V(= MpiVt,---Vt.Vp,)) and Yo(= Mp,Vts
- Nt,Np,)) satisfying:
— All places in Y| and Y, are unmarked in the initial marking.

— All places in M/ have no input or output transitions in Y,. Also, all places in Y, have

no input or output transitions in Y.

— All transitions in Y have no input or output places in Y,. Also, all transitions in Y,

have no input or output places in Y.

— The sum of delay time in Y (= D("ty) + --- + D(t,)) is greater than that in Y,(=
D"t3) + -+ + D(N1,)).

— All actions in M, are unobserved.

e Operation: All actions in Y, are renamed to 7. Path Y, may be reduced.

Theorem 6.2 Let N be a safe LTPN, and N’ a safe LTPN obtained by applying one of the pro-

posed operators. N’ is a subclass of N under timed projection inheritance. O

Proof 6.1 (FST): Let 7(N) be a safe LTPN which derived from a LTPN N by applying abstrac-
tion operator. Of course, 7(N) is a subclass of N with respect to timed projection inheritance. Let
u be arrival time to “™*#,. First, we prove that a binary relation B, which “™*#;B,V"*#, holds is a
TBB.

T(N)t
(1) In7(N), ™*t; = (10 [ Vpi].

— case i: act("™1) = 7 and [V p, B0 °1) holds.

N
’ ‘e 2 ’ e
(2) IHN ’N té _)(u+a+b) Ntz .

T(N) ’
— case ii: In T(N), ™°t; =10 [Vp1] —;z(umb) W0, and "™ Bgarn™ 1, holds.
(3) Not applicable.
(4) Not applicable.

(5) Int(N), UNM*t),u+a). In N, (LI(N"té, u+ a) and "™*1, B, ™ *t, holds.



68 6 Refactoring of Timed System

©) In N', Ut u + a+b). In t(N), "™t S0 [Vpi] and UCTYpi,u + a + b), and
T(N)pl B(u+a+b)N’.té holds.

Next, we prove that a binary relation B,.,, which [*™ p,1B,.," °f, holds is a TBB.

T(N)t
(1) In7(N), [ Mpi] = arn) V1"

N’l/
b /. 2 4 ] 4 L]
— case ii: In N, V'*t) — (yiqupy V15" and "M 1,° Biiqip) 15° holds.

N/t/
o 2 7’ e
(2) In N,’ N té — (u+a+b) N t& .

T(N)y,

.. ° 2 ° ° ’
— case ii: In 7(N), "™°t; =40y (VP11 = rasn) V0°, and "V 1,°Biiqip) 1,° holds.

(3) Not applicable.
(4) Not applicable.
(5) nz(N), U™ pi),u+a+b). In N', UMy, u+ a + b) and ["™ pi1Basn) *1; holds.

6) n N, UN*t),u+a+b). nt(N), U™ pi,u+ a+b), and "™ p, B, *1, holds.

In addition, it is obvious that a binary relation B,;, which [T(N)pl]B(um)N"t; holds is a TBB.
Therefore, binary relations “™*¢; BN *1} and ["™) p;]B 10" °f, are held. This is held for all u, N
and N’ are timed branching bisimilar. Then N’ is a subclass of N with respect to timed projection
inheritance. Q.E.D.

(FSP) : Let 7(N) be a safe LTPN which derived from a LTPN N by applying abstraction

operator. Of course, 7(N) is a subclass of N with respect to timed projection inheritance. Let u

7(N) 7(N)

be arrival time to
relation B, which [ p;1B,[" p,] holds is a TBB.

p1 and w be a shortest delay time of ™" p,°®. First, we prove that a binary

7(N)
(1) Int(N), [Vp,] =" [ ps].

— case i: act("™n) = 7 and [V p; 1B, p} is held.

N se

'’ p ! /. °
2) N, NPyl = N (2L

7(N)

.. Np : o\ T o\ ’ X%
— case ii: In T(N)’ [T(N)pl] =y [T(N)pZ] _)2 (u+w) T(N)(pZ ) s and (N)(P2 ) B(u+w)N (P2 )
holds.

(3) Not applicable.
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(4) Not applicable.
(5) Int(N), U™ ™ pi],u+ 0). In N', UY p,l, u + 0) and [V p1B,[" p;] holds.

6) In N, UV pi ], u+w). InT(N), [V p1] = [NV pal and U™ p, ], utw), and [N py 1B, [V ph]
holds.

In addition, it is obvious that a binary relation B,,,, which [*™ p,]B,[" p,] holds is a TBB. There-
fore, a binary relation [V p,]B,[" p5] holds. This holds for all u, N and N’ are timed branching
bisimilar. Then N’ is a subclass of N with respect to timed projection inheritance. Q.E.D.

(FPP) : Let 7(N) be a safe LTPN which derived from a LTPN N by applying abstraction
operator. Of course, 7(N) is a subclass of N with respect to timed projection inheritance. Let
u be arrival time to "™*¢,. It is obvious that a binary relation B, which "™*¢, B,V"*¢, holds and
a binary relation B4+ Which ™ 5°B, 4" t:* holds are TBBs. Therefore, we prove that a
binary relation B, which [(™p, "™ p,]B [ p;] holds is a TBB.

T(N)tz

() In7(N), [P p1, " Mpy] = rarn V0.

.. ) Ny , ,
— case ii: In N', [V pl] — wiarpy V1% and "M 1,° B 0™ 1° holds.
’ N’fz /o
2) In N, [V Phl = wrarry ¥ 12°.

‘e T(N)rz . . )
— case ii: In 7(N), [V p1, " ] = aasry V6%, and "M 1° Biarn™ 1° holds.

(3) Not applicable.
(4) Not applicable.

(5) Int(N), U™ ™ p1, ™ P psl,u+a+b). In N, U pyl,u+a+b) and [V p,, "™ p, 1B, [V p;]
holds.

©) In N, UV pylu+a+b). Int(N), U™ p, " V|, u+a+b)and [V p,, "™ p,|B,[V p}]
holds.

This holds for all u, N and N’ are timed branching bisimilar. Then N’ is a subclass of N with
respect to timed projection inheritance. Q.E.D.

(LF) : Let 7(N) be a safe LTPN which derived from a LTPN N by applying abstraction
operator. Of course, 7(N) is a subclass of N with respect to timed projection inheritance. Let u

be arrival time to "*t;. It is obvious that a binary relation B, which ™™*t; B,V *t; holds and a
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binary relation By,,p:q Which (™, " ™,°)B 4.0V 1 holds are TBBs. Therefore, we prove

that a binary relation B, which [*™p;, "™ p,1B.p) [V p1,Y p2] holds is a TBB.

W)y, TNy,

(D) In7(N), [ Vp1,™Mpy] 5 g (M1, V0%).

) , , Ny ) ;.
— case ii: In N, [V p1,V P2l = veay ¥ 1% and (V1 " M5B pia™ 10 is held.

, 7 N/ZZ Y
(2) In N’, [N pl,N P2] ™ (u+b+a) N L.

.. TW)g, TNy . . .
= case ii: In 7(N), [™p1, " pal 5 Caisig (V0 V0%, and (W, V)

B(u_,.b_,_a)N/ f,* is held.
(3) Not applicable.

(4) Not applicable.

(5) Int(N), UT M py, Mpol,u+b+a). In N', U pi,V pol,u+b+a)and [Mp,,"Mp,]B,
[V p1," p2] holds.

6) In N, U p1,N polu+b+a). Int(N), U™V pi, Mp,l,u+b+a)and (M p;, " Vp,1B,
[N’p] , N,pz] holds.

This holds for all u, N and N’ are timed branching bisimilar. Then N’ is a subclass of N with

respect to timed projection inheritance. Q.E.D.

(RPP) : Let 7(N) be a safe LTPN which derived from a LTPN N by applying abstraction
operator. Of course, 7(N) is a subclass of N with respect to timed projection inheritance. Let u
be arrival time to *™*#,. It is obvious that a binary relation B, which “™*¢; B,V *t; holds and a
binary relation B qips-sxis) Which ™1 B ps.sv4V 1.° holds are TBBs. First, we prove that a
binary relation B, which [ p;, "™ p,1B,.o[" pi] holds is a TBB.

e Caseb<c
N TN s 2(N) () o
(1) InT(N), [ p1, "V pal = @aare) [T p1], " V13°).
— case i: act(™™t3) = 7 and ("Y' p,1, " M%) Biraro [V pil.
, N N’lz N .
2) In N, [V p1] = @uarn " B°.

bl L] T(N)rz L] L]
— case ii: In 7(N), [ p1,™ M ps] =iare (VP ™ ™5%) = iany (V5% ™ 5),

and (T(N)IZC’ T(N)t3-) B(u+a+b)N’t2. is held.
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(3) Not applicable.
(4) Not applicable.

(5) Int(N), U™ p1, "V py ], u+a+c). In N, UV pi], u+a+c) and [N py, ™™ ps | B aie [V pi]
holds.

6) In N, UV p1], u+a+b). Int(N), [V p1, " ™ ps] =S isasey V1], M%) and U™V py], " M13®),
u+a+b),and ([Vpi1," M3°)B i arp [V pi] is held.

e Caseb >c
) TN) gt Ny, e [t(N)
(1) Int(N), [™Vp1, "V pal = rarry (V0% [ p2l).
.o 7 Nlt2 ’ ° ° ’ °
— case ii: In N', [V p1] = iasn) ¥ 1 and (V5°, ["™ pa]) Biarn™ 1° holds.
, N N,tz N, e
2) In N, [V p1] = urarn) " 12°.

3 T(N)lz . . ' e
— caseii: In7(N), [Mp1, ™ Vo] = aarry (V0 [V pal), and (M6°, [N pa]) Busarn)™ 1
18 held.

(3) Not applicable.
(4) Not applicable.

(5) Int(N), U™ pi, "V pyl, u+a+b). In N, U™ pi1, u+a+b) and [V py, "™ ps 1B i [V pil
holds.

(6) InN', U([Y p1], u+a+b). Int(N), U™ p, "™ p, ], u+a+b) and [V p;, "™ p,11Bisasin [V pi]
holds.

Binary relations between the other states of Y| and Y, can be proved as above.

In the last, we prove a binary relation B gsps-.r) Which [V p T

holds is a TBB.

py]B(u+a+b+--<+x) [N’ px]

),

(1) In T(N)a [T(N)px, T(N)py] _)L(u+a+b+~-+x+z) T(N)tz.-

!
Ny

N px] _;(u+a+b+-~-+x+z) N tz. and T(N)tz. B(u+a+b+~-+x+z)N tz. holds.

— caseii: In N/, |

’

;o Ve .
(2) InN’, [N Pxl D wiarbiixio N I
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t, act(t,) t, act(t,)
D(t,)=10 D(t,)=10
t; act(ty) t, act(t,)
D(t;)=10 D(t,)=9
t; act(ts)
D(t;)=10

Figure 6.4: A LTPN N; which have select structure
W)y ,

— case ii: In T(N), [T(N)px’T(N)py] _)h(u+a+b+-~+x+z) T(N)tz.» and T(N)tz. B(u+a+b+~-+x+z) N tz.
holds.

(3) Not applicable.
(4) Not applicable.

5) Int(N), U Vp,, Vp,Liu+a+b+--+x+2). InN, UV plu+a+b+--+x+2)
and [T(N)px’ T(N)py]B(u+a+b+-~-+x+z)[N’ px] hOld

©) InN, UV pliu+a+b+---+x+2). InTN), UV p,, Vp,l,u+a+b+---+x+72)
y
and [V p., " ™ p 1Bsarprsxsol" pxl holds.

This holds for all u, N and N’ are timed branching bisimilar. Then N’ is a subclass of N with

respect to timed projection inheritance. |

We proposed the five reduction operators for safe LTPNs and prove that five operators maintain
timed behavioral inheritance. However, we currently have no reduction operator which treats
place split and/or place join. Because if we apply reduction operators for these structures, the
firing schedule may be changed. Let us consider two LTPN N3 in Fig. 6.4 and N in Fig. 6.5. The
schedule of #5 is if #; fires, then ¢5 fires in 30 time unit, else if ¢, fires, then 75 fires 29 timed unit.
For example, we reduce the path (t, p3t,), the firing schedule of 75 is always 30 time unit from the

initial state. Therefore, we assume that it is very difficult to treat place split and place join.
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t, act(t,)
D(t,)=10

t; act(ty)
D(t;)=10
P4

t; act(ts)
D(t5)=10
Ps

Figure 6.5: A LTPN N} which obtained by reducing path £ p3ty from N

6.4 Application Example of the Proposed Operators

In this section, we apply our reduction operators to an artificial safe LTPN and evaluate the state
size of the LTPN. The sample of safe LTPN N, is Fig. 6.6. Let a be the actions we observe.
We focus on the leftmost sub LTPN enclosed by broken line. Firstly, we remove 74 by operator
LF and p3, ps by operator FPP. Next, we remove f,, p4 by operator FST. The leftmost sub LTPN
is reduced to the sub LTPN by the right side. We can compute size of state space by method
proposed by Nakano et al.[44]. Fig. 6.7 shows the number of the state of the safe LTPN. X-
axis is the number of sub LTPN above. We can see the state explosion without our reduction

operators. Our operators can suppress the state explosion as far as the experiment.



74

6 Refactoring of Timed System

The size of state space
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t(3n+2) T d(t(3n+2))=10
p(5n+2)

Figure 6.6: A LTPN N,

Before retl'.iuction —X— I
After reduction --{-1--

0
no [

The number of dotted boxes

Figure 6.7: Trends in the state space of N,
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6.5 Remarks

In this chapter, we have proposed reduction operators to refactor timed system. We proposed
the concept of timed projection inheritance. This concept means the equivalence of the systems
in consideration of observability and there is no change of firing schedule of observed actions.
Then, we have proposed five reduction operators based on the concept for timed Petri nets which

are safe . We have proved that these reduction operators preserve timed projection inheritance.

Next, we have applied our proposed operators for an artificial safe timed Petri net. The results
show that by considering observability and reducing transitions which users need not to observe,

net size can be made smaller.

As future works, we plan to extend our reduction operators preserving timed protocol inheri-
tance and timed lifecycle inheritance, and to develop a tool which can apply reduction operators

automatically.






Chapter 7

Conclusion

In this thesis, we have proposed reduction technique, called “refactoring”, for business workflow

to check its various consistency easily. Furthermore, we have presented its application.

It is inevitable that workflows become complex, since business rules changing or business
combination force their workflows to change and coalesce with other one, against designers’

intent. Our approach reduces the complexity by mathematical model and related algorithm.

In Chap. 3, we have presented theorems and proofs about three refactorizability sufficient
conditions. Firstly, in the no PT-handle case, we can remove EFC-structures from the EFC WF-
net by using the rule ¢p.;. There is a branching bisimilarity between the resultant net and the
original net. We can refactor the original net to WS WF-net by using ¢3,,; repeatedly. Secondly,
in the no TP-handle case, we can remove TP-cross structures from the EFC WF-net by using the
rule ¢p,s;- There is also branching bisimilarity between the resultant net and the original net. We
can refactor the original net to WS WF-net by using ¢, repeatedly. Thirdly, in the case that
there are some redundant places in the EFC-net, we can remove implicit places from the EFC
WE-net by using the rule ¢pici;- There is also branching bisimilarity between the resultant net

and the original net. We can refactor the original net to WS WF-net by using ¢;,,,ici; repeatedly.

There are some Petri net reduction techniques discussed in Chap. 1. They preserve one or
more properties (i.e. partial behavior). Branching Bisimilarity our refactoring algorithm pre-
serve 1s the wider concept than properties the reduction techniques preserve. Because Branching
Bisimilarity corresponds to overalls of the system behavior !. There are two novel aspects of this
thesis. First, we define the result of refactoring as WS WF-net. WS WF-net has more analysis
methods. Second, we give the concept of refactorizability and the checking algorithms. The

concept helps us to design concrete refactoring algorithm. The aspects have not been discussed

'Further mathematical studies are needed in order to clarify the relation between Polyvyanyy’s reduction and
our refactoring rules.

77
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- ~

Sufficient Condition
(Yamaguchi 2012)

Sufficient Condition
(This thesis)

Necessary and Sufficient Condition P s
(Unknown)

- -

Necessary Condition : Soundness
(Yamaguchi 2012)

ALL acyclic EFC WF-net

Figure 7.1: The relations between the sets correspond to own refactorizability conditions.

in the other reduction techniques

In Chap. 4, we have presented algorithm composed from above three rules. We have checked
the three rules’ pre-conditions and post-conditions precisely. The three rules are ordered to deal
with a broader subclass of EFC WF-net. The algorithm liberate us from checking refactoring
conditions manually. We have to only input the EFC WF-net to obtain a WS WF-net which
is branching bisimilar with the original net. The algorithm is a novelty result, since it has not

proposed yet.

In Chap. 5, we have presented three applications of refactoring from EFC WF-nets to WS
WF-nets. The three are “Reachability Checking”, “State Number Calculation” and “Response
Property Checking”. They may cut off the cost of upstream design process in system develop-

ment.

In Chap. 6, we have proposed an introduce advanced concept about timed behavior and pro-
posed refactoring rules based on it. It may be a useful concept for refactoring WF-net with

real-time constraints.

The future subjects in research field related to this thesis are as follows: The first subject
relates to the discovery of the necessary and sufficient condition about refactorizability of EFC
WF-net. In this thesis, we gave new sufficient condition(s) of refactorizability which are superior
to Yamaguchi’s condition[18]. The Venn diagram shown in Figure. 7.1 represents the relations

between the sets correspond to own refactorizability conditions. We think that the three are
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proper subset of the necessary and sufficient condition. Since we have a sample FC WF-net

shown in Fig. 7.2 [45] which is refactorizable but does not satisfy our conditions.
Furthermore, we have an another sample WF-net shown in Fig. 7.3 [45] which may be not

refactorizable. We will survey the net to clarify the necessary and sufficient condition 2.

The second subject relates to the building the process in system development clearly, to apply
our WF-net refactoring algorithm. In this thesis, we have presented some refactoring applica-

tions. It is indispensable to clarify the process for the real world advantages.

2Unfortunately, checking the necessary and sufficient conditions seem has no polynomial time algorithm. Be-
cause the problem equals to constructing WS WF-net from state graph. It may be intractable [46][47] or more
difficult problem.
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(c) Branching bisimulation between the reachability graph of (Nye facrorizabies | P11) and (Nyefaciored, LP11) -

Figure 7.2: A sample of refactorizable WF-net [45] which does not satisfy the three sufficient
conditions in this thesis.
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Figure 7.3: A sample WF-net [45] which may be not refactorizable.
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