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FRP

CFRP
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Glass fiber-reinforced plastics
Fiber-reinforced polymer matrix composites
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Carbon fiber-reinforced plastics
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Chapter I General introduction

1.1 Background

Strong demand for the use of composite materials is increasing today because high
strength and stiffness, as well as low density are needed to reduce energy consumption in
aviation and automotive transport industries. The use of artificial fiber-reinforced composite
materials, such as glass fiber-reinforced plastics (GFRP) and carbon fiber-reinforced plastics
(CFRP) is effective to meet these demands, but disposal difficulties that arise after their use has
surfaced as an environmental problem. Therefore, many researchers have strived to develop
biodegradable renewable composite materials and various production methods for the materials
that will widen their practical availability [1-5]. Plant-based natural fibers such as flax, hemp,
ramie, jute, kenaf, curaua and bamboo, are expected for use as the composite reinforcement
materials, but these are often used as short fibers, as seen in injection-molded products. Long
fibers are generally known to be exhibit load-bearing potential in a matrix material as compared
to short fibers. Before spinning process, plant-based natural fibers are often supplied as long
fibers called ‘slivers’. When this form is successfully prepared with resin, slivers can be applied
as a semi-finished composite material in prepregs [5, 6]. One of the problems in preparing slivers
is their fiber waviness, which is fluctuation in the fiber orientation inherent in plant-based natural
fibers as well as synthetic fibers. Such waviness often engenders a decrease in the mechanical
properties of the composites. It was pointed out in the model proposed by Hsiao and Daniel [7]
that the decrease in elastic properties of a unidirectional carbon/epoxy composite resulted from
the fiber waviness. Karami and Garnich [8] used a finite element micromechanical model to

predict the effects of periodic and localized fiber waviness on carbon fiber reinforcement. In



these papers, however, the fiber waviness was assumed as a deterministic shape such as a sine
curve. In order to take the stochastic wavy effect of sliver into account, Ren et al. [9, 10]
quantified the fibre orientation fluctuation in curaua-sliver and flax-sliver-reinforced composite
through one-dimensional and two-dimensional autocorrelations between fiber orientation angles
on the composite surface. The quantified parameter expressing the degree of the fluctuation,
called the “area ratio”, was correlated with the composite tensile strength. However, the use of
autocorrelations was intended to evaluate the quality of fiber orientation, but not to express the
degree of local disorder in fiber orientation. In general, stiffness is insensible for structural
defects, but strength is sensible. Therefore, the local disorder in fiber orientation is of great
interest for quantification through some statistical or stochastic analytical method. It is also
expected that the quantified parameter shall play a role as a key indicator during quality

inspection for produced prepregs.

Thus, the purpose of this study is to examine the effects of the fiber waviness on the
tensile strength of a flax-sliver-reinforced composite (in-plane tensile modulus). Resin-pasted
flax slivers were first compression-molded, and then fiber orientation angles were measured on
the surfaces of the resultant composite laminates. To quantify the degree of the disorder in fiber
orientation, the measurement results were analyzed by Local Moran’s I and Local Geary’s c [11],
which are measures of the representative spatial autocorrelation analyses. Quantification by the
“area ratio” was optimized by seeking an appropriate threshold level of the measures, correlated

closely with tensile strength data.



1.1.1 Fiber waviness of a flax sliver-reinforced composite material

Fiber-reinforced polymer matrix composites (FRP) have been used wildly due to the high
strength and low specific gravity. However, most of FRP are composed of fiberglass or carbon
fibers, of which recycling method or disposal process has not been established yet. While such
artificial renewable processes are studied, recently, researchers have tried to use environmental-
friendly fibers such as kenaf, ramie and flax as reinforcement, but a problem of using natural
fiber is the fiber waviness. Fiber waviness is the fluctuation in fiber orientation, inherent in plant-

based natural fibers, that affects the mechanical properties.

Flax slivers (Teikokusen-I Co, Ltd), one of the representative natural fibers, was used as
reinforcement, as show in Fig.1.1, and a biodegradable resin (Randy PL-1000; Miyoshi Oil and
Fat Co. Ltd., Japan) as a matrix. The resin was supplied in a water emulsion containing micro-
order fine particles of approximately 5.0 um diameter. The Randy PL-1000 is made from plant-
derived biodegradable resins. Thus, the resultant composite may be called the ‘fully green
composite’.  Typical physical and mechanical properties of these constituents are shown in

table 1. 1

Table 1.1 Properties of the fibers and matrix

Fiber Tensile
Density Fracture strain Young’s
Material width strength
(Mg/m”) (%) modulus (GPa)
(um) (MPa)
Randy PL-1000 1.2 - 32.5 - 3.8
Flax fiber 1.50 10-30 600-1100 1.5-2.4 40-100




Fig.1.1 Flax sliver

Fig.1.2 A biodegradable resin



1.1.2 Pearson method

Pearson method is a method to analyze point patterns by using the notion of covariance

and correlation between two data group. The equation of Pearson method is shown as:

, ___Cn(e.0,)
= Farte, Yvar(®,)

where @ and @, respectively denote sets of measured segment angles on i-th and (i+k)-th unit
composites, and k is the distance between two unit composites. Cov(-) is the autocovariance

between two unit composites, and Var(-) is the variance on each unit composite. In Fig.1.3, the
correlation between two blocks is calculated at 7; and 5, 7 is adistance between x;and x; and 7 is

distance between y; and y;, thus the sizes of 7;and 7 are 25 and 8 respectively.
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Fig.1.3 Schematic of two-dimensional autocorrelations

The coefficient of Pearson method varies between -1 to +1. The positive coefficient

means the value at this location is similar to the neighbor locations, thus the fiber orientation



angle is smoother than the results at the low coefficient. Considering the negative coefficient, the
value at that location is similar to the neighbor locations; however it displays a different sign

from other locations. The results of Pearson method are shown in fig 1.4.
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Fig.1.4(b) Pearson method’s result of specimen no.7B



As Pearson method’s results, they trend toward the negative side more than the positive
side. The black areas in fig.1.5 consist of the coefficient higher than 0.3 which is calculated as R
more than 0.5. The percentage of area ratio is 1% for specimen no.1A and 0.2% for specimen no.
7A. After that, the correlation between area ratio and tensile strength was analyzed for

predicting the impact of tensile strength on the specimens. The results of area ratio are shown in

fig 1.6
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Fig.1.5(a) Contour maps of Pearson’s Method 1A
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Fig.1.6 (a) Area Ratio dependence on normal tensile strength of Pearson’s Method

In this study, we used the correlation method to define the relation between the area ratio
of Pearson Method. The correlation between the tensile strength and the area ratio of Pearson
Method (>0.3) is higher than 0.5(0.65), which indicates a positive linear relationship. Thus, it is

able to determine the relationship between Pearson Method and tensile strength.



1.2 Objectives and outline

In the previous study, the effect of Fiber waviness of a flax sliver-reinforced composite
material was analyzed by Pearson method, spatial autocorrelation method in Chapter 1. Pearson
method is a method to analyze point patterns by using the notion of covariance and correlation
between two data group. Thus, fiber orientation angles are important data for analyzing the effect
of fiber waviness. To evaluate the effect of fiber waviness, the area ratio and tensile strength was
analyzed. The correlation between the tensile strength and the area ratio of Pearson Method
(>0.5) is higher than 0.5, which indicates a positive linear relationship. Thus, it is able to

determine the relationship between Pearson Method and tensile strength.

In the present study, the effect of fiber waviness was analyzed by Local Morn’s I, Local
Geary’s ¢ and Tsai-Hill criteria. This is another method to improve the results of analysis
because Local Moran’s I, Local Geary’s ¢ and Tsai-Hill criteria have results at each element.

Thus, we are able to understand the behavior of the fiber waviness on specimens.

In the chapter II, the object is to examine the effects of the fiber waviness on the tensile
strength of a flax-sliver reinforced composite (in-plane tensile modulus). Resin pasted flax
slivers were first compression molded, and then fiber orientation angles were measured on the
surfaces of the resultant composite laminates. To quantify the degree of the disorder in fiber
orientation, the measurement results were analyzed by Local Moran’s I and Local Geary’s c,
which are measures of the representative spatial autocorrelation analyses. Quantification by the
“area ratio” was optimized by seeking an appropriate threshold level of the measures, correlated

closely with tensile strength data.



In the chapter III, finite element method (FEM) is to classify engineering analyses. This
method does not acquire the real experimental results, which usually consume time of investment.
First of all, fiber waviness was quantified. The composite surface was divided by Imm x Imm
squares, and the fiber orientation angles to the loading direction were measured on the all squares.
Finite element analysis was carried out by recognizing the divided squares as finite elements.
Stress-strain relation of the finite element was based on the orthotropic theory, in which the
measured angles were assigned to each element. After that the stress results were compared with

the experimental tensile strength.

In the chapter IV, the risky areas on specimens were predicted by Tsai-Hill criterion,
Tsai-Hill criterion without FEM and Local Geary’s c¢. The risky areas of Tsai-Hill criterion and
Tsai-Hill criterion without FEM were analyzed the angle patterns around the maximum and
minimum Tsai-Hill criterion with maximum and minimum deltas. Furthermore, the relation
between the weigh function of Local Geary’s c¢ and Tsai-Hill criterion was used to find the risky

areas of Tsai-Hill criterion defined by positive delta.
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Chapter II Effect of random fiber waviness on tensile strength of a flax-sliver-reinforced
composite material

2.1 Introduction

Strong demand for the use of composite materials is increasing today because high
strength and stiffness, as well as low density, are needed to reduce energy consumption in
aviation and automotive transport industries. The use of artificial fiber-reinforced composite
materials, such as glass fiber-reinforced plastics (GFRP) and carbon fiber-reinforced plastics
(CFRP), is effective to meet these demands, but disposal difficulties that arise after their use
have surfaced as an environmental problem. Therefore, many researchers have strived to develop
biodegradable renewable composite materials and various production methods for the materials
that will widen their practical availability. Plant based natural fibers, such as flax, hemp, ramie,
jute, kenaf, curaua, and bamboo, are expected for use as the composite reinforcement materials,
but these are often used as short fibers, as seen in injection-molded products. Long fibers are
generally known to exhibit load-bearing potential in a matrix material as compared to short fibers.
Before spinning process, plant-based natural fibers are often supplied as long fibers called
“slivers.”When this form is successfully prepared with resin, slivers can be applied as a semi
finished composite material in prepregs. One of the problems in preparing slivers is their fiber
waviness, which is fluctuation in the fiber orientation inherent in plant-based natural fibers as
well as synthetic fibers. In these papers, however, the fiber waviness was assumed as a
deterministic shape such as a sine curve. In order to take the stochastic wavy effect of sliver into
account, the fiber orientation fluctuation in curaua-sliver- and flax sliver-reinforced composite
through one-dimensional and angles on the composite surface were quantified. The quantified
parameter expressing the degree of the fluctuation, called the “area ratio,” was correlated with

the composite tensile strength. However, the use of autocorrelations was intended to evaluate the

11



quality of fiber orientation but not to express the degree of local disorder in fiber orientation. In
general, stiffness is insensible for structural defects, but strength is sensible. Therefore, the local
disorder in fiber orientation is of great interest for quantification through some statistical or
stochastic analytical method. It is also expected that the quantified parameter shall play a role as
a key indicator during quality inspection for produced prepregs. Thus, the purpose of this study
is to examine the effects of the fiber waviness on the tensile strength of a flax-sliver reinforced
composite (in-plane tensile modulus). Resin pasted flax slivers were first compression molded,
and then fiber orientation angles were measured on the surfaces of the resultant composite
laminates. To quantify the degree of the disorder in fiber orientation, the measurement results
were analyzed by Local Moran’s I and Local Geary’s ¢, which are measures of the representative
spatial autocorrelation analyses. Quantification by the “area ratio” was optimized by seeking an

appropriate threshold level of the measures, correlated closely with tensile strength data.

2.2 Experimental

2.2.1 Materials

Flax slivers, one of the representative natural fibers, were used as reinforcement as shown
in Figure 1. The slivers were supplied from Teikoku Sen-i Co., Ltd., Japan. Biodegradable
thermoplastic resin was used as the matrix, which was supplied from Miyoshi Oil and Fat Co.,
Ltd., Japan (product name: Randy PL-1000). The resin was supplied in a water emulsion
containing micro order fine particles of approximately 5.0 um diameter. The Randy PL-1000 is

made from plant-derived biodegradable resins.
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Fig.2.2 Resin-pasted sliver
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2.2.2 Molding process

First, the fibers on the front side were closed with resin and dried for 24 hours, after that
another side (back side) was done with the same process as the front side. At each process the
weight was measured for the calculation of fiber content. After finishing preparation of the pre-
forms, we cut them into the size 100 mm x 100 mm, and put two pieces into the mold. The mold
was set at 150 °C for 40 min, and then the hydraulic press was set at 3MPa pressure.
Subsequently, the temperature was reduced to room temperature at the pressure of 3MPa for 24
hours. The fiber volume fractions V, of all fabricated composites were calculated using the

following equation:

where W is the fabricated composite weight, Wy is the flax fiber weight in the composite, V is

the fabricated composite volume, and p,, is the biodegradable resin density.

Two methods were prepared to fabricate the composites: sheet lamination method (SLM)
and the direct method (DM). The latter method is more appropriate for mass production than the
former, but the products fabricated by DM include fiber orientation fluctuation. For SLM, the

sliver was first combed carefully to form unidirectionally oriented fibers.

14



Fig.2.3 Die and perform sheets

Fig.2.4 The combed fibers of sheet lamination method

15



Fig.2.5 Hot-press machine

(Capacity: 20ton, Press only supplied from Yamamoto Suiatu Kogyosho Co., Ltd.)
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Fig.2.6 The sheet lamination method (SLM)

Fig.2.7 The direct method (DM)



2.2.3 Angle Measurements

Fiber orientation angles are important data for calculating the stress distribution of composite
with fiber waviness. In this process, x-axis is the longitudinal direction and y-axis is the
transverse direction. Specimens were divided into a small size as 1 mm for Ax and Ay which are
50 segments along x-axis and 15 segments along y-axis, respectively, so the total number of
segments is 750 for each side (Fig.3). The image analysis software (Asahi Kasei Corp) was used

for angle measurement of each segment.

X Longitudinal direction

5mm

Segment Unit composite

(a) Division into segment

(b) Angle@in a segment (Ax=Ady=1 mm)

Fig.2.8 Measurement of fiber orientation angles on flax sliver-reinforced composites.
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2.2.4 Tensile tests

Tensile specimens were cut to 15mm width from DM and SLM composite laminates of
100mmx 100mm square, and then aluminum plates (15mm x 15 mm) were attached with epoxy
adhesive to both ends of all composite specimens for tensile testing. To prevent stress
concentration near aluminum plates during tensile testing, their edges were shaved to 45°. A
strain gage was attached on the center of specimens to measure uniaxial strain. Tensile tests were
carried out using an Instron-type testing machine (Autograph IS-500; Shimadzu Corp.) with

cross-head speed of 1 mm/min. The strain rate is 0.02/min and load is SON.

Fig.2.9 Instron type tension and compression machine
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The specimens were preformed as length and width is 100mm x 15mm, thickness is 0.4 to

0.8mm and gage length is 50mm.

50 | 25 |

100

Fig.2.10 The specimen size

Fig.2.11 the position of strain gage on specimens

2.2.5 Spatial Autocorrelation Analysis

Spatial autocorrelation is a method to analyze point patterns. The point patterns are

differentiated as random pattern, uniform pattern and patch pattern.

(a) patch pattern (b) random pattern (c) uniform pattern

Fig.2.12 Differentiated point patterns
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2.2.5.1 Local Moran’s I

Local Moran’s I was created by Moran. It is a typical tool of spatial autocorrelation to
analyze data because it is based on a deviation from the average. The equation of Local Moran’s
I is shown as:

Ii(d) = 1(%—_5)_227:1 w;;(d)(6; —0) (2)
22i=1(0i-0) i
Where, w;; (d) is the weight function of the pair samples in distance class d at equation (3), given

as:
wii(d) ={(;—x)*+ i —y)?} 2 B

where x; is i-th position of the x-axis, and the range is 1-50 mm. Also, y; is the i-th position
of the y-axis, and the range is 1-15 mm. 6; and 6, are the angle data at the i-th and j-th positions,
respectively. Hereinafter, Local Moran’s [ is denoted as LM-I. LM-I varies between -1 to +1. If
LM-I approaches +1, then the angle at this location is more largely far from the average, but
similar to the neighbor’s angles in their deviation from the average. On the other hand, if LM-/
tends to approach -1, then the angle at this location is also higher or lower than the average. But,
the sign is different from the neighbor angles. When LM-/ tends to approach 0O, the angle at this
location is similar to the average. Theoretically, when LM-/ is either much higher or lower than 0,
then the fiber orientation angle is significantly different from the average. Consequently, such

LM-I points, if gathered locally, could form a large disordered area in fiber orientation.

21



2.2.5.2 Local Geary’s ¢

Local Geary’s ¢ is another typical spatial autocorrelation, which avoids the effect of
average data by using a deviation around i-th position. The equation of Local Geary’s ¢ is shown

as:

1

Cl (d) = %Z?:l(ei_g)z

Yi—awi(d)(6; —6)*  (4)

J*L

Local Geary’s c is hereinafter denoted as LG-c. LG-c varies between 0 and 1. When LG-c¢ tends
to approach 0, the angle at this location is similar to the neighbor angles. In contrast, when LG-¢
tends to approach 1, the angle at this location differs from the sign of neighbor angles or much
higher than the neighbor’s angles in absolute value. Consequently, such points can be disordered

parts in fiber orientation.
2.3 Results and discussions
2.3.1 Tensile Properties and Fiber Orientation Angle

This study aims to analyze the effect of fiber waviness on the tensile strength of sliver-
based natural fiber composites. The test results are shown in Table 2.1 The tensile strength of the
direct method (DM), which consists of plenty fiber waviness, is lower than the sheet laminate
method (SLM) for all specimens. Fiber waviness was quantified by the fiber orientation angles.
According to the contour maps of fiber orientation angle distribution in fig. 2.13, they have a

wide range of positive twenty degrees to negative twenty degrees.

22



Table 2.1 Fiber orientation angles and mechanical properties of flax sliver-reinforced composites.

Specimens Tensile strength

Production _ Side A (lower angle) Side B (higher angle) (MPa) Young’s
method Fiber modulus

Sample No. ::;lclggi Avg. angle S.D. of Avg. angle S.D. of (GPa)

©) angles (°) © angles (°)

SLM - 0.71 0 - 0 - 238 40.5

<1> 0.55 1.99 3.54 3.30 4.28 132 22.7

<2> 0.55 2.62 5.22 4.19 4.03 224 26.7

<3> 0.55 5.14 4.06 5.55 3.18 158 29.6

<4> 0.55 3.05 3.22 8.76 4.18 211 27.6

<5> 0.65 1.74 3.73 2.85 2.66 158 233

DM <6> 0.65 2.10 2.62 3.07 3.48 203 26.4

<7> 0.65 1.61 2.33 2.20 2.32 153 27.5

<8> 0.65 2.08 347 3.76 2.95 170 28.0

<9> 0.65 1.45 3.72 5.26 477 173 26.8

<10> 0.65 0.76 3.50 4.55 3.90 168 28.8

Avg. 0.61 2.35 3.50 4.35 3.60 175 26.8

The number of SLM specimens was seven. Avg.: Average, S.D.: Standard deviation.

23




(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 2.13 Contour map of fiber orientation angle distribution
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(e) Specimen no.3A (f) Specimen no.3B

(g) Specimen no.7A (h) Specimen no.7B

Fig. 2.13 Contour map of fiber orientation angle distribution
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2.3.2 Spatial Analysis’s results

Spatial analysis is used for defining the effect location of random fiber waviness on
tensile strength. As first method, Local Moran’s I, 1 coefficient varies between -1 to +1.
Regarding, the inclination of I coefficient to approach +1, the value at this location is similar the
neighbor location in their deviation from the average. On the other hand, I coefficient trends to
approach -1, thus the value at this location is different from the average in higher or lower.
Additionally, the sign is different from the neighbor locations. In the case, I coefficient trends to
approach 0, the value at this location is similar to the average. Theoretically, the coefficient,
which is either higher or lower than 0, means the fluctuation in fiber orientation varied
significantly from the average angle. As a result, it could reduce the tensile properties. The

results of Local Moran’s I are shown in fig.2.14.

Regarding the coefficient of Local Geary’s ¢, it varies between 0 and 1. The C coefficient
tends to approach 0, thus the value at this location is similar to the neighbor location. In contrast,
the C coefficient trends to approach 1, thus value at this location is different from the sign of
neighbor locations. In the case, the coefficient trends to O, thus the value at this location is

similar to the neighbor locations. The results of Local Geary’s c are shown in fig.2.15.

26



(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 2.14 Contour maps of Local Moran’s [ distribution
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(e) Specimen no.3A (f) Specimen no.3B

(g) Specimen no.7A (h) Specimen no.7B

Fig. 2.14 Contour maps of Local Moran’s I distribution
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(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 2.15 Contour maps of Local Geary’s ¢
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(e) Specimen no.3A (f) Specimen no.3B

(g) Specimen no.7A (h) Specimen no.7B

Fig. 2.15 Contour maps of Local Geary’s ¢
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2.3.3 Area ratio

In this research, we tried to quantify the ‘threshold levels’ of spatial analyses by using the
concept of ‘area ratio’. If the area ratios are well correlated with tensile strength data, the
strength could be estimated from the fiber orientation angle distribution measured in advance. In
this quantification, we used two imaging programs; first ‘Graph R221" was used for plotting a

contour map of the above three methods, and next ‘Azo R235° used to calculate area ratio.

When we choose temporarily threshold levels higher than 0.6 or less than -0.1, the black
areas of LM-I were obtained, as shown in Fig. 2.16(a) to Fig. 2.16(d). The area ratios of
specimens were 10.267% (positive side =5.067% and negative side =5.2%), 4.267% (positive
side =1.467% and negative side =2.8%), 6.267% (positive side =0.8% and negative side
=5.467%), and 11.6% (positive side =2% and negative side =9.6%) for the specimen number 1A,
1B, 7A and 7B respectively. The range of negative values is designated more widely than that of
positive value, because the segments with negative LM-/ values are not so major, but have a
possibility of causing premature damage in shear. Thus, wide range negative values and
relatively high positive values are corresponding to risky areas. In Fig 2.17(a) to Fig. 2.17(d),
the black areas of LG-c are higher than 0.35 were selected. The area ratios of specimens were
12.80%, 4.533%, 5.333% and 9.467% for specimen number 1A, 1B, 7A and 7B respectively. As
is easily known, when the threshold levels of TH, LM-/ and LG-c are changed, the area ratios
accordingly change. We consider, if appropriate threshold levels are given, there is an optimal
area ratio at each specimen which is well correlated with tensile strength. This is because the
ratio of segments suffering damage during tensile loading should be related closely with the area

ratio. In the next section, thus, the relation between area ratio and tensile strength is investigated.
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Figure 2.16 Binary images of Local Moran’s I distribution
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Fig. 2.17 Binary images of Local Geary’s c¢ distribution (threshold level: LG-c¢ = 0.35)
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2.3.4 Relation between Area Ratio and Tensile Strength

To investigate the correlation between the area ratio and tensile strength, normalized
tensile strength data were plotted as a function of area ratio, as shown in Figures 2.18 and 2.19,
where each tensile strength value was normalized at the same fiber volume fraction. That is to
say, the tensile strengths were normalized by dividing the measured strength by the fiber volume
fraction V; and then multiplying it by 0.72, corresponding to V, of SLM specimen. In Figures
2.18 and 2.19, they appear that the normalized strength is correlated with the area ratio. The
correlation coefficients of Local Moran’s I were calculated as -0.44 and —0.65 when setting
threshold levels at LM-I > 0.6 or LM-/ < -0.1 in Fig.2.18 (a) and LM-/ > 0.8 or LM-I < -0.1 in
Figures 2.18 (b).The value of —0.65 is not so strong but presents an intermediate strong
correlation. This means that if many segments in a specimen are distributed with LM-/ values
higher or lower than the above threshold levels, its tensile strength tends to be lowered. It also
means that a rough value of tensile strength can be estimated through the least-squares regression

line between area ratio and tensile strength.

In contrast, the correlation coefficients of Local Geary’s ¢ between the area ratio and
tensile strength were 0.18 and 0.29, when setting threshold levels at 0.2 and 0.5 respectively. The
value of 0.29 signifies weak correlation. This result implies that 0.29 is not appropriate as a

threshold level or that Local Geary’s ¢ does not match correlation with tensile strength.
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The results are shown in Figs. 2.20 and 2.21. It is confirmed in Fig. 2.20 that the optimal
threshold levels of LM-I are 0.69 at the positive level and -0.10 at the negative level, and that of
LG-c is 0.36. At the former optimal threshold levels, the correlation coefficient between area
ratio and tensile strength was -0.832. On the other hand, the highest correlation coefficient in Fig.
2.21 was only -0.14 even at the optimal threshold level. The value of -0.832 means, there is a
strong negative correlation between area ratio and tensile strength. In other words, tensile
strength can be estimated to some degree through the least-squares regression line when setting
the optimal threshold levels of LM-I. It is also expected that the present procedure is applied as

an effective screening method extracting low quality prepregs at quality inspection.

Fig.2.20 Correlation coefficients between LM-I area ratio and normalized tensile strength vs.
negative threshold level
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2.4 Conclusions

This study clarified the effect of random fiber waviness on tensile strength of a flax-
sliver-reinforced biodegradable resin matrix composite material. The fiber waviness was
quantified using Local Moran’s I and Local Geary’s ¢, both of which were able to express the
degree of disorder in fiber orientation. The results show that Local Moran’s [ is correlated well
with tensile strength of the composite specimens when appropriate threshold levels are selected.
On the other hand, Local Geary’s ¢ is not well correlated with tensile strength. Normally, finite
element analysis is a well-known method for finding mechanical behavior of composite materials,

such as stress and strain distributions. Furthermore, finite element analysis is often extended to
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the fracture process simulation to predict strength properties. However, finite element method
needs to use several math models to find the solution that take time and the advanced knowledge
for understanding. On the other hand, this study using the spatial autocorrelation analysis has less
equation and does not take a long time for developing the program code. Thus, we conclude that
the method proposed in this study is an effective tool of predicting roughly the tensile strength of

natural-fiber-sliver-based composite materials.
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Chapter III Finite element analysis of a natural fiber sliver- reinforced composite

3.1 Introduction

Recently, fibrous composite materials such as GFRP (glass fiber-reinforced plastics) and
CFRP (carbon fibber-reinforced plastics) are effectively applied for the high demand in industrial
use because their advantages are light weight, high strength and corrosion resistance. However,
the disposal problem after use of these materials has also surfaced as an environmental problem.
To solve this problem, many researchers have tried to use plant-based natural fibers instead of
artificial fibers. However, a problem of using natural fiber is fiber waviness that affects the
tensile properties. Fiber waviness is the fluctuation in fiber orientation, inherent in sliver
morphology of plant-based natural fibers. Therefore, the finite element method (FEM) was able
to clarify the stress on the specimens in this study.

Finite element method (FEM) is a well-known method, applicable to classify engineering
analyses. This method does not acquire the real experimental results, which usually consume
time of investment. First of all, fiber waviness was quantified. The composite surface was
divided by Imm x 1mm squares, and the fiber orientation angles to the loading direction were
measured on the all squares. Finite element analysis was carried out by recognizing the divided
squares as finite elements. Stress-strain relation of the finite element was based on the
orthotropic theory, in which the measured angles were assigned to each element. After that the

stress results were compared with the experimental tensile strength.
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3.2. Finite element analysis

In this study, three-dimensional finite element method was used for calculating stress
distribution of the sliver-based green composite. The type of finite element applied was the
eight-node hexahedral isoparametric element. Gauss—Legendre algorithm was used for
calculating the function, where the number of gauss points (NG) is 2. This curve function is 3"
order (cubic). Completely-aligned sliver is a unidirectional fibrous material. The composite
reinforced with this material behaves orthotropically, so that its stress—strain relation should be

given as equation 1, and the condition of an experiment is one plane of material property

symmetry.
Ox Ci1 C Csz 0 o0 O Ex
gy Ciz Cpp (3 8 8 8 ‘Zy
U1 177Gz Coz (a3 y z
Tyz [TU] 0 0 0 Cau O 0 [Tu] Vyz @
Tzx 0 0 0 0 Css 0 Vzx
Txy 0 0 0 0 0 Cos Yxy

Where, [T}] is the coordinate transform matrix. The stiffness matrix components, ¢;; for an

orthotropic material in terms of the engineering constants is shown as:

Coo = 1 —v,3v3; 1 =vy303 _ Va1t U31Vp3  Vip V33053
11 — )22 — » 12 — - ’
E,E5A E ;A EyE,A E,E5A
.. = U3z + V12V31 Va3 + V103 _ V31 T Up1V3;  Vy3t+ VipVs3
23 = = 113 = - ’
ELE5A E,E,A E,EsA E,E,A
_1=vpvy _ _ _
C33 = ——/———,C4a = G23, (55 = G31, (66 = G12

E,E,A

A= 1 —v15Vp1 — V3V3p — V31013 — 201 V32013
E1E>E;
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Elastic constants used here are as follows: when we set the fiber volume faction (V)) as 0.70, E,
and E5= 3210 MPa, E,= 39500 MPa, v,; and v;3 =0.401, v, and vs, =v,1+E/ E,. These original
constants were obtained experimentally, and estimated to the constant values at Vy=0.7 shown in
the above through the rule of mixture and Reuss rule. Gj» and G3=1610 MPa. These shear
moduli was assumed as E;/2 through the reference [14]. G3; was also assumed as being G /2

from the reference [15].

The measured fiber orientation angle was substituted into §. When Y-axis is placed as the
longitudinal direction, a fiber alignment has an angle 6 to Y-axis on X-Y plane. In this study,
another angle on Y-Z plane is not taken into consideration, because the fibers in the prepared pre-
forms are in-plane array. Then, the stress components calculated from the present FE analysis are

changed through equation (2) to the stresses along the fiber-axis coordinate 1-2-3.

01 m2 n2 0 0 0 2mn Ox

02 n2 m20 0 0 —-2mn Oy

03 l _ [ 0 0 1 0 0 0 H 0z )
T23 0 0 0 m-n O Tyz|’

T31 0 0 0 n m 0 Tzx

Tizd lemnmn 0 0 0 m?—n?llty

Where, m=cosf, n=sinf. The boundary condition is a forced displacement, which is applied at
one end of the finite element mesh along Y-axis, as shown in Fig.3.1. Another end is fixed along

Y-axis.
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Fig.3.1 Three-dimensional representation of finite element mesh

3.3 Results and discussions

Regarding the results from the finite element method, the tensile stresses in the direction
1, 2 and 3 and shear stresses in 23, 31 and 12 were calculated and shown the failure criteria in the

next chapter. The contour maps of the tensile stress and shear stress distribution were shown in

fig. 3.2 to fig.3.8.
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(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 3.2 Contour maps of stress distribution in 2-direction
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(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 3.3 Contour maps of stress distribution in 1-direction
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(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 3.4 Contour maps of stress distribution in 3-direction
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(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 3.5 Contour maps of stress distribution in 2-3-direction
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(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 3.6 Contour maps of stress distribution in 3-1-direction
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(a) Specimen no.1A (b) Specimen no.1B

(c) Specimen no.2A (d) Specimen no.2B

Fig. 3.7 Contour maps of stress distribution in 1-2-direction
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To define the effect of tensile stresses on specimens, the maximum stress in direction 1, 2
and 3 was selected, and then the stresses in direction 1, 2 and 3 were divided by the maximum
stress. In addition, the shear stresses in direction in 23, 31 and 12 were divided by the maximum
shear stresses. The maximum tensile stresses are 445.645MPa and 442.516MPa and the

maximum shear stresses are 77.196MPa and 83.412MPa for the specimen no.1 and 2.

As the results of the tensile stresses in figs.3.8 and 3.9, the red areas (the high stress) in
the stress direction 1 and 2 but it doesn’t appear in the direction3. Thus, we are able to ignore the
tensile stress in direction 3 for the failure criterion. Likewise, the results of the shear stresses in
figs.3.10 and 3.11, the red areas only appear in the shear stress directionl2. Thus, the shear

stresses in direction 23 and 31 are ignored for the failure criteria in the next chapter.
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(a) Tensile stress direction2 on side A and B respectively

(b) Tensile stress direction] on side A and B respectively

(c) Tensile stress direction3 on side A and B respectively

Fig. 3.8 Contour maps of tensile stress distribution in 1-2-3-direction on specimen no.1
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(a) Tensile stress direction2 on side A and B respectively

(b) Tensile stress direction] on side A and B respectively

(c) Tensile stress direction3 on side A and B respectively

Fig. 3.9 Contour maps of tensile stress distribution in 1-2-3-direction on specimen no.2
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(a) Shear stress direction23 on side A and B respectively

(b) Shear stress direction31 on side A and B respectively

(c) Shear stress direction12 on side A and B respectively

Fig. 3.10 Contour maps of shear stress distribution in 23, 31 and 12 direction on specimen no. 1
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(a) Shear stress direction23 on side A and B respectively

(b) Shear stress direction31 on side A and B respectively

(c) Shear stress direction12 on side A and B respectively

Fig. 3.11 Contour maps of shear stress distribution in 23, 31 and 12 direction on specimen no.2
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As the result of specimen 1A from the finite element method, stresses (o) following the loading
direction trend to decrease with the angle distributions on the specimens in fig.3.12. It means the

high angle distribution on specimens affect the tensile stress.
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Fig.3.12 Relation between the tensile stress followed loading direction and the angle distribution

on specimens

3.4 Conclusions

In this chapter, the finite element method was to analyze the tensile and shear stresses on
a flax fiber-reinforced composite. The red areas are the high effect of stress which trend to be the
risky areas on the specimen. From the ratio of the tensile stress divided by the maximum stress in
direction 1,2 and 3, the red areas appear in the stresses direction 1 and 2 but it doesn’t appear in

direction 3. As the ratio of shear stresses in the direction 23, 13 and 12, the red areas only appear
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in the direction 12 but it doesn’t appear in the direction 23 and 13. Thus, the tensile stress in

direction3 and the shear stress in direction 23 and 13 are negligible for the failure criteria.

Regarding the results of the finite element method, stresses following the loading
direction (oy) trend to decrease with the angle distributions on the specimens. It means the high

angle distribution on specimens affect the tensile stress.
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Chapter IV The effect of random fiber waviness on damage and fracture properties of a natural

fiber sliver-reinforced composite

4.1 Introduction

In the field of textile industry, so-called ‘sliver’ is the initial form of textile products,
which is obtained by combing a bunch of plant-based natural fibers. Spun yarns, the final
product, are then obtained through the spinning process of the sliver. Sliver is not twisted
macroscopically, so that this ‘continuous’ form is quite convenient when we use it as a
reinforcing material. But, sliver often exhibits fiber waviness which is inherent in the natural
fibers. Because the shape of plant-based natural fibers is complicated and statistically varies,

fiber waviness is caused by entanglement between individual fibers in the sliver.

In this study, the effect of random fiber waviness on damage and fracture properties of a
natural fiber sliver-reinforced composite was clarified through finite element method (FEM) and
spatial analysis. First of all, fiber waviness was quantified. The composite surface was divided
by Imm x Imm squares, and the fiber orientation angles to the loading direction were measured
on the all squares. Finite element analysis was carried out by recognizing the divided squares as
finite elements. Stress-strain relation of the finite element was based on the orthotropic theory, in
which the measured angles were assigned to each element. In order to predict risky areas causing
damage in the composite, Tsai-Hill criterion was applied for the resultant stress distribution. On
the other hand, if the applied stress is given to each element, Tsai-Hill criterion can be applied
for the all elements without using FEM. This means, each element exists isolatedly without any
interaction between elements in a composite. Such a Tsai-Hill criterion value without FEM is

denoted as angle-based Tsai-Hill. After such calculations with and without FEM were done,
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relatively high FEM-based and angle-based Tsai-Hill values were picked up and compared.
When a FEM-based Tsai-Hill value is higher than the corresponding angle-based Tsai-Hill, we
consider that damage is accelerated by interaction brought from the fiber waviness. In other word,
this element is placed under sensitive interaction. On the contrary, when the angle-based Tsai-
Hill is higher, this element is not under sensitive interaction although it might originally be risky.
From the angle distribution at the risky areas, one is the high angle distribution but it is still
smooth angle from the surrounding areas. Another is high angle and the angle is disordered from

the surrounding areas.

Thus, the subtraction of Tsai-Hill without FEM value from Tsai-Hill value was done for
each element, and the elements giving the positive maximum and negative maximum differences
were picked up. For such elements and surrounding elements, the coefficients of variation (C.V.)
of the element angles were calculated. Results showed that the C.V. of the element angles giving
the positive maximum difference is larger than C.V. of the angles of the negative maximum
difference. Such tendency was confirmed for almost all specimens. This means, the sensitive
interaction of fiber waviness is caused by variation in element angle, while the insensitive

interaction is brought from a group of relatively uniform angle elements.
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4.2 Analytical method

To evaluate damage area in the composites with fiber waviness, furthermore, damage risk

points in the specimen were predicted using Tsai-Hill criterion.
4.2.1 Tsai-Hill criterion

In this study, two-dimensional Tsai-Hill criterion was applied for predicting the risky
areas on specimens because the tensile stresses in the direction 3 are very small compared with
the stress in the direction 1 and 2. Likewise, the shear stresses in direction 13 and 23 are very
small compared with the shear strength in the direction12. Thus, the tensile stress in direction 3
and the shear stresses in the direction 13 and 23 are negligible. Thus, two-dimension Tsai-Hill

criterion is enough to predict the failure on specimens.

The stress in the direction 2 along the fiber direction, stress in the direction 1 transverse
with the fiber direction and the shear stress were calculated at each element using the finite
element analysis. Then, Tsai-Hill criterion was applied for definition of risky areas on the
specimen. The stresses at each element are influenced by the interaction between elements. For
this influence, o, 6, and 7,, were the major stress components, so in this study Tsai-Hill criterion

was reduced as the following:

(@) -22+(2) +(2) =1 0

where, S is the longitudinal strength, S; is the transverse strength, S;; is the shear strength.
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4.2.2 Tsai-Hill criterion without FEM

This method does not require the stresses on each element thus this criterion is calculated
by one stress direction along Y-axis. It means the interaction between fibers have not affected
with this method, thus the high coefficients rely on each segment of the angle distribution.

Tsai-Hill criterion without FEM is denoted as Tsai-Hill without FEM and calculated as:

si

49
F)rai=1 @

cos*o [ 1 1 ] 2 .2
——+ |— — —| cos“ O sin“ 0
( 5,2 t S32 5,2 +

4.3 Results and discussions
4.3.1 Tsai-Hill criterion and Tsai-Hill criterion without FEM

This study aims to analyze the effect of random fiber waviness on the tensile strength of
sliver-based natural fiber composites. The fiber waviness was initially quantified by the fiber
orientation angles. The Fiber orientation angles have a broad range of positive twenty degrees to
negative twenty degrees. The contour maps of fiber orientation angles (specimen no.1A, 2A, 3A
and 4A) are shown in figures 4.1 (a), (b), (c) and (d) respectively. As the results of Tsai-Hill
criterion and Tsai-Hill criterion without FEM in fig.4.2 and fig.4.3, the red color means the

weakest point of the specimen.
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(a) Specimen 1A (b) Specimen 2A

(8: 3.30, standard deviation: 4.28") (8:4.19', standard deviation: 4.03")

(c) Specimen 3A (d) Specimen 4A

(0: 5.14’, standard deviation: 4.06) (9:3.05, standard deviation: 3.22")

Fig. 4.1 Contour map of fiber orientation angle distribution
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(a) Tsai-Hill criterion based on (b) Tsai-Hill criterion based on

measured angles of Fig.4.1 (a) measured angles of Fig.4.1(b)

(c) Tsai-Hill criterion based on (d) Tsai-Hill criterion based on

measured angles of Fig.4.1 (c) measured angles of Fig.4.1(d)

Fig. 4.2 Contour map of Tsai-Hill criterion
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(a) Tsai-Hill criterion without FEM (b) Tsai-Hill criterion without FEM

based on measured angles of Fig.4.1 (a) based on measured angles of Fig.4.1(b)

(c) Tsai-Hill criterion without FEM (d) Tsai-Hill criterion without FEM

based on measured angles of Fig.4.1 (c) based on measured angles of Fig.4.1(d)

Fig. 4.3 Contour map of Tsai-Hill criterion without FEM
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4.3.2 Relation between the weigh function of Local Geary’s ¢ and Tsai-Hill criterion

Normally, the results between Local Geary’s ¢ and Tsai-Hill criterion are nearly the same
at the risky areas because both methods use the data between that position and neighbor positions.
Accordingly, the first method uses the angle distribution around the neighbor areas and the

second method uses the stresses distribution between the elements to calculate the risky area.

In fig. 4.12, 4.13 and 4.14 show that high coefficient of Local Geary’s ¢ moves to high
coefficient of Tsai-Hill criterion when increasing the weigh function of Local Geary’s c. Thus,
Local Geary’s ¢ with the suitable weigh function is able to predict the risk points on the

specimens without using the finite element method.
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(a) Local Geary’s ¢ with weigh function 1

(b) Local Geary’s ¢ with weigh function 2

(c) Local Geary’s ¢ with weigh function 3

(d) Tsai-Hill criterion

Fig.4.12 Relation between the weigh function of Local Geary’s ¢ and Tsai-Hill criterion on
specimen no.1A
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(a) Local Geary’s ¢ with weigh function 1

(b) Local Geary’s ¢ with weigh function 2

(c) Local Geary’s ¢ with weigh function 3

(d) Tsai-Hill criterion

Fig.4.13 Relation between the weigh function of Local Geary’s ¢ and Tsai-Hill criterion on
specimen no.1B
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(a) Local Geary’s ¢ with weigh function 1

(b) Local Geary’s ¢ with weigh function 2

(c) Local Geary’s ¢ with weigh function 3

(d) Tsai-Hill criterion

Fig.4.14 Relation between the weigh function of Local Geary’s ¢ and Tsai-Hill criterion on
specimen no.3B
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4.3.3 The surrounding angles at FEM-based Tsai-Hill and angle-based Tsai-Hill analyses

In order to clarify physical meanings of Tsai-Hill criterion and Tsai-Hill criterion without

FEM, one indicator was defined as delta in equation 3.

delta(i) = Tsai-Hill criterion (i) - Tsai-Hill criterion without FEM (i) 3)
This is the difference between Tsai-Hill criterion and Tsai-Hill criterion without FEM values at i-
th element on a specimen. First, we extracted two elements giving the maximum and the
minimum deltas from one-side of a specimen. Next, Tsai-Hill criterion (the maximum delta) was
defined as FEM-based Tsai-Hill analyses, and Tsai-Hill without FEM criterion (the minimum delta)
was defined as Angle-based Tsai-Hill analyses. Later, we calculated averages and coefficient of
variations of eight element angles around the extracted two elements. In this calculation the
element angles giving the maximum and minimum deltas were taken into account. Results show
in Table 4.1 that, in any case, the coefficients of variation (C.V.) of the maximum delta group are
much higher in absolute value than that of the minimum delta group, whereas the averages of the
former are less in absolute value than the latter. This means, the maximum delta group given by
a higher FEM-based Tsai-Hill value encounters strict interaction between fiber orientations,
despite of less average angles in absolute value. It is interpreted that such a strict interaction
enhances the corresponding Tsai-Hill value. On the other hand, the minimum delta group given
by a less angle-based Tsai-Hill value consists of a cluster of inclined fibers. Little interaction
between fiber orientations works, but the inclined fibers increase the corresponding Tsai-Hill
value. Thus, we understand that FEM-based and angle-based Tsai-Hill analyses give two kinds

of geometric meanings in fiber waviness.

69



Table 4.1 Surrounding angles at the Tsai-Hill criterion defined by deltas

No. Delta Angle patterns(°) Avg.(°) S.D. (°) CV.
-10.513 -11.070 -12.095
-1.000 -7.792 -16.113 -14.323 -10.839 2.921 -0.269
-8.043 -9.560 -8.043
1A
-1.637 -2.045 -6.864
0.904 3.991 -11.070 -8.130 -2.580 5.443 -2.110
2.921 3.668 -4.050
-7.481 -1.601 -3.382
-0.559 -9.522 -10.627 -10.958 -7.119 3.304 -0.464
-8.596 -7.549 -4.357
1B
1.535 1.460 1.838
1.000 0.000 -7.316 3.460 -1.602 4.178 -2.608
-4.373 -7.691 -3.333
-10.899 -8.774 -14.816
-0.677 -7.481 -16.138 -8.725 -10.614 2.997 -0.282
-8.560 -9.059 -11.073
2A
-11.073 -8.424 -6.817
0.886 -3.421 -11.371 -4.784 -7.098 2.793 -0.393
-7.407 -6.000 -4.586
-8.475 -6.906 -10.266
-0.907 -11.029 -15.512 -7.534 -10.171 2.792 -0.274
-9.636 -13.395 -8.791
2B
0.000 9.689 -5.572
1.000 -5.572 9.039 0.000 0.635 5.551 8.746
-3.252 1.380 0.000
-19.799 -11.860 -11.434
-0.275 -13.496 -15.945 -13.276 -13.353 3.137 -0.235
-9.942 -9.942 -14.480
3A
-9.187 -6.665 -5.009
1.000 0.000 -9.118 0.000 -4.821 3.554 -0.737
-1.673 -5.009 -6.729
-6.706 -7.199 -9.501
-1.000 -6.051 -11.684 -5.711 -6.935 2.651 -0.382
-2.490 -5.024 -8.053
4A
-0.836 -1.487 0.000
0.467 -1.628 -6.426 5.820 1.757 5.253 2.990
2.361 8.829 9.181
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4.3.4 Risky areas of FEM-based Tsai-Hill and angle-based Tsai-Hill analyses

To identify risky areas connecting to fracture of the laminate specimens, FEM-based and
angle-based Tsai-Hill analyses were compared. For the elements with the positive delta, i.e.
delta(i) > 0.5, we re-plotted the contour maps of FEM-based Tsai-Hill analyses. And, for the
elements with the negative delta, i.e. delta(i) < -0.1, we re-plotted the contour maps of angle-
based Tsai-Hill analyses. The results are shown in Figs. 4.15 (b)(c)(d)(e) and 4.16(b)(c)(d)(e) for
specimens 1 and 2, respectively. In Figs. 4.15(a) and 4.16(a), the fractured specimens are also
shown. From comparison between these figures, it is proved that both angle-based Tsai-Hill
analyses in Figs. 4.15(d) and 4.16(d) contain a part of the fracture paths, as shown in the solid
circles. On the other hand, it is hard to identify the paths from the contour map of FEM-based
Tsai-Hill analyses in Figs. 4.15(b)(c) and 4.16(b)(c). It seems that, therefore, the risky area

connecting to fracture is given by angle-based Tsai-Hill analyses.

Here, one question is rising in this context, that is, why angle-based Tsai-Hill analyses
can predict the fracture initiation, despite that it does not analyze the actual stress distribution.
Let us remind that the minimum delta group was a cluster of inclined fibers. Usually, inclined
fibers cannot sustain the applied tensile load so much. In other words, the extra load has to be
sustained by another lamina. Figs. 4.15(f)(g) and 4.16(f)(g) show the contour maps of tensile
stress o, along fiber-axis. Less tensile stress o, area is shown in blue, and higher area is in red or
orange. As easily known from the solid circles on these figures, red or orange areas in a lamina
appear in the blue areas in another lamina. It is guessed that such biased stress distribution
induces the fibers’ breakage, and results in the whole fracture. As known from Figs. 4.15(b)(c)
and 4.16(b)(c), the contour maps of FEM-based Tsai-Hill analyses do not appear with clusters,

and rather does with dispersion. These look small-scale defects, but can be interpreted as a
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positive effect of interaction between fiber orientations because of the dispersion and small size.
Thus, we can conclude that FEM-based Tsai-Hill analyses is not enough in predicting damage
and fracture of fibrous composites with random fiber waviness. Moreover, it was confirmed

with the specimen no.5 and 10 in Figs. 4.17 and 4.18.
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(a) Fractured specimen

(b) Contour map of FEM-based Tsai-Hill

(c) Contur map of FEM-based Tsai-Hill

analyses on specimen no.1A analyses on specimen no.1B

e J

[ ]
(d) Contour map of angle-based Tsai-Hill (e) Contour map of angle-based Tsai-Hill

analyses on specimen no.1A analyses on specimen no.1B

(f) Contour map of o, distribution on (g) Contour map of o, distribution on

specimen 1A specimen 1B
Fig. 4.15 Defective area on specimen no.1 defined by FEM-based Tsai-Hill and angle-based

Tsai-Hill analyses
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a) Fractured specimen

(b) Contour map of FEM-based Tsai-Hill (c) Contour map of FEM-based Tsai-Hill

analyses on specimen no.2A analyses on specimen no.2B

|
(d) Contour map of angle-based Tsai-Hill (e) Contour map of angle-based Tsai-Hill

analyses on specimen no.2A analyses on specimen no.2B

(f) Contour map of o, distribution on (g) Contour map of o, distribution on

specimen 2A specimen 2B

Fig. 4.16 Defective area on specimen no.2 defined by FEM-based Tsai-Hill
and angle-based Tsai-Hill analyses
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(a) Fractured specimen

- E——— ]
1 N i

(b) Contour map of FEM-based Tsai-Hill (©) ontour map of FEM-based Tsai-Hill

analyses on specimen no.5SA analyses on specimen no.5B

]
| .
(d) Contour map of angle-based Tsai-Hill (e) Contour map of angle-based Tsai-Hill

analyses on specimen no.5A analyses on specimen no.5B

(f) Contour map of o, distribution on (g) Contour map of o, distribution on
specimen 2A specimen 2B

Fig. 4.17 Defective area on specimen no.5 defined by FEM-based Tsai-Hill

and angle-based Tsai-Hill analyses
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(a) Fractured specimen

]
[ |
(b) Contour map of FEM-based Tsai-Hill (c) Contour map of FEM-based Tsai-Hill

analyses on specimen no.10A analyses on specimen no.10B

(d) Contour map of angle-based Tsai-Hill (e) Contour map of angle-based Tsai-Hill

analyses on specimen no.10A analyses on specimen no.10B

(f) Contour map of o, distribution on (g) Contour map of o, distribution on

specimen 2A specimen 2B

Fig. 4.18 Defective area on specimen no.10 defined by FEM-based Tsai-Hill

and angle-based Tsai-Hill analyses
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4.4 Conclusions

In this study, we aim to analyze the effect of random fiber waviness on the tensile
strength of sliver-based natural fiber composites. Thus, FEM-based Tsai-Hill and angle-based
Tsai-Hill analyses were analyzed the fiber waviness. As, Tsai-Hill (TH) criterion was applied to
predict risky damage areas in the composite laminate. This criterion can predict the degree of
damage caused by interaction between fiber orientations. On the other hand, TH distribution
without finite element method was also estimated by giving an applied stress to each element, to
which only a measured fiber orientation angle was respectively assigned. Such calculated TH
distribution corresponded approximately to the degree of fiber orientation angles. To
differentiate the two kinds of Tsai-Hill criterion distribution, the subtraction of the latter value
from the former was taken for each element. In the negative subtraction (angle-based Tsai-Hill
analysis’s area), risky Tsai-Hill distributions were estimated, in case there was an area consisting
of a cluster of inclined fibers in the composite laminate. In the positive subtraction (FEM-based
Tsai-Hill analysis’s area), on the other hand, risky Tsai-Hill distributions appear with dispersion
and small-scale level. From the comparison with the specimens’ fracture paths, the fracture
initiation was estimated to occur from the cluster, but not from FEM-based Tsai-Hill analysis’s
area. Finally, we concluded that, the fracture was not initiated from the cluster, but it was caused
by fibers breakage on the counterpart in the laminate because of tensile stress enhancement

induced by the cluster of inclined fibers.

Regarding the relation between Local Geary’s ¢ and FEM-based Tsai-Hill analyses,
Local Geary’s ¢ with the suitable weigh function is able to identify the risky points of FEM-
based Tsai-Hill analyses. Thus, Local Geary’s ¢ is another method to predict the risky points, and

it has less equation and does not take a long time for creating the program.
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Chapter V Summary

Fiber waviness of a flax sliver-reinforced composite material was studied. Based on the

results of the present study, the conclusions can be summarized as follows.

In Chapter II, the fiber waviness was quantified using Local Moran’s I and Local Geary’s
¢, both of which were able to express the degree of disorder in fiber orientation. The results show
that Local Moran’s I is correlated well with tensile strength of the composite specimens when
appropriate threshold levels are selected. On the other hand, Local Geary’s ¢ is not well
correlated with tensile strength. Thus, the area ration of Local Moran’s I proposed in this study is
an effective tool of predicting roughly the tensile strength of natural-fiber-sliver-based composite

materials.

In Chapter III, three-dimensional finite element method was used for calculating stress
distribution of the sliver-based green composite. As the results of the finite element method, the
red areas of the contour map are the high effect of stress. From the ratio of the tensile stresses
divided by the maximum stresses in direction 1, 2 and 3, the red areas appear in the stresses
direction 1 and 2 but it doesn’t appear in direction 3. As the ratio of shear stresses in the direction
23, 13 and 12, the red areas only appear in the direction 12 but it doesn’t appear in the direction
23 and 13. Thus, the tensile stress in direction3 and the shear stresses in direction 23 and 13 are
negligible for the failure criteria. Regarding the results of the finite element method, stresses
following the loading direction (oy) trend to decrease with the angle distributions on the

specimens. It means the high angle distribution on specimens affect the tensile strength.
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In Chapter 1V, the risky areas of fiber waviness on the tensile strength of sliver-based
natural fiber composites were analyzed by FEM-based Tsai-Hill and angle-based Tsai-Hill
analyses. The different between FEM-based Tsai-Hill and angle-based Tsai-Hill analyses were
classified by the coefficient of variation (C.V.) of the angle patterns. The high coefficient of
FEM-based Tsai-Hill analyses shows that the cv. of angle pattern is higher than the cv. of angle
pattern at the high coefficient of angle-based Tsai-Hill analyses at the same side. It means the
angle pattern of FEM-based Tsai-Hill analyses depends on the high distribution of angles. On the
other hand, the high coefficient of angle-based Tsai-Hill analyses depends on the declination

angle on the specimens.

From the comparison with the specimens’ fracture paths, the fracture initiation was
estimated to occur from the cluster, but not from FEM-based Tsai-Hill analysis’s area. Finally,
we concluded that, the fracture was not initiated from the cluster, but it was caused by fibers
breakage on the counterpart in the laminate because of tensile stress enhancement induced by the

cluster of inclined fibers.

Regarding the relation between Local Geary’s ¢ and Tsai-Hill criterion, Local Geary’s ¢
with the suitable weigh function is able to identify the risky points of Tsai-Hill criterion. Thus,
Local Geary’s c is another method to predict the risky points, and it has less equation and does

not take a long time for creating the program.
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