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PAPER

Message Passing Decoder with Decoding on Zigzag Cycles for
Non-binary LDPC Codes∗

Takayuki NOZAKI†a), Kenta KASAI††b), Members, and Kohichi SAKANIWA††c), Fellow

SUMMARY In this paper, we propose a message passing decoding al-
gorithm which lowers decoding error rates in the error floor regions for non-
binary low-density parity-check (LDPC) codes transmitted over the binary
erasure channel (BEC) and the memoryless binary-input output-symmetric
(MBIOS) channels. In the case for the BEC, this decoding algorithm is a
combination with belief propagation (BP) decoding and maximum a pos-
teriori (MAP) decoding on zigzag cycles, which cause decoding errors in
the error floor region. We show that MAP decoding on the zigzag cycles
is realized by means of a message passing algorithm. Moreover, we ex-
tend this decoding algorithm to the MBIOS channels. Simulation results
demonstrate that the decoding error rates in the error floor regions by the
proposed decoding algorithm are lower than those by the BP decoder.
key words: non-binary LDPC code, error floor, memoryless binary-input
output-symmetric, belief propagation decoder, maximum a posteriori de-
coding

1. Introduction

Gallager invented low-density parity-check (LDPC) codes
[1]. Due to the sparseness of the parity check matrices,
LDPC codes are efficiently decoded by the belief propaga-
tion (BP) decoder. Optimized LDPC codes can exhibit per-
formance very close to the Shannon limit [2]. Davey and
MacKay [3] have found that non-binary LDPC codes can
outperform binary ones. In this paper, we assume the non-
binary LDPC codes defined over F2m transmitted over the
memoryless binary-input output-symmetric (MBIOS) chan-
nels, where F2m is the finite field of order 2m.

A non-binary LDPC code over F2m is defined by the
null space of a sparse parity-check matrix over F2m . A Tan-
ner graph for a non-binary LDPC code is represented by a
bipartite graph with variable nodes, check nodes and labeled
edges. Each LDPC code is represented by Tanner graphs.
It is known that Tanner graphs of optimized irregular non-
binary LDPC codes contain variable nodes of degree two
[4].

The curve of the decoding error rate for a finite code
length LDPC code is divided into two regions called water-
fall region and error floor region, or simply waterfall and
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error floor. In the waterfall, the decoding error rate drops
off steeply as the function of channel error probability. The
waterfall is mainly caused by the large weight errors. In the
error floor, the decoding error rate has a gentle slope. The
error floor is mainly caused by the small weight errors. In
this paper, we investigate the decoding error rates in the er-
ror floors for non-binary LDPC codes.

A zigzag cycle is a simple cycle, or a circuit such that
variable nodes are of degree two in the Tanner graph. Since
the zigzag cycles cause small weight errors, the decoding
error rates in the error floors are mainly caused by zigzag
cycles. Hence, in this paper, we focus on the decoding errors
in the zigzag cycles to lower the decoding error rates in the
error floors.

There are two approaches to lowering the decoding er-
ror rates in the error floors: by optimizing the code and by
improving the decoder. By optimizing labels in the zigzag
cycles in non-binary LDPC codes, the decoding error rates
in the error floors were lowered by [5], [6]. On the other
hand, there are no message passing (MP) decoders lowering
the decoding error rates in the error floors.

In this paper, we propose an MP decoding algorithm
reducing the decoding errors in the zigzag cycles. Firstly,
we investigate the maximum a posteriori (MAP) decoding
algorithm for the non-binary LDPC codes over the binary
erasure channels (BECs). From this result, we show that
MAP decoding on the zigzag cycles is realized by means of
an MP algorithm for the BEC. Secondly, we propose an MP
decoding algorithm by combining with BP decoding and de-
coding on the zigzag cycles for the non-binary LDPC codes
over the BECs. Thirdly, we extend the proposed MP decod-
ing algorithm to the MBIOS channels. Finally, we show by
simulation results that the decoding error rates in the error
floors by the proposed decoding algorithm are lower than
those by the BP decoder.

The remainder of this paper is organized as follows:
Sect. 2 defines non-binary LDPC codes and introduces BP
and MAP decoding algorithms for the non-binary LDPC
codes. Section 3 reviews a MAP decoding algorithm on the
zigzag cycles over the BEC. Section 4 proposes a decod-
ing algorithm which reduces the decoding erasure rates in
the error floors for non-binary LDPC codes over the BEC.
Section 5 extends the algorithm proposed in Sect. 4 to the
MBIOS channels. Simulation results in Sect. 6 demonstrate
that the proposed decoding algorithm lowers the decoding
error rates in the error floors.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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2. Preliminaries

This section defines non-binary LDPC codes and introduces
channel models. Moreover, we recall BP and MAP de-
coding algorithms for the non-binary LDPC codes over the
MBIOS channel and the BEC, respectively. This section in-
troduces some notations throughout used in this paper.

2.1 Non-binary LDPC Codes

A non-binary LDPC code over F2m is defined by the null
space of a sparse parity-check matrix H = (hi, j) ∈ FM×N

2m :
{
x ∈ FN

2m | HxT = 0T ∈ FM
2m

}
.

Note that N is called symbol code length.
In this paper, we consider a non-binary LDPC code

represented by a Tanner graph (V ∪ C,E), where V =
{v1, v2, . . . , vN}, C = {c1, c2, . . . , cM} and E are the sets of
the variable nodes, the check nodes and the labeled edges,
respectively. The v-th variable node and the c-th check node
are connecting to an edge labeled as hc,v ∈ F2m \ {0} if
hc,v � 0.

The LDPC codes defined by Tanner graphs with the
variable nodes of degree dv and the check nodes of degree
dc are called (dv, dc)-regular LDPC codes. Each irregular
LDPC code is characterized by a pair of degree distribu-
tions Λ(x) =

∑
iΛi xi and P(x) =

∑
i Pixi, where Λi (resp.

Pi) represents the number of the variable nodes (resp. check
nodes) of degree i. Notice that N =

∑
i Λi and M =

∑
i Pi. It

is known that optimized irregular non-binary LDPC codes
contain variable nodes of degree two [4]. In particular,
(2,dc)-regular non-binary LDPC codes exhibit good decod-
ing performance among other LDPC codes for 2m ≥ 64.

2.2 Channel Model

Let α be a primitive element of F2m . Once a primitive el-
ement α of F2m is fixed, each symbol is given by an m-bit
representation [7, p.110]. We denote the m-bit representa-
tion of γ ∈ F2m , by b(γ) = (b1(γ), b2(γ), . . . , bm(γ)).

For integers a, b, we denote the set of integers between
a and b, as [a; b]. Note that [a; b] = ∅ if a > b. By us-
ing the m-bit representation, we regard each codeword x =
(x1, x2, . . . , xN) in a non-binary LDPC code as a binary code-
word, i.e., a codeword is represented by (x1,1, x1,2, . . . , xN,m),
where xi, j = bj(xi) for i ∈ [1; N] and j ∈ [1; m]. Hence, the
codewords in the non-binary LDPC codes defined over F2m

are able to be transmitted over binary channels. We denote
the received word as y = (y1,1, y1,2, . . . , yN,m).

A binary input channel is called memoryless if

p(y | x) =
∏N

i=1
∏m

j=1 p(yi, j | xi, j).

We transform the binary input alphabets {0, 1} into {+1,−1}.
With some abuse of notation, we make no distinction be-
tween {0, 1} and {+1,−1}. A memoryless binary-input chan-
nel is called output-symmetric if

p(y | x) = p(−y | −x).

We assume the transmission over the MBIOS channel. Ex-
amples of the MBIOS channels include the BEC and the
binary additive white Gaussian noise (BAWGN) channel.

2.3 BP Decoding Algorithm for MBIOS Channel

In the BP decoding algorithm, each edge in a Tanner graph
transfers a message. The messages arising in the BP de-
coder for non-binary LDPC codes over F2m are vectors of
length 2m. Let Ψ(�)

v,c (resp. Φ(�)
c,v) be the message from the v-th

variable node (resp. c-th check node) to the c-th check node
(resp. v-th variable node) at the �-th iteration.

(1) Initialization

Set � = 0. Recall that N and M represents the number of
variable nodes and check nodes in the Tanner graph, respec-
tively. For v ∈ [1; N], let Cv = (Cv(0),Cv(1), . . . ,Cv(α2m−2))
denote the initial message of the v-th variable node. For
γ ∈ F2m , the component Cv(γ) of the initial message is de-
rived from the channel outputs as follows:

Cv(γ) =
∏m

i=1 Pr
(
Yv,i = yv,i | Xv,i = bi(γ)

)
.

Let Nv(i) (resp. Nc( j)) be the set of indices of the check
nodes (resp. variable nodes) adjacent to the i-th variable
node (resp. the j-th check node). Set for all c ∈ [1; M] and
v ∈ Nc(c),

Φ(0)
c,v =

(
2−m, 2−m, . . . , 2−m).

(2) Iteration and Decision

The convolution of two vectors Ψ1 and Ψ2 is defined as

[Ψ1 ⊕ Ψ2](x) :=
∑
y∈F2m Ψ1(y)Ψ2(x − y).

To simplify the notation, we define
⊕

i∈[1;k]Ψi := Ψ1⊕Ψ2⊕
· · · ⊕Ψk. Define

argmaxx∈F2mΨ(x) :=
{
x ∈ F2m | Ψ(x) ≥ Ψ(y) ∀y ∈ F2m

}
.

The BP decoding algorithm is described as follows:

1. In the v-th variable node, the message Ψ(�)
v,c is given by

Ψ(�)
v,c(x) = ξ−1Cv(x)

∏
c′∈Nv(v)\{c}Φ

(�)
c′,v(x),

for x ∈ F2m , where ξ is a normalization factor such that
1 =
∑

x∈F2m Ψ
(�)
v,c(x).

2. In the c-th check node, the messageΦ(�+1)
c,v is calculated

as, for x ∈ F2m

Ψ̌(�)
v,c(x) = Ψ(�)

v,c
(
h−1

c,v x
)
, Φ̌

(�+1)
c,v =

⊕
v′∈Nc(c)\{v} Ψ̌

(�)
v′,c,

Φ(�+1)
c,v (x) = Φ̌(�+1)

c,v (hc,vx).

3. In the v-th variable node, the decoding result D(�)
v ⊆ F2m

is calculated from

D(�)
v = argmaxx∈F2m Cv(x)

∏
c∈Nv(v)Φ

(�)
c,v(x).
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If � reaches the maximum number of iterations Lmax or
the decoding results (D(�)

i )N
i=1 satisfy the parity check

constraints, the decoding result Dv is set as Dv ← D(�)
v

for all v ∈ [1; N] and the algorithm terminates. Other-
wise, set � ← � + 1 and go to Step 1.

Let x̂BP
v be the v-th output of BP decoder. If |Dv| = 1, x̂BP

v

is set as the unique element of Dv. Otherwise, set x̂BP
v =?.

If x̂BP
v = xv, the v-th symbol is correctly decoded, where xv

is the v-th transmitted symbol. Otherwise, the v-th variable
node has a decoding error.

2.4 BP Decoding Result for BEC

In this section, we review the BP decoding algorithm for
the non-binary LDPC codes over the BECs. In the case for
the BEC, the messages arising in the BP decoder satisfy a
property such that all the non-zero entries in a message are
equal [8, Lemma 2]. Hence, the v-th symbol is correctly
decoded if and only if |Dv| = 1.

We denote the set of the indices of the variable nodes
with decoding erasures, by D, namely, D := {i ∈ [1; N] |
|Di| > 1}. Define D̄ := [1; N] \ D. In words, D̄ represents
the set of indices of the variable nodes which are correctly
decoded. For j ∈ [1; M], we define the syndrome s j for the
j-th check node as

s j :=
∑

i∈Nc( j)∩D̄hj,i x̂
BP
i ∈ F2m .

Notice that the empty sum
∑

i∈∅ ai is equal to zero for any
a1, . . . , ak ∈ F.

We refer to the subgraph constructed by the vari-
able nodes with decoding erasures as the residual graph
[9] after BP decoding. More precisely, a residual graph
(VD ∪ CD,ED) is a subgraph of the Tanner graph such that
VD = {vi | |Di| � 1}, ED is the set of all the edges connecting
to VD and CD = {c j | ∃vi ∈ VD s.t. j ∈ Nv(i)}.

A stopping set S is a set of variable nodes such that
all the neighbors of S are adjacent to S at least twice. It is
known that the set of variable nodes with decoding erasures
forms a stopping set.

2.5 MAP Decoding Algorithm for BEC

In this paper, we consider the symbol-wise MAP decoding
using the decoding rule

DMAP
i (y) = argmaxγ∈F2m pXi |Y(γ | y),

for a given received word y ∈ Y = YmN . In the case for the
BEC, the received word y fulfills yi, j = xi, j if the bit yi, j is
received correctly. We assume that codewords are chosen
uniformly. Define

XMAP(y) :=
{
x ∈ C | HxT = 0T , xi, j = yi, j

for (i, j) ∈ [1; N] × [1; m] s.t. yi, j ∈ {0, 1}
}
.

The symbol-wise MAP decoding for the i-th symbol is given
by the set of the i-th symbol in XMAP(y), i.e.,

DMAP
i (y) =

{
xi ∈ F2m | x ∈ XMAP(y)

}
.

The i-th symbol is correctly decoded if and only if
|DMAP

i (y)| = 1. Let x̂MAP
i be the i-th output of the MAP de-

coding algorithm. If |DMAP
i (y)| = 1, x̂MAP

i is set the unique
element of DMAP

i (y). Otherwise, set x̂MAP
i =?.

It is well known that if symbols are decoded under BP
decoding, the symbols also are decoded under MAP decod-
ing. Hence, XMAP is rewritten as

XMAP =
{
x ∈ C | HxT = 0T , xi ∈ Di for i ∈ [1; N]

}

=
{
x ∈ C | HDxT

D = sT , xi ∈ Di for i ∈ [1; N]
}
,

where HD denotes the submatrix of H, restricted to the
columns indexed by D, xD denotes the corresponding sub-
vector of x and s = (s1, s2, . . . , sm). Thus, the i-th symbol
is correctly decoded under symbol-wise MAP decoding if
HDxT

D = sT has a unique solution.

3. MAP Decoding on Zigzag Cycles over BEC

In this section, we define the zigzag cycles in the non-binary
LDPC codes and we show MAP decoding results for the
zigzag cycles over the BEC.

3.1 Zigzag Cycle

Definition 1: A zigzag cycle is a simple cycle or a circuit
such that all the variable nodes in the zigzag cycle are of
degree two. More precisely, a zigzag cycle (Vzc ∪ Czc,Ezc)
is a connected subgraph [10] of the Tanner graph such that
all the variable nodes in Vzc are of degree two, Ezc is the set
of all the edges connecting to the variable nodes in Vzc and
the check nodes in Czc connect to the edges in Ezc at exactly
twice.

Since the zigzag cycles cause small weight errors, the
decoding error rates in the error floors are mainly caused by
zigzag cycles. All the zigzag cycles cause decoding erasures
under BP decoding for the BEC if all the bits in the zigzag
cycles are received erasures, i.e., ∀i ∈ Vzc∀ j ∈ [1; m] yi, j =?
[11, Appendix A.2]. However, most of the zigzag cycles are
decodable under MAP decoding even if all the bits in the
zigzag cycles are received erasures. In the next section, we
consider the zigzag cycles under MAP decoding.

3.2 MAP Decoding on Zigzag Cycles

In this section, we assume that the residual graph after BP
decoding forms a zigzag cycle. To simplify the notation, we
consider the zigzag cycle in the residual graph as in Fig. 1.
In words, we consider a zigzag cycle of weight w labeled
with h1,1, h1,2, h2,2, . . . , hw,w, hw,1.

The submatrix Hzc corresponding to the zigzag cycle is

Hzc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 0 · · · 0
0 h2,2 h2,3 · · · 0
...

. . .
. . .

. . .
...

hw,1 0 0 · · · hw,w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Fig. 1 A zigzag cycle of weight w.

To simplify the notation, we define for i ∈ [1;w], n ∈ Z

hnw+i,nw+i := hi,i, hnw+i,nw+i+1 := hi,i+1,

ζi := hi−1,ih
−1
i,i , β :=

∏w
i=1ζi. (1)

Note that an empty product is equal to 1, i.e.,
∏

i∈∅ ai = 1
for any a1, a2, . . . , ak ∈ F. To simplify the notation, we de-
note x̂MAP

i as x̂i in this section. Recall that si represents the
syndrome corresponding to the i-th check node. For a given
s1, s2, . . . , sw, the MAP decoding result (x̂1, x̂2, . . . , x̂w) ful-
fills the following equation

(s1, s2, . . . , sw)T = Hzc (x̂1, x̂2, · · · , x̂w)T .

If the matrix Hzc is non-singular, i.e., β � 1, then the (i, j)-th
entry of H−1

zc is given as

(
H−1

zc
)
i, j =

⎧⎪⎪⎨⎪⎪⎩
(1 + β)−1h−1

i,i

∏
k∈[i+1; j] ζk, i ≤ j,

(1 + β)−1h−1
i,i

∏w+ j
k=i+1 ζk, i > j.

(2)

From Eq. (2), the MAP decoding result x̂i is written as

x̂i =
∑w

j=1
(
H−1

zc
)
i, j s j = Aw,i(1 + β)−1, (3)

for i ∈ [1;w], where

Aw,i := h−1
i,i
∑w−1

j=0 si+ j
∏

k∈[1; j]ζi+k.

In the case for Aw,i = 0 and β � 1, we obtain from (3)

x̂i = 0.

Define

Bw,i := β−1Aw,i = h−1
i−1,i
∑w−1

j=0 si+ j
∏

k∈[ j+1;w−1]ζ
−1
i+k.

Then, the submatrix Hzc is non-singular if and only if

β = Aw,iB
−1
w,i � 1 ⇐⇒ Aw,i � Bw,i

for Aw,i, Bw,i � 0. For Aw,i, Bw,i � 0, the substitution β =
Aw,iB−1

w,i into Eq. (3) yields

x̂i = Aw,iBw,i(Aw,i + Bw,i)
−1.

Hence, if Aw,i and Bw,i are derived by an MP algorithm, we
obtain the MAP decoding results on the zigzag cycles.

Now, we consider two recurrence relations

a(�)
w,i = h−1

i−�,i−�

(
hi−�,i−�+1a(�−1)

w,i + si−�
)
, (4)

�

�

c1 c2

v2

v1

�
�
�

�
�
�

�
�

�

�
�

�
���

��� ���

���
a(2)

2,1 = h−1
1,1(h1,2[h−1

2,2 s2] + s1)

a(1)
2,1 = h−1

2,2 s2 a(1)
2,1 = h−1

2,2(h2,1[0] + s2)

a(0)
2,1 = 0

Fig. 2 Calculation of A2,1.

�

�

c1 c2

v2

v1

�
�
�

�
�
�

�
�

�

�
�

����

��� ���

���
b(0)

2,1 = 0

b(1)
2,1 = h−1

1,2(h1,1[0] + s1) b(1)
2,1 = h−1

1,2 s1

b(2)
2,1 = h−1

2,1(h2,2[h−1
1,2 s1] + s2)

Fig. 3 Calculation of B2,1.

b(�)
w,i = h−1

i+�−1,i+�

(
hi+�−1,i+�−1b(�−1)

w,i + si+�−1

)
, (5)

with the initial terms a(0)
w,i = b(0)

w,i = 0. Then, we get Aw,i =

a(w)
w,i and Bw,i = b(w)

w,i . Thus, we are able to obtain the MAP
decoding result x̂i by solving Eqs. (4), (5).

The calculations of the recurrence Eqs. (4) and (5) are
carried out in the check nodes as the following way:

1. Multiply the incoming message by the label of the edge
which transfers the incoming message to the check
node.

2. Add the syndrome of the check node and the computa-
tion result of Step 1.

3. Multiply the computed result of Step 2 by the inverse
of the label of the edge which transfers the outgoing
message from the check node.

Section 4.2 realizes this calculation by an MP algorithm for
any zigzag cycles with decoding erasures.

Example 1: Consider a zigzag cycle of weight 2 with la-
bels h1,1, h2,1, h2,2, h1,2. Figures 2 and 3 illustrate calculation
of A2,1 and B2,1 in the Tanner graph, respectively. The sec-
ond check node c2 in Fig. 2 carries out the following calcu-
lations:

1. Multiply the incoming message a(0)
2,1 by the label h2,1 in

the edge conveying the incoming message.
2. Add the calculation result h2,1a(0)

2,1 and the syndrome s2

of the second check node.
3. Multiply the calculation result h2,1a(0)

2,1 + s2 by the in-
verse of label h−1

2,2 transferring the outgoing message.

Similarly, the first check node in Fig. 2 outputs a(2)
2,1 = A2,1

from the incoming message a(1)
2,1. Finally, v1 gets the mes-

sage A2,1. Conversely, the message flow in Fig. 3 computes
B2,1. By using A2,1 and B2,1, the first variable node v1 obtains
the MAP decoding result x̂MAP

1 .
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4. MP Decoder with Decoding on Zigzag Cycles for
BEC

In this section, we propose an MP decoding algorithm which
reduces the decoding erasure rates in the error floors for
non-binary LDPC codes over the BEC. If there are vari-
able nodes with erasures after BP decoding, the proposed
decoding algorithm decodes the erasures in the zigzag cy-
cles by MAP decoding algorithm. Hence, the proposed de-
coder needs to search the zigzag cycles with BP decoding
erasures before MAP decoding on the zigzag cycles. Thus,
the proposed decoding algorithm is divided into 3 steps: (i)
BP decoding, (ii) zigzag cycle detection and (iii) MAP de-
coding on zigzag cycles. All the steps are realized by means
of an MP algorithm. Steps (i), (ii) and (iii) are given in
Sects. 2.3, 4.1 and 4.2, respectively.

4.1 Zigzag Cycle Detection

If there are variable nodes with erasures after BP decoding,
the proposed decoder searches the zigzag cycles with BP
decoding erasures. In other words, the proposed decoder
removes the stopping sets except the zigzag cycles from the
residual graph after BP decoding.

A residual graph after BP decoding is divided into
some connected subgraphs. From Definition 1, a connected
graph in a residual graph is not zigzag cycle if the connected
subgraph contains the node of degree more than two in the
residual graph. Hence, if we remove such connected sub-
graphs, we are able to detect the zigzag cycles with decoding
erasures.

The detection of zigzag cycles is detailed in Algorithm
1. In this algorithm, there are three messages “0”, “1” and
“−1”. The variable nodes sending the message “0” are suc-
cessfully decoded under BP decoding. The variable nodes
sending the message “−1” are not in zigzag cycles with BP
decoding erasures. If variable nodes can be in zigzag cy-
cles with BP decoding erasures, the variable nodes send the
message “1”.

Steps 2–11 in Algorithm 1 carry out the initialization
of the variable nodes. If a variable node with BP decoding
erasure is of degree more than two, the connected subgraph
which contains the variable node is not zigzag cycle. Hence
such variable node sends the message “−1”. If a variable
node with BP decoding erasure is of degree two, the con-
nected subgraph which contains the variable node can be a
zigzag cycle. Hence such variable node sends the message
“1”.

Steps 12–16 in Algorithm 1 carry out the initialization
of the check nodes. If a check node receiving the message
“−1” or receiving more than two messages “1”, the check
node sends the message “−1” since the connected subgraph
which contains the check node is not zigzag cycle.

Steps 17–29 are the iteration step of Algorithm 1. If
a node receives the message “−1”, the node sends the mes-
sage “−1” since the connected subgraph which contains the

Algorithm 1 Zigzag cycle detection
Input: The set D of indices of the variable node with BP decoding era-

sures
Output: The set A of indices of the variable nodes in the zigzag cycles

with BP decoding erasures
1: � ← 0,A(0) ← D
2: for i ∈ D do
3: if the degree of the i-th variable node is more than two then
4: the i-th variable node sends “−1”,A(0) ← A(0) \ {i}
5: else
6: the i-th variable node sends “1”
7: end if
8: end for
9: for i ∈ [1; N] \ D do

10: the i-th variable node sends “0”
11: end for
12: for j ∈ [1; M] do
13: if the j-th check node receives “−1” or more than two “1” then
14: the j-th check node sends “−1”
15: end if
16: end for
17: repeat
18: � ← � + 1,A(�) ←A(�−1)

19: for i ∈ A(�) do
20: if the i-th variable node receives “−1” then
21: the i-th variable node sends “−1”, A(�) ← A(�) \ {i}
22: end if
23: end for
24: for j ∈ [1; M] do
25: if the j-th check node receives “−1” then
26: the j-th check node sends “−1”
27: end if
28: end for
29: untilA(�) = A(�−1)

30: A ← A(�)

check node is not zigzag cycle. The set A(�) represents
the set of indices of the variable nodes which can be in the
zigzag cycles with BP decoding erasures. If A(�) = A(�−1),
A(�) gives the set of indices of variable nodes in zigzag cy-
cles with BP decoding erasures. Hence, the algorithm sets
A ← A(�) and outputsA.

4.2 MP Decoding Algorithm on Zigzag Cycles

In the previous section, we get the zigzag cycles in the resid-
ual graph. In this section, we realize MAP decoding on
zigzag cycles by an MP algorithm for the BEC. In other
words, we propose an MP algorithm which gives Aw,i and
Bw,i by using Eqs. (4), (5). In this section, we assume that
the codes contain no singular submatrices corresponding to
zigzag cycles of weight in [1;wc]. In other words, we em-
ploy the codes designed by cycle cancellation [5] or im-
proved cycle cancellation [6] since those codes exhibit good
decoding performance in error floors and the proposed algo-
rithm works well.

Let
(
ψ(�)

c,v, p(�)
c,v
)
∈ F2m × [1; N] (resp.

(
φ(�)

c,v, q
(�)
c,v
)
∈ F2m ×

[1; N]) be the message from the v-th variable node (resp. c-th
check node) to the c-th check node (resp. v-th variable node)
at the �-th iteration. Denote the set of indices of the variable
nodes in the zigzag cycles with BP decoding erasures, byA.
The decoding algorithm on the zigzag cycles is in Algorithm
2.

Steps 1–3 in Algorithm 2 perform the initialization of
this algorithm. In those steps, all the variable nodes in the
zigzag cycles send the initial messages. The first compo-
nent φ(0)

j,i of the initial message represents the initial terms
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Algorithm 2 Decoding algorithm on zigzag cycles
Input: The setA of indices of the variable nodes in the zigzag cycle with

BP decoding erasures and syndrome s
Output: The decoding result {x̂i}Ni=1
1: for i ∈ A do
2: (ψ(0)

j,i , p(0)
j,i )← (0, i) ∀ j ∈ Nv(i)

3: end for
4: � ← 1
5: whileA � ∅ do
6: for j ∈ Nv(A) do
7: for i ∈ Nc( j) ∩A do
8: Set i′ as the unique element of (Nc( j) ∩A) \ {i}
9:

(
φ(�)

j,i , q
(�)
j,i

)
←
(
h−1

j,i (h j,i′ψ
(�−1)
j,i′ + s j), p(�−1)

j,i′
)

10: end for
11: end for
12: for i ∈ A do
13: if q(�)

j,i � i for j ∈ Nv(i) then
14: for j ∈ Nv(i) do
15: Set j′ as the unique element of Nv(i) \ { j}
16:

(
ψ

(�)
j,i , p(�)

j,i

)
←
(
φ

(�)
j′ ,i, q

(�)
j′ ,i

)

17: end for
18: else if φ(�)

j,i � φ
(�)
j′ ,i for j ∈ Nv(i), j′ ∈ Nv(i) \ { j} then

19: x̂i ←
(
φ

(�)
j,i + φ

(�)
j′ ,i

)−1φ
(�)
j,i φ

(�)
j′ ,i,A ← A \ {i}

20: else if φ(�)
j,i = 0 and � ≤ wc then

21: x̂i ← 0,A ← A \ {i}
22: else
23: x̂i ←?,A ← A \ {i}
24: end if
25: end for
26: � ← � + 1
27: end while

of Eqs. (4), (5), namely 0. The second component p(0)
j,i of

the initial message represents the index of the variable node
which sends the initial message.

Steps 6–11 in Algorithm 2 execute the check node cal-
culation at the �-th iteration. Let Nv(A) be the set of the
indices of the check nodes adjacent to the variable nodes in
A, i.e., Nv(A) := ∪i∈ANv(i). Note that the calculation of
φ(�)

j,i is carried out as the recurrence Eqs. (4), (5).
Steps 12–25 in Algorithm 2 execute the variable node

calculation at the �-th iteration. If q(�)
j,i = i for j ∈ Nv(i), the

first components of the incoming messages φ(�)
j,i , φ

(�)
j′,i to the

i-th variable node give Aw,i and Bw,i. If the condition of Step
18 is true†, i.e., the submatrix corresponding to the zigzag
cycle is non-singular, the MAP decoding result is given as
Step 19. Recall that there are no zigzag cycles of weight
in [1, wc] with β � 1. If Step 20 is true, i.e., β � 1 and
φ(�)

j,i = 0, then we set x̂i = 0. Otherwise, MAP decoding
has been failures since the submatrix corresponding to the
zigzag cycle is singular. Hence, in Step 23, set the decoding
result x̂i as ? and remove the i-th variable node from the set
of indices of the variable nodes in A. If A = ∅, then the
algorithm stops.

Remark 1: Consider a zigzag cycle of weight w labeled
with h1,1, h1,2, . . . , hw,w, hw,1. The first components of the
messages in Algorithm 2 satisfy for i, � ∈ [1;w]

a(�)
w,i=φ

(�)
i−�,i−�=ψ

(�−1)
i−�,i−�+1, b(�)

w,i=φ
(�)
i+�−1,i+�=ψ

(�−1)
i+�−1,i+�−1.

4.3 Complexity of Algorithms 1 and 2

In this section, we evaluate the decoding complexity of the
proposed decoding algorithm.

4.3.1 Time Complexity

At first, we consider the time complexity of Algorithm 1.
In the iteration steps (Steps 17–29), Algorithm 1 calculates
the messages in at most |D| variable nodes and at most |D|
check nodes. The number of iterations of Algorithm 1 is
determined from the topology of the residual graph after
BP decoding. In the worst case, the number of iterations
is |D|/2. Hence, we conclude that an upper bound on the
complexity of Algorithm 1 is |D|2.

Secondly, we consider the complexity of Algorithm 2.
Let z be the number of variable nodes in the zigzag cycles
with BP decoding erasures. It requires at most 4z finite field
multiplication and 2z finite field addition to calculate the
messages in Step 9. It also requires at most 2z finite field
multiplication and z finite field addition to determine x̂i in
Step 19. The number of iterations of Algorithm 2 is equal
to the maximum weight of the zigzag cycles constructed by
the variable nodes with BP decoding erasures. Hence, the
number of iterations is at most z. Thus, we conclude that
Algorithm 2 requires at most 4z2 + 2z finite field multiplica-
tion and 2z2 + z finite field addition.

4.3.2 Space Complexity

The space complexity of Algorithm 1 is 2Λ′(1) + N since
Algorithm 1 requires N memories to express the set A
and 2Λ′(1) memories to express the messages, where Λ′(1)
gives the total number of edges in the Tanner graph. Sim-
ilarly, the space complexity of Algorithm 2 is 4(m +
�log2 N�)z + N, where �·� is the ceiling function.

4.4 Comparison with MAP Decoder

For the non-binary LDPC codes over the BECs, some stop-
ping sets except the zigzag cycles are also recoverable un-
der MAP decoding. Hence the proposed decoding algorithm
does not achieve the MAP decoding performance.

The generalized tree-structured expectation propaga-
tion (GTEP) [12] is an efficient maximum likelihood de-
coding algorithm†† for the binary LDPC codes. The GTEP
carries out the Gaussian elimination if there are no check
nodes of degree one in a residual graph. The GTEP is easily
extended to the non-binary LDPC codes.

The time complexity of the GTEP is roughly approx-
imated by O(|D|3) [12]. The space complexity of the

†Notice that j′ in Step 18 is the unique element ofNv(i) \ { j}
††Since we assume that codewords are chosen uniformly, the

maximum likelihood decoding achieves the MAP decoding per-
formance.



NOZAKI et al.: MESSAGE PASSING DECODER WITH DECODING ON ZIGZAG CYCLES FOR NON-BINARY LDPC CODES
981

GTEP is O(m|D|2 + N) to carry out the Gaussian elimina-
tions and to store the indices of variable nodes in residual
graph. On the other hand, the time and space complexity
of the proposed algorithm is upper bounded by O(|D|2) and
O((m + �log2 N�)|D| + N), respectively.

5. MP Decoder with Decoding on Zigzag Cycles for
MBIOS Channel

In this section, we extend the decoding algorithm proposed
in the previous section to the MBIOS channels. If we are
able to detect the symbols with decoding failures for the
MBIOS channels, the decoding algorithm proposed in the
previous section is easily extended to the MBIOS channels.
Hence, firstly, this section proposes a method to detect the
symbols with decoding failures for the MBIOS channels.
Secondly, we extend the decoding algorithm proposed in the
previous section to the MBIOS channels.

5.1 Detection of the Symbols with Decoding Failures

To detect the symbols with decoding failures for the irregu-
lar non-binary LDPC codes over the MBIOS channels, we
define the stationarity of decoding result.

Definition 2: The i-th decoding result is stationary if there
exist γ ∈ F2m and L such that D(�)

i = {γ} for all � > L.

Note that the i-th symbol is eventually correct [13] if
there exists L such that D(�)

i = {xi} for all � > L, where
xi is the i-th transmitted symbol. Hence, if the i-th symbol
is eventually correct, the i-th decoding result is stationary.
Hence, we get the following fact.

Fact 1: If the i-th decoding result is not stationary, then the
i-th symbol is not eventually correct.

Note that there is a possibility that the i-th symbol is
not eventually correct if the i-th decoding result is stationary.
However, in the case for the zigzag cycles, the i-th symbol
is eventually correct if the i-th decoding result is stationary.
To prove the above, we consider zigzag cycle codes. A code
is a zigzag cycle code if the Tanner graph is represented by
a single zigzag cycle. The proof of the following theorem is
given in Appendix.

Theorem 1: We assume a zigzag cycle code of symbol
code length w such that the corresponding matrix is non-
singular. If the i-th decoding result is stationary, then the
i-th decoding result is eventually correct.

From Fact 1 and Theorem 1, the following algorithm
correctly detects the set of indices D̂ of symbols with de-
coding errors for zigzag cycles in Tanner graphs.

1. If the decoding results (D(�)
i )N

i=1 satisfy the parity check
constraints in Step 3 of the BP decoding algorithm, set
D̂ = ∅.

2. If the decoding round � reaches the maximum num-
ber of iterations Lmax in Step 3 of the BP decod-
ing algorithm, determine D̂ from the decoding results

(D(�)
i )N

i=1, (D
(�−1)
i )N

i=1, . . . , (D
(�−s)
i )N

i=1 as follows:

D̂ =
{
i ∈ [1; N] | ∃ j ∈ [1; s] s.t. D(�)

i � D(�− j)
i

}
.

Thus, the detection of symbols with BP decoding er-
rors is realized by storing the decoding results (D(�)

i )N
i=1,

(D(�−1)
i )N

i=1, . . . , (D
(�−s)
i )N

i=1. We refer to the parameter s as the
storing size. Note that there are cases where the proposed
error detection algorithm does not detect symbols with BP
decoding errors if the symbols with decoding errors do not
form of a zigzag cycle.

5.2 Symbol-Wise Peeling Algorithm

A trapping setT [13] is a set of variable nodes which are not
eventually correct. For the BEC case, a trapping set forms a
stopping set. For the MBIOS channel case, it is known that
there exist neighbors of T adjacent to T only once.

Hence, we see that there exist neighbors of D̂ adjacent
to D̂ only once. We denote the set of indices of the check
nodes adjacent to D̂ only once, by C1(D̂). Since we regard
the variable nodes in [1; N]\D̂ as correct, we are able to de-
code the symbols in the variable nodes adjacent to the check
node in C1(D̂).

To decode such variable nodes, we employ the symbol-
wise peeling decoder. The symbol-wise peeling decoder for
the non-binary LDPC codes is a straightforward extension
of the peeling decoder [9] for the binary LDPC codes. The
symbol-wise peeling decoding algorithm with inputs D̂ and
(x̂BP

i )N
i=1 is described in the following:

1. Set x̂PA
i ← x̂BP

i and D̂PA ← D̂.
2. If C1(D̂PA) = ∅, the decoder terminates and outputs

(x̂PA
i )N

i=1 and D̂PA.
3. Choose an index j of a check node from C1(D̂PA) uni-

formly. Let i be the unique element in D̂PA∩Nc( j). Set
x̂PA

i ← h−1
j,i

∑
i′∈Nc( j)\{v}hj,i′ x̂PA

i′ and D̂PA ← D̂PA \ {i}.
4. Go to Step 2.

Since this algorithm is a straightforward extension of
the binary peeling decoder, the algorithm is realized by an
MP algorithm.

5.3 Decoding Algorithm for MBIOS Channels

In this section, we propose an MP decoding algorithm with
decoding on zigzag cycles for the MBIOS channels. The
MP decoding algorithm with decoding on zigzag cycles is
divided into the following 4 steps:

1. BP decoder (Sect. 2.3) with error detection (Sect. 5.1),
2. symbol-wise peeling algorithm (Sect. 5.2),
3. zigzag cycle detection (Sect. 4.1),
4. decoding on zigzag cycles (Sect. 4.2).

Figure 4 illustrates the data flow of the MP decoder
with decoding on zigzag cycles for the MBIOS channels.
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BP decoder with error detection

Symbol-wise peeling algorithm

Zigzag cycle detection

Decoding algorithm on zigzag cycles

Syndrome calculation

�y

	D̂, x̂BP

	D̂PA 	x̂PA

	s	A � x̂

Fig. 4 Data flow of the proposed decoding algorithm.

The BP decoder with error detection gives the set D̂ of in-
dices of variable nodes with BP decoding errors and BP de-
coding outputs x̂BP from the channel outputs y. By using D̂
and x̂BP, the symbol-wise peeling algorithm decides the set
D̂PA of indices of variable nodes with decoding errors and
the decoding outputs x̂PA. The zigzag cycle detection deter-
mines the set A of indices of variable nodes in the zigzag
cycles with decoding errors from D̂PA. The syndrome cal-
culation derives the syndrome s from x̂PA. FromA and syn-
drome s, the decoding algorithm on zigzag cycles gives the
decoding output x̂ of proposed decoder.

5.4 Decoding Complexity

For the error detection, the proposed decoding algorithm re-
quires msN memories and (s − 1)N equality testing. The
symbol-wise peeling algorithm needs mN + n memories to
express {x̂PA

i }
N
i=1 and D̂PA. Moreover, in Step 3, the symbol-

wise peeling algorithm executes deg(c j) finite field multipli-
cations and deg(c j)−2 finite field addition, where deg(c j) is
the degree of the check node c j. Since the number of itera-
tions of the symbol-wise peeling algorithm is upper bounded
by |D̂|, in total, the symbol-wise peeling algorithm exe-
cute at most |D̂|Deg(P(x)) finite field multiplications, where
Deg(P(x)) is the degree of the polynomial P(x), i.e., the
maximum degree of the check nodes.

6. Simulation Result

This section compares the symbol error rates in the error
floors for non-binary LDPC codes over the BECs and the
BAWGN channels by the BP decoding algorithm with by
the proposed decoding algorithm. In this section, as a reg-
ular LDPC code, we employ the (2,4)-regular non-binary
LDPC codes over F26 with symbol code length 168. As an
example of irregular LDPC codes, we employ the irregu-
lar non-binary LDPC codes with the degree distribution pair
Λ(x) = 195x2 + 26x3 + 29x4 + 2x5, P(x) = 36x4 + 90x5 over
F24 [4].

Figures 5(a) and 5(b) demonstrate the symbol erasure
rates for the regular and irregular non-binary LDPC codes
over the BEC, respectively. The red curves and the green
curves give the symbol erasure rates by the BP algorithm
and the proposed decoding algorithm, respectively. The
dashed lines and the solid lines give the symbol erasure rates
for the non-binary LDPC codes constructed in the cycle can-
cellation [5] and the improved cycle cancellation [11], re-
spectively. From Figs. 5(a) and 5(b), we see that the pro-

posed decoding algorithm improves the decoding erasure
rates in the error floor. Moreover, we see that the non-binary
LDPC codes constructed in the improved cycle cancellation
outperform those constructed in the cycle cancellation for
the proposed decoding algorithm.

Figure 6(a) (resp. Fig. 6(b)) compares the symbol era-
sure rates for the regular (resp. irregular) non-binary LDPC
codes constructed by the algorithm proposed in [6] over the
BAWGN channels under the BP algorithm and the proposed
decoding algorithm with the storing size s = 1, 2, 3. From
Figs. 6(a) and 6(b), we see that the proposed decoding algo-
rithm improves the decoding error rates in the error floors.
In those cases, there are not much difference in the symbol
error rates among s ∈ [2; 10].

7. Conclusion

In this paper, we have proposed a decoding algorithm which
lower decoding error rates in the error floors for non-binary
LDPC codes over the MBIOS channel. We have shown that
the proposed decoding algorithm is realized by means of an
MP algorithm.
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Appendix: Proof of Theorem 1

Without loss of generality, we assume the zigzag cycle code
of weight w labeled with h1,1, h1,2, h2,2, . . . , hw,1, as described
in Fig. 1. We assume that the all-zero codewords are sent
without loss of generality for analyzing the decoding error
rate [14]. Since the matrix corresponding to the zigzag cycle
code is non-singular, the parameter β, defined in Eq. (1), is
not equal to 1. Let the order of β be denoted by σ. Note that
σ > 1 since β � 1.

Let Ψ̃(�)
v,c be the unnormalized message from the v-th

variable node to the c-th check node at the �-th iteration. For
all x ∈ F2m , � ≥ 1 and i ∈ [1;w], the unnormalized message
in the zigzag cycle code of weight w is written as follows:

Ψ̃
(0)
i,i−1(x) := Ci(x), Ψ̃

(�)
i,i−1(x) := Ci(x)Ψ̃(�−1)

i+1,i

(
γ−1

i x
)
,

Ψ̃
(0)
i,i (x) := Ci(x), Ψ̃

(�)
i,i (x) := Ci(x)Ψ̃(�−1)

i−1,i−1

(
γi−1x

)
,

D̃(�)
i (x) := Ci(x)Ψ̃(�−1)

i−1,i−1

(
γi−1x

)
Ψ̃

(�−1)
i+1,i

(
γ−1

i x
)
,

where γi := h−1
i,i hi,i+1, γ0 = γw and Ψ̃(�)

w+i,w+ j = Ψ̃
(�)
i, j for i, j ∈

[1, w]. These notations give D(�)
i = argmaxx∈F2m D̃(�)

i (x).
In the same way to the proof of Theorem 1 in [6], we

have for all t ≥ 1, x ∈ F2m and i ∈ [1;w]

D̃(σtw)
i (x) = {B(χix)}2tCi(x),

D̃(σtw−1)
i (x) = {B(χix)}2t{Ci(x)}−1.

where χi =
∏i−1

j=1 γ j and B(x) :=
∏σ−1

s=0
∏w

k=1 Ck
(
βsx
∏w

j=k

γ j
)
. Note that B(x) = B(βx) for all x ∈ F2m . From these

equations, we have for all t ≥ 1, x ∈ F2m and i ∈ [1;w]

D̃(σtw)
i (x)D̃(σtw−1)

i (x) = {B(χix)}4t

= {B(βχix)}4t

= D̃(σtw)
i (βx)D̃(σtw−1)

i (βx). (A· 1)

We will show that the i-th symbol is eventually correct if
the i-th decoding result is stationary. Recall that the i-th
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decoding result is stationary if there exist L and x ∈ F2m

such that D̃(�)
i (x) > D̃(�)

i (y) for all � > L and y ∈ F2m \ {x}.
From Eq. (A· 1), for all t ≥ 1, if D̃(σtw)(x) > D̃(σtw)(y) ∀y ∈
F2m \ {x}, namely D̃(σtw)(x) > D̃(σtw)(βx), then D̃(σtw−1)

i (βx) >
D̃(σtw−1)

i (x). Hence, the i-th decoding result is not stationary
if the i-th symbol is not correct. �
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