2382

IEICE TRANS. FUNDAMENTALS, VOL.E96-A, NO.12 DECEMBER 2013

| PAPER Special Section on Information Theory and Its Applications

Weight Distribution for Non-binary Cluster LDPC Code Ensemble*

Takayuki NOZAKI'®, Member, Masaki MAEHARA ™, Nonmember, Kenta KASAI''®, Member,

SUMMARY This paper derives the average symbol and bit weight
distributions for the irregular non-binary cluster low-density parity-check
(LDPC) code ensembles. Moreover, we give the exponential growth rates
of the average weight distributions in the limit of large code length. We
show the condition that the typical minimum distances linearly grow with
the code length.

key words: non-binary cluster LDPC code, weight distribution, exponen-
tial growth rate

1. Introduction

Gallager invented low-density parity-check (LDPC) codes
[1]. Due to the sparseness of the parity check matrices,
LDPC codes are efficiently decoded by the belief propa-
gation (BP) decoder. Optimized LDPC codes exhibit per-
formance very close to the Shannon limit [2]. Davey and
MacKay [3] have found that non-binary LDPC codes out-
perform binary ones.

The LDPC codes are defined by sparse parity check
matrices or sparse Tanner graphs. For the non-binary LDPC
codes, the Tanner graphs are represented by bipartite graphs
with variable nodes, check nodes and labeled edges. The
LDPC codes defined by Tanner graphs with the variable
nodes of degree d, and the check nodes of degree d. are
called (dy, d.)-regular LDPC codes. It is empirically known
that the best performance is achieved by (2, d..)-regular non-
binary LDPC codes for large order of Galois field [4].

Savin and Declercq proposed the non-binary cluster
LDPC codes [S5]. For the non-binary cluster LDPC code,
each edge in the Tanner graphs is labeled by a cluster which
is a full-rank p X r binary matrix, where p > r. In [5], Savin
and Declercq showed that there exist expurgated (2,d.)-
regular non-binary cluster LDPC code ensembles whose
minimum distances in terms of bit weight linearly grow with

Manuscript received February 8, 2013.
Manuscript revised June 26, 2013.
"The author is with the Dept. of Information Systems Creation,
Kanagawa University, Yokohama-shi, 221-8686 Japan.

""The authors are with the Dept. of Communications and Com-
puter Engineering, Tokyo Institute of Technology, Tokyo, 152-
8550 Japan.

*The material in this paper was presented in part at IEEE In-
ternational Symposium on Information Theory (ISIT2013).

a) E-mail: nozaki@kanagawa-u.ac.jp

b) E-mail: maehara@comm.ss.titech.ac.jp

c) E-mail: kenta@comm.ss.titech.ac.jp

d) E-mail: sakaniwa@comm.ss.titech.ac.jp
DOI: 10.1587/transfun.E96.A.2382

and Kohichi SAKANIWA 9, Fellow

the code length.

Deriving the weight distribution is important to analyze
the decoding performances for the linear codes. In particu-
lar, in the case for LDPC codes, the weight distribution gives
a bound of decoding error probability under maximum like-
lihood decoding [6] and error floors under belief propaga-
tion decoding and maximum likelihood decoding [7], [8].

Studies on weight distribution for non-binary LDPC
codes date back to [1]. Gallager derived the symbol-weight
distribution of Gallager code ensemble defined over Z/qZ
[1]. Kasai et al. derived the average symbol and bit weight
distributions and the exponential growth rates for the irreg-
ular non-binary LDPC code ensembles defined over Ga-
lois field F,, and showed that the normalized typical min-
imum distance does not monotonically grow with g [9]. An-
driyanova et al. derived the bit weight distributions and the
exponential growth rates for the regular non-binary LDPC
code ensembles defined over Galois field and general linear
group [10].

This paper assumes the random irregular non-binary
cluster LDPC code ensembles. Firstly, we derive the av-
erage symbol and bit weight distributions for the irregular
non-binary cluster LDPC code ensembles. Secondly, we
show the exponential growth rates of average symbol and
bit weight distributions in the limit of large code length. Fi-
nally, we show the condition that the typical minimum dis-
tances linearly grow with the code length.

The remainder of this paper is organized as follows:
Sect. 2 defines the irregular non-binary cluster LDPC code
ensembles. Section 3 derives the average weight distribu-
tions for the irregular non-binary LDPC code ensembles.
Section 4 gives the exponential growth rates of the aver-
age weight distributions in the limit of large code length and
shows some numerical examples for the exponential growth
rates.

2. Preliminaries

In this section, we review non-binary cluster LDPC codes
[5] and define the irregular non-binary cluster LDPC code
ensembles. We introduce some notations used throughout
this paper.

2.1 Non-binary Cluster LDPC Code

The LDPC codes are defined by sparse parity check matrices

Copyright © 2013 The Institute of Electronics, Information and Communication Engineers

NOZAKT et al.: WEIGHT DISTRIBUTION FOR NON-BINARY CLUSTER LDPC CODE ENSEMBLE

or sparse Tanner graphs. For the non-binary LDPC codes,
the Tanner graphs are represented by bipartite graphs with
variable nodes, check nodes and labeled edges.

For the non-binary cluster LDPC codes, each edge in
the Tanner graphs is labeled by a cluster which is a full-rank
p X r binary matrix, where p > r. Let F, be the finite field
of order 2. Note that the non-binary LDPC codes defined by
Tanner graphs labeled by general linear group GL(p, F,) are
special cases for the non-binary cluster LDPC codes with
p=r.

We denote the cluster in the edge between the v-th vari-
able node and the c-th check node, by h.,. For the cluster
LDPC codes, r-bits are assigned to each variable node in
the Tanner graphs. We refer to the r-bits assigned to the v-th
variable node as symbol assigned to the v-th variable node,
and denote it by x, € IF}.

For integers a, b, we denote the set of integers between
a and b, as [a; b]. More precisely, we define

[;b]:z{{neNlaSnsb}, a<b,
0=, a>b.

The non-binary cluster LDPC code defined by a Tanner
graph G is given as follows:

C(G) = {(x1,...,xy) € E)Y
| Svencioheox; =07 € F) Ve e [1; M]),

where N;(c) represents the set of indexes of the variable
nodes adjacent to the c-th check node. Note that N is called
symbol code length and the bit code length n is given by rN.

2.2 Trregular Non-binary Cluster LDPC Code Ensemble

Let £ and R be the sets of degrees of the variable nodes and
the check nodes, respectively. Irregular non-binary cluster
LDPC codes are characterized with the number of variable
nodes N, the size of cluster p, r and a pair of degree distri-
butions, A(x) = Y, 4:x7! and p(x) = Yer pix' !, where A;
and p; are the fractions of the edges connected to the variable
nodes and the check nodes of degree i, respectively.
The total number of the edges in the Tanner graph is

E:=N/ [Awdx.

The number of check node M is given by
1 1

M = (fo p(x)dx/f0 /l(x)dx)N =: kN.

Let L; and R; be the fraction of the variable nodes of degree
i and the check nodes of degree j, respectively, i.e.,

.ol .l
L;:= /li/(zfo /l(x)dx), R; = pj/(JfO p(x)dx).
The design rate is given as follows:
1 —«p/r.

Assume that we are given the number of variable nodes

2383

N, the size of the clusters p, r and the degree distribution pair
(4,p). An irregular non-binary cluster LDPC code ensem-
ble G(N, p,r, A, p) is defined as the following way. There
exist L;N variable nodes of degree i and R;M check nodes
of degree j. A node of degree i has i sockets for its con-
nected edges. Consider a permutation 7 on the number of
edges. Join the i-th socket on the variable node side to the
n(i)-th socket on the check node side. The bipartite graphs
are chosen with equal probability from all the permutations
on the number of edges. Each cluster in the edges is chosen
a full-rank p X r binary matrix with equal probability.

3. Weight Distribution for Non-binary Cluster LDPC
Code

In this section, we derive the average symbol and bit weight
distributions for the irregular non-binary cluster LDPC code
ensemble G(N, p, r, A, p).

We denote the r-bit representation of x; € F), by
(xi1,-..,xi,). For a given codeword x = (x1,x2,...,Xn),
we denote the symbol and bit weight of x, by w(x) and
wp(x). More precisely, we define

w(x) := [{i € [I;N] | x; # 0}],
wy(x) == [{(Q, j) € [L;N] x [1;r] | x;; # O}

For a given Tanner graph G, let A%(¢) (resp. A%(()) be the
number of codewords of symbol (resp. bit) weight £ in C(G),
i.e.,

AS(0) = ltx € CG) | w(x) = ¢},
AS(0) = ltx € CG) | wy(x) = €}].

For the irregular non-binary cluster LDPC code ensemble
G(N, r, p, A, p), we denote the average number of codewords
of symbol and bit weight £, by A(€) and Ay(£), respectively.
Since each Tanner graph in the ensemble G = G(N, r, p, 4, p)
is chosen with uniform probability, the following equations
hold:

AD) = TeegASD/IG), A(D) = TeegARD/IG.

Since the number of full-rank binary p X r matrix is
Hf;(} (27 — 2, the number of codes in the ensemble G =
G(N,r, p, 4,p) is derived as

Gl = E[Tiza 2" = 2}, (1)

3.1 Symbol Codeword Weight Distribution

At first, we will derive the average symbol weight distribu-
tions for the irregular non-binary cluster LDPC code ensem-
bles.

Theorem 1: The average number A({) of codewords of
symbol weight ¢ for the irregular non-binary cluster LDPC
code ensemble G(N, p,r, 4,p) is

2384

M@=§f”‘n%%§@m0quﬁwﬁ)
k=0 (k)(zp — 1)
P(s, 1) := HieL(I + sﬂ')Li’ O®) := HjERfj(M)KR/,

1 . .
fiw) = 2—p[{1 +Q7P=Duy + 2" -DUA-w], 3)

)

where coef(g(s, t, u), s't/uf) is the coefficient of the term
sieiuk of a polynomial g(s, t, u).

proof: We follow a similar way in [9, Theorem 1].

We refer to an edge as active if the edge connects to a
variable node to which a non-zero symbol is assigned. We
will derive the average number of codewords A(¢, k) with
symbol weight ¢ and the number of active edges k.

Firstly, we count the edge constellations satisfying the
constraints of the variable nodes. Consider a variable node v
of degree i. Define the parameter as 1 if a non-zero symbol
is assigned to the variable node v, and otherwise 0. For a
given £ € [0;1] and k € [0;], let a;(Z, k) be the number of
constellations of k active edges which stem from a variable
node of degree i. The i edges connected to v are active if and
only if a non-zero symbol is assigned to the variable node v.
Hence, we have

1, £=0,k=0,
al,k)=42"-1, ¢=1, k=i,
0, otherwise.

The generating function of ;(Z, k) is written as follows:
Dlal@ st =1+ - st
Lk
Since there are L;N variable nodes of degree i, for a given
¢ and k, the number of edge constellations satisfying con-

straints of the N variable nodes in the Tanner graph is given
by

coef([Tie ll + (2" = Dst'}N, s4).
This equation is simplified as follows:
@ = 1) coef([Tie (1 + st 5'1¥). %)

Secondly, we count the edge constellations satisfying
all the constraints of the check nodes. Consider a check node
c of degree j. Let m j(l~c) be the number of constellations of
the k active edges satisfying a check node of degree j. In
other words,

mi® = [{@1,9,..yj) € @) |

Z{Zlyi =0,{i |y; #0} = I}}'

Asin [1, Eq.(5.3)], m;(k) is given as follows:

y i\ 1 ; :
w®=@§mhnﬂeWm—w

IEICE TRANS. FUNDAMENTALS, VOL.E96-A, NO.12 DECEMBER 2013

The generating function of m‘,~(1~<) is written as follows:
£ =" mout
k

= zip[{l +(27 = D + @27 = (1 - wy].

Since there are kR;N check nodes of degree j, for a given
number of active edge k, the number of the constellations
satisfying all the constraints of the check nodes is given as:

coef ([T jer i)™, u¥).)

Thirdly, we count the edge permutation and the num-
ber of clusters which satisfy the edge constraints. For
a given number of active edge k, the number of permu-
tations of edges is given by k!(E — k)! and the number
of clusters which satisfy the edge constraints is equal to
(@ - 29) (@2 - 2))" ", Hence, for a given
number of active edge k, the number of choices for the per-
mutation of edges and clusters is

KE-RH (e -2) (Mzer-29)"" ©

By multiplying Egs. (4), (5) and (6), and dividing by
Eq. (1), we obtain the average number of codewords A(¢, k)
with symbol weight ¢ and the number of active edges k as

(2" = Dcoef((P(s, Q) s'*uk)
(e - |

AL, k) =

Since A(¢) = Z,szA(é’, k), we get Theorem 1.]
Theorem 1 gives the following corollary.

Corollary 1: For the irregular non-binary cluster LDPC

code ensemble G(N, p, r, 4, p), the following equations hold:
A0) =1,

@ = DV [1erl@” = D7 + =1/ @7 = D"

@ = 1F ™ ‘

A(N) =

3.2 Bit Codeword Weight Distribution

In a similar way to the average symbol weight distribution,
we are able to derive the average bit weight distribution
for the irregular non-binary cluster LDPC code ensemble
G(N, 1, p, A, p). At first, we consider a variable node of de-
gree i. For a given bit weight ¢ € [0;r], let ab,i(f, l~c) be the
number of constellations of k active edges which stem from
a variable node of degree i. From the definition of active
edges, we have

1, ¢=0k=0,
ani (0, k) =13(5). Tellirl k=i,
0, otherwise.

The generating function of ay,;(Z, k) is given as:

NOZAKT et al.: WEIGHT DISTRIBUTION FOR NON-BINARY CLUSTER LDPC CODE ENSEMBLE

Dl an @ s = 1+ {1+)" - 1)
Ik
Since there are L;N variable nodes of degree i, the number

of constellations of k active edges satisfying constraints of
the N variable nodes with bit weight ¢ is

coef([Tie[1 +{(1+ s)" = 11N, 5'1).

By using this equation, in a similar way to proof of the av-
erage symbol weight distributions, we obtain the average
number Ay () of codewords of bit weight ¢ as follows:

Theorem 2: Let n = rN be the bit code length. Define
fj() as in Eq. (3). The average number Ay (£) of codewords
of bit weight ¢ for the irregular non-binary cluster LDPC
code ensemble G(N, p,r, 4,p) is

E

coef((Py(s,)Op(w))", s'*u")
An(0) =
0=, (B)r -
Po(s,8) := [Liegl +{(1 + 5) - I
Ov(u) := Hjeerj(M)KRj/r.

Theorem 2 gives the following corollary.

Corollary 2: For the irregular non-binary cluster LDPC
code ensemble G(N, p, r, 4, p), the following equations hold:
Ap(0) =1,

[1jerl@” = 1Y + (=1y/27 — D™

Aol = @ DFa”

4. Asymptotic Analysis

In this section, we investigate the asymptotic behavior of
the average symbol and bit weight distributions for the non-
binary cluster LDPC code ensembles in the limit of large
code length.

4.1 Growth Rate
We define
.1 . 1
y(w) = Al]l_l’)lgo N log,- A(wN) = 1\1/1_120 N log, A(wN),

o1
Yolwyp) = r}ggo P log, Ap(wph),

and refer to them as the exponential growth rates or simply
growth rates of the average number of codewords in terms
of symbol and bit weight, respectively. To simplify the no-
tation, we denote log,(-) as log(-).

With the growth rate, we are able to roughly estimate
the average number of codewords of symbol weight wN
(resp. bit weight wyn) by

A(wN) ~ (2N (resp. Ap(wpn) ~ 27"

where ay ~ by means that limy_,., N~' logay/by = 0.

2385

4.1.1 Growth Rate of Symbol Weight Distribution

Theorem 3: Define w = {/N and € := E/N. The growth
rate y(w) of the average number of codewords of normal-
ized symbol weight w for the irregular non-binary cluster
LDPC code ensemble G(N, p, r, A, p) with sufficiently large
Nisgiven by, forO < w < 1,

yw) = sup inf l[mg P(s, 1) + log Ou) — eh(ﬁ)

0<p<e $>0.>0u>0 1 €

- Blog(u(@ = 1) - wlog(5 |

:sup inf
0<p<e $>0,/>0,u>0

=: sup y(w,p), @)
0<pB<e

y(w,B, s, t,u)

where h(x) := —xlogx — (1 — x)log(1 — x) for 0 < x < 1.
A point (s, t,u) which achieves the infimum of the function
y(w, B, s, t,u) is given in a solution of the following equa-
tions:

s OP st
= —— = L—
“=Pos Z "1+ st ®)
i€l
t OP ist
P=par = LMo ©
u dQ u Ofj
= 222 o N R —— L), 10
B=Ga ékﬁf,-(mau(”) (10)
where
af; 27 -1

_J R _ -1 _ _ i—1
W= {1 +@7 = Duf™ -1 -w)/"].

The value 8 which gives the supremum of y(w, 5) needs to
satisfy the stationary condition

B = Q2" = Diu(e - p). (1)

The proof of Theorem 3 is in Appendix.

From Corollary 1 and the definition of growth rate, we
derive the growth rate of average number of codewords with
w = 0,1 as follows:

Corollary 3: For the irregular non-binary cluster LDPC
code ensemble G(N, p, r, A, p) in the limit of large symbol
code length N, the following equations hold:

v(0) =0,
y(1) = r '[log(2" - 1) — €log(2” — 1) — kp
+ X jerkR; log{(2” = 1) + (=1)/(2” =)}].

Moreover, by letting p, r tend to infinity with a fixed ratio,
we have

y(1) = 1 —=«p/r,

namely, y(1) tends to the design rate.

2386

For a fixed normalized symbol weight w, the interme-
diate variables s,t,u and S are derived from Egs. (8), (9),
(10) and (11). Hence, the intermediate variables s, 7, u and
B are represented as functions of w. Thus, we denote those
intermediate variables, by s(w), H{w), u(w), B(w).

The derivation of y(w) in terms of w is simply ex-
pressed as the following lemma.

Lemma 1: For s > 0 such that Eqgs. (8), (9), (10) and (11)
hold, we have

s(w)
2’ -1

L () =~ log

proof: We follow a similar way in [11]. For a fixed w,
we denote the value achieving the supremum of y(w,8) by
B and the point achieving the infimum of y(w, ﬁ s, t,u) by
(8,7, 11). Then, y(w) = y(w, ,8 §,f,) holds and,B §,f, 0 sat-
isfy Egs. (8), (9), (10) and (11). From Eq. (7), we have

dyw) _ d PP
dw da) Y@, 51, it)
1 [1dP wd§ pBdi

T rIn2|Pdo § dw tdw+de it dw

LB €h_ S5 (12)
do (20 -)i @2 -1

1dQ Bdi

From (8) and (9), we have

10P di wds§ ﬁdt

Patdw_ sda) fdw

1dp 1P ds

Pdw P85 dw
In other words, the sum of the first three terms of Eq. (12) is
equal to 0. Similarly, from (10), we have

idQ l(’)Qdu ﬁdu
0dw Qaudw fidw’

i.e., the sum of forth and fifth terms of Eq. (12) is equal to 0.
From (11), we see that the sixth term of Eq. (12) is equal to
0. This concludes the proof. O

4.1.2 Growth Rate of Bit Weight Distribution

In a similar way to symbol weight, we are able to derive the
growth rate for the average number of codewords in terms
of bit weight. Hence, we omit the proofs in this section.

Theorem 4: Define w, = {/n and €, := E/n. The growth
rate yp(wp) of the average number of codewords of normal-
ized bit weight wy, for the irregular non-binary cluster LDPC
code ensemble G(N, p,r, 4,p) with sufficiently large N is
given by, for 0 < wy, < 1,

vo(wp) = sup inf

0<By<e» 5>0,>0,u>0

[10g Py(s, 1)+ log Qy(@)

—ebh(ﬂ) — By log(tu(2” — 1)) — wp log s

=: sup inf
0<ﬁb<5b 5>0,t>0,u>0

Yo(we, Bo, S, t, 1)

IEICE TRANS. FUNDAMENTALS, VOL.E96-A, NO.12 DECEMBER 2013

=1 sup Yo(wn,Bo)-
0<By<ep
A point (s, t,) which achieves the infimum of the function
Vb (W, Bb, S, 1, 1) is given in a solution of the following equa-
tions:

s 0Py ‘ (1 + sy~ Lst
@b = EK‘;L’H{(lH)r—l}zi’ (13)
_t 0Py L {(1+) = 1)¢
Po= o P, ot ‘ZL: r 1+ {(1+s)y —1)d° (14)
u 00y kR; u Ofiu)
===\ 15
o= 00 au j;‘rfj(u) ou as)

The value S, which gives the supremum of y,(wy, Bp) needs
to satisfy the stationary condition

By = (2" = Dtu(e, = Bo).

Corollary 4: For the irregular non-binary cluster LDPC
code ensemble G(N, p,r, 4, p) in the limit of large bit code
length n, the following equations hold:

7(0) =0
(1) = - log(2” — 1) - k2
;

+> @ log{(2” = 1)/ + (=1)/ (2" - 1)).

JjerR

Moreover, by letting p, r tend to infinity with fixed ratio, we
have

yo(1) = —«kp/r.
Lemma 2: For s > 0 such that Egs. (13), (14) and (15)
hold, we have

d
M (wy) = ~log s(wy).

dwb

4.2 Analysis of Small Weight Codeword

In this section, we investigate the growth rate of the average
number of codewords of symbol and bit weight with small
w. We denote the right-hand limit of f at x, by limq , f(?).

Theorem 5: For the irregular non-binary cluster LDPC
code ensemble G(N, p, r, A, p) with A, > 0, the growth rate
y(w) of the average number of codewords in terms of sym-
bol weight, in the limit of large symbol code length for small
w, is given by

P _

@) ==t o

] + o). (16)

where f(x) = o(g(x)) means hmx\o| | = 0 and where

A0)p'(1) = 2 X jer(j = Dpj-
proof: Note that for w > 0,

g(x)

NOZAKT et al.: WEIGHT DISTRIBUTION FOR NON-BINARY CLUSTER LDPC CODE ENSEMBLE

d+
V(w)=7(0)+wdy(0)+0(w), (17)
w
where
dy @)=y . dy
2o V= Iy = lm 5o

From Corollary 3, we have y(0) = 0. Hence, we will calcu-
late lim,\ o j—z)(a)). From Lemma 1, we have

s(w)
2r—1°

d 1
lim <X (w) = —~ lim log (18)
w w

N0 d 7 w\0

Recall that s(w) satisfies Eqgs. (8), (9), (10) and (11). From
Eq. (8), for w \, 0, it holds that s#' \, 0 for i € £. By using
this and Eq. (9), we have 8\ 0. Notice that

fiw) =1+ (§)@° = i + o). (19)
By combining Eqgs. (10) and (19), and 8\ 0, we get

B =ep (D7 - Du? + o(u?).
Substitution of this equation into Eq. (11) yields

t=p (Du + o(u). (20)

The combination of this equation and u# ~\, 0 gives ¢ ™\ 0.
Since ¢ N\, 0 and A, > 0, from Eq. (9), we get

B= edyst® + o(tz).

Substituting this equation into Eq. (11), we have

u Arst + o(1). 21

Towo1
Combining Egs. (20) and (21), we have for w N\, 0
s(w)y=27 - 1)————.
A(0)p(1)
Thus, from Eq. (18), we obtain
1 2" -1

. dy
lim —~ =-1
J{% dw(w) r 8 2P —1

2(0)p' ().

From this equation and Eq. (17), we obtain Theorem 5. O

Similarly, the growth rate of the average number of
codewords in terms of bit weight with small weight wy, is
given in the following theorem.

Theorem 6: For the irregular non-binary cluster LDPC
code ensemble G(N, p, r, A, p) with A, > 0, the growth rate
vp(wp) of the average number of codewords in terms of bit
weight, in the limit of large bit code length for small wy, is
given by

2P -1 Lr
7/1’(0)#(1) + l) - 1] + o(wp).

(22)

Yo(wp) = —wy log[(

We define

2387

6" :=1inflw > 0| y(w) = 0},
0y, = inf{wy, > 0| yp(wp) = 0},

and refer to them as the normalized typical minimum dis-
tance in terms of symbol and bit weight, respectively. Recall
that the average number of codewords of symbol weight wN
(resp. bit weight wyn) is approximated by A(wN) ~ 2/7@N
(resp. Ap(wpn) ~ 272y Since y(w) < 0 (resp. yp(wp) <
0) for w € (0, 6) (resp. for wy, € (0, 67)), there are exponen-
tially few codewords of symbol weight wN (resp. bit weight
wypn) for w € (0, 6%) (resp. for wy € (0, 6p)).
Theorem 5 and 6 gives the following corollary.

Corollary 5: For the irregular non-binary cluster LDPC
code ensemble G(N, p, r, A, p) with sufficiently large N, the
normalized typical minimum distances 6* and ¢} in terms of
symbol and bit weight, respectively, are strictly positive if

2P -1
2r—1°
Moreover, 6" = 0 and 6; = 0 if

A0)p'(D) <

(23)

27 —1
A (0)' (1) > .
O/ (1) > T
proof: At first, we derive a sufficient condition for 6; >
0. The normalized typical minimum distance ¢ is strictly
positive if coef(yy(wy), wp) < 0 for small wy. From Eq. (22),
coef(yp(wp), wp) < 0 for small wy, if and only if

2P —1

E= 2oLy
A(0)p’(1)

1O "
This leads Eq. (23).
Secondly, we derive a necessary condition for 6 > 0.
If 20’ (1) > (27 - 1)/(2" — 1), then yp(wp) > 0 for small
w from Theorem 5. Hence, if ’(0)p’(1) > 27 —1)/(2" - 1),
then ¢} = 0.
Similarly, we are able to derive a necessary condition
and a sufficient condition for 6* > 0 by using Theorem 5.

1/r
1) -1>1 <

]

Remark 1: For the non-binary LDPC code ensembles de-
fined over finite field Fy,, the normalized typical minimum
distances are 0 if A’(0)p’(1) > 1 [9]. For the non-binary
LDPC code ensembles defined by the parity check matrices
over general linear group GL(p, F,), a sufficient condition
that the normalized typical minimum distances are O is also
A (0)p’(1) > 1 from Corollary 5 with p = r. Hence, we
see that the typical minimum distances are 0 if we employ
(2,d.)-regular non-binary LDPC code ensembles defined by
Galois fields and general linear groups.

On the other hand, in the case for the non-binary cluster
LDPC code ensembles, a sufficient condition that the nor-
malized typical minimum distances are strictly positive de-
pends on not only A’(0)p’(1) but also the size of cluster p, r
as in Corollary 5. Therefore, for arbitrary degree distribu-
tion pair (4, p) (even for (2, d.)-regular LDPC code), we are
able to satisfy Eq. (23) with fixed ratio p, r.

2388

0.5

p=4,1=2 -\
p=6,1=3 -
p=8.,r=4

Growth rate
S
N

p=12,r=6 -~

—045 L L L
0.0 0.2 0.4 0.6 0.8 1.0

w

Fig.1 Growth rates to the average symbol weight distributions for the
(2, 8)-regular non-binary cluster LDPC code ensembles with the cluster
size (p,r) = (2,1),(4,2),...,(18,9).

5.0e-04 [‘ B

0.0e+00 |

Growth rate

-5.0e-04

-1.0e-03 S ‘
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

w
Fig.2 Growth rates to the average symbol weight distributions for the

(2, 8)-regular non-binary cluster LDPC code ensembles with the cluster
size (p,r) = (2,1),(4,2),...,(18,9).

Remark 2: For c-th check node, Savin and Declercq [5]
defined the c-th component code by the null space of the
following matrix:

Hc = (hc,vl hc,vz hc,vk) B
where vy, v,,...,0; are the elements in N.(c). The local
minimum distance is defined by mine[i.a A, where A, is
the minimum distance of the c-th component code. The ex-
purgated ensemble &(N, p, r, d., A) consists of the subset of
the codes G(N, p, r, x, x%=1) whose local minimum distance
are A. In the above setting, Savin and Declercq [5] showed
that there exist E(N, p, r, d., A) whose minimum distance in
terms of bit weight grows linearly with the code length.

On the other hand, Corollary 5 shows conditions that
the typical minimum distances in terms of symbol and bit
weight linearly grow with the code length for the random
irregular non-binary cluster LDPC code ensembles.

4.3 Numerical Examples

In this section, we show some numerical examples of the

IEICE TRANS. FUNDAMENTALS, VOL.E96-A, NO.12 DECEMBER 2013

0.5
]
5]
&
g 0.0
2
©)

random code
05 L L L L
0.0 0.2 0.4 0.6 0.8 1.0

Wh

Fig.3 Growth rates to the average bit weight distributions for the (2, 8)-
regular non-binary cluster LDPC code ensembles with the cluster size
(p,r)=(2,1),(4,2),...,(18,9). The black solid curve (random code) gives
the growth rate for the binary random code ensemble of rate 0.5.

0.0002

0.0000 f”
-0.0002

-0.0004

Growth rate

-0.0006

-0.0008

-0.0010
0.000

Fig.4 Growth rates to the average bit weight distributions for the (2, 8)-
regular non-binary cluster LDPC code ensembles with the cluster size
(p,n=02,1,42),...,(18,9).

growth rates for the cluster non-binary LDPC code ensem-
bles. As mentioned in Remark 1, we are able to obtain the
(2,d.)-regular non-binary cluster LDPC code ensemble with
strictly positive normalized typical minimum distance. In
this section, to confirm the above, we employ the (2, 8)-
regular non-binary cluster LDPC code ensembles. To keep
the design rate at half, we fix the ratio of the cluster size as
p/r=2.

Figures 1 and 2 give the growth rates to the average
symbol weight distributions for the cluster size (p,r) =
(2,1),(4,2),...,(18,9). As shown in Corollary 3, y(1) tends
to the design rate 0.5. From Fig. 2, we see that the slopes
of the growth rates at w = 0 are negative and the nor-
malized typical minimum distance §* is strictly positive for
(p,r) =(6,3),(8,4),...,(18,9). This confirms Corollary 5.

Figures 3 and 4 give the growth rates to the aver-
age bit weight distributions for the cluster size (p,r) =
(2,1),(4,2),...,(18,9). The black solid curve in Fig.3
shows the growth rate of the binary random code ensemble
of rate 0.5. As shown in Corollary 4, y,(1) tends to —0.5.
Moreover, we see that the curves in wy, > 1/2 converge to

NOZAKT et al.: WEIGHT DISTRIBUTION FOR NON-BINARY CLUSTER LDPC CODE ENSEMBLE

0.03

0.02

§*

0.01

0
2,1) 42) (6,3) (8,4) (10,5) (12,6) (14,7) (16,8) (18,9)
(p,7)

Fig.5 The normalized typical minimum distance §* of the symbol
weight distribution for the (2,8)-regular non-binary cluster LDPC code en-
semble with the cluster size (p,r) = (2, 1),(4,2),...,(18,9).

0.015

0.010

0.005

000
@1 42) (6,3) (84 (10,5)(12,6) (14,7) (16,8) (18,9)
(p,7)
Fig.6 The normalized typical minimum distance &}, of the bit weight

distribution for the (2,8)-regular non-binary cluster LDPC code ensemble
with the cluster size (p,r) = (2,1),(4,2),...,(18,9).

the growth rate of the binary random code ensemble. From
Fig. 4, we see that the slopes of the growth rates at w, = 0
are negative and the normalized typical minimum distance
oy, 1s strictly positive for (p,r) = (6,3),(8,4),...,(18,9).
This confirms Corollary 5.

Figures 5 and 6 give the normalized typical mini-
mum distance ¢* and 6; of the symbol and bit weight
distribution, respectively, for the cluster size (p,r) =
2,1),4,2),...,(18,9). From Figs.5 and 6, we see that
the normalized typical minimum distances ¢* and 6; do not
monotonically increase with the size of cluster (p, r). In this
case, the normalized typical minimum distances 6", 6;; have
the local maximum at (p, r) = (12, 6).

5. Conclusion

This paper has derived the average symbol and bit weight
distributions for the irregular non-binary cluster LDPC
code ensembles. Moreover, we have given the exponential
growth rates of the average symbol and bit weight distri-
butions in the limit of large code length. Furthermore, we
have shown a condition that the typical minimum distances

2389

linearly grow with the code length.
Acknowledgment

This work was supported by Grant-in-Aid for JSPS Fellows.
The work of K. Kasai was supported by the grant from the
Storage Research Consortium.

References

[1] R.G. Gallager, Low Density Parity Check Codes, in Research Mono-
graph series, MIT Press, Cambridge, 1963.

[2] T. Richardson, M.A. Shokrollahi, and R. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,”
IEEE Trans. Inf. Theory, vol.47, no.2, pp.619-637, Feb. 2001.

[3] M. Davey and D. MacKay, “Low-density parity check codes over
GF(g),” IEEE Commun. Lett., vol.2, no.6, pp.165-167, June 1998.

[4] X.Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular
progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory,
vol.51, no.1, pp.386-398, Jan. 2005.

[S] V. Savin and D. Declercq, “Linear growing minimum distance of
ultra-sparse non-binary cluster-LDPC codes,” Proc. 2011 IEEE Int.
Symp. Inf. Theory (ISIT), pp.523-527, Aug. 2011.

[6] G. Miller and D. Burshtein, “Bounds on the maximum-likelihood
decoding error probability of low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol.47, no.7, pp.2696-2710, Nov. 2001.

[7] C.Di, T. Richardson, and R. Urbanke, “Weight distribution of low-
density parity-check codes,” IEEE Trans. Inf. Theory, vol.52, no.11,
pp.4839-4855, Nov. 2006.

[8] T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge
University Press, 2008.

[9] K. Kasai, C. Poulliat, D. Declercq, and K. Sakaniwa, “Weight dis-
tribution of non-binary LDPC codes,” IEICE Trans. Fundamentals,
vol.E94-A, no.4, pp.1106-1115, April 2011.

[10] I. Andriyanova, V. Rathi, and J.P. Tillich, “Binary weight distribu-
tion of non-binary LDPC codes,” Proc. 2009 IEEE Int. Symp. Inf.
Theory (ISIT), pp.65—69, June-July 2009.

[11] K. Kasai, T. Awano, D. Declercq, C. Poulliat, and K. Sakaniwa,
“Weight distribution of multi-edge type LDPC codes,” IEICE Trans.
Fundamentals, vol.E93-A, no.11, pp.1942-1948, Nov. 2010.

[12] D. Burshtein and G. Miller, “Asymptotic enumeration methods for
analyzing LDPC codes,” IEEE Trans. Inf. Theory, vol.50, no.6,
pp.1115-1131, June 2004.

Appendix: Proof of Theorem 3

To prove Theorem 3, we employ the following lemma.

Lemma 3: [12, Theorem 2] Let p(x, x;) be a multivariate
polynomial with non-negative coefficients. Let @) > 0 and
@ > 0 be some rational numbers and let n; be the series of
all indexes j such that coef(p(x, x2)/, x]"/x5*/) # 0. Then

n; ! log coef(p(x1, x2)™, (' x5)")
< inf {log p(x1,x2) —ajlogx; —azlogxy}, (A-1)
x1,x2>0
and
lim 7! log coef(p(x;, x2)", (' x5)")

= inf 0{10g p(x1, x2) —aylogx; —azlogxy}. (A-2)

X1,X2>

2390

A point (x1,x;) achieves the minimum of the function
p(x1, x2)/(x]'x5?), if and only if it satisfies the following
equations for k = 1,2:

0
xk_p(xla X2) = agp(xy, X2).

6xk

proof of Theorem 3: Since the number of terms in Eq. (2) is
equal to E + 1, we get

sup A(l, k) < A(l) < (E+1) sup AL, k).
ke[0:E] ke[0:E]

Hence, we have
1
hm —logA({’) = hm — sup logA(, k). (A-3)
o rN N—eco N jef0;E)
From this equation, we have for 0 < w < 1
1
y(w) = hm sup — log A(wN, BN). (A-4)
Nowgegee FN
At first, we derive an upper bound of y(w). Since

log() > nh(k/n) —log(n + 1), we get

1

eN\ 1
-—lo g(ﬁ)s — log(eN + 1) - ;h(ﬁ/e).

By combining this inequality and Eq. (A- 1), we obtain
1
sup — log A(wN, SN)
0<p<e 'N

< sup r
0<B<e

+ imi){log P(s, 1) —
5,1>

wlog2" - 1) - eh(B/e) - Blog2” - 1)
wlogs —Blogt}
+ inf{log Q) - Blog u}] + (rN) " log(eN + 1)

= sup y(w,B) + (rN) ' log(eN + 1).
0<B<e

This upper bound yields

1
y(w) = hm sup N log A(wN, BN)

N> gcpee

< sup y(w,p). (A-5)
0<B<e

Secondly, we derive a lower bound of y(w). Since
lim; e SUP,cx fi(X) > sup,.x lim;_, f;(x) for any sequence
of functions {f;(x)} converging on X, Eq. (A- 4) gives

1

v(w) = sup hm —logA(wN BN).
0<p<eN o N

From Eg.(A-2), the right-hand side of this inequality is

equal to supyg. . ¥(w, B). Thus, we obtain

Y(w) = sup y(w,p). (A-6)

0<B<e

By combining Eqgs. (A-5) and (A 6), we leads Eq.(7).

IEICE TRANS. FUNDAMENTALS, VOL.E96-A, NO.12 DECEMBER 2013

Lemma 3 derives a point (s, ¢, #) which achieves the
infimum of the function y(w, S, s, ¢, u). Since value S which
gives the supremum of y(w, 8) needs to satisfy the stationary

condition 3—;((1), B) =0, we get Eq. (11). O

Takayuki Nozaki received B.E. M.E. and
D.E. degrees from Tokyo Institute of Technol-
ogy in 2008, 2010 and 2012, respectively. From
April 2010 to March 2013, he is a Research
Fellow of the Japan Society for the Promotion
of Science. He has been a Research Associate
with Faculty of Engineering, Kanagawa Univer-
sity since April 2013. His research interests
are codes on graph and iterative decoding algo-
rithm. He is a member of IEEE.

Masaki Maehara received B.E. and M.E.
degrees from Tokyo Institute of Technology in
2011 and 2013, respectively. Since April 2013,
he has been working on Pioneer. His research
interests are non-binary LDPC codes.

Kenta Kasai received B.E., M.E. and Ph.D.
degrees from Tokyo Institute of Technology in
2001, 2003 and 2006, respectively. Since April
2012, he has been an associate professor in the
Department of Communications and Integrated
Systems, Graduate School of Science and Engi-
neering, Tokyo Institute of Technology. His cur-
rent research interests include codes on graphs
and iterative decoding algorithms.

Kohichi Sakaniwa received B.E., M.E., and
Ph.D. degrees all in electronic engineering from
the Tokyo Institute of Technology, Tokyo Japan,
in 1972, 1974 and 1977, respectively. He joined
the Tokyo Institute of Technology in 1977 as
a research associate and served as an associate
professor from 1983 to 1991. Since 1991 he has
been a professor in the Department of Electri-
cal and Electronic Engineering, and since 2000
in the Department of Communication and Inte-
grated Systems, Graduate School of Science and
Engineering, both in the Tokyo Inst. of Tech. From November 1987 to July
1988, he stayed at the University of Southwestern Louisiana as a Visiting
Professor. He received the Excellent Paper Award from the IEICE of Japan
in 1982, 1990, 1992 and 1994. His research area includes Communication
Theory, Error Correcting Coding, (Adaptive) Digital Signal Processing and
so on. Dr. Sakaniwa is a member of IEEE, Information Processing Society
of Japan, and Institute of Image Information and Television Engineers of
Japan.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

