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Analysis of Error Floors for Non-binary LDPC Codes over General
Linear Group through q-Ary Memoryless Symmetric Channels∗

Takayuki NOZAKI†a), Kenta KASAI†b), Members, and Kohichi SAKANIWA†c), Fellow

SUMMARY In this paper, we compare the decoding error rates in the
error floors for non-binary low-density parity-check (LDPC) codes over
general linear groups with those for non-binary LDPC codes over finite
fields transmitted through the q-ary memoryless symmetric channels under
belief propagation decoding. To analyze non-binary LDPC codes defined
over both the general linear group GL(m, F2) and the finite field F2m , we in-
vestigate non-binary LDPC codes defined over GL(m3, F2m4 ). We propose
a method to lower the error floors for non-binary LDPC codes. In this anal-
ysis, we see that the non-binary LDPC codes constructed by our proposed
method defined over general linear group have the same decoding perfor-
mance in the error floors as those defined over finite field. The non-binary
LDPC codes defined over general linear group have more choices of the
labels on the edges which satisfy the condition for the optimization.
key words: non-binary LDPC code, error floor, q-ary memoryless symmet-
ric channel, belief propagation

1. Introduction

Gallager invented low-density parity-check (LDPC) codes
[1]. Due to the sparseness of the parity check matrices,
LDPC codes are efficiently decoded by the belief propaga-
tion (BP) decoder. Optimized LDPC codes can exhibit per-
formance very close to the Shannon limit [2]. Davey and
MacKay [3] have found that non-binary LDPC codes can
outperform binary ones.

The finite field of order 2m is denoted by F2m . The
general linear group of degree m3 over F2m4 is the set of
m3 × m3 invertible matrices over F2m4 with the operation of
ordinary matrix multiplication and matrix inversion, and de-
noted by GL(m3, F2m4 ). The finite field F2m and the general
linear group GL(m, F2) are special cases of GL(m3, F2m4 )
with m3 = 1,m4 = m and m3 = m,m4 = 1, respectively.

A Tanner graph for a non-binary LDPC code over the
general linear group GL(m3, F2m4 ) is represented by a bipar-
tite graph with variable nodes, check nodes and edges la-
beled by elements in the general linear group GL(m3, F2m4 ).
The v-th variable node and the c-th check node are con-
nected with an edge labeled by hc,v ∈ GL(m3, F2m4 ). To
simplify the notation, hc,v = 0 ∈ Fm4×m4

2m3 if the v-th variable
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node and the c-th check node are not connected. For a given
Tanner graph, the code represented by the Tanner graph is
given by {(x1, x2, . . . , xN) ∈ (Fm3

2m4 )N |
∑N

j=1 hj,ixT
i = 0T ∈

F
m3

2m4 ∀ j ∈ {1, 2, . . . ,M}}, where N and M are the number of
the variable nodes and the check nodes in the Tanner graph,
respectively.

It is known that the decoding complexity of non-binary
LDPC codes over the general linear group GL(m, F2) is
larger than that of non-binary LDPC codes over finite field
F2m for m ≥ 2. On the other hand, the decoding error rates in
the waterfall region for optimized non-binary LDPC codes
over the general linear group GL(m, F2) is lower than those
for optimized non-binary LDPC codes over the finite field
F2m [4].

The error floors are mainly caused by small weight er-
rors. Zigzag cycles in the Tanner graphs degrade the error
floors since zigzag cycles cause small weight errors. Hence,
we are able to lower the error floors if we reduce the de-
coding errors in the zigzag cycles. To reduce the decoding
errors in the zigzag cycles, we need to optimize both the
structures of Tanner graphs and the labels on the edges in
zigzag cycles. The progressive edge-growth algorithm [5] is
a method to optimize the structure of the Tanner graph for
the binary and non-binary LDPC codes. This algorithm con-
structs Tanner graphs which have a large girth, i.e., which do
not contain zigzag cycle of small weight. In [6], the authors
proposed a method to optimize the labels on the edges in
zigzag cycles for non-binary LDPC codes over finite field.
This method selects the labels in zigzag cycles to lower the
decoding error rates caused by the zigzag cycles.

However, it has been not proposed to select the labels
for lowering the decoding error rates in error floors for non-
binary LDPC codes over general linear groups GL(m3, F2m4 )
and GL(m, F2). Moreover, the decoding error rates in the er-
ror floors for non-binary LDPC codes over the general lin-
ear group GL(m, F2) have not been compared with those for
non-binary LDPC codes over the finite field F2m .

In this paper, we define non-binary LDPC codes over
the general linear group GL(m3, F2m4 ) and BP decoding al-
gorithm to analyze the non-binary LDPC codes over both
the finite field F2m and the general linear group GL(m, F2).
We assume q-ary memoryless symmetric (q-MS) channels
[7] for the generality of the channels. We extend the label
optimization and analysis method in [6] to the non-binary
LDPC codes over the general linear groups GL(m, F2) and
GL(m3, F2m4 ) transmitted through the q-MS channels. More
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precisely, first, we derive the condition for successful de-
coding of zigzag cycle code. Next, we propose a method
to lower the decoding error rates in the error floors for non-
binary LDPC codes over GL(m3, F2m4 ). Moreover, we show
lower bounds on the symbol error rates in the error floors for
non-binary LDPC codes over GL(m3, F2m4 ). Furthermore,
some simulation results show that the lower bounds on sym-
bol error rates in the error floors are tight for the non-binary
LDPC codes constructed by our proposed method.

This paper is organized as follows: In Sect. 2, we de-
fine non-binary LDPC code and introduce the q-MS chan-
nel. In Sect. 3, we propose a method to lower the error floors
by analyzing the zigzag cycles. In Sect. 4, we derive lower
bounds for symbol error rates in the error floors for non-
binary LDPC codes.

2. Preliminaries

In this section, we define the non-binary LDPC code over
GL(m3, F2m4 ) and recall the 2m1 -MS channel [7]. Moreover,
we introduce BP decoding algorithm for the non-binary
LDPC codes over GL(m3, F2m4 ) through the 2m1 -MS chan-
nels.

2.1 Non-binary LDPC Code over GL(m3, F2m4 )

For the non-binary LDPC codes over GL(m3, F2m4 ), the Tan-
ner graphs are represented by sparse bipartite graphs with
variable nodes, check nodes and edges labeled by elements
in GL(m3, F2m4 ). Let N and M be the number of variable
nodes and check nodes, respectively. We denote the label on
the edge adjacent to the v-th variable node and the c-th check
node, by hc,v ∈ GL(m3, F2m4 ). To simplify the notation,
hc,v = 0 ∈ Fm4×m4

2m3 if the v-th variable node and the c-th check
node are not connected. Define [a, b] := {n ∈ Z | a ≤ n ≤ b}
for the integers a, b ∈ Z. Note that [a, b] = ∅ if a > b.
For a given Tanner graph, the code represented by the Tan-
ner graph is given by {(xi)i∈[1,N] ∈ (Fm3

2m4 )N |
∑N

i=1 hj,i xT
i =

0T ∈ Fm3

2m4 ∀ j ∈ [1,M]}, where (xi)i∈[1,N] represents the vec-
tor (x1, . . . , xN).

Let α be a primitive element F2m4 . Once a primitive
element α is fixed, each element in F2m4 is given by an m4-bit
representation [8, p.110]. Since γ ∈ Fm3

2m4 is represented by
m3m4 bits as (γi)i∈[1,m3m4], the codeword (xi)i∈[1,N] ∈ (Fm3

2m4 )N

is represented as a binary codeword (xi, j)i∈[1,N], j∈[1,m3m4].
Note that the non-binary LDPC codes over F2m =

GL(1, F2m ) and over GL(m, F2) are special case for the non-
binary LDPC codes over GL(m3, F2m4 ) with m3 = 1,m4 = m
and m3 = m,m4 = 1, respectively.

2.2 2m1 -Ary Memoryless Symmetric Channel [7]

In this paper, we consider the q-MS channel, where q = 2m1 .
For the 2m1 -ary channel, the number of input alphabet X is
2m1 . We assume X = Fm1

2 . Let Y be a given continuous (or
discrete) output alphabet. We denote the channel transition
probability by p(y | x), where x ∈ X and y ∈ Y. The q-ary

memoryless channel is symmetric if there exists a function
T : Y × X → Y satisfying the following properties:

1. For every x ∈ X, the function T (·, x) : Y → Y is
bijective.

2. For every x1, x2 ∈ X and y ∈ Y, p(y | x1) = p(T (y, x2−
x1) | x2) holds.

3. For channels whose output alphabet Y is continuous,
the mapping T is that its Jacobian is equal to 1.

We denote a | b if a divides b. We assume m1 | m3m4

and denote m2 = m3m4/m1. Then, the symbol xv ∈ Fm3

2m4 in
the v-th variable node is represented as m2 channel inputs to
the 2m1 -MS channel for all v ∈ [1,N]. For a given codeword,
we denote the channel outputs by (yi, j)i∈[1,N], j∈[1,m2] ∈ YNm2 .

Example 1: The 2m1 -ary symmetric channel (2m1 -SC) is an
example of the 2m1 -MS channel. For the 2m1 -SC, the input
and output alphabets are X = Y = Fm1

2 and transition proba-
bility function is

p(y | x) =

⎧⎪⎪⎨⎪⎪⎩
1 − ε, x = y,

ε/(2m1 − 1), x � y,

where ε is referred as channel error probability.

The memoryless binary-input output-symmetric (MBI-
OS) channel is also an example of the 2m1 -MS channel [7,
Example 1].

2.3 Belief Propagation Decoder

BP decoding proceeds by sending messages along the edges
in the Tanner graph. The messages arising in the BP decoder
for LDPC codes over GL(m3, F2m4 ) are vectors of length 2m,
where m = m3m4. Let Ψ(�)

v,c (resp. Φ(�)
c,v) be the message from

the v-th variable node (resp. c-th check node) to the c-th
check node (resp. v-th variable node) at the �-th iteration.

2.3.1 Initialization

Set � = 0. For v ∈ [1,N], let Cv = (Cv(x))x∈Fm3
2m4

denote

the initial message of the v-th variable node. For γ ∈ Fm3

2m4 ,
the element of the initial message Cv(γ) is given from the
channel outputs as follows:

Cv(γ) =
∏m2

i=1 p
(
yv,i | (γ j) j∈[m1(i−1)+1,m1i]

)
.

Let Nc(c) (resp. Nv(v)) be the set of the positions of the
variable nodes (resp. check nodes) connecting to the c-
th check node (resp. v-th variable node). Set Φ(0)

c,v =(
2−m, 2−m, . . . , 2−m) for all c ∈ [1,M] and v ∈ Nc(c).

2.3.2 Iteration

Iteratively repeat the following two steps for � ∈ {0, 1, . . . }.

(1) Variable node calculation

The message Ψ(�)
v,c is given by the component-wise multipli-

cation of the initial message Cv and the incoming messages
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Φ
(�)
c′,v from check nodes whose positions c′ are inNv(v) \ {c},

i.e., for x ∈ Fm3

2m4

Ψ(�)
v,c(x) = ξ−1Cv(x)

∏
c′∈Nv(v)\{c}Φ

(�)
c′,v(x),

where ξ is a normalization factor such that 1 =∑
x∈Fm3

2m4
Ψ

(�)
v,c(x).

(2) Check node calculation

The convolution of two vectors Ψ1 and Ψ2 is given by

[Ψ1 ⊕Ψ2](x) =
∑
y,z∈Fm3

2m4
:x=y+zΨ1(y)Ψ2(z),

where
∑
y,z∈Fm3

2m4
:x=y+zΨ1(y)Ψ2(z) is the sum of Ψ1(y)Ψ2(z)

over all y, z ∈ Fm3

2m4 such that x = y + z. To simplify the
notation, we define

⊕
i∈[1,k]Ψi := Ψ1 ⊕ Ψ2 ⊕ · · · ⊕ Ψk. The

message Φ(�+1)
c,v is given as, for x ∈ Fm3

2m4

Ψ̌(�)
v,c(x) = Ψ(�)

v,c

(
h−1

c,vx
)
,

Φ̌
(�+1)
c,v =

⊕
v′∈Nc(c)\{v} Ψ̌

(�)
v′,c,

Φ(�+1)
c,v (x) = Φ̌(�+1)

c,v (hc,vx).

2.3.3 Decision

Define

argmaxx∈Fm3
2m4
Ψ :=

{
x ∈ Fm3

2m4 | ∀y ∈ F
m3

2m4 ,Ψ(x) ≥ Ψ(y)
}
,

and for x ∈ Fm3

2m4

D(�)
v (x) := ξ−1Cv(x)

∏
c∈Nv(v)Φ

(�)
c,v(x),

where ξ is a normalization factor such that 1 =∑
x∈Fm3

2m4
D(�)
v (x). For v ∈ [1,N], let x̂(�)

v ∈ Fm3

2m4 be the de-

coding output of the v-th variable node. Define D(�)
v :=

argmaxx∈Fm3
2m4

D(�)
v (x).We denote the cardinality of the setD,

by |D|. If |D(�)
v | = 1, the decoding output x̂(�)

v is the unique el-
ement of D(�)

v . If |D(�)
v | > 1, the decoder chooses x̂(�)

v ∈ D(�)
v

with probability 1/|D(�)
v |.

2.4 Decoding Failure and All-Zero Codeword Assumption

The v-th symbol is eventually correct [9] if there exists Lv
such that for all � > Lv, x̂(�)

v = xv. The symbol error rate is
defined by the fraction of the symbol which is not eventually
correct.

The following lemma shows that all-zero code-
word assumption holds for non-binary LDPC code over
GL(m3, F2m4 ) transmitted through the 2m1 -MS channel under
BP decoding.

Lemma 1: For the non-binary LDPC codes over
GL(m3, F2m4 ) transmitted through the 2m1 -MS channel under
BP decoding, the symbol error probability is independent of
the transmitted codeword.

The proof of this lemma is in Appendix A. From this
lemma, we are able to assume that the all-zero codewords
are sent without loss of generality to analyze the decoding
error probability.

3. Zigzag Cycle Code Analysis

A zigzag cycle is a circuit [10] such that the degrees of all
the variable nodes in the circuit are two. A zigzag cycle of
weight w consists of w variable nodes of degree two. The
zigzag cycle code is defined by a Tanner graph which forms
a single zigzag cycle. Figure 1 shows a zigzag cycle code of
symbol code length w.

In this section, we give a condition for successful de-
coding for the zigzag cycle codes through the 2m1 -MS chan-
nels under BP decoding and introduce Bhattacharyya func-
tional for the 2m1 -MS channels.

3.1 Condition for Successful Decoding

We consider the zigzag cycle code of symbol code length w
with labels h1,1, h1,2, . . . , hw,w, hw,1 ∈ GL(m3, F2m4 ) as shown
in Fig. 1. For any m3×m3 matrices A1, A2, . . . , Ak, we denote∏k

i=1 Ak := A1A2 · · · Ak. We define ιi := h−1
i,i hi,i+1, where

hw,w+1 := hw,1. Define χ :=
∑w

i=1 ιi ∈ GL(m3, F2m4 ).

Definition 1: Let 〈χ〉 be the cyclic subgroup generated by
χ, i.e., 〈χ〉 := {χ j | j = 0, 1, 2, . . . }. The relation ∼ on
F

m3

2m4 defined by x ∼ y is an equivalence relation on Fm3

2m4 ,
if and only if there exists g ∈ 〈χ〉 such that gx = y. The
equivalence class of x ∈ Fm3

2m4 under this relation is 〈χ〉x =
{gx | g ∈ 〈χ〉}, and is called the orbit of x under 〈χ〉. The
set of orbits of x ∈ Fm3

2m4 \ {0} under 〈χ〉 forms a partition of
F

m3

2m4 \ {0}, i.e., every element in Fm3

2m4 \ {0} belongs exactly
one of equivalence classes. A set of class representatives S χ
is a subset of Fm3

2m4 \ {0} which contains exactly one elements
from each equivalent class.

The following lemma gives the condition for successful
decoding for zigzag cycle codes under BP decoding by a set
of class representatives S χ and the initial messages.

Lemma 2: We consider a zigzag cycle code of sym-
bol code length w labeled by h1,1, h1,2, . . . , hw,w, hw,1 ∈
GL(m3, F2m4 ) transmitted through the 2m1 -MS channel. As-
sume that the all-zero codewords are sent without loss of
generality. Let ιi = h−1

i,i hi,i+1 for i ∈ [1, w], where hw+1,w =

h1,w. The matrix χ is given by χ =
∏w

i=1 ιi ∈ GL(m3, F2m4 ).

Fig. 1 A zigzag cycle code of symbol code length w.
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Define S χ as in Definition 1. In the limit of large �, all the
symbols in the zigzag cycle code are eventually correct un-
der BP decoding if and only if for all x ∈ S χ,

∏|〈χ〉x|−1
t=0

∏w
s=1Cs(0) >

∏|〈χ〉x|−1
t=0

∏w
s=1 Cs

((∏w
j=s ι j
)
χt x
)
.

Moreover, in the limit of large �, no symbols in the zigzag
cycle code are eventually correct under BP decoding if and
only if there exists x ∈ S χ such that

∏|〈χ〉x|−1
t=0

∏w
s=1Cs(0) ≤

∏|〈χ〉x|−1
t=0

∏w
s=1 Cs

((∏w
j=s ι j
)
χt x
)
.

The proof of this lemma is in Appendix B. By using
Lemma 2, we have the following theorem.

Theorem 1: Define S χ as in Definition 1. For a fixed chan-
nel output, if the zigzag cycle with a matrix χ such that
|S χ| > 1 is successfully decoded, the zigzag cycle with a
matrix χ̃ such that |S χ̃| = 1 is also successfully decoded.

proof: We consider a zigzag cycle of symbol code length w.
Since the channel output is fixed, the initial messages Ci for
i ∈ [1, w] are also fixed. From Lemma 2, if the zigzag cycle
with a matrix χ such that |S χ| > 1 is successfully decoded,
for all x ∈ S χ

∏w
s=1Cs(0)|〈χ〉x| >

∏|〈χ〉x|−1
t=0

∏w
s=1Cs

((∏w
j=s ι j
)
χt x
)
.

Since the set of the orbits 〈χ〉x forms a partition of Fm3

2m4 \ {0},
∪x∈S χ〈χ〉x = F

m3

2m4 \ {0} holds. From the product of the above
equation over all x ∈ S χ, we have
∏

x∈S χ
∏w

s=1Cs(0)|〈χ〉x|

>
∏

x∈S χ
∏|〈χ〉x|−1

t=0

∏w
s=1Cs

((∏w
j=s ι j
)
χt x
)

⇐⇒
∏w

s=1Cs(0)2m3m4−1 >
∏

x∈Fm3
2m4

∏w
s=1Cs (x) . (1)

Similarly, for a matrix χ̃ such that |S χ̃| = 1 and x ∈ S χ̃,
〈χ̃〉x = Fm3

2m4 \ {0}. Hence, from Lemma 2, if the zigzag cycle
with a matrix χ̃ such that |S χ̃| = 1 is successfully decoded,
∏w

s=1Cs(0)2m3m4−1 >
∏

x∈Fm3
2m4

∏w
s=1Cs (x) .

Since this condition coincides with Eq. (1), the zigzag cycle
with a matrix χ̃ such that |S χ̃| = 1 is also successfully de-
coded. �

Theorem 1 shows that a condition for lowering the er-
ror floor depends on the cardinality of a set of class repre-
sentatives S χ. The order σχ of the matrix χ is the smallest
positive integer satisfying that χσχ is m3×m3 identity matrix.
The following lemma gives a relation between the cardinal-
ity of a set of class representatives and the order of χ.

Lemma 3: The order of the matrix χ is 2m3m4 − 1 if and
only if |S χ| = 1.

This lemma is proved in Appendix C.

Discussion 1: By combining Theorem 1 and Lemma 3, we
see that the zigzag cycles with the matrices χ of the order
2m3m4 −1 have the best decoding performance. By using this

condition, we propose a method to lower the error floors for
non-binary LDPC codes as follows: designing the labels in
the zigzag cycles of small weight as the order of χ satisfies
2m3m4 − 1.

The log-likelihood ratio for the 2m1 -ary channels are
defined in [11]. For γ ∈ Fm1

2 , let Zv,i(Yv,i, γ) denote the log-
likelihood ratio corresponding to the i-th channel output yv,i
in the v-th variable node, i.e.,

Zv,i(yv,i, γ) := log
p(yv,i | 0)
pi(yv,i | γ)

. (2)

The following corollary gives the condition for suc-
cessful decoding for the zigzag cycle codes with the ma-
trices χ of the order 2m3m4 − 1 through the 2m1 -MS channel
by using the log-likelihood ratio.

Corollary 1: We consider the zigzag cycle codes of sym-
bol code length w with the matrices χ of the order 2m3m4 − 1
through the 2m1 -MS channel. For γ ∈ Fm1

2 , i ∈ [1,m2] and
v ∈ [1,N], let Zv,i(Yv,i, γ) define as in Eq. (2). In the limit of
large �, all the symbols in the zigzag cycle code are eventu-
ally correct if and only if
∑w
v=1
∑m2

i=1

∑
γ∈Fm1

2 \{0}
Zv,i(Yv,i, γ) > 0.

Moreover, in the limit of large �, no symbols in the zigzag
cycle code are eventually correct if and only if
∑w
v=1
∑m2

i=1

∑
γ∈Fm1

2 \{0}
Zv,i(Yv,i, γ) ≤ 0.

proof: The initial messages are represented as Cv(γ) =∏m2
i=1 p
(
yv,i | γi

)
, where γ

i
:= (γ j) j∈[m1(i−1)+1,m1i] for γ ∈ Fm3

2m4

and i ∈ [1,m2]. Hence, we have for v ∈ [1, w],

Cv(0) =
∏m2

i=1 p(yv,i | 0),
∏
γ∈Fm3

2m4
Cv(γ) =

∏m2

i=1

∏
x∈Fm1

2
p(yv,i | x)2m−m1 .

Hence, from Theorem 1, all the symbols in the zigzag cycles
are eventually correct if and only if
∏w
v=1Cv(0)2m−1 >

∏w
v=1
∏

x∈Fm3
2m4
\{0}Cv (x)

⇐⇒
∏w
v=1
∏m2

i=1

∏
x∈Fm1

2 \{0}
p(yv,i | 0)2m−m1

p(yv,i | x)2m−m1
> 1

⇐⇒
∑w
v=1
∑m2

i=1

∑
x∈Fm1

2 \{0}
Z(yv,i, x) > 0.

Similarly, we derive the necessary and sufficient condition
for which no symbols in the zigzag cycles are eventually
correct from Theorem 1. This concludes the proof. �

3.2 Bhattacharyya Functional and Decoding Error Rate

We define the random variable L(Y) as

L(Y) :=
∑

γ∈Fm1
2 \{0}

log
p(Y | 0)
p(Y | γ)

.

Let a denote the conditional probability density function of
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the random variable L(Y) given that the corresponding chan-
nel input is zero. We refer the function a as L-density. Note
that in the case for the MBIOS channels, i.e., m1 = 1, L-
density defined in the above gives the definition of the L-
density in [12, p.178].

Definition 2: For a L-density a, the Bhattacharyya func-
tional B(a) is defined as B(a) :=

∫ ∞
−∞ a(x) exp[−x/2]dx.

In Definition 2, we assume not only symmetric L-
density [12] but also asymmetric L-density. The following
facts show the properties of the Bhattacharyya functional.

Fact 1: For L-density a1 and a2, B(a1 ∗ a2) = B(a1)B(a2)
holds, where ∗ denotes the convolution, i.e., (a1 ∗ a2)(x) :=∫ ∞
−∞ a1(x − y)a2(y)dy.

Fact 2: Let Z denote the random variable with L-density a.
Then, Pr(Z ≤ 0) ≤ B(a).

The following corollary gives the decoding error rates
for zigzag cycle codes with the matrices χ of the order
2m3m4 − 1.

Corollary 2: Denote m = m1m2. Let Pzz(w,m1,m2, a) be
the symbol error rate for the zigzag cycle codes defined over
GL(m3, F2m4 ) of symbol code length w with matrices χ such
thatσχ = 2m−1, through the 2m1 -MS channel with L-density
a under BP decoding. Let Z1, Z2, . . . , Zk denote independent
and identically distributed random variables with L-density
a. Define Z(k) :=

∑k
v=1Zv. The Bhattacharyya functional is

defined in Definition 2. We have the symbol error rates of
the zigzag cycle codes is given by

Pzz(w,m1,m2, a) = Pr
(
Z(m2w) ≤ 0

)
≤ B(a)m2w. (3)

proof: Corollary 1 implies that Pzz(w,m1,m2, a) =

Pr(Z(m2w) ≤ 0). From Fact 1 and 2, we have Pr(Z(m2w) ≤
0) ≤ B(a)m2w. �

Corollary 2 shows that for a fixed weight w and m =
m3m4, the decoding error rate of the zigzag cycle code does
not depend on m3 or m4. In other words, the decoding er-
ror rates for the zigzag cycles over the general linear group
GL(m3, F2m4 ) are equal to those for the zigzag cycles over
the finite field F2m for a fixed weight w and m = m3m4.

4. Analysis of Error Floors

In the previous section, we give the decoding error rates for
the zigzag cycle codes. By using this result, in this section,
we give lower bounds on the symbol error rates in the error
floors for the non-binary LDPC code ensembles through the
2m1 -MS channels under BP decoding.

First, we define the expurgation ensembles for non-
binary LDPC codes over GL(m3, F2m4 ).

Definition 3: Let LDPC(N,GL(m3, F2m4 ), λ, ρ) denote the
LDPC code ensemble of symbol code length N over
GL(m3, F2m4 ) defined by Tanner graphs with a degree dis-
tribution pair (λ, ρ) [12] and elements in GL(m3, F2m4 ) are
chosen as the labels on edges with equal probability. Let

wg ∈ N := {1, 2, . . . } be an expurgation parameter. The ex-
purgated ensemble ELDPC(N,GL(m3, F2m4 ), λ, ρ, wg) con-
sists of the subset of codes in LDPC(N,GL(m3, F2m4 ), λ, ρ)
which contain no stopping sets of weight in [1, wg − 1]. Let
wc ∈ N be an expurgation parameter for labeling in the Tan-
ner graph, where wg ≤ wc. Define the expurgated ensem-
ble ELDPC(N,GL(m3, F2m4 ), λ, ρ, wg, wc,H) as the subset of
codes in ELDPC(N,GL(m3, F2m4 ), λ, ρ, wg) which contain no
zigzag cycles of weight in [wg, wc−1] with the matrix χ ∈ H .

Define

H∗m3,m4
:=
{
χ ∈ GL(m3, F2m4 ) | σχ < 2m3m4 − 1

}
.

From Discussion 1, to lower the error floors, we need to
avoid the zigzag cycles with the matrices χ ∈ H∗m3,m4

. Since
|GL(m, F2)\H∗m,1| ≥ |F2m \H∗1,m|, the non-binary LDPC codes
defined over the general linear group GL(m, F2) have more
choices of the labels on the edges which satisfy the condition
for the optimization.

4.1 Analysis of Error Floors

In this section, we analyze the symbol error rates in the error
floors for the expurgated ensembles defined in Definition 3.
The following theorem gives a lower bound on the symbol
error rate under BP decoding for the expurgated ensemble
ELDPC

(
N,GL(m3, F2m4 ), λ, ρ, wg, wc,H∗m3,m4

)
.

Theorem 2: Denote m = m1m2 = m3m4. Let Ps(ELDPC,
a,m1,m2) be the symbol error rate of the expurgated ensem-
ble ELDPC

(
N,GL(m3, F2m4 ), λ, ρ, wg, wc,H∗m3,m4

)
through

the 2m1 -MS channel characterized by its L-density a under
BP decoding. Define Z(k) as in Corollary 2. For sufficiently
large N and B(a) < μ−1/m2 , the symbol error rate is lower
bounded by

Ps(ELDPC, a,m1,m2)≥
1

2N

∞∑

w=wg

μwPr
(
Z(m2w) ≤ 0

)
. (4)

proof: Corollary 2 shows that the symbol error rates of
the zigzag cycles of weight w with matrices χ such that
σχ = 2m − 1 are Pr(Z(m2w) ≤ 0). Moreover, by combining
Discussion 1 and Corollary 2, we see that the symbol error
rates of the zigzag cycles of weight w with matrices χ such
that σχ � 2m − 1 are lower bounded by Pr(Z(m2w) ≤ 0). By
using technique in the proof of Theorem 2 in [6], we have
Eq. (4). From Corollary 2, we get
∑∞
w=wg
μwPr
(
Z(m2w) ≤ 0

)
≤
∑∞
w=wg
μwB(a)m2w.

Thus, for sufficiently large N and B(a) < μ−1/m2 , the left
hand side of this inequality converges. �

For a given channel and a fixed μ,m, the decoding error
rate for the non-binary LDPC code ensemble over finite field
F2m is same as that for the non-binary LDPC code ensemble
over GL(m3, F2m4 ) such that m = m3m4.
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4.2 Simulation Results

In this section, we compare the symbol error rates in the er-
ror floors for the expurgated ensembles constructed by pro-
posed method with that for non-optimized ensembles. In
the simulation results of this section, we do not employ the
methods which reduce the decoding error rates in waterfall
regions [4], [13]. Hence, there are no gains in the water-
fall regions for non-binary LDPC codes over general linear
groups.

Figure 2 shows the symbol error rates for the expur-
gated ensembles ELDPC(315,GL(m3, F2m4 ), x, x2, 1, 8,H)
transmitted through the binary additive white Gaussian
noise channel for m3 = 1,m4 = 4,H = H∗1,4 (F24 Pro-
posed), for m3 = 4,m4 = 1,H = ∅ (GL(4, F2) Ran-
dom) and for m3 = 4,m4 = 1,H = H∗4,1 (GL(4, F2) Pro-
posed). The lower bound is derived from Eq. (4). Fig-
ure 3 shows the symbol error rates for the expurgated en-
semble ELDPC(315,GL(m3, F2m4 ), x, x2, 1, 8,H) transmit-

Fig. 2 The symbol error rates for the expurgated ensembles ELDPC(315,
GL(m3, F2m4 ), x, x2, 1, 8,H) transmitted through the binary additive white
Gaussian noise channel for m3 = 1, m4 = 4,H = H∗1,4 (F24 Proposed), for
m3 = 4, m4 = 1, H = ∅ (GL(4, F2) Random), and for m3 = 4, m4 = 1,
H = H∗4,1 (GL(4, F2) Proposed). The lower bound is given by Eq. (4).

Fig. 3 The symbol error rates for the expurgated ensembles ELDPC(315,
GL(m3, F2m4 ), x, x2, 1, 8,H) transmitted through the 24-SC for m3 = 1,
m4 = 4, H = ∅ (F24 Random), for m3 = 1, m4 = 4, H = H∗1,4 (F24 Pro-
posed), for m3 = 4, m4 = 1, H = ∅ (GL(4, F2) Random) and for m3 = 4,
m4 = 1, H = H∗4,1 (GL(4, F2) Proposed). The lower bound is given by
Eq. (4).

ted through the 24-SC for m3 = 1,m4 = 4,H = ∅ (F24

Random), for m3 = 1,m4 = 4,H = H∗1,4 (F24 Proposed),
for m3 = 4,m4 = 1,H = ∅ (GL(4, F2) Random) and for
m3 = 4,m4 = 1,H = H∗4,1 (GL(4, F2) Proposed). The
lower bound is given by Eq. (4). From Figs. 2 and 3, we
see that the proposed codes exhibit better decoding perfor-
mance than non-optimized codes. The lower bound Eq. (4)
gives tight lower bounds for the symbol error rates to the
proposed codes. Moreover, we see that the decoding perfor-
mance in the error floors for codes constructed by proposed
method depend only on the size of m3m4.

5. Conclusion

In this paper, we derived the condition for successful decod-
ing for zigzag cycle codes through the q-MS channels. We
proved the relation between a set of class representatives and
the order of general linear group. Moreover, we proposed a
method to lower the error floors for non-binary LDPC codes.
This analysis shows that the constructed non-binary LDPC
codes defined over general linear group exhibits have the
same decoding performance in the error floors as those de-
fined over finite field. The non-binary LDPC codes defined
over general linear group have more choices of the labels on
the edges which satisfy the condition for the optimization.

As a future work, we will lower the decoding error rates
in the waterfall for the non-binary LDPC codes.
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Appendix A: Proof of Lemma 1

proof: Fix a Tanner graph G of a LDPC code over
GL(m3, F2m4 ). We will compare the decoding process when
the all-zero codeword and a codeword x � 0 are transmit-
ted. We assume that the noise realizations are the same in
both all-zero codeword and a codeword x case. To sim-
plify the notation, we denote γ

i
:= (γ j) j∈[m1(i−1)+1,m1i] and

xv,i := (xv, j) j∈[m1(i−1)+1,m1i] for i ∈ [1,m2] and v ∈ [1,N].
From the channel symmetry for the q-MS channel, the same
noise realizations are for i ∈ [1,m2] and v ∈ [1,N]

p(yv,i | 0) = p(zv,i | 0),

p
(
yv,i | xv,i

)
= p
(
T
(
zv,i, xv,i

)
| xv,i
)
.

Let Cv,Φ
(�)
c,v,Ψ

(�)
v,c,D

(�)
v be the messages in the BP de-

coder for the all-zero codeword and Ċv, Φ̇
(�)
c,v, Ψ̇

(�)
v,c, Ḋ

(�)
v be the

messages in the BP decoder for the codeword x.

(1) Initial message

For the codeword x, the initial message under BP decoding
is Ċv(γ) =

∏m2
i=1 p
(
T
(
zv,i, xv,i

)
| γ

i

)
, for v ∈ [1,N] and γ ∈

F
m3

2m4 . Hence, we get for γ ∈ Fm3

2m4 ,

Cv(γ)=
∏m2

i=1 p
(
zv,i | γi

)
=
∏m2

i=1 p
(
T
(
zv,i, xv,i

)
| γ

i
+xv,i
)

=Ċv(γ + xv). (A· 1)

(2) Iteration

We derive the following equations by mathematical induc-
tion for all γ ∈ Fm3

2m4 , v ∈ [1,N], c ∈ Nv(c) and � ∈ {0, 1, . . . }:

Ψ(�)
v,c(γ) =Ψ̇(�)

v,c(γ + xv), (A· 2)

Ψ̌(�)
v,c(γ) = ˙̌Ψ(�)

v,c(γ + hc,vxv), (A· 3)

Φ̌(�)
c,v(γ) =

˙̌Φ(�)
c,v(γ + hc,vxv), (A· 4)

Φ(�)
c,v(γ) =Φ̇

(�)
c,v(γ + xv). (A· 5)

First, we consider the basis of the mathematical induc-
tion. In the variable node calculation, the messages are

Ψ(0)
v,c(γ) =Cv(γ), Ψ̇(0)

v,c (γ) = Ċv(γ), (A· 6)

for γ ∈ Fm3

2m4 , v ∈ [1,N] and c ∈ Nv(v). From Eqs. (A· 1)
and (A· 6), we get the basis of Eq. (A· 2) for all γ ∈ Fm3

2m4 ,

v ∈ [1,N], c ∈ Nc(c) and � = 0. The messages Ψ̌ and ˙̌Ψ
are given as Ψ̌(0)

v,c (γ) = Ψ(0)
v,c (h−1

c,vγ) and ˙̌Ψ(0)
v,c (γ) = Ψ̇(0)

v,c (h−1
c,vγ),

respectively, for γ ∈ Fm3

2m4 , v ∈ [1,N] and c ∈ Nv(v). Hence,
we have

Ψ̌(0)
v,c(γ) =Ψ(0)

v,c(h−1
c,vγ)

=Ψ̇(0)
v,c(h−1

c,vγ + xv) =
˙̌Ψ(0)
v,c (γ + hc,vxv). (A· 7)

This leads the basis of Eq. (A· 3). Denote Γc,v ={
(γv′)v′∈Nc(c)\{v} | γ =

∑
v′∈Nc(c)\{v} γv′

}
. The message ˙̌Φ(1)

c,v is
given as

˙̌Φ(1)
c,v (γ) =

∑
γ∈Γc,v

∏
v′∈Nc(c)\{v}

˙̌Ψ(0)
v′,c(γv′). (A· 8)

The message Φ̌(1)
c,v is transformed as follows:

Φ̌(1)
c,v (γ) =

∑
γ∈Γc,v

∏
v′∈Nc(c)\{v}Ψ̌

(0)
v′,c(γv′)

=
∑
γ∈Γc,v

∏
v′∈Nc(c)\{v}

˙̌Ψ(0)
v′,c(γv′ + hc,v′ xv′ )

= ˙̌Φ(1)
c,v
(
γ +
∑
v′∈Nc(c)\{v}hc,v′ xv′

)

= ˙̌Φ(1)
c,v (γ + hc,vxv),

where in the second equality we use Eq. (A· 7), in the third
equality we use Eq. (A· 8) and in the fourth equality we
use the parity check constraint hc,vxv =

∑
v′∈Nc(c)\{v} hc,v′ xv′ .

Hence, we get the basis of Eq. (A· 4). The message Φ̇(1)
c,v is

written as Φ̇(1)
c,v (γ) =

˙̌Φ(1)
c,v (hc,vγ). Hence, the message Φ(1)

c,v is
represented as

Φ(1)
c,v (γ)=Φ̌

(1)
c,v (hc,vγ)=

˙̌Φ(1)
c,v (hc,vγ + hc,vxv)=Φ̇

(1)
c,v (γ + xv).

This derives the basis of Eq. (A· 5).
Next, we consider the induction step of the mathemat-

ical induction. By using induction hypothesis Eq. (A· 5) for
� = �′, the message Φ(�)

c,v is represented as

Ψ(�′)
v,c (γ) =

∏
c′∈Nc(c)\{c}Φ

(�′)
c′,v(γ)∑

γ∈Fm3
2m4

∏
c′∈Nc(c)\{c}Φ

(�′)
c′,v(γ)

=

∏
c′∈Nc(c)\{c} Φ̇

(�′)
c′,v(γ + xv)

∑
γ∈Fm3

2m4

∏
c′∈Nc(c)\{c} Φ̇

(�′)
c′,v(γ + xv)

= Ψ̇(�′)
v,c (γ + xv).

Hence, we get Eq. (A· 2) for � = �′. The following three
statements are derived from a way similar to the basis steps:

1. If Eq. (A· 2) holds for � = �′, Eq. (A· 3) holds for � = �′.
2. If Eq. (A· 3) holds for � = �′, Eq. (A· 4) holds for � =
�′ + 1.

3. If Eq. (A· 4) holds for � = �′ + 1, Eq. (A· 5) holds for
� = �′ + 1.
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(3) Decision

For γ ∈ Fm3

2m4 and v ∈ [1,N], we have

D(�)
v (γ) =

Cv(γ)
∏

c∈Nv(v)Φ
(�)
c,v(γ)

∑
γ∈Fm3

2m4
Cv(γ)

∏
c∈Nv(v)Φ

(�)
c,v(γ)

=
Ċv(γ + xv)

∏
c∈Nv(v) Φ̇

(�)
c,v(γ + xv)

∑
γ∈Fm3

2m4
Ċv(γ + xv)

∏
c∈Nv(v) Φ̇

(�)
c,v(γ + xv)

= Ḋ(�)
v (γ + xv).

Hence, there is a bijection from the message D(�)
v (γ) to

the message Ḋ(�)
v (γ). Thus, both decoding have the same

number of symbol errors. Therefore, the symbol error prob-
ability is independent of the transmitted codeword. �

Appendix B: Proof of Lemma 2

proof: First, we write the messages D(�)
v by the initial mes-

sages Cv for the zigzag cycle code of symbol code length
w with the matrix χ. Let Ψ̃(�)

v,c be the unnormalized message
from the v-th variable node to the c-th check node at the �-th
iteration. For all x ∈ Fm3

2m4 and i ∈ [1, w], the unnormalized
messages for the zigzag cycle code of symbol code length w
are written as follows:

Ψ̃
(0)
i,i−1(x) := Ci(x), Ψ̃

(0)
i,i (x) := Ci(x), (A· 9)

Ψ̃
(�+1)
i,i−1 (x) := Ci(x)Ψ̃(�)

i+1,i

(
ι−1
i x
)
, (A· 10)

Ψ̃
(�+1)
i,i (x) := Ci(x)Ψ̃(�)

i−1,i−1

(
ιi−1x
)
, (A· 11)

D̃(�+1)
i (x) := Ci(x)Ψ̃(�)

i−1,i−1

(
ιi−1x
)
Ψ̃

(�)
i+1,i

(
ι−1
i x
)
, (A· 12)

where Ψ̃(�)
0,0 = Ψ̃

(�)
w,w, Ψ̃

(�)
1,0 = Ψ̃

(�)
w+1,w = Ψ̃

(�)
1,w, Ψ̃(�)

w+1,w+1 = Ψ̃
(�)
1,1

and ι0 = ιw. Then, for the zigzag cycle code, the message
D(�)

i is written as follows:

D(�)
i (x) = D̃(�)

i (x)
/∑

x′∈Fm3
2m4

D̃(�)
i (x′). (A· 13)

From Eqs. (A· 9), (A· 10), (A· 11) and (A· 12), we have

D̃(�)
i (x) = Ci(x)

∏�
k=1

{
Ci−k

((∏k
j=1ιi+ j−k−1

)
x
)

Ci+k

((∏k
j=1ι
−1
i− j+k

)
x
)}
, (A· 14)

where Ci+nw(x) = Ci(x) and ιi+nw = ιi for n ∈ Z. For x ∈
F

m3

2m4 , Eq. (A· 14) gives the following equation

D̃
(�+σχw)
i (x) = D̃(�)

i (x)
∏σχw

k=1

{
Ci−k

((∏k
j=1ιi+ j−k−1

)
x
)

Ci+k

((∏k
j=1ι
−1
i− j+k

)
x
)}
. (A· 15)

where σχ is the order of the matrix χ, i.e., σχ is the smallest
positive integer satisfying that χσχ is m3×m3 identity matrix.
The production of Eq. (A· 15) are transformed as follows:

∏σχw
k=1 Ci−k

((∏k
j=1ιi+ j−k−1

)
x
)
Ci+k

((∏k
j=1ι
−1
i− j+k

)
x
)

=
∏σχ−1

t=0

∏w
s=1Cs

((∏w
j=s ι j
)
χt
(∏

j=[1,i−1] ι j
)
x
)2
.

Notice that
∏

j∈∅ ι j is equal to m3 × m3 identity matrix. De-
fine κi :=

∏
j∈[1,i−1] ι j and for x ∈ S χ

B(x) :=
∏|〈χ〉x|−1

t=0

∏w
s=1Cs

((∏w
j=s ι j
)
χt x
)
.

Then, Eq. (A· 14) are rewritten as for x ∈ S χ and i ∈ [1, w]

D̃
(�+σχw)
i (x) = B

(
κi x
)2σχ/|〈χ〉x|D̃(�)

i (x).

For all x ∈ S χ, x′ ∈ 〈χ〉x, B(κix) = B(κix′) holds. By com-
bining this equation and Eq. (A· 13), we have

D
(σχ�1w+�2)
i (0)

=
D̃(�2)

i (0)

D̃(�2)
i (0) +

∑
x∈S χ

{
B(κi x)
B(0)

}2σχ�1/|〈χ〉x|∑
x′∈〈χ〉x D̃(�2)

i (x′)
.

Hence, we have lim�→∞ D(�)
i (0) = 1 for all i ∈ [1, w],

i.e., the decoding is successful, if B(0) > B(x) for all x ∈ S χ.
Similarly, we have lim�→∞ D(�)

i (0) = 0 for all i ∈ [1, w], i.e.,
no symbols are eventually correct, if there exists x ∈ S χ
such that B(0) < B(x). Finally, we claim that no symbols
are eventually correct, if there exists x ∈ S χ such that B(0) =
B(x). Note that for all �1 ≥ 1, x ∈ S χ and i ∈ [1, w],

D̃
(σχ�1w)
i

(
κ−1

i x
)
= B(x)2σχ�1/|〈χ〉x|Ci

(
κ−1

i x
)
,

D̃
(σχ�1w−1)
i

(
κ−1

i x
)
= B(x)2σχ�1/|〈χ〉x|Ci

(
κ−1

i x
)−1
.

Hence for �1 ≥ 1 and i ∈ [1, w],

D̃
(σχ�1w)
i

(
κ−1

i x
)
D̃

(σχ�1w−1)
i

(
κ−1

i x
)

= B(x)4σχ�1/|〈χ〉x|

= B(0)4σχ�1/|〈χ〉x|= D̃
(σχ�1w)
i (0)D̃

(σχ�1w−1)
i (0). (A· 16)

Recall that the i-th symbol is eventually correct if there
exists L such that D̃(�)

i (0) > D̃(�)
i (x) for � > L and x ∈

F
m3

2m
4
\ {0}. However, from Eq. (A· 16), for all i ∈ [1, w],

if D̃
(σχ�1w−1)
i (0) > D̃

(σχ�1w−1)
i (κ−1

i x), then D̃
(σχ�1w)
i (0) <

D̃
(σχ�1w)
i (κ−1

i x). Thus, no symbols are eventually correct. �

Appendix C: Proof of Lemma 3

To prove Lemma 3, we recall the order of polynomial [14,
Definition 3.2].

Definition 4: For polynomials f (x) over F2m4 such that
f (0) � 0, the least positive integer e for which f (x) divides
xe − 1 is called the order of polynomial f (x) and is denoted
by ord( f ).

We use the following lemma to prove Lemma 3.

Lemma 4: The characteristic polynomial fχ(x) of the ma-
trix χ ∈ GL(m3, F2m4 ) is defined by det(xI − χ) with I being
m3 ×m3 identity matrix over F2m4 . If the order σχ of the ma-
trix χ is 2m3m4−1, then the order ord( fχ) of the characteristic
polynomial fχ(x) is also 2m3m4−1.
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proof: Since χ is an m3 × m3 nonsingular matrix, fχ(0) � 0.
By the Cayley-Hamilton theorem, fχ(χ) = 0. From Defini-
tion 4, we have fχ(x) | xord( fχ) − 1. Since fχ(χ) | χord( fχ) − 1
and fχ(χ) = 0, we have χord( fχ) − 1 = 0. Hence, we get
σχ | ord( fχ). Since ord( fχ) ≤ 2m3m4 − 1 from [14, Corollary
3.4], ord( fχ) = 2m3m4 − 1 if σχ = 2m3m4 − 1. �

Lemma 3 is derived from this lemma as follows.
proof of Lemma 3: Firstly, we assume |S χ| = 1. We denote
the first column of χ j, by χ j

1. Since |S χ| = 1,

F
m3

2m4 \ {0} =
{
χ j(1, 0, 0, . . . , 0)T | j ∈ [0, 2m3m4 − 2]

}

=
{
χ

j
1 | j ∈ [0, 2m3m4 − 2]

}
.

This equation asserts that χi
1 � χ

j
1 for i, j ∈ [0, 2m3m4 − 2]

with i � j. Hence, χi � χ j for i, j ∈ [0, 2m3m4 − 2] with i � j.
Thus, the order of χ is equal to or greater than 2m3m4 −1. For
all χ ∈ GL(m3, F2m4 ), the order of χ is equal to or lower than
2m3m4 − 1, i.e., σχ ≤ 2m3m4 − 1 [15, Corollary 2]. Therefore,
σχ = 2m3m4 − 1 if |S χ| = 1.

Secondly, we assume σχ = 2m3m4−1. By Lemma 4,
the order of the characteristic polynomial fχ(x) is 2m3m4 − 1.
Since ord( fχ) = 2m3m4 − 1, fχ(0) � 0 and fχ(x) is a monic
polynomial [14, Definition 1.49], the characteristic polyno-
mial fχ(x) is a primitive polynomial [14, Theorem 3.16].
Hence, the field F2m3m4 is represented in {0} ∪

{
χi | i ∈

[0, 2m3m4 − 2]
}
. Thus, for all i, j ∈ [0, 2m3m4 − 2] with i � j,

there exists a k ∈ [0, 2m3m4 − 2] such that χi + χ j = χk. This
implies that χi

1 � χ
j
1 for all i, j ∈ [0, 2m3m4 − 2] with i � j.

Therefore, |S χ| = 1 since Fm3

2m4 \ {0} = 〈χ〉(1, 0, . . . , 0)T . �
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