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Analysis of Error Floors of Non-binary LDPC Codes over BEC∗

Takayuki NOZAKI†a), Student Member, Kenta KASAI†b), Member, and Kohichi SAKANIWA†c), Fellow

SUMMARY In this paper, we investigate the error floors of the non-
binary low-density parity-check codes transmitted over the binary erasure
channels under belief propagation decoding. We propose a method to im-
prove the decoding erasure rates in the error floors by optimizing labels in
zigzag cycles in the Tanner graphs of codes. Furthermore, we give lower
bounds on the bit and the symbol erasure rates in the error floors. The sim-
ulation results show that the presented lower bounds are tight for the codes
designed by the proposed method.
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1. Introduction

Gallager invented low-density parity-check (LDPC) codes
[2]. Due to the sparseness of the parity check matrices,
LDPC codes are efficiently decoded by the belief propaga-
tion (BP) decoder. Optimized LDPC codes can exhibit per-
formance very close to the Shannon limit [3].

Davey and MacKay [4] and others [5]–[7] have found
non-binary LDPC codes can outperform binary ones. In this
paper, we consider the non-binary LDPC codes defined over
the Galois field Fq with q = 2m.

A non-binary LDPC code C over Fq is defined by the
null space of a sparse M × N parity-check matrix H = (hi, j)
over Fq:

C =
{
x ∈ FN

q | Hx = 0 ∈ FM
q

}
.

The Tanner graph for a non-binary LDPC code is repre-
sented by a bipartite graph with variable nodes, check nodes
and labeled edges. The v-th variable node and the c-th check
node are connected with an edge labeled hc,v ∈ Fq \ {0} iff
hc,v � 0. The LDPC codes defined by Tanner graphs with
the variable nodes of degree j and the check nodes of de-
gree k are called ( j, k)-regular LDPC codes. It is empirically
known that the (2, k)-regular LDPC codes exhibit good de-
coding performance among other LDPC codes for q ≥ 64
[8]. However, this is not the case for q < 64. In this paper,
we consider the irregular non-binary LDPC codes which
contain variable nodes of degree two for the generality of
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the code ensemble.
A stopping set S is a set of variable nodes such that

all the neighbors of S are connected to S at least twice.
For the binary LDPC code, the stopping sets are the fixed
point of the BP decoder. The peeling decoder for the non-
binary LDPC codes produces the same outputs as the BP
decoder [9]. The fixed points of the peeling decoder for the
non-binary LDPC codes are referred to as stopping constel-
lations [9]. The stopping constellations for the non-binary
LDPC codes correspond to the stopping sets for the binary
LDPC codes. The error floors of non-binary LDPC codes
decoded by the BP decoder are mainly caused by nonzero
codewords or stopping constellations of small weight. We
focus on nonzero codewords at first. A zigzag cycle is a
cycle such that the degrees of all the variable nodes in the
cycle are two. A zigzag cycle of weight s consists of s
variable nodes of degree two. It is known that the set of
variable nodes in a zigzag cycle forms a stopping set. For
the binary LDPC codes, small zigzag cycles always yield
nonzero codewords which result in serious degradation of
the decoding performance. On the other hand, zigzag cycles
in the non-binary codes do not always yield nonzero code-
words. Let H(s)

q denote the submatrix over Fq corresponding
to a zigzag cycle of weight s with labels h1, h2, . . . , h2s in the
Tanner graph. For example, the submatrix H(4)

q is written as

H(4)
q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
h1 h2 0 0
0 h3 h4 0
0 0 h5 h6

h8 0 0 h7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The zigzag cycle corresponding to H(s)
q yields nonzero code-

word iff H(s)
q is singular, i.e.,

det H(s)
q =

s∏
i=1

h2i +

s∏
i=1

h2i−1 = 0,

which is equivalent to

β :=
s∏

i=1

h−1
2i−1h2i = 1.

It can be seen that zigzag cycles in the Tanner graphs for the
binary LDPC codes always yield nonzero codewords since
det H(s)

2 = 0. On the other hand, for the non-binary case,
zigzag cycles in the Tanner graphs do not yield nonzero
codewords if the corresponding submatrices are nonsingu-
lar.
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To lower the error floors of codes under maximum like-
lihood decoding, Poulliat et al. proposed cycle cancellation
[10]. The cycle cancellation is a method to design the edge
labels in zigzag cycles so that the corresponding submatri-
ces are nonsingular. We see that from the simulation result
[10] the resulting codes have lower error floors under BP
decoding. However, it is found in our analyses that some
zigzag cycles, even if their submatrices are nonsingular, can
cause decoding failures under BP decoding over the binary
erasure channel (BEC), i.e., some zigzag cycles yield stop-
ping constellations.

In this paper, we analyze nonsingular zigzag cycles
which cause the decoding failures under BP decoding. We
clarify that the condition for successful decoding of zigzag
cycles over the BEC depends on the parameter β. More pre-
cisely, if the parameter β is not a nonzero element of proper
subfields of Fq, the zigzag cycles do not yield stopping con-
stellations. Based on this fact, we propose a design method
of selecting labels so as to eliminate small zigzag cycles
which yield stopping constellations.

For the binary LDPC code ensembles over the BEC,
a closed-form expression for the bit erasure rate in the er-
ror floors was given in [11, p.155]. However, for the non-
binary LDPC code ensembles, no closed-form expressions
or bounds for the bit and the symbol erasure rates in the
error floors have been given. In this paper, we give lower
bounds on the bit and the symbol erasure rates in the error
floors for the non-binary LDPC code ensembles. More pre-
cisely, those lower bounds are derived from the decoding
erasures caused by the zigzag cycles. Furthermore, the sim-
ulation results show that the lower bounds on the bit and the
symbol erasure rates are tight for the expurgated ensemble
constructed by our proposed method over the BEC.

This paper is organized as follows. In Sect. 2, we
briefly review the peeling decoder for the non-binary LDPC
codes, define stopping constellations and define decoding
failures. In Sect. 3, we investigate BP decoding of zigzag
cycles over the BEC and propose the improved cycle can-
cellation. In Sect. 4, we give lower bounds on the bit and
the symbol erasure rates in the error floors for expurgated
ensembles.

2. Preliminaries

Let α be a primitive element of F2m . Once a primitive el-
ement α of F2m is fixed, each symbol is given by an m-bit
representation [12, p.110]. We denote the m-bit representa-
tion of γ ∈ F2m , by b(γ). We denote the i-th bit of b(γ), by
bi(γ). For example, with a primitive element α ∈ F23 such
that α3 + α + 1 = 0, each symbol is represented as b(0) =
(0, 0, 0), b(1) = (1, 0, 0), b(α) = (0, 1, 0), b(α2) = (0, 0, 1),
b(α3) = (1, 1, 0), b(α4) = (0, 1, 1), b(α5) = (1, 1, 1) and
b(α6) = (1, 0, 1).

Let N be the symbol code length. We regard the code-
words in the non-binary LDPC codes as binary codewords,
i.e., the codewords x are represented by (x1,1, x1,2, . . . , xN,m).
We consider the transmission over the BEC. The chan-

nel output takes values in the alphabet {0, 1, ?}, where ?
indicates an erasure. We denote the received word as
(y1,1, y1,2, . . . , yN,m).

The BP decoder for the non-binary LDPC codes [4]
exchanges messages of length 2m. We assume that all-zero
codewords are sent without loss of generality to analyze the
decoding error rate [13, Lemma 1]. All the non-zero en-
tries in a message arising in the BP decoder are equal [13,
Lemma 2]. Moreover, the set of the m-bit representations
for the indices corresponding to nonzero entries of a mes-
sage arising in the BP decoder forms a linear subspace of
F

m
2 [13, Lemma 2]. In other words, the set of the indices

corresponding to nonzero entries of a message arising in the
BP decoder is closed under the addition in F2m . Hence, each
message in the BP decoder is represented by a subset in F2m

which is closed under the addition in F2m .

2.1 Peeling Decoder

To analyze the condition of successful decoding under BP
decoding, we need to analyze the fixed points of the peeling
decoder for the non-binary LDPC codes which are referred
to as stopping constellations [9]. To understand the stopping
constellation, we recall the states in the peeling decoder for
the non-binary case [9].

The peeling decoder assigns a set of candidate symbols
for the decoding result to each variable node. Such a set is
referred to as state of the v-th variable node and denoted by
Ev, where Ev ⊆ F2m . Recall that we assume that the all-zero
codewords are sent. Initially, for all v ∈ {1, 2, . . . ,N}, the
peeling decoder assigns the state

Ev = {γ | bi(γ) = 0 (for i s.t. yv,i = 0),

bj(γ) ∈ {0, 1} (for j s.t. yv, j =?)} (1)

to the v-th variable node. In words, the peeling decoder as-
signs the states corresponding to the channel outputs to the
variable nodes. Let N(c) be the set of the position of the
variable nodes connecting to the c-th check node. Let hc,i

be the label on the edge connected to the variable node in
the position i ∈ N(c) and the c-th check node. For any sub-
sets A1, A2, . . . , Ak ⊆ F2m , we denote

∑k
i=1 Ai := {∑k

i=1 ai |
aj ∈ Aj ( j = 1, 2, . . . , k)}. To simplify the notation, for
γ ∈ F2m and E ⊆ F2m , we define γE := {γe | e ∈ E}. If
Ev∩h−1

c,v
(∑

i∈N(c)\{v} hc,iEi
)

is a proper subset of Ev, then (v, c)
is said to be an active pair. The peeling decoder involves
the following 3 steps:

1. Initially the peeling decoder assigns the states corre-
sponding to the channel outputs to the variable nodes.

2. The peeling decoder chooses an active pair (v, c) uni-
formly at random. The peeling decoder assigns Ev ←
Ev ∩ h−1

c,v
(∑

i∈N(c)\{v} hc,iEi
)

to the v-th variable node.
3. If there is no active pair, then the peeling decoder stops.

Otherwise repeat step 2.

Note that the cardinality of the states of the variable nodes
do not increase as decoding proceeds.
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The states are the subset in F2m which is closed under
the addition in F2m . The proof is similar to the proof of [13,
Lemma 2] and [14, Lemma 2]. From Eq. (1), initially, the
states are subset in F2m which is closed under the addition in
F2m . We claim that if the subset E ⊆ F2m is closed under the
addition, the subset γE is also closed under the addition for
γ ∈ F2m \ {0}. For all e′1, e

′
2 ∈ γE, there exist e1, e2 ∈ E such

that e′1 = γe1 and e′2 = γe2. For all e′1, e
′
2 ∈ γE, we see that

e′1 + e′2 = γe1 + γe2 = γ(e1 + e2) ∈ γE.
Hence, the subset γE ⊆ F2m is closed under the addition if
E ⊆ F2m is closed under the addition. We claim that the
subset E1 ∩ E2 ⊆ F2m is closed under the addition if the
subsets E1, E2 ⊆ F2m are closed under the addition. For all
e1, e2 ∈ E1 ∩ E2, we see that e1 + e2 ∈ E1 and e1 + e2 ∈ E2

since e1, e2 ∈ E1 and e1, e2 ∈ E2. Since e1 + e2 ∈ E1 ∩ E2,
the subset E1 ∩ E2 ⊆ F2m is closed under the addition if the
subsets E1, E2 ⊆ F2m are closed under the addition. Obvi-
ously, if the subsets E1, E2, . . . , Ek ∈ F2m are closed under
the addition,

∑k
i=1 E1 is closed under the addition. Hence

Ev ∩ h−1
c,v

(∑
i∈N(c)\{v} hc,iEi

)
is closed under the addition, if Ei

is closed under the addition for i ∈ N(c) \ {v}. Recall that
initially the states are subset in F2m which is closed under
the addition in F2m . Thus, all the states are closed under the
addition in F2m .

2.2 Stopping Constellation

A stopping constellation {Ev}v∈{1,2,...,N} is defined as an as-
signment of states such that

Ev ⊆ h−1
c,v

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i∈N(c)\{v}
hc,iEi

⎞⎟⎟⎟⎟⎟⎟⎠
for any v ∈ {1, 2, . . . ,N} and the check nodes in the position
c ∈ N(v). In other words, stopping constellations are fixed
points of the peeling decoder. In this paper, we refer to the
number of states whose cardinality are not equal to 1 as the
weight of the stopping constellation.

For the BEC and sufficiently large number of iterations,
the BP decoder stops in a fixed point of decoding. In [9],
Rathi et al. proved that the BP decoder and the peeling de-
coder stop in the largest stopping constellation contained in
the subsets in F2m corresponding to the channel outputs. In
other words, the BP decoder and the peeling decoder stop in
the same fixed point of decoding. Thus, if we analyze stop-
ping constellations, we are able to analyze the condition of
successful decoding under BP decoding.

2.3 Decoding Failure

Recall that we assume that all-zero codewords are sent. The
decoding failures are defined from the states of the variable
nodes in the fixed point of decoding. The symbol corre-
sponding to the v-th variable node is correct if and only if
Ev = {0}. The block is correct if and only if Ev = {0} for all

v ∈ {1, 2, . . . ,N}. The i-th bit in the v-th symbol is correct if
and only if bi(γ) = 0 for all γ ∈ Ev. The block erasure rate,
the symbol erasure rate and the bit erasure rate are defined
by the fraction of the blocks, the symbols and the bits which
are not correct, respectively.

3. Zigzag Cycle Code Analysis

A zigzag cycle is a cycle such that the degrees of all the
variable nodes in the cycle are two. The zigzag cycle code
is defined by a Tanner graph which forms a single zigzag
cycle as shown in Fig. 1. In this section, we investigate the
zigzag cycle codes to clarify a condition for decoding fail-
ures on the zigzag cycles in Tanner graphs. We also show
the decoding performance for zigzag cycle codes under BP
decoding.

3.1 Condition for Successful Decoding

In the following theorem, we clarify a necessary condition
for successful decoding of the zigzag cycle codes over the
BEC by the BP decoder.

Theorem 1: Consider zigzag cycle codes of length s with
labels h1, h2, . . . , h2s ∈ F2m \ {0} over the BEC. Let α be the
primitive element of F2m . Define

Hm :=
⋃

r>0:r|m,r�m

{
αi(2m−1)/(2r−1) | i = 0, 1, . . . , 2r − 2

}
. (2)

All the symbols in a zigzag cycle code are correct unless all
the bits are erased, if

s∏
i=1

h−1
2i−1h2i = β � Hm.

Specifically, {1} = Hm ⊆ F2m for a prime m.

The proof of Theorem 1 shall be shown in Appendix. Note
that {αi(2m−1)/(2r−1) | i = 0, 1, . . . , 2r − 2} forms the set of the
nonzero elements of the proper subfield of order 2r for r | m.
In other words, Hm consists of the nonzero elements of the
proper subfields of F2m .

We refer to β as the cycle parameter of the zigzag cycle
code. Theorem 1 shows that the condition of successful de-
coding under BP decoding for the zigzag cycle codes over
the BEC depends on the cycle parameter β. In Table 1, we

Fig. 1 A zigzag cycle of weight s with labels h1, h2, . . . , h2s.
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Table 1 The elements ofHm over F2m for m = 4, 6, 8, 9.

Field The elements ofHm

F24 1, α5, α10

F26 1, α9, α18, α21, α27, α36, α42, α45, α54

F28
1, α17, α34, α51, α68, α85, α102, α119, α136, α153, α170, α187,
α204, α221, α238

F29 1, α73, α146, α219, α292, α365, α438

Fig. 2 The block erasure rates for zigzag cycle codes with cycle parame-
ter β = 1, α85, α17, α128 over the BEC under BP decoding. The zigzag cycle
codes are of weight 6 over F28 . Let ε be the channel erasure probability.
The solid curve shows the theoretical block erasure rate ε48 of zigzag cycle
codes with cycle parameter β � H8.

list the cycle parameters in Hm ⊆ F2m for m = 4, 6, 8 and
9. It follows from Theorem 1 that it is desired to avoid the
zigzag cycle codes with cycle parameter β ∈ Hm, since those
codes can cause decoding failures even if not all the bits are
erased.

We propose an improved cycle cancellation to get
lower error floors. The improved cycle cancellation is a
method to design the labels in Tanner graphs so that zigzag
cycles of small weight satisfy β � Hm. The zigzag cycles de-
signed by the improved cycle cancellation are successfully
decoded under BP decoding unless all the bits are erased.
Hence, zigzag cycles designed by the improved cycle can-
cellation recover more erasures than those designed by the
cycle cancellation [10].

We compare the block erasure rates of zigzag cycle
codes designed by the improved cycle cancellation with that
of zigzag cycle codes satisfying β ∈ Hm in Sect. 3.2.

3.2 Simulation Results

Figure 2 shows the block erasure rates of zigzag cycle codes
over the BEC under BP decoding. Each curve of β = α j in
Fig. 2 shows the block erasure rate of zigzag cycle codes of
weight 6 over F28 with cycle parameter β = 1, α17, α85 ∈ H8.
The circles in Fig. 2 show the block erasure rate of zigzag
cycles with cycle parameter β = α128 � H8.

The solid curve in Fig. 2 shows the theoretical block
erasure rate of zigzag cycle codes with cycle parameter
β � H8. A zigzag cycle code is recoverable if all the sym-

Fig. 3 The block erasure rates for zigzag cycle codes over the BEC
with channel erasure probability 0.7 under BP decoding. The zigzag cy-
cle codes are weight 3 over F26 . We see that the zigzag cycle codes
with cycle parameter β � H6 exhibit good decoding performance, where
H6 = {1, α9, α18, α21, α27, α36, α42, α45, α54}.

bols in the zigzag cycle code are correct by the BP decoder.
The zigzag cycle codes with cycle parameter β � H8 are
recoverable unless all the bits are erased. All the bits are
erased with probability ε48 for the BEC with channel era-
sure probability ε since the bit code length is 6 symbols or
equivalently 6×8=48 bits. Hence, the theoretical block era-
sure rate of zigzag cycle codes designed by the improved
cycle cancellation is given by ε48.

The cycle cancellation avoids only the zigzag cycles
with cycle parameter β = 1. In other words, the cycle can-
cellation cannot avoid the zigzag cycles with cycle parame-
ter β = α17 and β = α85. On the other hand, the improved
cycle cancellation avoids the zigzag cycles with cycle pa-
rameter not only β = 1 but also β = α17 and β = α85 since
1, α17, α85 ∈ H8.

The smallest stopping state is defined in Sect. A.3. The
smallest stopping state containing 1 for β = α85 is given by
{0, 1, α85, α170}. Then, the cardinality of this stopping state is
4. On the other hand, the smallest stopping state containing
1 for β = α17 is given by {0} ∪ {α17i | i = 0, 1, . . . , 14}. Then,
the cardinality of this stopping state is 16. We see that from
Fig. 2 the block erasure rate increases as the cardinality of
the smallest stopping state decreases.

Figure 3 shows the block erasure rates of zigzag cycle
codes over the BEC with channel erasure probability 0.7 un-
der BP decoding. The zigzag cycle codes are weight 3 over
F26 . From Fig. 3, we see that the zigzag cycle codes with cy-
cle parameter β � H6 exhibit good decoding performance.

4. Error Floor Analysis

From Theorem 1, we see that no zigzag cycles designed by
the improved cycle cancellation are recoverable iff all the
bits in the zigzag cycles are erased. From Sect. A.2, we see
that all the zigzag cycles are not recoverable if all the bits
are erased. By using this result, in this section, we give
lower bounds on the bit and the symbol erasure rates under



NOZAKI et al.: ANALYSIS OF ERROR FLOORS OF NON-BINARY LDPC CODES OVER BEC
385

BP decoding for an expurgated ensembles. More precisely,
those lower bounds are derived from the decoding erasures
caused by the zigzag cycles. Simulation results show that
those lower bounds are tight bounds on the bit and the sym-
bol erasure rates in the error floors for the expurgated en-
sembles designed by our proposed method.

4.1 Code Ensemble

Recall that a stopping set S is a set of variable nodes such
that all the neighbors of S are connected to S at least twice.
Since the stopping sets depend only on the structure of a
Tanner graph, we extend the definition of the stopping set
for the non-binary LDPC codes. Recall that a zigzag cycle
is a cycle such that the degrees of all the variable nodes in
the cycles are two. Since all the neighbors of the setZ of the
variable nodes in a zigzag cycle are connected to Z exactly
twice, the setZ of the variable nodes in a zigzag cycle forms
a stopping set.

To analyze the bit and the symbol erasure rates in the
error floors of the non-binary LDPC codes, we consider the
following expurgated ensemble.

Definition 1: Let LDPC(N,m, λ, ρ) denote the set of LDPC
codes of symbol code length N over F2m defined by Tanner
graphs with a degree distribution pair (λ, ρ) [11] and labels
of edges chosen elements from F2m \ {0} uniformly at ran-
dom. Let sg ∈ N be an expurgation parameter. The expur-
gated ensemble ELDPC(N,m, λ, ρ, sg) consists of the subset
of codes in LDPC(N,m, λ, ρ) which contain no stopping sets
of size in {1, . . . , sg − 1}. Note that the expurgated ensem-
ble ELDPC(N,m, λ, ρ, 1) is equivalent to LDPC(N,m, λ, ρ).
Let sc ∈ N be an expurgation parameter for labeling in
the Tanner graph, where sg ≤ sc. Define expurgated en-
semble ELDPC(N,m, λ, ρ, sg, sc,H) as the subset of codes
in ELDPC(N,m, λ, ρ, sg) which contain no zigzag cycles of
weight in {sg, . . . , sc − 1} with cycle parameter β ∈ H .

Since the sets of the variable nodes in zigzag cycles
form stopping sets, the codes in the expurgated ensemble
ELDPC(N,m, λ, ρ, sg) contain no zigzag cycles of weight in
{1, 2, . . . , sg − 1}.
Example 1: The codes in the expurgated ensemble
ELDPC(N,m, λ, ρ, sg, sc, {1}) contain no stopping sets of
size in {1, 2, . . . , sg − 1} and no zigzag cycles with cycle pa-
rameter β = 1 of weight in {sg, . . . , sc − 1}. In other words,
the expurgated ensemble ELDPC(N,m, λ, ρ, sg, sc, {1}) is
constructed by the cycle cancellation. Since the sets of the
variable nodes in zigzag cycles form stopping sets, the codes
in ELDPC(N,m, λ, ρ, sg, sc, {1}) contain no zigzag cycles of
weight in {1, 2, . . . , sg − 1}.

Recall that Hm is defined as in Eq. (2). Similarly, the
expurgated ensemble ELDPC(N,m, λ, ρ, sg, sc,Hm) is con-
structed by the improved cycle cancellation.

4.2 Analysis of Error Floors

The following theorem gives lower bounds on the bit and the

symbol erasure rates under BP decoding for the expurgated
ensemble ELDPC(N,m, λ, ρ, sg, sc,Hm).

Theorem 2: Let Pb(N,m, λ, ρ, sg, sc,Hm, ε) and
Ps(N,m, λ, ρ, sg, sc,Hm, ε) be the bit and the symbol era-
sure rates, respectively, for the expurgated ensemble
ELDPC(N,m, λ, ρ, sg, sc,Hm) by the BP decoder over the
BEC with channel erasure probability ε. Define μ :=
λ′(0)ρ′(1) and

ε∗m :=

⎧⎪⎪⎨⎪⎪⎩
1, μ ≤ 1,

μ−
1
m , μ > 1.

(3)

For sufficiently large N, the bit and the symbol erasure rates
for μ > 0 and ε < ε∗m are bounded by

Pb(N,m, λ, ρ, sg, sc,Hm, ε) ≥ 1
2N

(μεm)sg

1 − μεm + o

(
1
N

)
, (4)

Ps(N,m, λ, ρ, sg, sc,Hm, ε) ≥ 1
2N

(μεm)sg

1 − μεm + o

(
1
N

)
. (5)

proof : First, we will consider the symbol erasure rate.
The symbol erasure rate is represented by the sum of
two contributions, the symbol erasures caused by the
stopping constellations from the zigzag cycles and from
the stopping sets other than the zigzag cycles†. Let
P̃z(N,m, λ, ρ, sg, sc,Hm, ε) and P̃ss(N,m, λ, ρ, sg, sc,Hm, ε)
be the contributions of the zigzag cycles and of the
stopping sets other than the zigzag cycles, respec-
tively, for the symbol erasure rates of the ensemble
ELDPC(N,m, λ, ρ, sg, sc,Hm) over the BEC with channel
erasure probability ε. Then, we have

Ps(N,m,λ, ρ, sg, sc,Hm, ε)

=P̃z(N,m, λ, ρ, sg, sc,Hm, ε)

+ P̃ss(N,m, λ, ρ, sg, sc,Hm, ε)

≥P̃z(N,m, λ, ρ, sg, sc,Hm, ε).

In words, the symbol erasure rate is lower bounded by the
contribution of the zigzag cycles for the symbol erasure rate.

We will consider P̃z(N,m, λ, ρ, sg, sc,Hm, ε). Let
P̃1(N, s,m, λ, ρ, sg, sc,Hm, ε) be the symbol erasure rate
caused by the stopping constellations from zigzag cycles
of weight s under BP decoding over the BEC with chan-
nel erasure probability ε for ELDPC(N,m, λ, ρ, sg, sc,Hm).
From Definition 1, codes in the expurgated ensemble
ELDPC(N,m, λ, ρ, sg, sc,Hm) contain no zigzag cycles of
weight in {1, 2, . . . , sg − 1}. Hence, we consider the symbol
erasure rate caused by stopping constellations from zigzag
cycles of weight at least sg. If we fix a finite W and let N
tend to infinity, the zigzag cycles of weight at most W be-
come asymptotically non-overlapping with high probability

†For a Fixed Tanner graph and a given stopping set S, there
exist at least one stopping constellation {Ev}v∈{1,2,...,N} such that the
set of variable nodes in {v | Ev � {0}} is S [15, Lemma 2]. In this
proof, we refer those stopping constellations to stopping constella-
tions from stopping set S.
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[11, p.155]. Thus, for a fixed W and sufficiently large N we
have

P̃z(N,m, λ, ρ, sg, sc,Hm, ε)

≥
W∑

s=sg

P̃1(N, s,m, λ, ρ, sg, sc,Hm, ε).

In Sect. 3.2, zigzag cycle codes designed by the im-
proved cycle cancellation can not be recovered iff all the
bits are erased. From this result, we see that zigzag cycles
with cycle parameter β � Hm in a Tanner graph can not
be recovered iff all the bits in the cycle are erased, which
happens with probability εms. In other words, symbols in
zigzag cycles of weight s ∈ {sg, . . . , sc − 1} are not recov-
ered with probability εms. From Sect. A.2, no symbols in
the zigzag cycle of weight s with cycle parameter β ∈ Hm

are correct if all the bits in the zigzag cycle are erased.
Hence, all the zigzag cycles are not recovered with probabil-
ity at least εms. In other words, the zigzag cycles of weight
s ∈ {sc, . . . ,W} are not recovered with probability at least
εms. By [11, C. 37] for a fixed W, the expectation of the
number of zigzag cycles of weight s ≤ W in the expurgated
ensemble ELDPC(N,m, λ, ρ, sg, sc,Hm) is given by

μs

2s
,

for sufficiently large N. From Sect. A.3, if all the bits in
the zigzag cycle are erased, no symbols in zigzag cycle are
correct. Hence, if all the bits in the zigzag cycle of weight s
are erased, the zigzag cycle causes s symbol erasures. Since
s symbols are in the zigzag cycles of weight s, the zigzag
cycles of weight s cause a symbol erasure rate of s/N if the
bits in the zigzag cycles of weight s are erased. Therefore,
for sufficiently large N, we have for s ∈ {sg, . . . , sc − 1},

P̃1(N, s,m, λ, ρ, sg, sc,Hm, ε) =
1

2N
μsεms + o

(
1
N

)
,

and for s ∈ {sc, . . . ,W}

P̃1(N, s,m, λ, ρ, sg, sc,Hm, ε) ≥ 1
2N
μsεms + o

(
1
N

)
.

Thus, we have

P̃(N,m, λ, ρ, sg, sc,Hm, ε) ≥ 1
2N

W∑
s=sg

μsεms + o

(
1
N

)
.

If ε < ε∗m, for sufficiently large N and W, we see that

P̃(N,m, λ, ρ, sg, sc,Hm, ε) ≥ 1
2N

(μεm)sg

1 − μεm + o

(
1
N

)
.

Hence, for sufficiently large N, the symbol decoding erasure
rate is bounded by

Ps(N,m, λ, ρ, sg, sc,Hm, ε) ≥ 1
2N

(μεm)sg

1 − μεm + o

(
1
N

)
.

We will consider the bit erasure rate. The proof is sim-
ilar to the proof for the symbol erasure rate. From Sect. A.3,
if all the bits in the zigzag cycle are erased, all the states
of the variable nodes in the zigzag cycle are equal to F2m .
Hence, if all the bits in the zigzag cycle are erased, no bits
in the zigzag cycle are correct. Note that the bit code length
is Nm. Since sm bits are in the zigzag cycles of weight s,
the zigzag cycles of weight s cause a bit erasure rate of s/N
if all the bits in the zigzag cycles of weight s are erased.
Thus, the bit erasure rate caused by zigzag cycles is lower
bounded by

1
2N

W∑
s=sg

μsεms + o

(
1
N

)
.

By using this result, we obtain a lower bound on the bit era-
sure rate for the expurgated ensemble similarly. �

Discussion 1: Since the symbol and the bit erasure rates of
all the zigzag cycles of weight s are lower bounded by ε sm,
the bit and the symbol erasure rates are not dependent on the
parameter sc and the subsetHm. Hence, Eqs. (4) and (5) do
not depend on the parameter sc and the subsetHm.

4.3 Simulation Results

Figure 4 compares the symbol erasure rate for the expur-
gated ensemble constructed by the improved cycle cancel-
lation ELDPC(315, 4, x, x2, 1, 8,H4) with that for the ex-
purgated ensemble constructed by the cycle cancellation
ELDPC(315, 4, x, x2, 1, 8, {1}), where H4 = {1, α5, α10}. It
can be seen that our proposed codes exhibit a better decod-
ing performance than codes designed by the cycle cancella-
tion. Figure 4 also shows the lower bound on the symbol
erasure rate which is given by Eq. (5). We see that Eq. (5)

Fig. 4 Comparison of the symbol erasure rate for the expurgated ensem-
ble ELDPC(315, 4, x, x2, 1, 8,H4) (proposed) with that for the expurgated
ensemble ELDPC(315, 4, x, x2, 1, 8, {1}) (cycle cancellation). The lower
bound is given by Eq. (5). It can be seen that our proposed codes exhibit a
better decoding performance than the cycle cancellation. It can be seen that
Eq. (5) is a tight lower bound on the symbol erasure rate for the expurgated
ensemble ELDPC(315, 4, x, x2, 1, 8,H4) for small ε.



NOZAKI et al.: ANALYSIS OF ERROR FLOORS OF NON-BINARY LDPC CODES OVER BEC
387

Fig. 5 Comparison of the symbol erasure rate for the expurgated ensem-
ble ELDPC(600, 4, x, x2, 2, 12,H4) (proposed) with that for the expurgated
ensemble ELDPC(600, 4, x, x2, 2, 12, {1}) (cycle cancellation). The lower
bound is given by Eq. (5). This is the case for sg > 1.

Fig. 6 Comparison of the symbol erasure rate for the expurgated en-
semble ELDPC(2000, 4, λ, ρ, 1, 8,H4) (proposed) with that for the expur-
gated ensemble ELDPC(2000, 4, λ, ρ, 1, 8, {1}) (cycle cancellation), where
λ = 0.5x + 0.5x2 and ρ = 0.5x3 + 0.5x5. The lower bound is given by
Eq. (5). This is the case for an irregular LDPC code ensemble case.

is a tight lower bound on the symbol erasure rate for the ex-
purgated ensemble ELDPC(315, 4, x, x2, 1, 8,H4) in the er-
ror floor.

Figure 5 compares the symbol erasure rate for the ex-
purgated ensemble constructed by the improved cycle can-
cellation ELDPC(600, 4, x, x2, 2, 12,H4) with that for the
expurgated ensemble constructed by the cycle cancellation
ELDPC(600, 4, x, x2, 2, 12, {1}). The lower bound on the
symbol erasure rate is given by Eq. (5). This is the case
for sg ≥ 2. Figure 6 compares the symbol erasure rate for
the expurgated ensemble constructed by the improved cy-
cle cancellation ELDPC(2000, 4, λ, ρ, 1, 8,H4) with that for
the expurgated ensemble constructed by the cycle cancella-
tion ELDPC(2000, 4, λ, ρ, 1, 8, {1}) where λ = 0.5x + 0.5x2

and ρ = 0.5x3 + 0.5x5. The lower bound on the symbol
erasure rate is given by Eq. (5). This is the case for an ir-
regular non-binary LDPC code ensemble. From Figs. 5 and
6, we see that Eq. (5) is a tight lower bound on the sym-

Fig. 7 Comparison of the bit erasure rate for the expurgated ensem-
ble ELDPC(315, 4, x, x2, 1, 8,H4) (proposed) with that for the expurgated
ensemble ELDPC(315, 4, x, x2, 1, 8, {1}) (cycle cancellation). The lower
bound is given by Eq. (4). It can be seen that our proposed codes exhibit a
better decoding performance than the cycle cancellation. It can be seen that
Eq. (4) is a tight lower bound on the symbol erasure rate for the expurgated
ensemble ELDPC(315, 4, x, x2, 1, 8,H4) for small ε.

bol erasure rate of the expurgated ensemble constructed by
the improved cycle cancellation in the error floor and our
proposed codes exhibit a better decoding performance than
codes designed by the cycle cancellation.

Figure 7 compares the bit erasure rate for the expur-
gated ensemble constructed by the improved cycle cancel-
lation ELDPC(315, 4, x, x2, 1, 8,H4) with that for the ex-
purgated ensemble constructed by the cycle cancellation
ELDPC(315, 4, x, x2, 1, 8, {1}). It can be seen that our pro-
posed codes exhibit a better decoding performance than
codes designed by the cycle cancellation. Figure 7 also
shows the lower bound on the bit erasure rate which is
given by Eq. (4). We see that Eq. (4) is a tight lower
bound on the bit erasure rate for the expurgated ensemble
ELDPC(315, 4, x, x2, 1, 8,H4) in the error floor.

4.4 Monotonicity of Error Floor

In Sect. 4.3, we see that the lower bound given by Eq. (4) is
a tight lower bound on the bit erasure rate in the error floor
for the expurgated ensemble constructed by the improved
cycle cancellation. It is empirically known that the error
floors for the non-binary LDPC codes decrease as the size
of Galois field increases [8]. In this subsection, we show
the monotonicity of the error floor by using the lower bound
given by Eq. (4).

Let n be the bit code length, i.e., n := mN. From
Eq. (4), we have

lim
n→∞ nPb(n,m, λ, ρ, sg, sc,Hm, ε) ≥ m

2
(μεm)sg

1 − μεm
=: f (m, ε, sg). (6)

The following lemma shows that for a fixed large bit
code length, the lower bound on the bit erasure rate is de-
creasing in m, i.e., f (m, ε, sg) is decreasing in m.
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Fig. 8 Curves given by Eq. (6) for μ = 2, sg = 1 and m = 1, 2, . . . , 9.

Lemma 1: Define f (m, ε, sg) as in Eq. (6). Define ε∗m as in
Eq. (3). Then f (m, ε, sg) > f (m + 1, ε, sg) for μ ≥ 1 and
0 < ε < min{ε∗m, ε∗m+1} = ε∗m.

Proof : From Eq. (6), we have

f (m, ε, sg) − f (m + 1, ε, sg) =
(μεm)sgg(m, ε, sg)

2(1 − μεm+1)(1 − μεm)
,

where

g(m, ε, sg) := m(1 − μεm+1) − (m + 1)ε sg (1 − μεm).

For ε < ε∗m, g(m, ε, sg) is increasing in sg. Hence, we have
g(m, ε, sg) ≥ g(m, ε, 1). For ε < ε∗m, g(m, ε, 1) is decreasing
in ε. Note that min{ε∗m, ε∗m+1} < μ−

1
m . Thus, we see that for

ε < μ−
1
m and μ ≥ 1

g(m, ε, sg) ≥ g(m, ε, 1) >g(m, μ−
1
m , 1)

=m(1 − μ− 1
m ) > 0.

Therefore, we have f (m+1, ε, sg)− f (m, ε, sg) < 0 for μ ≥ 1
and 0 < ε < min{ε∗m, ε∗m+1}. �

Figure 8 shows curves given by Eq. (6) for μ = 2, sg =

1 and m = 1, 2, . . . , 9. We see that the lower bound decreases
as the order of the Galois field increases.

5. Conclusion and Future Work

In this paper, we propose a method to improve the error
floors for the non-binary LDPC codes which contain the
variable nodes of degree two over the BEC under BP de-
coding. We derive lower bounds on the bit and the symbol
erasure rates in the error floors for the expurgated ensem-
bles under BP decoding. From the simulation results, the
lower bounds are tight for the bit and the symbol erasure
rates for the expurgated ensembles constructed by the pro-
posed method over the BEC under BP decoding.

We will optimize the labels in the expurgated ensem-
bles by the method in [16]. As discuss in [10], stopping
constellations for 3 imbricated cycles are not analyzed. We
will clarify the stopping constellation for their cycles.
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Appendix: Proof of Theorem 1

In this section, we prove Theorem 1. To prove Theorem 1,
we give several lemmas in the following sections.
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A.1 Analysis of Stopping Constellation for Zigzag Cycle
Codes

Consider zigzag cycle codes of weight s with labels
h1, h2, . . . , h2s ∈ F2m \ {0} as depicted in Fig. 1. Let
E1, . . . , Es ⊆ F2m be the states of the variable nodes.

Lemma 2: For any zigzag cycles of weight s with labels
h1, h2, . . . , h2s ∈ F2m \ {0}, an assignment of states {Ei}si=1
forms a stopping constellation if and only if for i = 1, . . . , s:

Ei = h−1
2i−1h2iEi+1, Ei = h−1

2i−2h2i−3Ei−1,

where

E0 := Es, Es+1 := E1,

h0 := h2s h−1 := h2s−1.

Proof : From the definition of stopping constellation, it
holds that for i = 1, . . . , s

Ei ⊆ h−1
2i−1h2iEi+1, Ei ⊆ h−1

2i−2h2i−3Ei−1.

From those equations, we have

E1 ⊆ h−1
1 h2E2 ⊆ h−1

1 h2h−1
3 h4E3 ⊆ · · · ⊆ βE1. (A· 1)

Similarly, we have E1 ⊆ β−1E1. Note that E1 ⊆ β−1E1 iff
βE1 ⊆ E1, and we have βE1 ⊆ E1 ⊆ βE1. Thus, we have

E1 = βE1. (A· 2)

From Eqs. (A· 1) and (A· 2), we get E1 = h−1
1 h2E2. Simi-

larly, we have Ei = h−1
2i−1h2iEi+1 and Ei = h−1

2i−2h2i−3Ei−1 for
i = 1, 2, . . . , s. The converse is clear from the definition. �

A.2 The Condition of Successful Decoding for Zigzag Cy-
cle Codes

From Lemma 2, for all the stopping constellations {Ei}si=1 of
zigzag cycle codes, we see that E j for j = 2, . . . , s depends
only on E1, i.e.,

E j =

j−1∏
i=1

h−1
2i−1h2iE1

for j = 2, . . . , s. Hence, in order to clarify the stopping con-
stellation for zigzag cycle codes, without loss of generality,
we may focus on analyzing the state E1. From Lemma 2,
we see that E1 = βE1. A stopping state for β ∈ F2m \ {0} is
defined as a subset E ⊆ F2m such that

E = βE.

Let Eβ denote the set of all the stopping states for β.
A zigzag cycle code is recoverable if all the symbol in

the zigzag cycle code are correct by the BP decoder. From
the definition, it is clear that the assignment of states such
that Ei = F2m for i = 1, 2, . . . , s forms a stopping constel-
lation for any zigzag cycle code of weight s. Note that F2m

is a subset of F2m . Thus, no zigzag cycle codes over the
BEC are recoverable if all the bits are erased, i.e., F2m ∈ Eβ
for all β ∈ F2m \ {0}. More precisely, if all the bits are
erased, no symbols and no bits in the zigzag cycle are cor-
rect. Similarly, the assignment of states such that Ei = {0}
for i = 1, 2, . . . , s also forms a stopping constellation for
any zigzag cycle code of weight s, i.e., {0} ∈ Eβ for all
β ∈ F2m \ {0}. Such a stopping constellation corresponds
to the case that all the bits are correct by the BP decoder.

Hence, the zigzag cycle codes with labels h1, . . . , h2s

are recoverable unless all the bits are erased if Eβ =
{{0}, F2m }. In other words, whether the zigzag cycle codes
with labels h1, . . . , h2s are recoverable unless all the bits
are erased, depends only on the cycle parameter β =∏s

i=1 h−1
2i−1h2i.

A.3 Analysis of Stopping States

In this subsection, we clarify the condition of β such that
Eβ = {{0}, F2m }.

For β ∈ F2m \ {0}, let E(αi)
β denote the set of the stopping

states containing αi, i.e., αi ∈ E for all E ∈ E(αi)
β . The small-

est stopping state containing αi for β, denoted by E(αi)
β , is the

stopping state for β such that E(αi)
β ⊆ E for all E ∈ E(αi)

β and

αi ∈ E(αi)
β . It is clear E(αi)

β equals

⋂
E∈E(αi)

β

E. (A· 3)

Since αi ∈ E for all E ∈ E(αi)
β , we have αi is in Eq. (A· 3). We

show the closure of Eq. (A· 3) under the addition. If γ1, γ2

are in Eq. (A· 3), γ1, γ2 are in E for all E ∈ E(αi)
β . Since γ1, γ2

are in E for all E ∈ E(αi)
β , γ1 + γ2 is in E for all E ∈ E(αi)

β .
Hence γ1 + γ2 is in Eq. (A· 3). Obviously Eq. (A· 3) is a
subset of E for all E ∈ E(αi)

β . Note that

β
⋂

E∈E(αi)
β

E =
⋂

E∈E(αi )
β

βE =
⋂

E∈E(αi)
β

E.

Therefore, E(αi)
β is the smallest stopping state containing αi

for β.
Next, we show the uniqueness of the smallest stopping

state containing αi for β. Let E∗ be another smallest stop-
ping state for β containing αi. The existence of a stopping
state E∗ contradicts the definition of Eq. (A· 3), since the in-
tersection of E∗ and Eq. (A· 3) contains αi and is a stopping
state for β.

Lemma 3: The smallest stopping state containing α0 = 1
for β ∈ F2m \ {0} is a subfield of F2m .

Proof : For all E ∈ E(1)
β , since 1 ∈ E and E = βE, we have

β ∈ E. Hence, we have β ∈ E(1)
β . Recursively, β j ∈ E(1)

β
for j = 0, 1, . . . , σ − 1, where σ is the order of β, i.e., σ is
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the smallest positive integer such that βσ = 1. Since E(1)
β is

closed under the addition, we have
∑σ−1

j=0 ajβ
j ∈ E(αi)

β , where
a0, a1, . . . , aσ−1 ∈ {0, 1}. Hence, we have

E(1)
β ⊇ A :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ−1∑
j=0

ajβ
j | a0, a1, . . . , aσ−1 ∈ {0, 1}

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Note that A = βA and A is closed under the addition. Thus,
we have E(1)

β = A.

We claim that E(1)
β is a subfield of F2m . Obviously, we

have the closure of E(1)
β under addition and multiplication.

The additive identity is 0 and the multiplicative identity is 1.
The additive inverse for γ ∈ E(1)

β is γ. For γ ∈ E(1)
β , γ2m−2

is in E(1)
β since the closure of E(1)

β under multiplication. The

multiplicative inverse for γ ∈ E(1)
β \ {0} is γ2m−2 (Note that

γ ∈ F2m \ {0}). We are able to check that all field axioms are
satisfied. Therefore, E(1)

β is a subfield of F2m . �

Lemma 4: Define Hm as in Eq. (2). If β � Hm ∪ {0}, it
holds that E(1)

β = F2m .

Proof : From Lemma 3, E(1)
β is a subfield of F2m . Note that

the order of proper subfield of F2m is 2r [17, p.45], where r
is a positive integer such that r | m and r � m. We will prove
E(1)
β is not equal to any proper subfields of order 2r. Define

g := 2m−1
2r−1 . From β � Hm \ {0}, we have β = αig+ j, where

j ∈ {1, 2, . . . , g − 1}. If β is a member of the proper subfield
of order 2r, then β2r − β = 0 [17, p.45]. However,

β2r − β = β(α j(2r−1) − 1) � 0.

Hence, β is not a member of the proper subfield of order
2r. Thus, we have E(1)

β is not equal to the proper subfield of
order 2r for any positive integer r such that r | m and r � m.
Therefore, we obtain E(1)

β = F2m . �

Lemma 5: Let Eβ denote the set of stopping states for β.
DefineHm as in Eq. (2). If Eβ \ {{0}, F2m } � ∅, then β ∈ Hm.

Proof : Let E be an element of Eβ \ {{0}, F2m }. Note that
αiE ∈ Eβ \ {{0}, F2m } for i = 0, 1, . . . , 2m − 2. If E contains
αi, then 1 is an element of α−iE ∈ Eβ \ {{0}, F2m }. Hence,
without loss of generality, we assume that E ∈ Eβ \{{0}, F2m }
and 1 is an element of E, i.e., E ∈ E(1)

β . Since E(1)
β � F2m and

β � 0, we have β ∈ Hm from Lemma 4. �

Lemma 6: Define Hm as in Eq. (2). If β ∈ Hm then Eβ \
{{0}, F2m } � ∅.
Proof : If β ∈ Hm, there exists a positive integer r such that
r | m, r � m and β ∈ {αi(2m−1)/(2r−1) | i = 0, 1, . . . , 2r − 2}.
Then, a stopping state for β is written as the following:

E = {0} ∪
{
α j(2m−1)/(2r−1) | j = 0, 1, . . . , 2r − 2

}
,

in fact E = βE and E is a subfield of F2m of order 2r. Hence,
we have E ∈ Eβ \ {{0}, F2m } � ∅. �

A.4 Proof of Theorem 1

Note that {{0}, F2m } ⊆ Eβ for all β ∈ F2m \ {0}. Hence, we
have Eβ = {{0}, F2m } iff Eβ \ {{0}, F2m } = ∅. Define Hm as
in Eq. (2). From Lemma 5 and 6, we have that β � Hm is a
necessary and sufficient condition for Eβ = {{0}, F2m }. From
Sect. A.2, we see that the zigzag cycle codes with labels
h1, h2, . . . , h2s are recoverable unless all the bits are erased
if Eβ = {{0}, F2m }, where β =

∏s
i=1 h−1

2i−1h2i. Hence, we ob-
tain that the zigzag cycle codes with labels h1, h2, . . . , h2s are
recoverable unless all the bits are erased, if β � Hm.
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