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Abstract

Polymer composite materials have been produced by combining synthetic fibers
(e.g., glass and carbon) and thermoset matrix such as epoxy or polyester. These
materials are obtained based on fossil fuel. The rising concerns for using fossil fuel
products are environmental impact matters, exhaustion of resources, and so on. In order
to overcome these problems in the future, it has been gaining much more attention to
develop alternative materials using biomass-based or -derived materials such as natural

fibers and biodegradable thermoplastic resins.

The first priority of using natural fibers must be the establishment of processing
method since natural fibers have different characters from glass and carbon fibers. In
case of a short fiber composite material, one of the critical parameters is the fiber length
inside the composite material. It needs to be longer than critical fiber length, which
means the minimum length to exhibit the original fiber strength. Otherwise the
mechanical properties such as tensile strength and Young’s modulus cannot be
improved. Several processing methods were introduced to produce natural
fiber-reinforced composite materials in the past. Two-steps production method was
proposed to increase the mechanical properties. The results showed that the mechanical
properties were not enough improved since most of fiber lengths were lower than its
critical fiber length. The other fabrication method was actualized for producing long
pellets. The results showed good mechanical properties on short fiber composite

materials, but it required expensive investment and complicated technique.

In this study, thus, in order to overcome the main drawbacks explained in the
above, a new method was developed to produce composite materials using ramie spun
yarns and polypropylene, which are the representative plant-based natural fiber yarn and

thermoplastic resin.

In Chapter 1, first, the background and purpose of this study were introduced.

In Chapter 2, a new continuous process called multi-pin assisted resin

impregnation (M-PaRI) for natural fiber composite materials was explained. Using the
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process, composite strands were produced, and then these were chopped to pellets
called master-batch. Finally using the pellets, short fiber composite materials were
produced by injection molding. From the experimental results of tensile tests on short
fiber composite materials, it was confirmed that tensile strength increased with
increasing fiber weight fraction until 30-40wt%, then dropped slightly at 50wt%.
Young’s modulus increased with increasing fiber weight fraction. It was confirmed
from the experimental results that the optimal fiber content was between 30-40wt% on
the short fiber composite materials. Cross-sectional areas of the resultant composite
strands were studied in order to investigate dependency of temperatures during
fabrication procedure. As the results, voids were observed on composite strands
fabricated between 160°C-185°C. However, voids did not occur between 195°C-205°C.
From these results, it was estimated that tensile strengths on short fiber composite
materials fabricated between 160°C-185°C were low. On short fiber composite materials
fabricated over 205°C, over-heating caused decreased tensile strengths. According to
the investigation of fiber length extracted from the short fiber composite materials, the

results showed that fiber lengths were larger than its critical length.

In Chapter 3, using M-PaRI process, single yarn composite strand and composite
tapes containing thirty-three ramie spun yarns were produced. The composite tapes
were developed for the purpose of replacing glass woven fabric composites. Regarding
single yarn composite strands, since the dependency of MAPP contents was not
investigated, these materials were produced in different content of MAPP. Tensile
strength and elastic modulus of the single composite strand increased with increasing
fiber volume fraction irrespective of MAPP contents (Owt%-2wt%). However, the
dependency of MAPP contents was not observed. With respect to composite tapes, a
new process called roller system was added after M-PaRI process in order to produce
the composite tapes. Tensile strengths of the composite tapes exhibited relatively lower

values than composite strand due to size effect.

In order to investigate the cause of the fluctuation in elastic modulus, the
experimental values were discussed with conventional theoretical models base on yarn
modulus analysis and statistical methods (least squares method, first order second

moment approximate method, FOSM) in Chapter 4. From the comparison between
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experimental values and the theoretical models, the fluctuation on a composite yarn was
mainly related to fiber orientation angles. Moreover, according the FOSM model, it is
possible to reduce the fluctuation in elastic modulus of the composite materials when

the composite materials were produced at bigger size.

In Chapter 5, the conclusions of this study were summarized, and future research

subjects were added.



Contents

1. Introduction

1.1 Background
1.1.1 Environmental issues
1.1.2  Composite materials
1.1.3 Natural fiber composite materials
1.1.4 Natural fibers and thermoplastic matrices
1.1.5 Adhesion

1.2 Motivations

1.3 Purposes

1.4 References

2. Yarn composite pellet production by M-PaRI process
2.1 Introduction
2.2 Experimental methods
2.2.1 Materials
2.2.2  Yarn composite pellet production
2.2.3 Injection molding

2.2.4 Tensile tests

12

13

13

15

16

17

VI



2.3 Results and Discussion 18

2.3.1 Degree of impregnation of the resultant composite strands 18
2.3.2 Tensile properties 20
2.3.2.1 Stress-Strain Behavior 20
2.3.2.2 Tensile Strength and Young’s Modulus 21
2.3.2.3 Effects of Fiber Content 23

2.4 Fiber Dispersion and Fiber Length Distribution 23
2.5 Conclusion 27
2.6 References 28

. Single yarn composite strand and tape productions by M-PaRI

Process 29
3.1 Introduction 29
3.2 Experimental methods 30

3.2.1 Materials 30

3.2.2 Productions of single yarn composite strand and yarn composite tape 30
3.2.3 Tensile specimens 31
3.2.4 Measurement of fiber volume fraction and surface orientation angle 32
3.3 Results and discussion 32

3.3.1 Single spun yarn composite strand 32

VII



3.3.1.1 Surface morphology 32

3.3.1.2 Tensile properties 35

3.3.1.3 Fractography 37

3.3.2  Yarn composite tape 39
3.3.2.1 Cross-section of the tape and fracture mode 39
3.3.2.2 Tensile properties 40

3.4 Conclusion 42
3.5 References 43

. Analysis of elastic modulus on composite stands and tapes 44

4.1 Introduction 44
4.2 Conventional theoretical models of elastic modulus 45

4.2.1 Differences among the theoretical elastic moduli 47
4.3 Comparison experimental values with theories of elastic modulus 50

4.4 Reliability of elastic modulus on a composite strand evaluated by first order

second moment approximate method 54
4.4.1 Single random variables 54
4.4.2 Multi random variables 57
4.4.3 Size effect on standard deviation in elastic modulus 60
4.5 Conclusion 62

VIII



4.6 References 63

5. Conclusions and future researches 65
5.1 Overall conclusions 65
5.2 Future researches 66

Appendices 67

A. Concerning tensile and transverse stresses 67

B. Based on Laminate theory 83

C. Dealing with shear stresses 93

References 105

Acknowledgements 106

IX



1. Introduction

1.1 Background

1.1.1 Environmental issues

Much attention has been attracting to environmental issues in many countries. The issues
were early mentioned at the United Nations conference on the human environment held in
Stockholm in 1972". It showed the guideline for the people how to coexist with the
environment. The continuous efforts to preserve environment were discussed at the conference
and published a summary of Rio declaration on environment and development in 19927, It was
summarized that human beings need to develop sustainably the societies with considering
environment for the future. In 1997, a famous Kyoto protocol to the United Nations framework
convention on climate change was declared”. It was stated that the developed nations have more
responsibility not only to preserve environment, but also to cut CO2 emissions in the
atmosphere. [t was a critical conference for developed countries to rethink their strategies in
order to meet the requirements. The world summit on sustainable development was held in
Johannesburg in 2002 for discussing about global warning, preserving natural resources,
sustainable economic growth, etc. Recently, the basic law for the promotion of utilizing biomass

was approved in a cabinet meeting by Japanese government’.

1.1.2 Composite materials
* Definition of composite materials
Composite materials have been used since ancient time. It can be classified in many ways
depending on how and where to be used. Table 1 shows a classification of composite materials®.
The idea for using composite materials is to show superior properties as compare to using a
single material. Composite materials can be defined as below®.
1) It consists of two or more physically distinct and mechanically separable materials.
2) It can be made by mixing the separable materials in such a way that the dispersion of one
material in the other can be done in a controlled way to achieve optimum properties.
3) The properties are superior, and possibly unique in some specific respects, to the properties

of the individual components.



Table 1 A classification of composite materials.

Natural
composite Microcomposite materials Macrocomposites

materials

Wood,
Metallic alloys (Steels), Toughend

Bone, Galvanised steel,
thermoplastics (Impact polystyrene,

Examples Bamboo, Reinforced concrete
ABS), Sheet molding compounds,
Muscle and beams, Helicopter
Reinforced thermoplastics
other tissue blades, Skis

* Advantage and disadvantage of composite materials

Composite materials have advantage and disadvantage properties when the composite

materials are used for structural materials. Advantage and disadvantage of composite materials

are given as below®" 7.

Advantages

)

2)

3)

4)

A higher performance for a given weight leads to fuel and energy savings, when the
strength per unit weight and modulus per unit weight are considered. Those are called
specific strength and specific modulus of composite materials.

Laminate patterns and ply buildup in a part can be tailored to give the required mechanical
properties in various directions.

It is easy to produce complex parts of the composite materials in one manufacturing
method.

It gives high temperatures and weathering resistance, corrosion, high chemical stability, low
smoke density, low flammability, low toxicity of decomposition products, huge selection of

possible component size and shape, good design practice, low assembly costs.

Disadvantages

1
2)

3)
4)

High cost of raw materials and fabrication.

Composite materials show reversible and irreversible changes in property which occur
owing to contact with humid environments and to temperature fluctuations.

Week transverse properties.

Repairing process of composite materials is complex and requires refrigerated transport and

storage.



1.1.3 Natural fiber composite materials
Natural fiber composite materials have been gaining attention in the field of composite
materials because of environmental problems, oil crisis, rising demand in automobile industry,

b

et . The main purpose of natural fiber composite materials is to replace glass fiber

composite materials'”.

Advantages and disadvantages of natural fiber composite materials are given as below'""?.

Advantages

1) Cost effective

2) Renewable

3) Recyclable and biodegradable

4) Lower environmental impact as compared to glass fiber composites
5) Fuel efficiency and reduction of emissions in automobile application
Disadvantages

1) Relatively high moisture absorption

2) Lower operating life

3) Poor impact strength

4) Poor adhesion between fiber and matrix

5) Variation in mechanical properties

6) Lower processing temperature

7) Variation in price of natural fibers

1.1.4 Natural fibers and thermoplastic matrices

Natural fibers can be classified by plant/lignocellulosic and animal fibers'”. Plant/
lignocellulosic fibers can also be divided by wood, stem/bast, leaf, seed/fruit, and grass. Fibers
such as ramie, jute, hemp, and flax belong to the group of stem/bast. Photographs of natural
fibers are shown in Figure 1'.

Table 2 shows properties of glass and natural fibers'®"”. Natural fibers have advantages of
biodegradable, compatible specific strength, low density. However, it has also disadvantages of
hydrophilic nature, relative low temperature during fabrication process.

Thermoplastic polymers have been used as alternative materials for thermoset polymers
because of their various applications such as plastic bag, disposable containers. The mechanical

properties of thermoplastic polymers are listed in Table 3'%.



Ramie Jute

Hemp Flax

Figure 1 Photographs of natural fiber, e.g., Ramie, Jute, Hemp, and Flax"”



Table 2 Properties of glass and natural fibers

Mean Mean
Tensile ~ Young’s Microfibr Cellulose  Lignin
fiber Cross
Fibers strength  modulus ill angle  content content
length section
[MPa] [GPa] [°] [wt%] [wt%] [mm] [um2]
1400-250
E-Glass 76 — — — — —
0
Ramie 560 24.5 7.5 68.6-76.2  0.6-0.7 150 815
Jute 393-773  13-26.5 8 61-71.5 25-30 1.5-5 161
Hemp 690 — 6.2 70.2-74.4  3.7-5.7 5-55 297
Flax 345-1100 27.6 10 71 2.2 25-30 184
Table 3 Properties of thermoplastic polymers.
Tensile Young’s Specific
Fracture strain
strength modulus gravity
[MPa] [MPa] [%] [g/cm’]
PE 21-38 414-1245 15-100 0.94-0.97
PVC 41-52 2410-4136 40-80 1.30-1.58




1.1.5 Adhesion

Natural fibers and thermoplastic polymers are hydrophilic and hydrophobic materials,
respectively. Thus, adhesion between two materials is important factor to improve mechanical
properties on the composite materials.

Maleic anhydride grafted polypropylene (MAPP) called coupling agent was commonly used
in wood/PP composite materials. Figure 2 shows the mechanism of interaction of cellulose
fibers with MAPP'”. The reaction between cellulose and MAPP can be divided into two main
steps as shown in Figure 2. The copolymer is converted into the more reactive anhydride form;
esterification of the cellulose fibers takes place in the second place.

Hristove et al. investigated wood flour/PP composite materials with different contents of
MAPP?”. The results showed that tensile properties such as strength, elongation were improved
as compared to MAPP-free composite materials. Danyadi et al. also studied interfacial
interaction between wood flour and PP on the composite materials®”. It was confirmed that
composite materials containing MAPP showed much better tensile strength than MAPP-free

composite materials. The results also showed that the amount of MAPP has optimal contents
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Figure 2 Mechanism of interaction between cellulose fibers and MAPP'”.



around 0.05-0.1 MAPP/wood ratio. Keledi et al. investigated tensile and impact properties on
PP/wood/elastomer composite materials*>. Adding MAPP also increased mechanical properties
because of good adhesion.

Thomason investigated jute fiber/PP composite materials™. In his study, the injection
molding process was carried out to compound fibers and matrix. The results showed that
mechanical properties increased adding 2wt% of MAPP. Yan et al. published a research paper
dealing with hemp fibers/PP composite materials*". It was confirmed that tensile, flexural, and

impact strength increased with increasing the content of MAPP.

1.2 Motivations

Fabrication methods of producing composite materials have been studied in many countries.
Tanaka et al. developed a continuous process method using jute yarns, polypropylene (PP), and
MAPP of 5wt%””. In their study, jute yarns were fed into a die of twin-screw extruder. The yarn
twisted reversely in order to infiltrate matrix among fibers. The obtained composite materials
were chopped into pellets of 4mm and 12mm length for injection molding. The results showed
that tensile strength and initial modulus were 52.1MPa and 6.18GPa, respectively, with fiber
volume fraction of 50wt%. It can be stated that the results showed the improved mechanical
properties on short fiber composite materials. However, it needs complicated techniques during
untwisting process.

Fung et al. introduced a fabrication method with sisal fiber yarn, PP, and MAPP*. Sisal
fiber yarn passes through a die assembly connected with a single screw extruder. In this process,
sisal yarns were impregnated with MAPP. The results showed that MAPP was welled infiltrated
between sisal fiber yarns. The obtained composite materials were chopped into pellets of Smm
for injection molding. The results showed that tensile strength and Young’s modulus with fiber
volume fraction of 10wt% were 35.51MPa and 3.07GPa in case of low temperature for injection
molding. It was confirmed the reduction of temperature during injection molding.

Cichocki et al. invented moldable pellet with natural fibers and thermoplastic polymers”.
The fabrication method is very similar with the process suggested by Fung et al. The obtained
pellets can be used for injection molding, extrusion compression molding, and compression
molding.

Angelov et al. carried out experimental tests adopting pultrusion process™. The pultrusion
process has been used in early stage of composite industries. In their study, flax yarn and PP

were used as reinforcement and matrix, respectively. It was confirmed that composite materials



were obtainable by uisng natural fiber yarn from their processing method. They also pointed out
that thermal degradation was occurred during the pultrusion process.
Bledzki et al. suggested two-step processing method before injection molding was

conducted®”’

. Abaca fiber yarns and man-made cellulose were used as reinforcements. PLA and
PP were also used as matrices. At the first stage, fiber yarns were coated at a die attached a
twin-screw extruder. Then, the obtained composite materials were chopped into pellets. The
pellets were inserted into a single-screw extruder at the second stage. The resultant composite
materials were repeatedly chopped into pellets for injection molding. It was confirmed that the
dispersion of fibers in the composite materials was excellent, but the fiber length of the resultant
composite materials was short due to the effect of the process of second stage.

The main drawbacks for producing natural fiber composite materials studied in the past are

high cost, complexity, not enough impregnation between fibers, huge energy consumption.

1.3 Purposes

+ Development of a new fabrication method using biomass.

As pointed out in section 1.2, a new approach for producing natural fiber composite
materials needs to be considered in order to overcome the disadvantages. The fabrication should
be simple, low cost, less energy consumption, but the results of mechanical properties on

composite materials need to show promising outcomes.

¢ Evaluation of the resultant composite materials.

In the past study, Doi et al. investigated long fiber composite materials using ramie yarns™”.
Cyclic loading was conducted in order to improve the mechanical properties of the resultant
composite materials. Recently, Nakamura et al. discussed about elastic properties of green
composites using ramie twisted yarns’”. It was confirmed that elastic modulus of the yarn
composite materials decreased with decreasing fiber orientation angle. Few studies for the
effects of MAPP on natural fiber yarn/PP composites have been done in previous studies as also
explained in section of 1.1.3.

In this study, thus, the effect of MAPP was investigated on a ramie spun yarn/PP composite
strand. In addition, a ramie/PP composite tape was also produced to discuss about the possible

application for woven fabric composite materials. Moreover, elastic modulus of a ramie spun

yarn/PP strand was compare with conventional theoretical models.
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2. Yarn composite pellet production by M-PaRI process
2.1 Introduction

As mentioned in Chapter 1, the challenges for producing natural fiber composite materials
are how to utilize the characters of natural fibers and thermoplastic polymers. Natural fibers are
usually formed in a yarn during roving process. Thus, it will be convenient to develop a
technique by using a yarn as reinforcement. The technique can be applied to any natural fiber
yarns. The critical point using a natural fiber yarns is that the yarn needs to be impregnated with
thermoplastic polymers as pointed out in section 1.2. It means that good impregnation of
thermoplastic polymers between fibers is the key points to improving mechanical properties of
short fiber composite materials. Furthermore, when the composite pellets were obtained by
chopping yarn composite materials, it can be used as additive masterbatch for mass-production

of interior parts in the field of transport industries such as automobile, railroad, and airplane.
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2.2 Experimental methods

2.2.1 Materials

Continuous ramie single yarns, having fineness of 95 tex, Type no. 16 (Tosco Co., Ltd.,
Japan) and polypropylene (Prime Polymer Co. Ltd., Japan) were used as reinforcement and
matrix material, respectively. Physical and chemical properties of ramie fibers and mechanical
properties of polypropylene are listed in Table 2.1, and Table 2.2”. According to 1) and 2),
although cellulose contents vary widely from 65% to 85%, both data are in an agreement in
terms of low lignin contents. The cross-sectional area of ramie fibers is not circular, but rather
elliptical as shown later. The major axis is approximately 30um. The degree of microfibrillar
angle of ramie fibers is one of the smallest classes among plant-based natural fibers.

As mentioned in Chapter 1, high adhesion between hydrophilic fibers and hydrophobic
resin by chemical bonding is known to be induced by available OH groups on the fiber surface.
The resin adheres to the fiber surface through molecular chain entanglement. During this
reaction, maleic anhydride grafted polypropylene (MAPP) functions as a coupling agent to
realize chemical bonding. In this study also, MAPP (Kayaku Akzo Co. Ltd., Japan) was used to
promote chemical interaction between the fiber and matrix, of which the aspect used in this

study is shown in Figure 2.3

(b)
Figure 2.1(a) Aspect of ramie spun yarn on a textile bobbin. (b) Magnified observation of a
ramie spun yarn
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Figure 2.2 Polypropylene pellets.

Table 2.1 Physical and chemical properties of ramie fibers"™?.

Cell Cell  Microfibril ~ Moisture
Density Chemical composition (wt%)

diameter  length angle content

(g/em’)  (mm)  (mm) ©) (Wt%)  Cellulose  Lignin  Hemicellulose ~Pectin  Wax Ref.

- - 7.5 8 68.6-76.2  0.6-0.7 13.1-16.7 19 03 1

- 40-50 154 75-1.2 - 80-85 05 3-4 - - 2)

Table 2.2 Mechanical properties of polypropylene™.
Tensile strength Young’s modulus  Fracture strain ~ Specific gravity
[MPa] [MPa] [%] [g/em’]
PP 32-42 689-1176 200-700 0.89-0.91

14



Figure 2.3 Granular maleic anhydride grafted polypropylene (MAPP).

2.2.2 Yarn composite pellet production

Figure 2.4 shows a schematic of the present fabrication system. Continuous ramie single
yarn/PP composites were produced through a new combined technique proposed in this study,
which consists of resin coating and multi-pin-assisted resin impregnation (M-PaRI) processes,
as shown in Processes A and B of Figure 2.4. Six ramie spun yarns were first delivered via
preheating process into a cross-head die attached to a ¢ I5mm single screw extruder
(MusashinoKikai Co., Ltd., Japan), into which PP pellets and MAPP powders were fed at the
same time. The mixed resin was coated onto the ramie yarns in the die at Process A
(resin-coating process). Subsequently, it was impregnated into interfibers through the multi-pin
system, as shown in Process B (M-PaRl) of Figure 2.4. The number and diameter of pins used
here were 22 and 5 mm, respectively. M-PaRI is a new processing method proposed in this
study, which is added to the conventional production procedure. Temperatures of the single
screw extruder were all set at 190°C with a screw speed of 7.0 rpm. Following this process, a
motor was set to draw the composite strand with a screw speed of 45.0rpm. The continuous
composite strands containing six ramie yarns were chopped to pellets of 2mm length for
injection molding, as shown in Figure 2.6. The set temperature(s) was 190°C at Process A, and

was changed in the 160-225°C range for Process B.
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Figure 2.4 Schematic view of the present fabrication system. Process A: resin-coating process,

Process B: multi-pin-assisted resin impregnation (M-PaRI) process.
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Figure 2.5 A photograph of a single screw extruder.

2.2.3 Injection molding

PP pellets containing granular MAPP were again mixed with the chopped pellets in order to

obtain different fiber contents before conducting injection molding process. The resultant pellets
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Figure 2.6 A chopped pellet containing six ramie single yarns by M-PaRI included process.

were molded into specimen dies of two types on an injection molding machine (Shinko Sellbic
Co., Ltd.), as shown in Figure 2.7. Temperatures of cylinder, lock, and nozzle were set at 180°C,
180°C, and 185°C, respectively. Fiber contents of injection-molded tensile specimens were

adjusted to 30 wt% and 10-50wt%, respectively.

Figure 2.7 A photograph of injection molding machine.

2.2.4 Tensile tests

Tensile tests of injection-molded ramie short fiber composite materials were carried out
using a universal testing machine (Desktop type universal testing machine, LSC-1/30, JT Toshi
Co. Ltd.). Shape and dimensions of small-sized (Japanese Industrial Standards, JIS K 7162,
Type 5B) and medium sized (JIS K 7162, Type 1BA) specimens are shown in Figure 2.8.

Tensile speeds for small and medium sized specimens were set at 10 mm/min and 17 mm/min,
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Figure 2.8 Shape and dimension of tensile specimens.

respectively, that is equivalent to 10 mm/min at the same strain rate. The mean cross-section
areas of small and medium sized specimens were determined by micrometer-measuring three
locations along the longitudinal direction, and then taking an average. Five specimens were
evaluated to reduce variation in mechanical properties. Tensile strength was obtained by
dividing the measured maximum load by the mean cross-sectional area, and Young’s modulus
was evaluated in a linear region between 0.05 and 0.25% strains on a stress—strain curve for

each test.

2.3 Results and discussion

2.3.1 Degree of impregnation of the resultant composite strands

In order to investigate infiltration of matrix among fibers, the obtained composite strands
were filled with EP4901 and cured by addition of Jeffamine at the oven of 25°C for 24 hours.
Then, the harden materials were polished to examine the cross-section of the resultant
composite strands. Microscopic cross-section images of ramie/PP composite strands are shown
in Figure 2.9, in which the temperature of Process B was set at 195°C. The strand was taken out
of the fabrication system after it was stopped intentionally. Its several cross-sections before or
inside Process B were observed. It is apparent from Figure 2.9(a) that many voids exist among

fibers before Process B, although resin is locally infiltrated. Bledzki et al.* carried out a
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Figure 2.9 Cross-sectional images of ramie/PP composite strands—(a) before M-PaRI process,
(b) after 11th pin, (c) after 15th pin, and (d) final product. Images in (a) and (d) are
obtained using 3D laser measuring microscopy. Images in (b) and (c) were obtained
using scanning electron microscopy.

two-step extrusion process, in which abaca/PLA strands obtained firstly by yarn coating process
were pelletized and secondly inserted into a single extruder. It is guessed that the second
process was conducted because such voids might not be removed in the first-step process.
Figures 2.9(b) and 2.9(c) show images after the 11th and 15th pins, respectively. They show
almost no void. The final product in Figure 2.9(d) shows that the cross-section contains the
resin completely infiltrated among fibers with no void. It is well verified that the attached
multi-pin system assists in impregnating the resin into interfibers. This system does not need
any additional extrusion process. The mechanism of this impregnation is estimated such that
continuous contact and rubbing between resin-coating yarns and pins flattens the yarns and

widens the interfiber spaces. Consequently, the resin can be impregnated easily among fibers.
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Tanaka and Hirano® achieved complete resin impregnation for jute-twisted yarn, as
mentioned in Chapter 1. They also widened the interfiber spaces through an untwisted yarn
process. Although this process can control the magnitude of the spaces by changing the number
of untwists, it has to be prepared for each yarn. It demands complicated and expensive facilities.
On the other hand, the composite process proposed herein can be widened among fibers by a
simple process, as mentioned previously. It is concluded that, thereby, the composite strands
can be produced successfully and more easily through such a combined technique: a

conventional resin-coating process (Process A) followed by M-PaRI process (Process B).

2.3.2 Tensile properties

2.3.2.1 Stress-Strain Behavior

Figure 2.10 shows the effect of temperature during Process B on the tensile stress-strain
behavior of the composites specimens containing 30 wt% fibers. The size of specimen was a
small type in Figure 2.8(a). All of the stress-strain curves shown on linearity at around 2-3%,
but the stress levels during deformation of composite specimens are much higher than that of PP.
The level of composite stress also depends on the temperature at Process B. Composite
specimens produced at low temperatures during Process B, that is, 160°C and 185°C, exhibit
less stress, while composite specimens produced at 195°C, 205°C, and 225°C show higher stress
and almost identical stress-strain behavior, especially at the initial stage. However, composite
specimens produced at 160°C, 185°C, and 195°C exhibit a similar strain at break, whereas those

produced at 205°C and 225°C show less fracture strain. In other words, less fracture energy is

80 225°C
70t /ﬁzos‘)(:
i (“1Te—195C

60 4 5C
< F < 185°C
E 50: | — /160°C
g 40F "//T_—
£ 30t |

20f PP

10} \

O 12345 6 7 8 910

Strain, %

Figure 2.10 Typical stress-strain curves of short ramie/PP reinforced composites produced at
different temperatures during Process B.
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Table 2.2 Tensile properties of short ramie/PP composites

7. Young’s Tensile Fracture
Material or? | modulus strength strain
(GPa) | (MPa) (%)
- T.04 424
PP (Owt%) ©0.071) | ©027) | 7200
160 1.45 50.6 5.65
©.11) | (0.053) | (0.083)
185 .64 55.1 5.32
0.080) | (0.066) | (0.077)
. 1.94 69.2 5.37
Composites | 195 1 072y | (0.046) | (0.040)
205 1.72 67.7 5.6
0.12) | (0.032) | (0.039)
25 1.72 53.1 4.04

0.086) | (0.086) | (0.093)

Tiip: Temperature at Multi-pin-assisted resin impregnation
M-PaR1I) process . L
Numbers in parentheses denote coefficients of variation

brought from thermal exposure higher than 195°C during Process B.

2.3.2.2 Tensile Strength and Young’s Modulus

Table 2.2 shows averages and coefficients of variation of the tensile properties of the
small-sized PP and composite specimens. It can be seen that tensile strength and Young’s
modulus increase with increasing temperature over the whole 160-195°C range. Eventually, in
the composites specimens of 195°C, not only did tensile strength improved 1.63 times higher
than that of PP specimens, but also Young’ s modulus increased 1.87 times. However, a slight
decrease in tensile strength in the specimens of 205°C is found with a subsequent dramatic
decrease of 225°C. From the above, the maximum properties of composites could be obtained
at 195-205°C in the present fabrication system. It was observed that voids did not disappear,
similar to Figure 2.9(a), when the composite strands were produced at 160°C and 185°C as
shown in Figure 2.11. That is to say, the resin was not impregnated completely into interfibers
even after Process B. The remaining voids decreased tensile strength and Young’ s modulus, as
well as the whole stress level. It is inferred that, for the composite specimens of 205°C and 225
°C, overheating causes degradation of ramie fibers during Process B. It is considered that such a

thermal degradation of fibers induces premature fracture of the composite specimens.
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Figure 2.11 Cross-section images of the resultant composite strands. The Temperatures were

set in the range 160°C -225°C during M-PaRI process.
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2.3.2.3 Effects of Fiber Content

Figure 2.12 presents effects of fiber content on tensile properties of composite specimens.
The size of the specimens was medium size of a type in Figure 2.8. For the specimens, the
pellets produced at 195°C during Process B were used. It is apparent in Figure 2.12(a) that the
tensile strength increases with increasing fiber content. This trend reaches a maximum level at
40wt%. Tensile strength of 40wt% increased 1.73 times higher than PP specimens. Above this
level of fiber content, the tensile strength starts to decrease. As can be seen in Figure 2.12(b), a
continuous increase in Young' s modulus occurs as the fiber content increases. That of 50 wt%
specimens increased 2.17 times higher than the PP specimen. Results for fracture strain are
shown in Figure 2.12(c). It is seen that fracture strain is decreased almost linearly between 4.0
and 7.0%. Consequently, although it exists between 30-50wt%, it can be said that the weight

fraction of fiber content giving the best tensile properties is about 40wt%.

2.4 Fiber Dispersion and Fiber Length Distribution

Figure 2.13 shows a polished view of transverse section in a small-sized specimen produced
at 195°C during Process B. The fiber content in Figure 2.13 is 30 wt%. The black bar-like areas
show marks of ramie fibers separated from matrix during the polishing process. White dots
denote cross-sectional area of ramie fibers. As presented from Figure 2.13, a higher proportion
of white dots is visible. Such a phenomenon can also be observed on glass fiber-reinforced
composite specimens®”. This means that short ramie/PP reinforced composites have a high
degree of fiber orientation to the flow direction.

Figure 2.14 shows a magnified view of Figure 2.13. Results show that individual fibers after
injection molding are well dispersed, despite the fact that high-density fiber bundles were
obtained after M-PaRI process, as shown in Figure 9(d). When being strongly bonded, it is
known that the bundles act as a reinforcing unit, which means that pull-out of bundles occurs at
much lower stresses’. Consequently, it should be noted that much higher interfacial stress can
be yielded on the surface of the fibers. To confirm the change in fiber length after the applied
fabrication processes, small-sized composite specimens produced at 195°C during Process B
were dissolved in boiling xylene for 24 hr to remove PP resin. Then, extracted ramie fibers were
dried at 100°C for 2hr. Figure 2.15 shows an SEM micrograph of ramie fibers. Although partial
microfibril detachment is observed, the single fibers maintain their original structure even after
Processes A and B with subsequent injection molding processing applied. Fiber length

distribution of the specimens dissolved above is presented in Figure 2.16. The total
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(a) Tensile strength versus fiber volume fraction.

(c) Fracture strain versus fiber volume fraction.

Figure 2.12 Effect of fiber content on tensile properties of short ramie/PP reinforced composites
produced at 195°C during Process B
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Figure 2.13 Laser micrograph of transverse section of short ramie/PP reinforced
composites produced at 195°C during Process B.
number of measured fibers was 780. Average fiber length was 1.56mm and the standard
deviation was 0.61mm. It is necessary for short fiber-reinforced composites to be longer than
the critical fiber length. According to an earlier report®, the critical fiber length of ramie fiber is
0.47 mm. It can be clearly seen that over 98% of ramie fibers are longer than the critical length

in this study. This brings sufficiently high stress to composite

Figure 2.14 Laser micrograph of transverse section of short ramie/PP reinforced
composites produced at 195°C during Process B.

25



500x 20.0pem WD: 9.5mm  2kV 2011/05/13

Figure 2.15 SEM micrograph of extracted fibers from short ramie/PP reinforced
composites produced at 195°C during Process B.
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Figure 2.16 Fiber length distribution of extracted fibers from short ramie/PP
reinforced composites produced at 195°C during Process B.
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2.5 Conclusion

A new combination technique of resin-coating and multi pin-assisted resin impregnation
(M-PaRlI) processes was introduced to produce a continuous ramie single yarn/polypropylene
(PP) reinforced composite strand. By addition of M-PaRI process, we found that the resin can
be impregnated completely into the yarn interfibers. Furthermore, tensile tests of
injection-molded composites were conducted using strands produced at different temperatures
of M-PaRlI process. Results show that the maximum mechanical properties of composites could
be obtained between 195 and 205°C.The fiber content giving the best tensile properties was
about 40wt%. The new process presented in this study demonstrates marked improvements of
mechanical properties on composites in comparison with conventional methods, in which fibers
are inserted directly during the extrusion process. A fascinating point is the simplification of
production for long natural fiber-reinforced composites. The composite strands obtained here
are expected for use as a semi-finished material for injection and compression molding

products.
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3. Single yarn composite strand and tape productions by M-PaRI process
3.1 Introduction

In Chapter 2, a new method of producing a ramie yarn/PP composite strand was developed
and the mechanical properties of short ramie/PP composite materials were also discussed for
application to mass-production using the pellets of long ramie/PP composite strands. On the
other hand, composite tapes were also developed as the application of high strength composites
in the past.

In the early stage, Burns invented a process using metal to create a composite tapel). Eaton
invented a fabrication method for composite tape". Truckner et al. also invented a fiber
reinforced composite tape made by casting a mixture comprising high temperature metal or
continuous ceramic fibers and a polymeric binder”. Kim et al.” and Hauber et al.” discussed
about computer programed lay-up process. However, few studies have been done using natural
fibers.

In this section, thus, the tensile properties of a continuous ramie spun yarn/PP composite
strand were discussed in different contents of MAPP using M-PaR1I process. Furthermore, by
adding a die and a roller system after M-PaRI process, a ramie/PP composite tape was also
produced. The aim of producing a composite tape is application to plain woven fabric reinforced

composite materials like glass roving clothes.
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3.2 Experimental methods
3.2.1 Materials

Materials used in Chapter 3 were single ramie spun yarns, polypropylene pellets, and
granular MAPP, which were the same as the materials used in Chapter 2. To investigate the
effect of MAPP content on mechanical properties, MAPP-0.5 wt%, 1.0 wt%, and 2.0 wt% were

added to PP neat resin. In addition, MAPP-free resin was prepared as a matrix constituent.

3.2.2 Productions of single yarn composite strand and yarn composite tape

Figure 3.1 shows a schematic illustration of continuous fabrication method for single ramie
yarn /PP composite strand. The production procedure is the same as that in Chapter 2, but the
number of the ramie spun yarn is just one. Figure 3.2 shows a schematic illustration of
continuous fabrication method for ramie/PP composite tapes. Thirty-three ramie spun yarns pass
through Process B all together. A 7x1 mm rectangular die with 2mm length was additionally
attached to control its shape at the end of M-PaRI process, as shown by ‘Die’ in Figure 3.2. A
new process was also added after Process D. In this process, two rollers were placed at different
heights to produce a flatter ramie/PP composite tape as shown in Process E. One was placed at

110mm height (Type 1), and another was at 270mm (Type 1I). The composite tape was

and MAPP

Process B Process C Process D Process E

(o

Process A

Figure 3.1 A schematic representation of continuous fabrication method for a ramie/PP
composite strand. Process A: Raw material supply, Process B: Pre-heating, Process C:
Resin coating, Process D: Multi-pin-assisted resin impregnation (M-PaR1I), Process E:

Pull out. (Processes C and D in this figure are equivalent to Processes A and B in
Figure 2.4.)
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Figure 3.2 A schematic representation of continuous production of ramie/PP compoiste tapes.
Proess A: Raw matrial supply, Process B: Pre-heating, Process C: Resin coating,
Process D: M-PaRlI, Process E: Flattening, Process F: Pull out.

continuously pulled out, as shown in Process F. The temperatures of Process C and Process D
were set at 190°C and 200°C, respectively. The motor rotation speed at Process F was 45.0 rpm.

The tapes were prepared only for MAPP-free or MAPP-2wt% contained matrix.

3.2.3 Tensile specimens

Figure 3.3 shows shape and dimension of tensile specimens for a yarn and tape composite
materials. Tensile tests for a yarn and tape specimen were conducted using a universal testing
machine (Desktop type universal testing machine, LSC-1/30, JT Toshi Co. Ltd., Japan) and
Instrong (Shimadzu Corporation, Japan) at a crosshead speed of 1 mm/min. Each specimen was
taken using a digital microscope (Digital microscope KH-1300; Hirox Co. Ltd., Japan). To
obtain an average cross-section area of the specimen, diameters of 50 locations along the strand
axis of each specimen were measured using software of SimpleDigitizer. Each diameter was
measured with 1 mm interval along the axial direction. The Average cross-section area of a tape

specimen was measured two locations along the axial direction. The gauge length of a yarn and

L300 50 L 30
! | ! ! 30 50 30
Si=—2= = =
] IS | [ P AN .4 SN
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(a) Single yarn composite strand (b) Yarn composite tape

Figure 3.3 Tensile specimens of ramie spun yarn/PP composites.
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tape specimen was 50 mm. Tensile strength was determined from the resultant stress—strain
diagram. The elastic modulus was measured through linear approximation between 0.1-0.25%
strains on the diagram. The meaning of ‘elastic modulus’ described here is the same as Young’s
modulus in the field of mechanical engineering. Strain gauge was used to measure the elastic
modulus of tape specimens. However, in case of yarn specimens, strain gauge did not used since

its thin width.

3.2.4 Measurement of fiber volume fraction and surface orientation angle
The ramie spun yarn and its composite strands and tapes were weighed using a semi-micro
analytical balance (AUW220D; Shimadzu Corp., Japan). The fiber volume fraction on a

composite strand was calculated using the following equation.

o p (M
! W/' w

Ly —m

Py Pu

where V is the fiber volume fraction of the composite strand. Wy and W,, respectively denote
the weight fractions of ramie spun yarn and matrix. In addition, ps and p,, respectively denote
the densities of ramie fiber and matrix: 1.16 g/cm’ and 0.9 g/em’.
To obtain a statistical property of surface fiber orientation angle, many fiber-orientation
angles on the strand surface were measured through microphotographs by the above-mentioned
digital microscope. Figure 3.4 shows the side-view of a strand and measurement method. The

angles were finally obtained through image analysis.

3.3 Results and discussion

3.3.1 Single spun yarn composite strand
3.3.1.1 Surface morphology

Ramie spun yarn/PP composite materials were produced in different contents of MAPP.
Surface morphology of the resultant strands was investigated by using scanning electron
microscope before it was conducted tensile tests.

Figure 3.5 shows surface morphologies of a ramie yarn/PP composite material taken by a
scanning electron microscope. Figure 3.5(a), (b), (c¢), and (d) were contained MAPP-free,
0.5wt%, 1wt%, and 2wt%, respectively. Magnified views of the composite strands were also

shown in Figure 3.6.
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Figure 3.5 Surface morphologies of a ramie yarn/PP composite material. MAPP-free: (a),

MAPP-0.5wt%: (b), MAPP-1wt%: (c), and MAPP-2wt%: (c).

Figure 3.4 Measurement of a surface fiber orientation angle of the ramie spun yarn/PP
composite strand.
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It was observed that the diameters of the resultant composite strands were not uniform as
shown in Figure 3.5. The diameter distribution is shown in Figure 3.7. The diameter varied in

the range of 0.3 to 0.9mm. The mean and coefficient of variation (C.V.) were measured as

0.53mm and 0.187, respectively.

15kU ®1l.8688 1841m
b

(d)
Figure 3.6 Magnified views of composite strands. MAPP-free: (a), MAPP-0.5wt%: (b),
MAPP-1wt%: (¢), MAPP-2wt%: (d).
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Figure 3.7 Diameter distribution of ramie spun yarn/PP composite specimens.

3.3.1.2 Tensile properties

Table 3.1 lists the tensile properties of ramie spun yarn/PP composite strands. Considering
MAPP contents, tensile strength and elastic modulus decreased with in creasing MAPP contents.
However, fiber volume fraction increased with increasing MAPP contents. Thus, it can be stated

that MAPP brings more neat-PP on the composite surface as compared to MAPP-free.

Table 3.1 Tensile properties of ramie spun yarn/PP composite strands

Fiber volume

MAPP Tensile strength Elastic modulus
Number of fraction
content
specimens Mean Mean Mean
[wt%] C.V. C.V. C.V.
7 [MPa] [GPa]
0 33 0.507 0.323 205 0.273 15.3 0.249
0.5 24 0.335 0.095 143 0.225 10.5 0.149
1 23 0.392 0.210 155 0.217 11.9 0.166
2 12 0.340 0.111 160 0.112 11.4 0.102

C.V.: Coefficient of variation
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Figure 3.8 Relation between tensile strength and fiber volume fraction with different

MAPP contents.

Tensile strengths of the resultant composite strands were plotted all together as shown in
Figure 3.8. It was confirmed that tensile strengths increased with increasing fiber volume
fraction. It was also confirmed that the slopes of tensile strength were not significantly changed
with increasing MAPP contents. Thus, the regression lines were measured for each MAPP
condition, as shown in Figures 3.8 and 11. By giving tensile strength and Young’s modulus of

neat PP as 36.2 MPa and 2.33 GPa, respectively, all regression lines were drawn to be in

lastic Modulus [GPa)

0.6 0.7

Fraction

Figure 3.9 Elastic modulus versus fiber volume fraction with different MAPP contents.
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agreement at their intercepts. It is evaluated from the equations of regression lines shown in
Figure 3.8 that strands contained MAPP of 2wt% are relatively high in tensile strength as
compared to other strands, while the equations of elastic moduli in Figure 3.9 are almost the
same. This is because elastic modulus is measured in a linear stress-strain range before
occurrence of interfacial debondings, affected by interfacial strength. The slopes of tensile
strength and elastic modulus in total were 326 MPa and 24.9 GPa, respectively. The most
difference from the total slope is 12% in tensile strength of MAPP-2wt% strands in Figure 3.8,
but other strands are much closer to the total slope, i.e. 326 MPa. However, the fiber volume
fractions of MAPP-2wt% strands are mainly in the range of 0.3 to 0.4, and therefore we cannot
say that such a difference continues to be kept in a longer range. From the viewpoint of optimal
MAPP contents, thus, we conclude that tensile strength and elastic modulus did not change so

greatly in different MAPP contents.

3.2.1.3 Fractography

Photographs of fracture surface of ramie spun yarn/PP composite strand were shown in
Figure 3.10. Figures 3.10(a), (b), (c), and (d) were MAPP-free, MAPP-0.5wt%, MAPP-1wt%,
and MAPP-2wt%, respectively. Interface failure and frictional forces determined fracture
surfaces. Large amounts of fiber pullout among fibers and matrices were observed in Figure
3.10(a). Relatively strong interfacial strength between fibers and matrices resulted that matrices
were still adhered to a yarn as shown in Figure 3.10(b), (c), and (d) as compared to Figure

3.10(a). In addition, shear failures were also observed in Figures 3.10(b), (¢), and (d).
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© (d)
Figure 3.10 Photographs of fracture surface of ramie spun yarn/PP composite strands.

MAPP-free: (a), MAPP-0.5wt%: (b), MAPP-1wt%, and MAPP-2wt%: (d).
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3.3.2 Yarn composite tape

3.3.2.1 Cross-section of the tape and fracture mode

Figure 3.11 shows the typical cross-sectional micrographs of a yarn composite tape. Figure
3.11 (a), (b), and (c) were obtained by without Process E, Tpye I, and Tpye Il in Figure 3.2,
respectively. The resultant composite tape obtained without Process E was waved and curved as
shown in Figure 3.11 (a). However, by applying Process E, a flat and rectangular shape of
cross-section was obtainable as shown in Figure 3.11 (b). It means that, by using a roller placed
at higher location than M-PaRI process, tension capable to the flat shape was actualized.

The effect of MAPP on the tensile fracture mode was investigated. The macroscopic
fracture modes were shown in Figure 3.12. Large scale debonding occurs in the MAPP-free PP
matrix specimen, as shown in Figure 3.12(a), while no macroscopic debonding occurs in the
MAPP-2wt% contained PP matrix specimen of Figure 3.12(b). In other words, MAPP addition
contributes to achieve strong fiber-matrix interfacial bonding. On the other hand, the large-scale
longitudinal separation seen in Figure 3.12(a) is quite disadvantage in adopting the tape as a
semi-finished material which is again used toward final products. Thus, mechanical properties

of MAPP-free PP matrix specimens had not been examined.

(©
Figure 3.11 Cross-section images of a composite tape. (a), (b), and (c) were obtained by without
Process E, Tpye I, and Type Il in Figure 3.2, respectively.
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(a) MAPP-free PP matrix

Figure 3.12 Fractured specimens after tensile test.

3.3.2.2 Tensile properties

(b) MAPP-2wt% contained PP matrix

Table 3.2 lists tensile properties of ramie yarn/PP composite tapes containing MAPP of

2wt%. Tensile strengths of the resultant composite tapes were plotted all together with the

tensile strengths obtained by the composite strands in order to compare the differences as shown

in Figure 3.13. It was confirmed that the slopes of the tensile strengths from the composite Type

I and Type Il were 22% and 27% lower as compared to the total mean slope, 326MPa, of the

composite strands. These differences were brought from size effect of the composite tapes since

the composite tapes contained thirty-three ramie spun yarns. Figure 3.14 shows elastic moduli

of the composite strands and tapes. The slopes measured by composite tapes were slightly

higher than the slopes of the composite strands since elastic moduli of the composite tapes were

measured by strain gauge.

Table 3.2 Tensile properties of ramie spun yarn/PP composite tapes

Fiber volume
MAPP Number

Tensile strength

Elastic modulus

Type  of fraction
content of
specimens Mean Mean Mean
[Wt%]  specimens C.V. C.V. C.V.
7 [MPal [GPa]
I 2 5 0.561 0.023 179 0.090 17.7 0.041
11 2 5 0.605 0.025 181 0.020 20.6 0.040
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Figure 3.13 Tensile strengths of composite strands and tapes.

Flastic Modulus [ GPal

Fiber Volume Fraction

Figure 3.14 Elastic moduli of composite strands and tapes.
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3.4 Conclusion

A single ramie spun yarn/PP composite strand and a yarn composite tape were produced
using M-PaRI included process. To produce the yarn composite tape, the production system was
improved by attaching a tape flattering roller system. The resultant composite specimens were
tensile-tested to ascertain their mechanical properties such as tensile strength and elastic
modulus. Results of the strand tensile tests and estimated regression lines showed that the
tensile strength and elastic modulus did not change so greatly in different MAPP contents. The
tensile properties increased concomitantly with increasing fiber volume fractions. The mean
elastic modulus and coefficient of variation (C.V.) were 12.7 GPa and 0.260, respectively. The
strength level of the composite tapes was less than that of the composite strands because of size

effect.
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4. Analysis of elastic modulus on composite stands and tapes

4.1 Introduction

In section 3, a ramie spun yarn/PP composite strand was produced using M-PaRI process.
The resultant mechanical properties such as tensile strength and elastic modulus were also
discussed along with those of the composite tapes. Meanwhile, it is necessary to explain the
experimental values of elastic modulus on the composite yarns by comparing with theoretical
models.

Theoretical models regarding mechanical properties of fiber reinforced composite materials
have been developing by many researchers. Most of them developed their own strength models
of the composite materials, because it is estimated that the composites tend to have a large
variation in strength. Sinclair et al. published their research for graphite fibers/epoxy composite
materials in 1981". In their study, it was clear that elastic modulus of the composite materials
showed very little fluctuation with increasing off-axial angle.

In this study, however, elastic modulus on twisted yarn composite materials showed large

fluctuation”™

. Despite of such results, few researches have been carried out regarding
reliability models of elastic modulus on twisted yarn composite materials.

Firstly, in this section, the experimental values of elastic modulus obtained by the composite
strands were compared with conventional theoretical models, i.e., Hearle et al., Rao-Farris, and
Thwaites”™. Next, the cause of fluctuation of elastic modulus on composite strands was
explained using the three theories with the help of residual standard deviation (R.S.D.).

Lastly, the fluctuations of elastic modulus on composite strands were evaluated by using

first order second moment (F.O.S.M.) approximation method, and furthermore this method was

extended to reliability model of yarn composites’ elastic modulus with different size.
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4.2 Conventional theoretical models of elastic modulus

Theoretical models of a twisted yarn have extensively been discussed in the field of textile
engineering from the early 1900’s. Table 4.1 shows a summary of theories of twisted
continuous yarns>. Most of theories were developed to calculate elastic modulus of the twisted
yarns. It is considered that such extensive studies about elastic modulus of twisted yarns were
conducted due to a large variation in experimental elastic modulus of the twisted yarns. Such
variability also induced many researchers to propose different approaches for the theories in
order to predict elastic modulus of twisted yarns.

When a twisted yarn is subject to tension, the simplest equation for a yarn modulus is
expressed as Ey=E,cosza, in which E,, E; and a are yarn modulus, elastic modulus of fiber, and
surface fiber orientation angle on a twisted yarn, respectively. In order to measure precisely
elastic modulus of twisted yarns, additional theories were applied to the previous theory.

In this study, three prominent theories having different approach to elastic modulus of
twisted yarns were selected to compare with experimental values of the present composite
strands.

Hearle et al.” introduced geometric character of a yarn in 1960’s. Hooke’s law was used as
the basis of the theory. This theoretical model cannot be explained without an assumption of
ideal twisted geometry of RAana=r/tand, where R and a are outer radius and surface fiber
orientation angle, respectively, which are given as constants. » and 6 are inner radius and its
fiber orientation angle, respectively, which are given as variables. It was taken the effect of
lateral compression into account. After considering the complicated mathematical formulae,
relatively simple expression for elastic modulus (E,) of a yarn in case of constant volume

fraction was derived as below. More detailed mathematical formulae are written in Appendix A.

2
E =E, 300—Szalncos2 a+cost a st
T\ I=cos’a 4 4 (D

Using transformed reduced compliances, a complex equation for elastic modulus of a yarn

was derived by Rao-Farris”. The stress-strain relation was formed on plane-stress state in

classical lamination theory. The derived elastic modulus E(a) is given as follows. Additional

explanations are written in Appendix B.
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Table 4.1 A summery of theories of twisted continuous filament yarns'

)

Name and data

Nature of theoretical treatment

Theory of spun yarns, but includes basic equations of simplest

Gegauft (1907)

treatment of filament yarns

Tensile forces only: Includes effects of lateral contraction, large
Platt (1950)

extensions, and deviations from Hooke's Law

Tensile and transverse forces: Small strains, Hook's Law, no lateral
Hearle (1958)

contraction

Hearle, El-Behery,
and Thakur (1961)

(i) Tensile and transverse forces, small strains Hooke's Law, with lateral

contraction

(ii) Tensile forces only: large strains, lateral contraction, deviations

from Hooke's Law

Treloar and Hearle

(1962)

Corrects an error in previous two papers

Treloar (1962)

Continuum rubber filament model

Wilson and Treloar

(1961)

Two-filament rubber model

Wilson (1962)

7 and 19 filament rubber models

Treloar and Riding
(1963)

Energy method-includes effects of transverse forces, constant volume

deformation, large strains, deviation from Hooke's Law

Symes (1959) Cord properties, with approximations
Develops theory to consider effect of equalization or nonequalization of
Kilby (1964)
tension in migrating filaments and effect of bending strains
Treloar (1965) Applies energy method to yarn with migrating filaments
Treloar (1965) Applies energy method to multi-ply cords

Wilson (1965)

Model yarns with five filaments in regular pattern around a core

filament
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b, (a+b+o)T; T,-1
2 (aTol +bT, + c) T,
(b2 —Zac)

E(e)= antal| |2¢6Vb -4ac
* (2a+b-\/bz-4ac)x(2Tn+b+\/bl-4ac)

In

(2aT0 +b-\/bz-4ac)><(2a+b+\/b2 -4ac)

()

v,
7})=cosza,a=EL+ +E—}',b=—————',c=—

1 1
_+_
E, E
E.and E, respectively denote elastic moduli along the fiber and transverse axes. E; is a shear
modulus. v,-is a Poisson’s ratio.

Thwaites” added the effect of shear stresses to Hearle et al.’s model. Hooke’s law and ideal
twisted geometry were also adopted. The theory was based on laminate theory in cylindrical
coordinates. Elastic modulus (a;;) in tension was expressed as below. Detailed mathematical

formulae are written in Appendix C.

1+v, 3

9 |
1+UIZJ (3)

9G sin*a
cot*alnseco - —cos’ o +|1— 5
3

where E3, 015, G, and a are elastic modulus of transverse axis, Poison’s ratio, shear modulus,
and surface fiber orientation angle, respectively. v, = 1-E;/2E3, in which E; is transverse elastic

modulus of fiber.

4.2.1 Differences among the theoretical elastic moduli

In order to clarify differences of the conventional elastic moduli between Thwaites and
Rao-Farris, transverse modulus (%)) in equation (3) was given to 0. Figure 4.1 shows the results
obtained from the elastic modulus of Thwaites (Equation (3)) and Ro-Rarris (Equation (2)).
Two black lines were the results obtained from the theory of Thwaites. When given to £, = 0, it
was confirmed that elastic modulus was decreased. In this case, almost similar results were
obtained from the Rao-Farris as shown in blue line. From this result, the values obtained from
Thwaites were slightly higher due to the effect of E;.

To compare the two theories suggested by Thwaites and Hearle et al., shear modulus (G) in
equation (3) was given to 0. Figure 4.2 shows the results. Two black lines were the results
obtained from the theory of Thwaites. When given to G = 0, it was confirmed that elastic
modulus was decreased. In this case, almost identical results were obtained from the Hearle et al.

as shown in red line. From this result, it is considered that the differences between two theories
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Figure 4.1 Comparison of elastic moduli between Thwaites and Rao-Rarris. In case of

Thwaites’s theory, transverse elastic modulus (£}) was given to 0.

were caused by the influence of the shear modulus (G).

Table 4.2 summarizes the differences of three elastic moduli. Figure 4.3 shows an idealized
geometry of a yarn used in theoretical models, in which a multi-layer structure is assumed. In
the theory suggested by Thwaites, it was confirmed from the above mention that transverse
elastic modulus (£)) between layers and shear modulus (G) in a layer are considered. Although

G is taken into account in the Rao-Farris’s theory, E| is not considered. In the Hearle et al.

Figure 4.2 Comparison of elastic moduli between Thwaites and Hearle et al. Shear modulus

(G) was given to 0 in the theory of Thwaites.
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Table 4.2 Summery of differences among conventional elastic moduli of a twisted yarn material.

G E

Thwaites O (Between the elements) O
Rao-Farris O (Within a layer) X
Hearle et al. X O

theory, on the contrary, G is not considered.

It can be also noted that transverse elastic modulus (%)) between layers and shear modulus

(G) in a layer are considered in the theory suggested by Thwaites. Although, E; is taken into

account in Hearle et al.’s theory, G is not considered.

Figure 4.3 Schematic representation of an idealized geometry of a yarn®.
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4.3 Comparison experimental values with theories of elastic modulus

Since it was confirmed that elastic moduli measured in this study were not affected by
MAPP contents, as described in Chapter 3, these modulus data are treated all together in the
below. Mean elastic modulus and C.V. of the total data were, respectively, 12.7 GPa and 0.260.
Surface fiber orientation angles of the strands were measured as shown in Figure 3.4 of Section
3.2.4. Figure 4.4 shows the relative frequency of measured fiber orientation angles, on the ramie
spun yarn/PP composite strands. Hereinafter, fiber orientation is denoted as a. The total number
of data was 800, and the mean value and C.V. of o were, respectively, 14.4° and 0.218. It is
noteworthy that C.V. of the elastic modulus shows a comparable level to that of fiber
orientation angles.

Elastic moduli of fiber’s longitudinal axis and transverse axis were respectively determined
by the rule of mixture and Reuss models”. Moduli of ramie fiber and PP were given as 28.3GPa
and 2.33GPa, respectively. Shear modulus in the theory of Rao-Farris was estimated as half of
transverse elastic modulus E,, because shear modulus Ej is often given as 0.5 to 0.8 times of E,
% Poison’s ratio v, was given 0.5. o was assigned as 14.4°, the mean fiber orientation angle on
the actual yarn surface, as described above. Glossary list of notations for the theories is listed in
Table 4.3.

Figure 4.5 shows the results of comparison between experimental values and theoretical
models. Open circles represent experimental values of elastic modulus for composite strands.
Red, blue, and black lines indicate the results from Hearle et al., Rao-Farris, and Thwaites
models, respectively. It was observed that the values obtained by Hearle et al. were almost
identical with those of Rao-Farris. The theoretical values of Thwaites had slightly higher values

as compared to Hearle et al. and Rao-Farris.

— = 1o 19 el
- v O \

2
9
o
2

2224262830

Figure 4.4 Distribution of surface fiber orientation angle on the ramie spun yarn/PP composite
strands.

50



Table 4.3 Glossary list of notations for the theories.

Elastic modulus
Shear modulus Poison's ratio

Fiber axis Transverse axis

Hearle et al. E; - - v
Thwaites E; E, G Vi2
Rao-Farris E. E, E; Vzy

Figure 4.6 represents a schematic representation of an ideal yarn composite. The fibers are
uniformly aligned to the same direction, which is the common concept between the theoretical
models. However, as explained above, fiber orientation angles vary statistically in real yarn
composite strands as illustrated in Figure 4.7. In this study, thus, the structure of a composite
strand was assumed such that the strand comprises of n-segments with a small distance Ax and
each segment has a different a.

Elastic moduli of theoretical models were obtained from equations (1), (2), and (3) by
substituting measured o into each segment. Figures 4.8(a), (b), and (c) show comparison
between experimental results and the values obtained by Hearle et al., Rao-Farris, and Thwaites.
Any theoretical elastic modulus decreased with increasing fiber volume fraction in the
fluctuation range of 5GPa to 10GPa, and fit well within the range of the experimental data. It

was also confirmed that elastic modulus increased with decreasing surface fiber orientation

o

P

Figure 4.5 Comparison of experimental values with theoretical models. Using mean surface
fiber orientation angle, theoretical values were obtained.
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Ramie spun yvarn

Figure 4.6 A schematic representation of an ideal yarn composite strand. Fiber angles are
uniformly aligned.

angles. Regarding the magnitude of theoretical elastic modulus range, Thwaites model showed

the smallest one.

Figure 4.7 A schematic representation of a real yarn composite strand.
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Figure 4.8 Comparison experimental values with theoretical models. (a): Hearle et al., (b):

Rao-Farris, (c): Thwaites.
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4.4 Reliability of elastic modulus on composite strands and tapes evaluated by first
order second moment approximate method

Composite materials have different mechanical properties with different fiber directions.
The variations of strength on the composite materials are caused by uncertainty in internal
structure such as distributions of fiber orientation and length, and structural geometry”.
Statistical analysis was developed in order to calculate the strengths of fibrous composite

29" and first order

materials®. Finite element models (FEM)"'", Monte Carlo simulation
second moment (F.0.S.M.) approximate method'” are among the well-known methods to
estimate the strength reliability of the composite materials. In this section, F.0.S.M.
approximate method is introduced for statistical analysis of elastic modulus of twisted yarn

composites.

4.4.1. Single random variables
A general function Y of a single random variable X in F.O.S.M. approximate method can be

16
expressed as'®

Y=1X) 4
The mean [E(Y)] and variance [Var(Y)] of Y can be also obtained as below.

E(Y) = [0, fXOfe(x)dx 5
and

Var(y) = [7[f () = ux]*f (x)dx 6

Uy is the mean of X.
In order to calculate the mean and variance of a function of Y, it is necessary to know
probability distribution function of fi(x). On the other hand, by using a Taylor series, the

function of f{X) can be obtained. The mean value of a Taylor series is expressed as

— Kowo af | Kow? df L Kopot AU

in which the derivatives are evaluated at py.

The linear terms in the Taylor series is expressed as

- X-ux) df
E(Y) = f(uy) + 25 8
The mean value of a function of Y in F.O.S.M. approximation method is expressed as
E(Y) = f(ux) 9

and variance of a function of Y is
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Var(Y) = Var(X — uy) (Z—f{)z = Var(X) (Z—f{)z 10

The standard deviation [S7(Y)] of a function of X is expressed as

Sp(Y) = JVar(¥) 1
Firstly, using equation of elastic modulus proposed by Hearle et al., The standard deviation

(St) in F.O.S.M. approximation method using equation 10 can be obtained as

Sr = Sd(—ZcosaSinaEfo) 12

Secondly, by using equation of elastic modulus derived by Rao-Farris, The standard deviation

(S7) can be also obtained as

B cos* a+8 cos? a+{
B+8+¢

—4 cos® asina—28 cos asina
4 2 +
B cos* a+8 cos? a+

Sr=5,4 {—Z—;{ZCOHZCSCZO( [ln cos* o — ln( )] + 4 cota + cot? oc(

eoapy 1 [ (2B cos? a+5-/57-ap7)(2+5+/57-4p7) + cos? asin?a 8By/5Z=4p7 13
202,/62—4B7 sin® « (2B cos? a+5+/82-2B7)(26+6-/62-4B7) (2 cos? o+5—,/57—ap) (26 cos? a+6+/52—4B7)
1 1 1 2qu 1 2 2qu 1
where f=—+——-—+— ,8=——-————,and {=—.
Ep Eq Gpg Ep Gpg Eq Ep Eq

Lastly, using equation of elastic modulus derived by Thwaites, the standard deviation (S7) is

expressed as

1
6(v1,-2) , 18G] [ —2cosaln——  cosa 18G . 9
Sy = S4E; {[M —]( — oSt  — > + —cosasina — smacosa} 14
1+‘U12 E3 sSin° a Sina E3 1+U12
E; 1
where vy, =1 — Z_Eg,’ E, = v, vy and E3 = VfEf +E,(1- Vf).
_+_

Ef Em
The mean (uy) and standard deviation (S;) of measured surface fiber orientation angle on
composite strands were 14.4 [Deg] and 3.14 [Deg], respectively. The mean fiber volume

fraction on composite strands was 0.41.

Table 4.2 Residual standard deviation (R.S.D.) of experimental elastic modulus of composite

strands, and comparison with theoretical R.S.D. and first order second moment

(F.O.S.M.).
. Theoretical R.S.D. [GPa] F.O0.S.M. [GPa]
Experimental Hearl Hearl
R.S.D. [GPa] carle Rao-Farris Thwaites carie Rao-Farris Thwaites
et al. et al.
1.49 0.545 0.557 0.317 0.453 0.477 0.288
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Figure 4.6 Standard deviation of elastic modulus versus surface fiber orientation angle.
Symbols (e, 0, A, m) show experimental R.S.D., and theoretical R.S.D. of
Rao-Farris, Hearle, et al. and Thwaites, respectively. Lines were obtained by

F.O.S.M. approximate method.

By using F.O.S.M. approximate method, the S.D. of elastic modulus can be estimated in
terms of surface fiber orientation angle. Table 4.2 lists residual standard deviation (R.S.D.) of
experimental elastic modulus, theoretical R.S.D. obtained from Fig. 4.5, and standard deviations

by F.O.S.M. approximate method. It was confirmed that experimental values showed higher
than both theoretical values. Regarding the comparison between F.O.S.M. and R.S.D., on the
other hand, the two theoretical S.D. showed similar values.

Figure 4.6 shows the S.D. of elastic modulus versus surface fiber orientation angle. Black
closed circle was obtained by experimental value. Blue line, black line, and red line were
calculated by F.O.SM. approximate method of Rao-Farris, Hearle et al., and Thwaites,
respectively. Using R.S.D., blue rectangle, black closed triangle, and red closed rectangle were
obtained by Rao-Farris, Hearle et al., and Thwaites, respectively. It can be observed that the S.D.
estimated by F.O.S.M. in case of Hearle et al. and Thwaites increased with increasing surface
fiber orientation angle. However, the S.D. obtained by Rao-Farris increased with increasing
surface fiber orientation angle until 21 degree. After this maximum point, the S.D. gradually
started to decrease. From the viewpoint of coefficient of variation, however, the statistical
variation in elastic modulus would increase in any model, because the mean of elastic modulus

decreases largely with increasing surface fiber orientation angle. As shown in Fig. 4.6, it is
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proved in any case that F.O.S.M. approximate model based on a single variable described here

cannot predict well the S.D. of experimental elastic modulus.

4.4.2 Multi random variables

Regarding the cause of variation in elastic modulus, in this subsection, fiber volume fraction
is also taken into account, in addition to surface fiber orientation angle. A general function of
multi random variables X}, X5 ... X, in F.O.S.M. approximate method can be expressed as
Y=£/X1, X, ... Xo) 15
By using a Taylor series as same way of single random variables, the mean value of multi
random variables in F.O.S.M. approximate method are expressed as
EY) = f(lixl'.uxz; ---lixn) 16

and variance of multi random variables of a function of X is expressed as

9 \2
Var(Y) = ?=1delz (6_){1) !

The standard deviation [Sg(Y)] of a function of X is expressed as

Sa(¥) = JVar(¥) 18
In case of using equation of elastic modulus from Hearle et al., the S.D. (S7) in F.O.S.M. is

expressed as below.

S =8, (Efcosza - Em)2 + 5,7 * (—2cosa5inaEfo)2 19

where S, and S, indicate S.D. of fiber volume fraction and surface fiber orientation angle,

respectively. E; and E, are Young’s modulus of fiber and matrix, respectively. « and V}

represent surface fiber orientation angle and fiber volume fraction, respectively.

The S.D. in F.O.S.M. approximate method uising Rao & Farris’s equation is expressed as

follows.

57



;25’_52“’) _ 2tan? al _ [(8’(—28(,) In (Bcos“ a+8 cos a+() ( [(B cos* a+8' cos? °¢+§) (B,"'S,*‘Z,)H

4
In cos* a ( ¢ 7 e B+8+( (B cos* a+8cos? a+Q) (B+8+0)

(chos a+8+ 82 —4f3 )<z[§+8 52 -4 )

88'~2p'(-2p7
(2 ZBZ ZBZ )l (chosz e \/8 —43()(26"'6"\/8 —4[3()

2

2B+8+8" 4By (2p+5)(288 -4p'T-4B2') z(zﬁ '+8')|s
2

2 |2 -4
1 GO et ZB'*S_\/SZ_“GZ 82—4[3((zﬁ+8+‘ 8% -4 Z) (26+6+‘ 8 4[3() ]

2tan? a +(52 —2[3()

2B cos? a+8+ 62—48([ (2B cos? a+8)(285'-4B'G-4BT)  2(2p’ cos? a+8') 87 -apT
chosza+8—\/62—4B(l Jy_—ﬂ(zﬁmszms,\[ﬁz_—ﬂ)z (zﬁcosza+8+\[62——4[§()2
(a8 o gaf )] (zﬁcosza+5 5%_4pT )<ZB+6+ 52-4[5()

. +8 _ZB()IZK o -4t 262 -apT (zﬁcosz a8+ /87 —4B()<zﬁ+6 s —46()

(¢ Jo*-e8)
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—2vy, (Ef~Em) r_ 2(Em—Ef) 2vy2(Ef—Em) 47 = Ep—E
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By using equation of elastic modulus from Thwaties, the S.D. in F.O.S.M. is expressed as
follows.

STZ =

(14v12)[Ess’ (V12—2) +E33v12"|—E33 (V12— 2)v1’
(1+v12)?

S,% * {—2E33’ +6cot?alnseca +9E;, cot? alnseca —

9 COS a+9 [1 sin? a] (14v12)E3' —E3vqp } + Saz . {E3 {[6(1112—2) n ﬁ] (—2cosalncosa + c<.)s a) +

(1+U12)2 14+v1, E3 sin3 o sina
2
18G . .
—cosasina — sinacosa 21
E3 V12
—E33Eq, +E11Eas’ —E tEp(Em—E
where Eqs' = Ef — E,, vy, = —23-1 7 umss p o= fEm(Em—Er)
33 f m 12 F..2 11 >
2E33 (VEm+Ef=VfEf)

In this study, mean and S.D. of fiber volume fraction on composite strands were 0.41 and

0.131, respectively. These values and mean and S.D. of surface fiber orientation angle were
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Table 4.3 Experimental standard deviation of elastic modulus on composite strands and
comparison with first order second moment (F.O.S.M.) approximate method. V; of

0.41 was used to calculate F.O.S.M..

F.O0.S.M. [GPa]
Experimental value [GPa]
Hearle et al. Rao-Farris Thwaites
3.30 4.53 2.55 3.20

substituted into egs. (19), (20) and (21). Table 4.3 lists the results of S.D. of experimental value
and F.O.S.M. approximate methods. It can be noted that any order of F.O.S.M. approximate
method is closer to the experimental value, as compared with the single-variable-based F.O.S.M.

Especially, that of Thwaites model shows a closer value than other theories.
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4.4.3 Size effect on standard deviation in elastic modulus

In order to clarify the difference between statistical variations in elastic modulus of the
composite strand and tape, in this subsection, F.O.S.M. approximate method is formulized to a
reliability model including size effect. Figure 4.7 shows a schematic representation of a
composite tape. In this figure, ; (=1, ... , n) and w; (=1, ... , m) indicate the element length and
width, and » and m are the number of elements to longitudinal and transverse directions,
respectively. In case of a composite tape consisting of n elements per strand and m strands, the

elastic modulus E7 is expressed as below:

1 i 1 n n 1
Ep=iym pi—lym _n __nym 1
T mz:f_1 m<J=1_, (1) m<J=1_ (1)

i=1\ . j =1\ 7J
Ei] Eij

22

E’ is the elastic modulus of the strand j, and E/ is the elastic modulus of the element ; in the
strand 7. If each element modulus has the same elastic modulus E,, then the mean value E is
expressed as below:

p—ntym 1 _nm_
E—m2j=11—mEL—E0 23
0

Variance in elastic modulus Var [Z] by F.O.S.M. approximate method can be obtained as
follows
= g1 L
Var|Z] = Var|E; ]mn 24
where, Var [E/] is the variance in elastic modus of each element.
In order to measure the S.D. in F.O.S.M. approximate method on composite tapes, |1 and 33

were given to n and m, respectively, following the actual numbers of spun yarns in the strand

Ramie spun yarn Matrix

- — 4

W

Figure 4.7 A schematic representation of a composite tape consisting of n elements per

strand and m strands
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and tape. These were substituted into eq. (24), and compared with the experimental results.

Figure 4.8 shows the comparison between S.D. of experimental values and F.O.S.M.
approximate methods. Black closed circle indicates the S.D. of composite strands. Green and
purple closed circles indicate the S.D. of Type I and Type Il on composite tapes, respectively.
Black, blue, and red lines represent the S.D. of Hearle et al., Rao-Farris, and Thwaites measured
by F.O.S.M. approximate method, respectively. It can be observed that the S.D. of experimental
values and results estimated by F.0.S.M decreased with increasing the product of m and n. And
the F.O.S.M results are in a good agreement with the experimental S.D. Especially, the
experimental values of the S.D. were relatively well fitted with the result obtained by Thwaites
in F.O.S.M. method.

This trend indicates that fluctuation in elastic modulus on the composite tape using twisted
yarns can be decreased when the composite materials are produced at larger size. In other words,

relatively large size yarn composite materials can enhance the reliability in elastic modulus.

—_

[ ] — . 1 N
Experimental values

3
7

he product of m and n

Figure 4.8 Standard deviation (S.D.) obtained by experimental values and first order second
moment (F.O.S.M.) approximate method. Black closed circle indicates the S.D. of
composite strands. Green and purple closed circles indicate the S.D. of Type I and
Type II on composite tapes, respectively. Black, blue, and red lines represent the
S.D. of Hearle et al., Rao-Farris, and Thwaites in F.O.S.M. approximate method,

respectively.
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4.5 Conclusion

Elastic modulus of a ramie spun yarn/PP composite strand obtained by M-PaRI process was
discussed with conventional theoretical models, i.e., Hearle et al., Rao-Farris, and Thwaites. It
was confirmed that Thwaites’s model was relatively fitted with the experimental values.
However, the theoretical models showed slightly lower values than the experimental values. It
was also confirmed that the fluctuations of elastic modulus were caused by fiber orientation
angles of a yarn as comparing to theoretical models. It means that fiber orientation angles have
large fluctuations in the interior and exterior parts of a yarn. By comparison with first order
second moment approximate methods, it was confirmed that fluctuation on composite materials
using twisted yarn could be decreased when size of the composite materials becomes large. This
means that reliable twisted yarn/PP composite materials can be produced by making it larger

composite materials.
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5. Conclusions and future researches.

5.1 Overall conclusions

The challenges for producing natural fiber composite materials are how to utilize the
characters of natural fibers and thermoplastic polymers. Natural fibers are usually formed in a
yarn during roving process. Therefore, it will be convenient to develop a technique by using a
yarn as reinforcement. The technique can be applied to any natural fiber yarns. The critical point
using a natural fiber yarns is that the yarn needs to be impregnated with thermoplastic polymers.
It means that good impregnation of thermoplastic polymers between fibers is the key points to
improving mechanical properties of short fiber composite materials. Furthermore, when the
composite pellets were obtained by chopping yarn composite materials, it can be used as
additive masterbatch for mass-production of interior parts in the field of transport industries
such as automobile, railroad, and airplane.

In order to pursue the purposes of developing a production method by using natural fiber
and thermoplastic polymer, a new method of producing a ramie yarn/PP composite strand was
developed and the mechanical properties of short ramie/PP composite materials were also
discussed for application to mass-production using the pellets of long ramie/PP composite
strands in Chapter 2.

Tensile properties of a continuous ramie spun yarn/PP composite strand were discussed in
different contents of MAPP using M-PaRI process in Chapter 3. Furthermore, by adding a die
and a roller system after M-PaRI process, a ramie/PP composite tape was also produced. The
aim of producing a composite tape is application to plain woven fabric reinforced composite
materials like glass roving clothes.

The overall summaries are written in below.

1. Composite strands impregnated with matrices were obtainable by using M-PaRI process in

a relatively simple way.

2. The optimal temperature of producing composite strands for injection molding was 195°C.

3. Using the resultant composite strands, short composite materials were produced having
fiber volume fraction of 10-50wt%. The optimal fiber volume fraction was around 40wt%.

4. Fiber lengths and distribution on the short fiber composite materials are critical parameters
to improve mechanical properties such as tensile strength and Young’s modulus. Using

M-PaRI process, it was confirmed that fiber lengths longer than critical length were
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obtainable.

5. The effects of MAPP contents on a single ramie spun yarn/PP composite materials were not
significant. But, mechanical properties such as tensile strength and elastic modulus
increased with increasing fiber volume fraction.

6. Fluctuations of elastic modulus were confirmed on composite yarns. It was also confirmed
that fiber angles have a large variation even in the interior and exterior parts of the yarn. It
is expected to decrease the fluctuation by controlling fiber orientation angles on a yarn.

7. Composite tapes were also obtainable using M-PaRI process. It was confirmed that tensile
strength of composite tapes was lower than the values obtained by yarn composite materials
since the sizing effects.

8. Making it bigger composite materials can also decrease fluctuation on composite materials

using twisted yarn.

5.2 Future researches
Future researches are written as follows.

1. It has not been clear the interior parts of a yarn. Thus, it needs to be investigated the status
of fibers of a yarn.

2. In this study, elastic modulus of a yarn was discussed. On the other hand, it is also
necessary to discuss tensile strength of a yarn composite material since tensile strength is
one of the most important factors.

3. Fracture mechanism of composite tapes needs to be investigated in different interfacial

strengths.
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APPENDIX A

1 Concerning tensile and transverse stresses

In the early 1960’s, a yarn was enormously subjected of study in textile industry. One of

prominent scientists was Hearle who dedicated his works to understand yarn geometry'. Tensile

and transverse stresses were considered in his one of studies. Thus, it is worth to mention that

mathematical formulae need to be reviewed in order to perceive geometric character of a yarn.

1.1 Yarn geometry

Yarn geometry is illustrated in Fig. 1.1. A ratio between external radical path and interior

radical path is given as below

(=b-p=K

A trigonometric of cosine at the external layer can be expressed as follows

H
cosa=E—>H=Bcosa

As illustrated in Fig. 1.1 (b) and (c), two diagonals can be expressed as blow

2 _ 42,2 2 2 _ B2-H?
pe=4n“r*+H* > r* = 2
B? = 4m2R? + H2 - R2 = =2

412

Equ. (1.3) and equ. (1.4) can be combined as

2 ﬁZ_HZ
r 7] B?-H? (B?-(Bcosa)? (?-cos?a
- |— = —4n = = =
R B2-HZ — p2_[2 B2—(B cos a)? 1-cos2 a
am?2

Trigonometric function as illustrated in Fig. 1.1 is determined by the expressions

cos _H _Bcosa _ cosa
B B¢ ¢

Using equ. (1.3) and equ. (1.4), the following formulae hold

2,.2
B2 = 4nr? + H2 > 4?2 = g2 — g2 > L =1—(

ﬁZ

2 2 2
~@ = -@ -6

The basic trigonometric function of sine can be written as

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)
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Using equ. (1.7) and equ. (1.8), the following formulas can be obtained

e G o= -G = (5 &

1.2 Variation of strain through the yarn
Let filament strain and yarn strain are defined by (&) = ?ﬁ and (&) = : respectively.

Derivative of equ. (1.3), then we have
BdB—HAH

p? = 4n?r? + H? - 2Bdp = 8n?rdr + 2HdH — dr = pr (1.10)
Let a yarn lateral contraction ratio be ¥, which is defined as below
dRrR
gk (1.11)
H
g dH dH
T r
l}/:—d_—H—>7=—‘I’?—>dr=—W7r (1.12)
H
Using equ. (1.10), then equ. (1.12) becomes
BOPHR = —w iy pdp — HAH = —¥ 2 4n?r? > Bdf = HAH — ¥ T an?r? » L =
L 272 4B _ (H\?dH _ ., dH (2nr)?
dH v an o B_(ﬁ)H I,UH(B) (1.13)

Yarn strain can be written as the following by using equ. (1.6), and (1.13)

g = % = cos® @ &, — Pe, sin® 0 = ¢, (cos? § — ¥sin® 9)

= ¢, [(“’;“)2 —y (1 - (“’;“)2)] (1.14)

1.3 Stress-strain relations

Fiber strain based on Hooke’s law can be written in the form'? as illustrated in Fig. 1.2.

2v,

o =~ 2 (=) (1.15)

Ef

where Eris Young’s modulus of fiber, E, is transverse modulus of fiber, v, is Poison’s ratio to
transverse direction for a transverse stress, and Q is transverse stress.

When fiber is in symmetric condition, the following equation satisfies
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v VU

Ey  Ey
Equ. (1.15) can be expressed as

& = E—lf(P + 200)

where v is Poison’s ratio to the axial direction for a tensile stress.

Using eqs. (1.14) and (1.17), we have

o [0 —w (1- (=) = 2o+ 200

Let us compute equ. (1.18)

P +2vQ = &,E; [(co;a)z -¥ (1 B (COZO‘)Z)]

P = ¢&,Ef [(“’;“)2 —y (1 - (“’;“)2)] )

Stress of p; is defined as below which is in zero twist yarn.

We arrive at a complete form

p = (co;a)z _ lp<1 _ (co;a)z) _ qu

1.4 Forces acting on six faces

Forces are defined as specific stress x area / specific volume.
1. Longitudinal force (ABCD and EFGF faces) as shown in Fig. 1.3 (a)

Trigonometric function of cosine illustrated in Fig. 1.4 (a) can be obtained as

cos =%—>AB = AJcos6 = rdd cos O

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

The following trigonometric function of cosine illustrated in Fig. 1.4 (b) can be also written as
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cosH=%—>AE= KE _ s =secfOds (1.25)

cos 6 cos 6

Thus, force acting on face of ABCD as shown in Fig. 1.3 (a) is given as

specific stress x AB x AD / specific volume = PXrdd¢ cos 8 xXdrx vi (1.26)
f

2. Transverse forces acting on faces of ADHE and BCGF as shown in Fig. 1.3 (b) are expressed

specific stress x AD x AE / specific volume = QXdrsec8 XdsX vi (1.27)
f

3. Force acting on face of ABFE as shown in Fig. 1.3 (c) is as follows

specific stress x AB x AE / specific volume = QXxrdd¢ cos 6 X s Lo Qxrd¢dsx =

cosf  wvf v

(1.28)
4. Force acting on face of DCGH as shown in Fig. 1.3 (d)
specific stress x area DCDH / specific volume
1,19 -1 L aQ -1
Qrddds o + oy or (Qr)d¢dsdr = o Qrdd¢ds + o (Q +r dr) d¢dsdr = o [Qrdcl)ds +
daQ

(Q+r22) depdsdr| (1.29)
As illustrated in Fig. 1.4 (b), a trigonometric function of tangent becomes
tan9=%—>AK=tan9KE=tan9ds (1.30)
Using equ. (1.30), angular displacement of KOA has the form as shown in Fig. 1.5 (a)
K04 =¥—>M (1.31)

Angular displacement of AOL can be expressed as below shown in Fig. 1.5 (b) by using a

triangle of Fig. 1.4 (c)
—_— ﬂ_ABcosH_rdc])cochosG

AOL =

= d¢ cos? 0 (1.32)

T r r

1.5 Equilibrium
1. Radial component of fiber tension

Using equ. (1.26) and equ. (1.31), force acting on face of ABCD can be calculated as

(%) 7 cos O dddrx % X sin @ = (:;f) sin? 6 dedrds (1.33)
2. Tangential transverse forces acting on face of ABFE and DCGH is given by

- (f—f) sec O drd®dxds cos? 6 Xcos = — (v%) cos? 8 dedrds (1.34)

3. Forces between ABFE and DCGH can be obtained as

70



v—lf[Qrdd)ds +(Q+r%9) dgdsar| - 2 rdpds = ( )(Q +799) dodrds

(1.35)

4. By using eqs. (1.33), (1.34), and (1.35), net radial force (ABFE and DCGH) has the form as

( )sm 0 dodrds — (
vf vy

Let us compute equ. (1.36)
rdQ

P sin? @ — Q cos? 6+Q+—=O
rd
?——(P+Q)sm 0

(1.38)

Using a trigonometric function of sine

. 2nr
sinf = —
B

Equ. (1.38) can be expressed as

21—Q=—(P+Q)sm 0
—=—(P+Q)(2T[r)
1dQ 2

Recall equ. (1.3)

Dif ferenciation

p? = 4m?r? + H2 ————— 2pdp = 8n’rdr — rdr =

Recall equ. (1.1)

leferenctatLon

B -

Equ. (1.42) can be expressed as below

rdr—ﬁﬂ
4t

Using equ. (1.44), then equ. (] A1) becomes

ag

1 P+ QA2 = (P + Q) B

rdr

Equ. (1.45) becomes

2= —P+ Q)%

(”d

)cos 0 dodrds + ( )(Q + rd—Q) dédrds =0

Bdﬁ

———(P+Q)B’(

= B? { - 4m?rdr = B%{d{ - 4n’r = BZ{Z—i

ﬁzd

(1.36)

(1.37)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)
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dQ 1

—_— = = P -
Rl GOk
Normalizing by division by P, we have
aq

—=—(p+q)—

Using equation (1.23), equ. (1.48) becomes

cos?a cos?a
p= ey (1) g,
aq co;zza_ (1—C0;22a)—27.1q+q
ag ¢
dq q cos? a v
——C2uv—-1-=-=—-(1+V¥ -
S gy-ni= -+ )RSty
Equ. (1.51) can be solved as follows.
Let =y, {=x, then
_ 1Y _ cos?a g
(2u—1) " 1+wv) "
(—2v-1) (—2v+1)
-y =x@-D {(1 +¥)cos?aZ ad + c}
2v+1 —2v+1
_ (1+¥) cos? a _ v " Cx(zv_l)
(Qu+1)x2 2v-1

Boundary conditions are prescribed as below
x=1, y=0

Constant ¢ can be obtained as

(1+%¥) cos? a g
(2v+1) 2v—-1

Substituting equ. (1.56) into equ. (1.54), then we have

_ _ (@+¥)cos?a (1+'I’)cos ax(zv 1)x +

(Qu-1) _
Qu+1)x2 Qu+1)x2 20— x

_ (A+¥)cos?a L Qui)) _ 1—x(2v-1)
- Qu+1)x? (1 x ) ¥ 2vu-1
Replace y and x to q and , respectively, then we have

_ @+¥)cos®a . S(2u+1)) _ 1-¢v-1)
T (u+1)g? ( ¢ ) v 2v-1

v
2v-1

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.60)
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Putting equ. (1.60) into equ. (1.49), then let us compute
_ (cosa)? cos a2 (1+¥) cos? a 2u+1) 1—((2”‘1)]
p_( ¢ ) _lp<1_( K )>_2U (2v+1)2 (1_( )_lp 2v-1

_ (1+¥) cos? a(2v+1)—2v(1+¥P) cos? a(1-g@v+D) _ w(2u—1)—2v¥[1-u@V—D)]
- 2(2v+1) 2u-1

(1+¥) cos? a[1+2v{ ZV+D)] [1-20¢@v=D)]
= +y
¢2(2v+1) 2v-1

2.1.6 Tensile stress and transverse stress

Recall egs. (1.5), equ. (1.2), and equ. (1.9)

2 2 2
r {*—cos®a 2rdr 1 H
=] = - = 2{d{ » rdr = d cosf ===
(R) 1-cos?a r? 1-cos?a ¢d¢ 1- cos2 ¢dg., B
2nr 1 cos?a
B ¢z

Tensile stress and transverse stress can be expressed as below

vi (2mrdr cos 8) cos 6 — v& (2mrdr sin 0) sin
f f

Equ. (1.64) becomes

%(Zn T ¢dq cosH) cos O — —f( T COSZ {dq sm9) sin 6
e o (1- 2
Total yarn tension is expressed as below
v_ljc%fclosa [ M - Q (1 - o a)] {d(
2 (-2

vf

5 2 fclosa[pcozs:a_q(l_cos a)](d(

1—-cos?a

2 cos?a

1—-cos?a

[ [(p +q) - q] {d¢

Equ. (1.70) can be separated as below

(1.61)

(1.62)

(1.63)

sinf =

(1.64)

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)

(1.70)
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2 1 cos?a
1—cos? afcosa(p +q) ¢ d¢ (1.71)
2 1
— o Jeos o 754¢ (1.72)

First, let us compute equ. (1.71) as follows

Using eqs. (1.60) and (1.63), then equ. (1.71) becomes

2 1 ((1+%®) cos? a[1+2v7(2v+1)] [1—20¢@=D]  (1+®¥)cos?a (2v+1)
1—cos?a fcosa{ 72(2v+1) +¥ 2vu—1 (2u+1)2 (1 —¢ ) -

1_((211—1)
2v—-1

}%d( (1.73)

2 1 (1+¥) cos? a Qu+1) _ A(2v+1)] 4 =220 V4w @] cos? o
- 1—coszaf0050! {%2(2v+1) [2 +2v¢ ¢ ] + 2v-1 I¢ d¢
(1.74)
Equ. (1.74) can be separated as follows
2 1 (1+¥) cos? a (u+1) _ 7(2u+1)]|cos’a
———Jeosa [—{Z(ZUH) [2 + 2v¢ qevD] |22 dg (1.75)
2 [ Z‘I’UC(ZU 1)+l1,<(2v—1)] cos2a
1-cos? a cosa 2u—1 Z ag (1.76)
Let us compute equ. (1.75)
2 1 (1+¥) cos? a (2u+1) _ 7(2u+1)]|cos’a
1-cos2 a fcosa[ 72(2v+1) [2 + 20¢ ¢ ] 7 d¢ (1.77)
2 (1+¥)cosa 1—cosv~1) a)]
1-cos?a  (2u+1) [ 1 ( 2u—1 (1.78)
2 (a+¥)costay, Qu+1)
cos’a (vl [1 - cos al (1.79)
Let us compute equ. (1.76)
2 [—2wvg@v-D4ywgv-D]] cos2
oo Jeosa Y 74 (1.80)
_ 2 Weoslay, (2u=1)
T T icos?a 2o-1 [1 cos a] (1.81)
Using equ (1.60), equ. (1.72) can be solved as
2 1
T 1-cos?a fcos a q¢d¢ (1.82)
_ 2 1 A+P)cos’a i (2u+1)) _ i @1 ]
T T 1cos’a fcosa (2u+1)¢ (1 ¢ ) V= -1 ¢ld¢ (1.83)
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Equ. (1.83) can be separated as follows

2 1 A+¥)cos’a . (2u+1)

1-cos? a fcos al v+t (1 ¢ )] d¢ (1.84)
2 1 p 16 1-g(@v-1) d g

- 1—coszafCOSOl[ 2v-1 ] ¢ (1.85)

Let us compute equ. (1.84)

2 fclosa (1+¥) cos? a (1 _ {(2v+1))] d¢ (1.86)

1—-cos2 a (u+1)7

2 (14+%¥) cos? a

(1+¥) cos? a [1—cos(ZV+D) a]

1—-cos?2a (2v+1) Incosa + (2v+1) [ 2v+1 (1.87)
Equ. (1.85) can be solved as

=, [ e e ]d 1.88
1—-cos2a”cosa 2v-1 o1 ¢ % (1.88)

2 ¥(1-cos’a) w(1-cos(2v+D) g)
- 1—cos? a[ 2(2v-1) (2u-1)(2u+1) (1.89)
Combining eqs. (1.79), (1.81), (1.87), and (1.89), then we have
2 2

2 _ {(1+BU) cos® a [1 _ COS(ZU+1) CZ] + (1+¥) cos®a [1 _ COS(ZU+1) a] +
1-cos?a (Qu+1) (2v+1)
(1+¥) cos? a [1—cos(2v+1) a] _ w(1—cos@V+D q) __Wcos?a [1 — cos@v-D a] + ¥ (1-cos? a)} (1.90)

(2v+1) 2u+1 (2v-1)(2v+1) 2u-1 2(2v-1) ’

2 2 _ (2v+1) _ (2v+1)

N 2 _ {(1+1P) cos“a In cos a + Z(U + 1) (1+¥)cos? a [1 cos a] _ lI’(l cos a)

1-cos?a (2Qu+1) 2v+1 2v+1 Qu-1)Qu+1)
Yeos*a  (2y—1) ¥ 3¥cos? a}

2o-1 0% T @1 2@-D (1.91)

q

2 cos?a

1—cos? a (2u+1) 2u+1 2v—-1 2v—-1

1-cos®* D q||  w[3(2v+1)  4@+1)cos®Va
{(1+4’)[lnc05a+2(v+1)[ ”—2[ - _

m;J} (1.92)
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2 cos’a
(1—-cosZ a) (2u+1)

1-cos@v*D) o
{(1 +¥) [ln cosa+2(w+1) [T” -

(2v-1)
z[s(zu+1>_4(u+ncos «__1 ]} (1.93)

2| 2v-1 2v—-1 cosZa

In order to calculate equ. (1.93), two mathematical functions in equ. (1.93) should be considered

as below
3(2u+1)
2vv—1 (1.94)
(2v—-1)
__ 4(v+1) cos a (1.95)

2v-1
Let 2v—1 to be denoted by x, then v = %1 x approaches 0 as v approaches 0.5 (i.e.,

v = 0.5then x —» 0)

Equ. (1.94) can be solved as blow

3(2v+1) 3(x+1+1) 3x+6 . 3x+6
= = - lim =
(2u-1) (x+1-1) x x—0 X

3 (1.96)

Equ. (1.95) can be also solved as follows

x+1 x+3
4(vy+1) cos@~D g 4cos” “X(T"'l) _ 4cos” “X(T) _ 2xcos*a+6cos*a _ 2xcos¥a
2v-1 - (x+1-1) - x - x - x

6cos*a
—_ (1.97)

x
then

. 2xcos¥a . 6cos*a . 2xcos*a . 6cos*al .
= —lim — lim = [—llm — lim ] = —lim(2 cos* a +
x—0 X x—0 X x—0 X x—0 x x—0
2x cos®* alncosa) — lin(1)(6 cos*alncosa) = —2—6lncosa (1.98)
X—

Combining egs. (1.96) and equ. (1.98), we have
3—2—6Ilncosa=1—6Ilncosa (1.99)
Thus, egs. (1.94) and (1.95) become

32u+1)  4(w+1) cos(@vD g
2v-1 2v-1

=1—6Ilncosa (1.100)

Put equ. (1.100) into equ. (1.93), then equ. (1.93) becomes

_ 2 cos?a
(1—cos?a) Qu+1)

2v+1

1—cos@V+D) o 73 1
{(1 +¥) [ln cosa+2w+1) [—]] -3 [1 —6lncosa — p— a]}

(1.101)
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In case of constant volume of yarn, i.e., ¥ = 0.5,v = 0.5

cosla [3 3(1—cos?a)\ 1/, 1
Tco?a [2 (ln cosa +——— ) " (1 6Incosa ps a)] (1.102)
2
—>3‘20—520‘lncosar+2c05205+l (1.103)
1—-cos“a 4 4

where a is surface fiber orientation angle of a twisted yarn.
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orientation angle)
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(c)

Fig. 1.1 A yarn geometric character. (a): Cylindrical figure, (b): Open-up figure at interior layer,

(c): Open-up figure at external layer ".
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Fig. 1.2 An illustration subjected to a force along the axial direction.

79



(c) (d)

Fig. 1.3 Six forces acting on an element. P and Q are tensile and compression stresses,

respectively.
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(a) (b) (c)

Fig. 1.4 Illustrations of triangles relating an element.
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(a) (b)

Fig. 1.5 Illustrations of two angular displacements
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APPENDIX B

2.2 Based on laminate theory

2.1 Stress-strain relations in a plane

Fig. 2.1 shows schematic representations of transformation of stress (a)” and three forces
applying on the three faces”. Three forces can be obtained by considering equilibrium equations.
Mathematical formulas are derived as follows
1. Stress oy,

X FE,=0:0,A—0,Acosfcosf — 1y, Acos 6 sinf — 0,,Asin 0 sin @ — 7, Asinf cosf = 0

.1
— 0,A = 0yAcos? 0 + T,y A cos 0 sin 6 + g,Asin® 0 + T,,,Asin 6 cos § (2.2)
— 0, = 0y c0s? 0 + 0y,sin® 6 + 27, sin 6 cos O (2.3)

2. Shear stress Tpq

Y F,=0:1p4A+ 0,Acosfsinb — 1y, Acosf cos — g,Asin 6 cos 0 + T,,Asinfsinf =

0 2.4)
= TpqgA = —ayAcos 0sin 6 + 1y, Acos 0 cos 6 + ayAsin 6 cos 6 — T,,Asin 6 sin 6 (2.5)
= Tpq = —0y €0s 0 sin 0+0), cos 6 sin 6 + Ty, (cos® O — sin® 6) (2.6)
3. Stress oy

Stress (04) can be obtained by substituting (6 + 90%) for 6 in equation (1.1). Because
cos(20 + 180°) = —cos 26, sin(260 + 180°) = —sin26 , and by using trigonometric

functions of sin26 = 2sinfcosf , cos26 = cos?H —sin’6 , cos?H = w , and

sin2 9 = 1—(:(2)529

Stress (0p) written in equ. (2.3) can be modified as follows

0p = 0y €05* 0 + 0,,sin” 0 + 27,y sin 6 cos 6 2.7)
1+cos 26 1—cos 26 .

20y =0x—— —t0o,——— +Tysin 260 (2.8)

0+180° - 0+180° .

> “COS(ZZ +180°) | oy~ C°S(22 +180°) | T,y sin(26 + 180°) (2.9)
1—cos 26 14+cos 26 .

= 0g=0x—— — +0,———— —Tysin 20 (2.10)

- 04 = Oy sin? 6 + gy cosZG—ery sin 6 cos 6 2.11)

Three stresses can be written in a matrix form from eqgs. (2.3), (2.11), and (2.6) as below
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cos ] sin? 0 2sin 6 cos 0 Ox
sin? @ cos? 0 —2sin@cosf || % (2.12)
qu —cos 9 sinf@ cosfsinf cos?6 —sin? 6l [ Txy
[ =[o]| o ] (2.13)
qu Txy
Trigonometric function is denoted by [®]
cos? 6 sin? 0 2sin 6 cos 6
[®]=| sin?@ cos? @ —25sin 6 cos (2.14)
—cosf@sinf cosfOsinf cos?O —sin? 6
Strain transform can be written in a similar manner
&p cos? 6 sin? 0 2sin 6 cos 0 Ex
sin? 6 cos? 8 —2sin 6 cos @ (2.15)
—cosfsinf cosfOsinf cos?O —sin? 6
On the other hand, engineering shear strain (y,q) should be used for tensor shear strain
(&pq) as
1
€pq = 3 Vpq (2.16)

Put engineering shear strain written in equ. (2.16) into equ. (2.15), we have

€ €
gp cos? 6 sin? @ 2sin @ cos O Sx
4 sin? cos? 6 —25sin 6 cos 6 y (2.17)
—cosfsinf cos@sinf cos?6 —sin® Ol [ Vxy
€p cos? 6 sin? 6 sin 6 cos 8 Ex
- | & |= sin? @ cos? 0 —sinfcosO || €y (2.18)
[ Vpq —2cosfOsinf 2cosfsinf cos? O —sin? 6l Vxy
€p Ex
- | & | =[X]| & ] (2.19)
[ Vpq Vxy
where
cos? 6 sin? 0 sin @ cos @
[X] = sin? 6 cos? 0 —sin 6 cos @ (2.20)
—2cosf@sin@ 2cosfsinf cos?6O —sin? 6
Equ. (2.19) can be expressed as blow
&y &
& | = [x]1 eq] 2.21)
Vxy Vpq

2.2 Deriving transformed reduced compliances
Using engineering shear strains ¥, the stress-strain relations in on-axis condition can be

expressed the following reduced compliances.
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€p Op
[eq — [¥] aq] (2.22)
Ypq Tpq
where
L %
Spp Spa 0\ Ii” t
[W]=|Spq Sqq O |=|75+ 7 O (2.23)
0 0 S SN
u o o0 =
Gpq
Using equ. (2.22), equ.(2.21) becomes
F Ex op
& [ = [X]71[¥] Uq] (2.24)
[Vxy Tpq

Using equ (2.13), then we have

C €y ] Oy
& | = [X]7'[¥][®] | oy (2.25)
[ Vxy ] Txy

Matrix form of [X]™1[¥][®] is called transformed reduced compliances denoted by [Qi j]

Ex Ox
[gy = [ay] Gy] (2.26)
Vxy Txy
where
Qpp g pu
(2] = |2%q 2qq 2qu (2.27)
-qu -Qqu Dy

The transformed reduced compliances in equ. (2.26) can be obtained by solving matrices as

follows

2.2.1 Solution for inverse function of equ (2.21)

cos? 6 sin? 0 sin @ cos @
[X] = sin? @ cos? 6 —sin6 cos @ (2.28)
—2cosfsin@ 2cosOsinf cos?6O —sin? 6
detX=

cos? 0 cos? 0(cos? O — sin? @) + sin® A 2cos O sin O sin O cos 6 +

sin? 6 sin 6 cos 6 2cos 6 sin § —

[— 2cos 0 sin B cos? 6 sin B cos @ — cos? O sin O cos A 2cos O sin O + sin? 6 sin? O (cos? § —
sin? )] (2.29)
= cos* 6 (cos? 0 —sin? 0) + 2 cos? B sin* 0 +

2 cos? 0 sin* @ +2 cos* O sin?  + 2 cos* O sin? @ — sin* O (cos? O — sin? 9) (2.30)

85



= c0s® 0 — cos*sin? 6 + 4 cos? 6 sin* 6 +4 cos* 6 sin? § — sin* O cos? 6 + sin® § (2.31)

= c0s® 0 +sin® § —sin* 6 cos? 6 + 4 cos? O sin* § +4 cos* 6 sin?  — cos*sin? 9 (2.32)
= c0s® 6 +sin® @ + 3 cos? A sin* 6 +3 cos* O sin? 6 (2.33)
= (cos? +sin?9)3 =1 (2.34)
Thus,
[X]7t =1x

cos? 6(cos? 0 —sin? 6) + 2cos?Osin?0  —sin? 6 (cos? @ —sin?B) + 2cos? Hsin? O — cos O sin® 6 — cos® O sin 9]

—sin? 0 (cos? 8 — sin? ) + 2 cos?> Osin?0  cos? O (cos? O — sin? B) + 2 cos? O sin? cos 6 sin® @ + cos® 0 sin @

2cos@sin® 6 + 2 cos® O sind —2cos@sin® 9 — 2 cos® O sind cos*@ —sin* 0
(2.35)

2.2.2. Multiplying two matrices

Spp Spg 0 cos? 0 sin? @ 2sin 6 cos 6
- [PIX[@] = |Spq Sqq 0 |X sin? 0 cos? 6 —2sinfcosf | =
0 0 Syl Ll—cos@sin® cosfsinf cos?B —sin?0

Spp€0s® 0 + Spgsin® 0 Sp,sin® 0 + Spq cos? 6 S,,2sin 0 cos 6 — S, 2sin 6 cos O
Spq €06 + Sgqsin® B Spqsin? 6 4 Sgqcos?6  S,52sin6 cosO — Sgq2sin 6 cos O

— S,,,C0s 0 sin O Sy oSO sin @ Syu(cos? 8 — sin? 9)
(2.36)
Equ. (2.27) can be obtained as below
'Qpp 'qu 'qu
— — -1 —
(2] = |2pq ¢ 2qu| = [X]7'x[¥]x[®] =
-qu -Qqu Dy
cos? 6(cos? 0 —sin? 0) + 2cos?Osin?0  —sin? 6 (cos? @ — sin? B) + 2 cos? Hsin? 0 — cos O sin® 6 — cos® O sin O
—sin? 8 (cos? 8 — sin? 8) + 2cos? Asin? @  cos? O (cos? O — sin? ) + 2 cos? O sin? § cos @ sin® 6 + cos® 6 sin 6

2cos@sin® 0 + 2 cos® @ sin6 —2cos 6 sin® @ — 2 cos® 0 sinf cos* @ —sin* 0

Sppc0s® 0 + S,qsin? 6 Sp,sin® 6 + S,5 c0s% 0 Sy, 2sin 0 cos 6 — S,,q 2sin 6 cos O

X |Spq €05% 0 + SgqSin? 6 Spgsin® 0 + Sgq €050 Spq25sin 6 cos O — Sgq2 sin 6 cos 6
— S,ucos0sin @ Sy €0s 0 sin @ Syu(cos? 6 — sin? 9)
(2.37)

2,, can be obtained as follows
Qpp=
[cos? 8(cos? 6 — sin? ) + 2 cos? @ sin? 0](S,,cos? O + S, sin® 0) + [— sin? 6 (cos® 6 —
sin §) + 2 cos? 6 sin? 8](S,, cos® 6 + Sy, sin? 0) +

(— cos 0 sin® O — cos® 6 sin 8) (— S,,,,cos O sin 6) (2.38)
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Sppcos* B (cos? 6 — sin? ) + S,q sin® 6 cos® 6 + S, 2cos* O sin? § + S5 2cos* O sin* 6 —

Spq cos? 8 sin® 8 (cos* § — sin” 0) — Sy4 sin* O(cos® O — sin® H) +

Spq 2cos* 0 sin® 6 + Sg42 cos? 6 sin* 0 + Sy, cos? O sin* 6 + Sy, cos* 6 sin® 6 (2.39)
= Sppcos* 0 (cos? § —sin® 6 + 2sin® 0) + S,,q sin® 6 cos? 6 (2sin® O + 2 cos? ) +

Sqq sin* 8(—cos? 6 + sin®  + 2 cos? 0) + S, cos® O sin? 6 (sin” 6 + cos? ) (2.40)
- 0y = Spp cos* 0 + Syqsin* 0 + (25,4 + Syy) cos? O sin? 6 (2.41)

2.3 Elastic modulus of a twisted yarn
Schematic representations of ideal geometry of a twisted yarn as shown in Fig. 1.1 of
Appendix A. Recall stress in off-axis condition written in equ (2.6)

Oy = —&, (2.42)
Qpp

0, is given in equation (2.41)

Qpp = Spp c0s* 0 + Sgqsin* 0 + (25,4 + Syy) cos? O sin?

where

1 _ v 1 _ 1 3
Spp —E_,,'Spq _?’”q,sqq _E—q,suu = (2.43)
E,=(1—-V;)Ep + V;E,” (2.44)

_ EfEm 5)
Eq = (1-V§)Em+V fEm (2.45)

in which Vg: Volume fraction of fiber, Er: Young’s modulus of fiber, E: Young’s modulus
of matrix, vpq: Poison’s ratio, and Gpq: Shear modulus.

Using equation (2.43), equation (2.41) can be transformed as follows

Qpp = Spp c0s* 0 + Syqsin* 0 + (25,4 + Syy) cos? O sin? 6

1 1 1 3] 1 1 1 1
= cos*0 —+ {——cos2 0 + cos* 0 — cos? 6+ + —}—+ cos?6 {— cos? 6 + =+ —}—+
Ep 8 2 8J) Eq 2 2) Gpgq

29{_cos2@+2+ 11 (=Ypa
2cos“6 { cos” 0 + >+ 2}( Ep) (2.46)
1 1 2 2v 1 1 1 2v
=—+<—————pq)c0526+(—+———+—pq)cos46 247
Eq \Gpq Eq Ep Ep Eq Gpg Ep (247)

The axial force in a twisted yarn is expressed as follows by assuming no slippage between

layers because of the integrity of a twisted yarn®.
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F=[oydA = [ oy 2mrdr (2.48)
Axial force can be expressed as the following equation, if the yarn is treated as one body.

F = EcyexA (2.49)
where A is the cross sectional area of a yarn.

The ideal twist geometries as illustrated Fig. 1 are expressed as

R
tan0 = % and tana = 2% (2.50)
Using equation (2.50), we have
Sh= 2mr anthZnR_) an:21tR_)r:tan9R 2.51)
tan 6 tana tan® tana tana

where o is surface fiber orientation angle of a twisted yarn.

Taking the derivative of equation (2.51), then we have
dr=———1_4dp (2.52)

tan o cos? 0

We write elastic modulus (E.,) of a twisted yarn from equ (2.49) using egs. (2.48), (2.51), and
(2.52), then we have

F 1 (R 2 (R
Eey = e = mree Jy ox 2mrdr = o Jy oxrdr (2.53)
2 a 1
= ot e fO oytan® 0576 de (2.54)
—_2 q(a_1 2
= tanzafo o tan 0 sec? 0 dO (2.55)
Using equ (2.47), we have
2 o 1 2
o= ESRERETT EESESETT tan 0 sec? 0 dO (2.56)
tan® a {E+(qu g Ep )cos2 9+(Ep+Eq Gpa Ep )cos“e}

let
cos?0 =2 (2.57)
B=L+L_L+2m (2.58)

§=——2— (2.59)

7= E_lq (2.60)

Taking the derivative of equation (2.57), then we have

—2c0s0sinfd0 = dA — sinBd = ———dA 2.61)
2cosO
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Using eqs. from (2.57) to (2.60), elastic modulus of a twisted yarn written in equ (2.56) is

expressed as below

2 J-cos2 o 1
1 (BA2+8A+0)

Y 7 tan?2«

tan 0 sec? 6 d6

2 fcoszot 1 —dA 1

" tanza’1 (BA2+8A+7) 2 cos26 cos20

___1 fcosza 1 1

tanZa -1 (BA2+8A+0) Az

To solve equ. (2.64), we modify it as the follows

5 1 B& 82 B
g w1, el
(BA2+8A+7) A2 A A2 (aAZ+bA+c)

Using equation (2.65), equ (2.64) is expressed as below

E. = — fcoszot 1 1
¢ tanZa’1 (BA2+8A+0) A2

dA

5 1 g6 82 B
L peostaZ T @2 %) d
1 A A2 (aAZ+bA+c)

Equation (2.67) can be separated as below

1 cos?a 772
tanzocfl A dA
» 1
1 cos?a ¢
tanzocfl A? daA
Bs 82 B
1 fcoszot(_zA"'(;_z_Z) dA
tan? o 71 (BAZ+8A+0)

The solution of equ. (2.2.68) is

[
1 cos?2a 772
L

dA

tan? a

= (_ tam12 a) (_ %) In cos* a

The solution of equ. (2.69) is

1 fcosz o

. dA

>
NN]D-\

tanZ

1 (cos?a-1)
tan2a lcos?a

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.2.71)

(2.2.72)

(2.73)

(2.74)

89



The solution of equ. (2.70) is
5, (82
ol
1 (BA%2+8A+7)

(2.75)

tan? a

5 8 82 1
_ 1 fcoszozm(“’fﬁ)’f(zﬂ?‘?) (2.76)
tanZ a 71 (BA?+8A+0))xg .

Equ. (2.76) can be separated as below
8 s
1 J-cos2 a W(ZA"'E)

1 {(BA2+8A+()}><% (2.77)

tan2 o

5 (ﬁ_z)
1 cos“ 282
tanzafl {(6A2+8A+z)}><% (278)

The solution of equ. (2.77) is

1 fcoszot %(2A+%)

1 {(BAZ+8A+])}xg

(2.79)

tan2 a

___1 & B cos* a+8 cos? a+{
T tan2« 202 ( B+6+{ ) (2.80)
The solution of equ. (2.78) is

52 1
1 fcosza (zﬁzz"?)
tan2 a1 {(6A2+8A+Z)}x%

(2.81)
_ 1 (8%2-2B7) rcos?a 1
T T tan?a 22 f1 BAZ+8A+T A (2.82)

Equ. (2.82) can be modified as below

BA2+8A+Z=B(A+;—B)2—4—SB+( (2.83)

_ B[(A +2) - (—W)Z] (2.84)

Using equ. (2.84), equ. (2.82) becomes

1 (6%2-2B7) pcos?a 1
_ ( = )fl —dA (2.85)

tanZ

5 8§2-487

_ 1 (62-287) 1 In cos? S PTRET 3 1 P TRNET
~ tana 2B¢° 52-457 82-457 52-457 52-487
2‘/— coszals"/ 2‘/ 1'6:‘/

2B 287 2B 2B EAET

(2.86)
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1 §2-287 ln(ZBcosza+8—\/82—4BZ)+ 1 §2-2B7 ln(23+8—1/62—43()
T tan2a202,/52-481 (2B cos? a+8+,/52-aB7)  tan? «202/82—4BT  (2B+5+/57—4B7)

(2.87)

Using egs. (2.72), (2.74), (2.80), and (2.87), elastic modulus (E,) of a twisted yarn can be

expressed as follows

E.—__1 fa 1 1
Y7 tanZ2a”0 (BAZ+8A+Q) A?

1

_ 8 4 cos?a-1 , § B cos* a+8 cos? a+{
tan? a 202 Incos™ ar + {cos?a 202 1 ( B+6+{ ) +
52-2pg_ (2B cos? a+5-/52-47) _ e (2p+8-/62-4B7) 2.88)
202./82—44 (ZB cos? a+8+\/52—4[3§) 202./62—441 (2[3+8+1/82—4BZ) '
<2B+8— 82—46()
1|8 n (B+é+9) cos’a  cosPa—1 §2-2B¢ <ZB+8+\182_4BZ) (2.89)

T tan?a|2¢2 Beosta+Scos?a+{  {cosa = 202/862—4B (23 cos? a+5—J52-4B()

(23 cos? a+5+J82—4B()

1 iln (B+8+¢)cos*a  cos? a—1+ 8§2-287 n(ZB+8_V52_43<)(25C0520""8"'\/82_4'3()
tan? a |2¢?2 " Bcos*a+8cos? a+( {cos?a 202,/62-487 (ZBcosza+8—1/82—4[3()(2[3+8+,/82—4-[3()

where
B_L+L_L 2Vpg P
b
Ep Eq Gpg Ep Gpq

(2.90)

2 2qu

Eq Ep

Land {=— 2.91)
q
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| SR

t_(Asinf) <—$— A (Area)

Gy(ASlI‘l 0)

(a) Element of x-y-z and p-g-r system (b) Three forces

Fig. 2.1 (a) Cartesian coordinate system (Off-axis): x-y-z global and p-g-r principle

material system ), (b) Three forces on a plane @,
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APPENDIX C

3 Dealing with shear stresses

Hearle et al. did not consider shear stresses as explained in Appendix A. Further theoretical
method was studied by Thwaites” who introduced the effect of shear stresses.
A schematic representation of a filament yarn is presented in Fig. 3.1. The components of strain

in the case of cylindrical coordinates (i.e., r, ¢, and z) are given as?”

ou 10u  u u

Err = 57 €00 =;£+;,5zzzg CRY
10u , du du , du ou u  10u

Egs. (3.1) and (3.2) can be reduced to the following equation in the axial symmetry condition.

ou u ou
Err = 5r 080 = 782z =5 T € (3:3)

Yoz = B1Ver = 0,¥rg =0 G4
where S is axial twist per unit length.

Using transformation of plane strain®, the following equation can be obtained

d
e =3, (35)
£y, = £sin? 6 + %cos2 6 —ysin? @ (3.6)
£33 = £c0s? 0 + %sin2 6 +ysin?@ 3.7
Va3 = 2 (% - 8) sin 6 cos 6 + y tan 0 (cos? @ — sin? @) (3.8)
. . _ pr
in which y = — (3.9)

When a solid is strained symmetrically by forces applied at its surface, the stress-equations of

equilibrium in cylindrical coordinates and r, ¢, and z is expressed as below?’

om | b _

ar r

0 (3.10)

As illustrated in Fig. 3.1, 77 and 86 are identical with o;; and 0p¢, respectively. Thus, equ.
(3.10) can be written as

0011 | 9117 0¢¢p _
o +—T =0 (3.11)

The stresses are independent of z and ¢. Thus, the partial differential equilibrium equation

becomes ordinary differential equations in r only as follows

doqq
dr

In case of the helical coordinate of ideal twisted geometry (o1, = 0,+), as illustrated in Fig. 3.1.

T + 011 —0pp =0 (3.12)
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tan 6

Rtanf =rtana - r =R (3.13)
tana
Dif ferentiation RAO
- Pk —
dr cos2ftana (.14)
1 tan a cos?
BTl (3.15)
Putting eqgs. (3.13) and (3.14) into equ. (3.12), then we have
tan 0 tan a cos? Odo
—— T 2 doyy + 011 — 0pp = 0 (3.16)
in 0 cos?6d
> orsap o+ 01— 0y =0 (3.17)
. d
—>sm6c059%+011—0¢¢ =0 (3.18)
and Tpp =T, =0 (3.19)

When all tensile stresses are loaded at the same time, the strain in any one direction is a
combination of all effects®. In addition to this, when strains to the direction 11 and 22 are

identical as shown in Fig. 3.1, the following equation can be obtained.

1 —U12 —VUi3

Elgll 1 011

Eigypp = | V12 _313 022 (3.20)
E €33 —v13 —v3  — [lo33
T23 = (Y23 (3.21)

In order to have simple solution, one assumption was adopted that the sum of direct components

must be zero.

11+ &+ e33=0 (3.22)
Using egs. (3.5), (3.6), and (3.7), we have

3—1:+ £sin? 0 +%cos2 6 —ysin?0 + ecos? 6 +%sin2 0 +ysin?0 =0 (3.23)

~ 24+ 2c0s?0 +2sin? 0 + £sin® 6 + £ cos? 0 = 0 (3.24)
ST the=0 (3.25)

Su=-2(3r2) (3.26)
Su=—-re (3.27)

011, 022, and o33 must independently add to zero. From equ. (3.20), we have
E
Ei(e11 + &30 + £33) = (1 —v1p —v33)01g + (V12 + 1 —v33)0p; + (—U13 — U3+ E_:) 033

(3.28)
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Ey

- V13 = 1-— U1 = E (329)
From equ. (3.20), we have
E1€25 = —V12011 + 022 — V13033 (3.30)
E1€11 = 011 — V12022 — V13033 (3.3
Using eqs. (3.30) and (3.31), the following equation is obtainable.
Ei(&22 — €11) = —(v12 + Doyy + (1 +v13)05; (3.32)
= E1(&52 — &11) = (V12 + D (022 — 011) (3.33)

_ __ Eqi(e22—814)
— 0373 011 = —1+U12 (334)
Using equ. (3.29), we have

E
Vi3 =1—-vg, = i - E; = 2E5(1 —vy3) (3.35)
Putting equ. (3.35) into (3.34), then we have
2E3(1-vq5)(e22—€14)

0ap = gy = R (3.36)
Using eqgs. (3.6) and (3.27)

a
e ==~ (3.37)
Equ. (3.36) becomes

2E4(1-v4,)(esin? 0-Lcos? 0—y sin2 9+
Oyp — 011 = w2 — ) (3.38)
_ in2 _
= 03 — o3y = RHZ A (3.39)
Equ. (3.29) can be modified as below
E E
WU;; = 2_513 - E—: = 20q3 (3.40)
From equ. (3.20)
Ei€33 = —V13017 — V13022 + 2013033 (3.41)
Ey€55 = —012011 + 022 — V13033 (XV33) (3.42)
= U13E1825 = —V13V12011 + V13022 — V13013033 (3.43)
= Uy3E1 825 = —U13V12011 + V13022 — VU13V13033 (3.44)
(E1€33 = —U13011 — V13022 + 2013033) + (V13E1822 = —U13V12011 + V13023 — U13V13033)
(3.45)
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= Ej€33 + V13E1657 = —V13011 — V1302, + 2013033 — V130120711 + U130, — U13V13033

(x5 (3.46)
E

- :,gzg + E1&22 = =011 — 022 + 2033 — V12011 + 022 — V13033 (3.47)

~ E (83_3 + 522) = —011 — V12011 t 2033 — V13033 (3.48)
V13

- E1 (Eﬁ + 822) = —(1 + U12)0'11 + (2 - U13)0'33 (349)
V13

- £y (1 —og T ‘922) = —(1+vz)o + (2= 1+v3)033 (3.50)

- B (1 > + 522) = (1 +v13)(033 — 011) (3.51)

From equ. (3.20), the following equation can be obtained

E, (-3¢
033 — 011 = M (352)

1+v4,

2E3[(1-v15) €00+ €33]
> 033 — 013 == 1:31222 2 (3.53)

Egs. (3.6) and (3.7) are modified as below

£y, = £sin? 6 + %cos2 6 —ysin? @ = esin? 6 — §c052 6 —ysin? @ (3.54)
£33 = £c0s? 0 + %sin2 6 +ysin?0 = ecos?f — %sin2 6 + ysin? @ (3.55)
Equ. (3.53) becomes

2E3[(1—v12)(£ sin? 9—§ cos? 6—y sin? 9)+£ cos? 9—§sin2 0 +y sin? 9]

— 033 — 011 = (356)

1+vq,

- 033 — 011 = 1iE [ e(sin? @ + cos? 0) —v,,e5in% 0 + = ulzs(l — sin? ) + yv,, sin 6]
Vi2
(3.57)
_ _3vu, sin? @ 2yv4,sin? @
= B[ (1~ 220 et as
Equ. (3.8) can also modified as the follows
Va3 = 2 (% — s) sin @ cos O + y tan 6 (cos? @ — sin? 6) (3.59)
_&r
=2 (Tz - s) sin @ cos O + y tan 6 (cos? § — sin? §) (3.60)

96



= —3esinf cosO + ytan 6 (cos? § — sin? §) (3.61)

Thus, 7,3 becomes

in2
T3 =Gy3 =G [—38 sinf cosf +y (sin 0 cos —sinf cos ::;22)] (3.62)
= Ty3 = Gyy3 = G sinf cos O [-3e + y(1 —tan? 6)] (3.63)
Recall equ. (2.12) in Appendix B. Using stress (ogg), equ. (3.19) can be expressed
as below
sin 6 cos 6 d;; + 041 — 0 €052 0 — 033 5in?  — 27,3 sin @ cos @ = 0 (3.64)

Using eqgs. (3.39), (3.58), and (3.63), equ. (3.64) can be modified as follows

E5(1-v,,) sin? 8 cos? (3e-2y)
14V,

. do .
51n6c059d—;+ 011 — 011 COS% 0 — — 044 5in% 0 —

3v4, sin? 6) 2yv4,sin? @
14U, 14U,

Eq sinze[e(l —2sinfcos@Gsinfcosh[—3e+y(1—

tan2 )] = 0 (3.65)

cot doy, _
E; df

2(1+cos?0) . 2(1+vqy)

[3(1+cos2 6) _2(1+vyp)

G G .
6E—3cos2 6]e+ [— + 2E—3(c0526 — sin? 6)]]/

1+v1, 1+v4, 1+v1, 14U,
(3.66)
1 do 3¢ sinf  3ecosfsinf sin 6 2G . sin O 2y sin@
——2= —2¢ —3=—¢&cosfsinf + 2y ) 4 -
E; do 14+vq, cos @ 14+vq, cos @ E3 cosf 14v,,cosf
2y cos6sinf 2G . 2G  sin@
e +2% ycosOsing — == (3.67)
14+vq, E3 Es; " cos@
Now, equ. (3.67) can be integrated as below
1 doqq ( 3¢ sin@ 3ecosHsinb 2 sin@ 2G . sin @ 2y sinf
— 1 - -3 ing + 2 - -
f E; dé f 14v4, cos 1+v4, € cos 6 3 E3 gcosfsing + 2y cosf®  14v,, cosH
2y cosBsinf 2G . 2G sin@
LIS A LA 2—ycosfsinf —y— ) (3.68)
14+v4, Es E3 cos @
Equ. (3.68) can be separated and integrated as below
1
3¢ sin@
f 1+v4, cos @ do (3.69)
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3¢

IncosO + C

V12
2

f 3ecosHsinb
1+vq,

do

3¢

1+v4,

3
[ —2¢

do

sin @
cos @
- 2¢lncos + C

4

f—32—GSCOSGSin9d9
3

326
—=-—c¢ccos20+C
4 Eq

5

f2)/ cos @
— —2ylncosd + C
6

sin @

do

2y sin@
f 14+v4, cos 6 de
2
- —Y _Incosd + C
12
7

f 2y cosOsin@
1+v,,

do

1+v,

8

fZZE—GycosesinGdH
3

- (—%)%}/COSZH +C

x(—i) 0526 + C

Y x(%)c0529+6

(3.70)

(3.71)

(3.72)

(3.73)
(3.74)

(3.75)

(3.76)

(3.77)
(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)
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2G  sin@
- I_Eycose (3.85)
26
- E—3ylncos€ +C (3.86)

Sum from equ. (3.70) to equ. (3.86), then equ. (3.68) becomes

M= 32 cosf + ——x (— l) c0s 20 + 2&lncosd + 225 ¢ cos 20 — 2ylncos6 +

E3 1+vq, Vg2 4 4 E4
2" Incos@ + = x cos 260 — EEy cos 26 + Eylncos@ + f(x) (3.87)
V12 2 Vg 2 E3 E3

where f{x) is constant.
Boundary condition is considered that the radical stress must be zero at the cylinder surface,
o171 =0 when 8 = a.

Thus equ. (3.87) becomes 0. Then we have

3¢ 3¢ 1 32G
flx)= Incosa + X (—) cos 2a — 2¢elncosa —==—¢cos 2a + 2ylncosa —
14U, 14U, 4 4 E,
2y 1 14 126G 2G
In — =X cos 2 e 2a ——vylncosa 3.88
. cosa — > . 0s2a + - I Y cos 2a I ylncos ( )

Putting equ. (3.88) into equ. (3.87). Then we have

g 3¢ 3¢ 1 326
- =— Incos6 + X (— —) cos 260 + 2¢&lncosd + =—¢cos 20 — 2ylncosf +
E3 1+v,, Uiz 4 4 E3
2 1 12G 2G 3& 3¢
Y _Incos® + = x —t—cos 26 — ~—y cos 20 + —ylncos6 + Incosa +
1+v,, 2 12 2 E3 E3 1+v, 1+v,,
1 32G 2 1
(—) cos 2a — 2¢elncosa —=—z¢ecos 2a + 2ylncosa — Y _Incosa — =% cos2a +
4 4 E3 1+vq, 2 Uqp
12G 2G
-—ycos2a — —vylncosa (3.89)
2 E3 E3

Equ. (3.89) can be rearranged as follows
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2L —( 3 _ 25) Incos6 + ( 3 _ 25) Incosa — (13—'E - EE&) cos 20 + (l 3 _
Eq 14V, 14V, 414v,, 4E; 41404,
Eﬁs) cos2a + ( 2y _ 2y +£y) Incos6 — (Z—V— 2y +— 26 )lncosa + ( r__
4 E, 14+v4, Es 14v4, Eq 21404,
126 1 v _ 126 )
2 y) cos 20 — (2 v, 2L y ) cos 2a (3.90)
S _
E3
€ [( i _ 2) In <2 —3(—1 - )(cos 6 — cos a)] + y[( 201 —E) el 4
1+vq, seca 2 \1+vq, E3 1+v4, E; seca
126 2 ]
(1+U12 53) (cos? 6 — cos? a) (3.91)

Thus we have

011 =

E3{e[( > —Z)Inﬂ—i(;— )(cos 6 — cos a)] +y[( 2V12 —E)lnﬂ+
1+vy, seca 2 \1+v, 1+v,, E; seca

( L —) (cos? @ — cos? a)]} (3.92)

1+vq, E3

Using equ. (3.92), we have

- in2
0y, = E3 {s [( i _ 2) in sect —3(—1 - )(cos 8 — cos?a) + 34-viz)sin"6 9] +
1+Vq, seca 2 \1+v,, E; 1+v4,
- in2 @
y[( 21z _ ) sec6+( L ——) (cos? 0 — cos? a) — 2a-viz)sin"6 ]} (3.93)
14+v4, seca 1+v,, Eg 14U,

From equ. (3.58), we also have

3 6 3 1 3 in? 0
033=E3{s[( —2)lnSec ——(—— )(cos 6 —cos?a)+1— ﬂ]+
1+vq, seca 2 \1+v, E3 1+v,,
2 2 1 2 in? 0
y [( Uiz _ ) =2+ ( - —) (cos? 0 — cos? a) + ﬂ]} (3.94)
1+vq, seca 1+v,, E; 1+vq,

Equ. (3.63) can be expressed as below
Ty3 = E3 [—sgz—Gsin 6 cos6 + y(1 —tan? Q) %;—Gsin 6 cos 9] (3.95)
3 3

Using equ. (2.12) and (2.53) in Appendix B, we have elastic modulus of a yarn in tension as

below.
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L = f (0,2 Sin? @ + 033 c0s? 6 — 21,3 sin @ cos B)2 tan O sec? 6 dO (3.96)

TR2 tan2

Substituting from eqgs. (3.92) to equ. (3.95) into equ. (3.96), then we have the following

equation for tension.

T —
TR2E;

L N {e [( :_ 2) Il _ 3(; - 53) (cos? 0 — cos? a) + 30vip)sin? 6 9] sin 6 +

1+vq,

a2
s[( > —2)lnsecg—i(;—2—a)(c0529—cosza)+1—W}c0529+
3

1+vq, 14+vq, 1+vq,

€3 JZE—GSin2 0 cos? 6} 2tan @ sec? 6 do (3.97)
3

Equ. (3.97) can be integrated as follows

T —
TR2E;

1afa{e[( > —Z)Insecg—i(;— 3)(cos 0 — cos? a)+—(1_vlz)sng]sin29+

1+vy, E 1404,

2
s[( > —2)lnsece—3(;—2—6)@0526—&5205)+1—W]c0529+
3

1+vq, 14+vq, 14+vq,

€3 ]ZE—GSin2 0 cos? 9} 2tan @ sec? 6 do (3.97)
3

TR2E3 tan?a “0 1+v12 2 \1+vq,

U — fa(( > )lnsecgsn 0——(;—}5)(coszé?—cosza)sin26+
3

3 cé 3 1 3(1-v45)sinZ? @ sinZ @
( ) ——(—— )(COS 0 — cos? a) cos? 6 + 12 -
1+v12 2 \1+v,, E3 1+v,,
3v4, sin? 6 cos? 6 2G
=2 2 2+ cos? 0 + 3= sin? @ cos? 9) 2tanfsec?6do (3.98)
1+vq, E3
T 1 a 3 secH 2sin 0 1 sin 8
=¢ —2)ln —3( ——) cos? 6 — cos’ a +
TTR2E, tan? a fO (1+v12 seca cos3 0 1+v,, Ej ( ) 30
6(1—v4,) sin® @ 6v,, Sin®0 = 2sin6 2G sin3 0
( 12) — 12 &7 de (399)
1+v,, cos®6  1+v,, cos@ cos6 E; cosf@

Equ. (3.99) can be separated as follows
1
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1 fa( 3 _Z)InseCHZSinedH (3.100)

tan2a “0 \1+v,, seca cos3 6@

—(Z——2) (2 nsec6 222 d6) — (2inseca [y 2% do)] (3.101)

tan? @ \14v4, cos3 6 0 cos36

Let cos@ is x, and integrate it, then we have —sin 8 df = dx. Thus

1 3 cosa 11 cosa 1
— (1+v12 - 2) [(—2 fl In—= dx) + (Zln seca fl x—3dx)] (3.102)
-»— cot?alnseca — I _2cot?alnseca +1 (3.103)
1+v4, 1404, 2
2
_ 1 a 1 _ E 2 _ 2 sin @
tanzafo 3 (1+v12 Es) (cos? @ — cos? a) ey (3.104)
- cot?alnseca +>cos?a——+ 32 cot2 alnseca — > cos?a (3.105)
14015 2 1+v1, |~ Es 2 Es
3
1 a 6(1-v;,) sin® @
tanZ a fO 1+v,, cos38 (3.106)
-1+ cos?a) 60-v1a) _ 5 807v18) (2 g Iy seca (3.107)
2 1+U12 1+U12
4
1 a 6v,, sin®@
tanZa fO 1+v,, cos@ do (3.108)
- 212 00t2 g Incosa + 2—22 cos? (3.109)
1+vq, 21+vy
5
1 a 2sin @
tanzaf0 cos @ (3.110)
- 2cot?alnseca (3.111)
6
1 a . 2Gsin3 @
tanzaf0 E_3c059 (.112)
—>62E—Gcot2alnseca—§;—6cosza (3.113)

3 3

Let sum from egs. (3.101) to (3.113), then equ. (3.99) becomes
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1 _2cot?alnseca+1+ cot?alnseca +

3 2
£ cot“alnseca —
1 12 1+vq, 2 1+vq,

2cos?a +3£c0t2alnseca—§£cosza+l(1+cosza)M—
2 144, Es 2 Ey 2 1+v4,
280712) (012 o Insec a + 222 cot? @ In cos @ + 2222 cos? @ + 2 cot? a In sec a +
1+v4, 1404, 21+v5,
625 cot? a Insec a — 225 cos? a] (3.114)
Es 2 E,
6(v1—2) ., 18G 2 _ 9% _ sin? a 9
—>£{ 2+[ . + Es]cot alnseca E3 € cos a+(1 > )1+v12} (3.115)
Elastic modulus is expressed as
6(v12—2) ., 18G 2 _ 9% _ sin? a 9
E3{ 2+ [ s, + P ] cot“alnseca cos a+ (1 5 )1+v12} (3.116)
in case of G = 0 or £, = 0 (constant volume fraction: v;, = 1). Because (1 —vq, = 25?1 =0-
3
v12 = 1). Equ. (3.116) is expressed as follows
6(v1,—2) |, 18G 2 9% 1.5
E3{ 2+ [ Y + P ] cot“alnseca cos a+ (1 > sin a) 1+U12} (3.117)
2 _1a2,)2
- E3 [—2—3c0t alnseca+(1 > sin a)z] (3.118)
- E4 (—2—3c0t2alnseca+§—§sin2a) (3.119)
- E4 (§—3cot2alnseca—zsin2 a) (3.120)

where Ej; is identical with equ. (2.44) of Appendix B.
The value written in parenthesis of equ. (3.120) is the same value listed in equ. (1.103) of

Appendix A.

103



; (7
Fig. 3.1 A schematic representation of three stresses and shear stresses *".
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