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Chapter 1

Introduction

1.1 Background

The diffuse lung diseases (DLDs) refer to a series of disorders that affect many
pulmonary tissues (parenchyma) in the lungs. Fig. 1.1 illustrates four example
images of the DLDs. The expert meeting of American Thoracic Society and Euro-
pean Respiratory Society (ATS/ERS) produced a joint statement which divided
the DLDs into two classes [1]: (1) disorders of known causes, such as collagen
vascular diseases and environmental, occupational or drug-related diseases. (2)
disorders of unknown causes which consist of three sub-classes: (2-a) idiopathic
interstitial pneumonias (IIPs); (2-b) granulomatous diseases, such as sarcoidosis;
(2-¢) other forms including eosinophilic pneumonia. The common presence of
the DLD patients can be divided into four types [2]: (1) exertional dyspnea or
cough, (2) bilateral diffuse interstitial infiltrates on chest radiographs, (3) phys-
iologic and gas exchange abnormalities and (4) histopathologic abnormalities of
the pulmonary parenchyma. Fig. 1.2 illustrates several possible clinical effects of
the DLDs on the body [3].

The pneumoconiosis is a kind of the DLDs, which is caused by prolonged
inhalation and retention of industrial dust particles (20 years or more experience)
in the lungs. So the workers in the industries like the mining and construction
have a high risk of suffering from the pneumoconiosis. Fig. 1.3 gives the example
image of the pneumoconiosis. It has been proven that the pneumoconiosis would

lead to a severe lung function impairment, and there is a positive correlation
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between the pneumoconiosis and lung cancer, especially for the smokers [4, 5].
At present, the pneumoconiosis is one of the most serious occupational diseases
in some countries, especially in the developing countries. For example, in China,
it was reported that there were total 527431 pneumoconiotic cases in the 2010
[6], and the number of new pneumoconiotic cases from 2010 to 2012 were 23812,
26401 and 24206 respectively [6, 7, §].

For the diagnosis of the DLDs, it is recommended to start a consideration when
the patient has a presence of the breathlessness and diffuse opacities on the chest
radiographs [3, 9, 10, 11, 12]. Once the DLDs are suspected, the first step of the
diagnosis should be a careful review of the clinical history, such as the medical and
drug history, environmental and occupational exposures, history of the smoking
and family, and any clues to the systemic disease that might involve the lungs.
Then a comprehensive set of physical examinations should be operated, including
a combination of chest radiographs (compared with previous films), pulmonary
function test (such as spirometry), blood test, electrocardiogram and so on.

In order to provide a correct assessment and therapy program, the radiologists
are required to make an accurate radiological interpretation of the chest radio-
graphs. The correct identification of abnormalities and their distribution is useful
to narrow the differential diagnosis of the DLDs. With the development of imag-
ing technique, the high-resolution computed tomography (HRCT) is thought to
be the best tool to assess the pulmonary patterns, because the nature of the three
dimensional imaging can remove the superimposed of tissues on the images, and
the high spatial resolution can provide sufficient anatomic details to detect the
subtitle objects. Fig. 1.4 compares the images of the conventional CT (section
thickness: 10mm) and HRCT (section thickness: 3mm). It can be found that the
micro-structures can be clearly demonstrated on the HRCT image.

Furthermore, although the chest x-ray (CXR) is also an essential imaging
modality in the clinic, it is thought to be non-specific to the DLDs due to the
following two factors [13, 14, 15, 16]: 1. The CXR has a relative low resolution
so that it is difficult to observe the subtle parenchymal abnormalities. 2. The
two dimensional nature of the CXR imaging causes a superimposed of many
parenchymal structures on the images. It was estimated that 40% of normal

subjects on the CXR images would be obscured [14]. Fig. 1.5 compares the
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example images of the CXR and HRCT. It is clearly that the HRCT image can
provide a more accurate evaluation for the pulmonary tissues than the CXR
image. The study [17] compared the diagnosis results based on the HRCT and
CXR images. It is reported that 69% of subjects were correctly diagnosed by
using CXR images, much lower than the HRCT images (80%). For the subjects
recognized to be the normal case, 42% of the CXR and 18% of the HRCT were
suffered from the DLDs. And the normal subjects which were correctly identified
by using the CXR and HRCT were 82% and 96% respectively.

On the other hand, the main disadvantages of HRCT are the high expensive
and high dose of radiation in the scanning. So, it is important to always consider
the alternative techniques and adopt the HRCT examination only in the presence
of the clear indications, especially for the children and pregnant women. In order
to reduce the dose of the radiation, the HRCT scanning can be adapted to suit
the examined body part and the body weight. Furthermore, researchers devel-
oped some elaborate techniques, for example, the low-dose HRCT by reducing
the current during scanning. It was thought that although the low-dose HRCT
cannot be employed for the initial evaluation, which may be failed to demonstrate
the ground-glass opacities (2 of 10 cases) and emphysema (1 of 9 cases), it was
valuable to screen the progression of the DLDs and evaluate the patients with
some abnormalities [18, 19]

According to the appearances on the HRCT images, the abnormal opaci-
ties (pulmonary patterns) of the DLDs can be divided into four fundamental
categories: reticular opacities (RET) shown as irregular lines, nodular opacities
(NOR), increased lung opacities including honeycombing (HCM) and emphy-
sema (EMP), and decreased lung opacities including consolidation (CON) and
ground-glass opacity (GGO). Fig. 1.6 gives the example images of these six kinds
of typical DLD opacities and normal tissues (NOR). Table 1.1 summarizes the
typical abnormal pulmonary patterns and their distribution which may used to
diagnose some DLDs .

Although the HRCT can provide an accurate assessment for the DLDs, there
has not been an objective identification criterion to describe the complex DLD

opacities in the current clinical protocol, and the interpretation of the abnormal
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opacities mainly depends on the radiologists’ individual expertise and clinical his-
tory. Therefore, the subjective differences between the radiologists” diagnosis are
inevitable, which would lead to various treatments for the patients. In the study
[20], the observer variations between a group of 11 radiologists’ reports were esti-
mated. Only 69% of the first choice diagnosis was made with no doubt or a high
confidence (likelihood > 70%), and the agreements on the first choice diagnosis
were only moderate (the value of unadjusted kappa coefficients of agreement was
0.48). In order to improve the accuracy and reproducibility for the identification
of the DLD patterns, an objective quantified is expected in the diagnosis of the
DLDs. Additionally, the radiologists have to spend much time to review the large
numbers of axial slices (about 300 ~ 500 slices) in the HRCT scans. Due to the
above reasons, a computer-aided diagnosis (CAD) system is required to facilitate
the diagnosis of the DLDs by providing the radiologists with a ”second opinion”
and ”objective criterion”.

In the CAD methods, the calculation of image features is an important task
which can represent the images or volumes of interest (VOIs) in a discrimina-
tive way. The conventional textural features, such as the statistical moments
of the histograms and the moments based on the gray-level run-length matrices
(GLRLM) [21] and gray-level co-occurrence matrix (GLCM) [22] have been suc-
cessfully used in the classification of the DLD patterns. Wang et al. thought
that the GLRLM could be partitioned into four areas with clear physical mean-
ing [23]. For example, the top-left and bottom-right area of the GLRLM could
be adopted to indicate the information of the GGO and NOR respectively. Park
et al. used the GLRLM and the moments of the histograms to represent the
texture information of the pulmonary patterns [24]. In the study [25], a total
of 130 textural measures was calculated based on the 3D version of the GLCM.
Besides, the adaptive multiple feature method (AMFM) [26] and its 3D version
have been used in the CAD of the DLDs in the works [27, 28] respectively.

The features based on the textural information have an excellent performance
on the classification of some DLD patterns. However, these features are difficult
to distinguish the pulmonary patterns with inhomogeneous textures and special
shapes. It can be found that the main finding of the NOD is the presence of mil-

iary or centrilobular shapes, so the geometrical information based features such
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as local binary pattern (LBP) [29, 30] and geometric fractal dimension (GFD)
[31] would be more suitable than the textural information. The LBP can produce
an same code to the structures with similar shapes by thresholding a local neigh-
borhood with respect to the intensity of the center pixel. And the GFD refers to
the index by measuring the complexity of structures as a ratio of the change in
detail to the change in scale.

In order to improve the discriminative power, researches designed some sophis-
ticated features by a combination of the textural and shape information based
measures. Uppaluri et al. combined the textural features with the GFD, and
the GFD was used to indicate the roughness of pulmonary textures [32]. In the
study [33], the measures based on the histogram, gradient, GLCM and GLRLM
were used for texture analysis, and the measures based on the top-hat trans-
formation and clusters of low attenuation areas were used to analyze the shape
information. In the work [34], the rotation-invariant Gabor-local binary patterns
(RGLBP) and multi-coordinate histogram of oriented gradients (MCHOG) were
used to describe the pulmonary texture and gradient information respectively. In
additional, the LBP was employed to quantitatively measure the NOR and two
subtypes of EMP [35], and the wavelet transform and Riesz transformed were
also used for the classification in the works [36, 37, 38, 39].

1.2 Purpose of Our Research

In this thesis, by using a novel strategy named "sparse representation” to gen-
erate the features for the classification, we proposed two methods to classify the
DLD patterns and pneumoconiosis respectively. Furthermore, considering that
the operation of algorithms through the command-line interface (CLI) would be
inconvenient for the radiologists, we implemented our methods as the plug-ins of
a visualized CAD platform developed by our laboratory.

The goal of the sparse representation is to approximate the examples by a lin-
ear combination of few number of representative features (atoms) selected from
an overcomplete dictionary, where the overcomplete dictionary means that the
number of atoms in the dictionary is greater than the dimensionality of the ex-

amples. The application of the sparse representation approaches can improve
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the performance of the image classification due to the following three reasons
[40, 41, 42]. Firstly, the sparse representation of the image can naturally encode
the semantic information of the image, because the image could be treated as a
distribution of a set of representative examples. Secondly, the number of atoms
is greater than the dimensionality of the input example. So the representation
of each example is not unique, and it can search a relative better representation
among the various combinations of atoms. Thirdly, the sparse representation
with a high sparsity (few non-zero entries in the vector) was shown to be robust
in the presence of noise [43]. Due to these advantages, the sparse representation
approaches have been applied in the field of the CAD recently. Liu et al. devel-
oped a sparse representation based method to detect the colon polyp and lung
nodule [44]. Kiet et al. used discriminative dictionaries to classify four kinds
of pulmonary patterns [45]. In the work [46], the dictionary of the texton was
trained and used to recognize the NOR and three subtypes of EMP.

We presented the main content of this thesis in the following five chapters. In
the Chapter 2, we briefly reviewed the sparse representation approaches. In the
Chapter 3, we proposed and optimized a sparse representation based method to
classify the DLD patterns. In the Chapter 4, we designed a bag-of-features based
method to classify the pneumoconiosis. The bag-of-features could be treated as
a special version of the sparse representation. In the Chapter 5, we introduced a
visualized CAD platform developed by our laboratory, and the proposed methods
were implemented as the plug-ins of this platform. Finally, we concluded the
thesis in the Chapter 6.

1.3 Computer-aided diagnosis (CAD) of Diffuse
lung Disease (DLD)

The goal of the CAD system is "to aid the radiologists for the medical image
interpretation process by using computer algorithms” [47]. The output of CAD
methods could be used a ”second opinion” and ”objective criterion” to help the
radiologists to make the final diagnosis. There are four requirements for the

application of the CAD methods in the clinic: (1) improve diagnosis accuracy
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and reproducibility, (2) save review time, (3) seamless integrated into the work-
flow, (4) regulatory approval and cost efficiency. Now the major bottleneck of
most CAD systems is the performance of the methods [48]. So far, some CAD
algorithms have received approval or clearance from the U.S. Food and Drug
Administration (FDA) in the United States.

Over the last decade, several methods have been proposed for the CAD of the
DLDs and achieved good results. For example, Uchiyama et al. designed 6 kinds
of the physical measures to classify the NOR and six kinds of DLD patterns [49].
The features consist of three measures based on the CT values (mean and stan-
dard deviation of CT values, air density components) and other three measures
based on the geometrical information (nodular components, line components and
multilocular components). The three-layered artificial neural network (ANN)
with the back propagation algorithm was adopted as the classifier. The accuracy
of this method for the classification of pulmonary patterns was 100.0% (CON),
99.2% (GGO), 100% (HCM), 100% (RET), 95.8% (EMP), 88.0% (NOD) and
88.1% (NOR) respectively. In the work [50], a set of 12 kinds of measures based
on the visible structures was calculated and combined with the measures based
on the GLCM and GLRLM. The support vector machine (SVM) with a radial
basis function (RBF) kernel was used as the classifier. The classification accuracy
of the CON, GGO, HCM, RET, EMP, NOD and NOR was 95.2%, 90.2%, 97.9%,
65.4%, 92.9%, 86.7% and 96.3% respectively.

For the CAD of the pneumoconiosis, because the current diagnosis criterion
made by International Labour Organization (ILO) is based on the CXR, most
methods are developed to analyze the CXR images, such as the studies [51, 52,
53, 54, 55]. A recent work by Zhu et al. [56] designed a method to classify the
first two stages of the pneumoconiosis on the digital chest radiographs (DRs). A
set of 28 wavelet-based texture features was calculated, and the support vector
machine and decision trees (DTs) were adopted as the classifiers. For the SVM
with the RBF kernel and DTs wit algorithm C5.0, the areas under the receiver
operating characteristic (AUCs) were 0.94 + 0.02 and 0.86 + 0.02 respectively.
The work [57] designed three enhancement filters based on the window function,
top-hat transformation and GLCM to remove the false positive of nodules. The
tool combined the rule-based and ANN was adopted as the classifier. For the
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classification of the severe and early pneumoconiosis, the AUCs were 0.93 £ 0.02
and 0.72 4 0.03 respectively. However, according to our knowledge there is no

work on the CAD of the pneumoconiosis utilizing the HRCT images.
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Figure 1.1: Example images of DLDs
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Figure 1.2: Possible clinical effects of DLDs [3]
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Figure 1.3: Example image of pneumoconiosis

. /

(a) Conventional CT image with a section thickness of

10mm

(b) HRCT image with a section thickness of 3mm

Figure 1.4: Comparison of conventional CT and HRCT images [14];
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_'_

(a) CXR image

(b) HRCT image

Figure 1.5: Comparison of CXR and HRCT images [58];
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-9 )

(a) Consolidation (CON)  (b) Ground-glass  opacity (c¢) Honeycombing (HCM)
(GGO)

(d) Reticular (RET) (e) Emphysema (EMP) (f) Nodular (NOD)

(g) Normal tissues (NOR)

Figure 1.6: The images of seven typical kinds of pulmonary patterns
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Table 1.1: Several findings of DLDs on the HRCT images|[12]

Disease

Pulmonary patterns

Distribution

Idiopathic pulmonary fibrosis,

usual interstitial pneumonia

reticular,honeycombing,

traction bronchiectasis

Peripheral, subpleural,

lower lung zones

Nonspecific interstitial pneumonia

Ground-glass opacity,

reticular lines

Peripheral

Cryptogenic organizing pneumonia

Consolidation

Peripheral, peribronchial

Acute interstitial pneumonia

Ground-glass opacity,

consolidation

Diffuse

Desquamative interstitial pneumonia

Ground-glass opacity,

reticular lines

Lower lung zones

Hypersensitivity pneumonitis

Ground-glass opacity,

nodules, air trapping

Upper and mid

lung zones
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Chapter 2

Sparse Representation

Approaches

2.1 Introduction

Let the example and overcomplete dictionary be y € R® and D € R™* n < k
respectively, the sparse representation of m examples a; € R*,i = 1,2,...,m can

be formulated as the solution of
m
IB?‘I‘IZ; ly; — Daill; st |laillo < T (2.1)
1=

where the ||-]|o means the ¢° norm indicating the sparsity of the vector (number of
non-zero entries in the vector), and T is the threshold of the sparsity. Define the
reconstruction error vector as e € R™, the overall reconstruction of m examples
can be calculated by Eq.2.2

IE]% = lller. 1, ... enllz = IIY — DA|; e = y; — Da; (2.2)

where the ||.||r means the Frobenius Norm.

The calculation of the sparse representation involves two essential compo-
nents: (1) calculating the sparse approximation of the examples (coefficients
of the atoms) a according to a pre-defined dictionary (it is also named sparse
coding); (2) training an overcomplete dictionary D. For the task of the image

classification, the sparse representation approaches can be used to calculate the
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sparse representation of image features, and these representation vectors can be
adopted as the input of the classifier. If the input of the sparse representation
is a set of local features (calculated at local regions such as the interest points
or nodes in a dense grid instead of the global regions), such as the famous scale
invariant feature transform (SIFT) [59] or histogram of orient gradients (HOG)
[60], the process named ”spatial pooling” should be operated to summarize the
approximations of local features over local regions into a global descriptor before

the classification.

2.2 Sparse coding

The sparse coding can be formulated as an optimization problem F, with a

sparsity-inducing regularization
: 1 2
Py : min llallo s.t. §||y — Dall; <c¢ (2.3)

The Lo-norm minimization has been proven to be a NP-hard (non-deterministic
polynomial-time hard) problem [61], which means that the problem is hard to be
solved precisely. Therefore, it is recommend to use the greedy heuristic strategy
to get an approximate solution.

In order to make the sparse coding problem more tractable, a variation of the

sparsity optimization is to replace the constraint of Lg-norm with the L;-norm

(1)
: 1 2
P min llal|: s.t. §||y — Dall;<e¢ (2.4)

By using an appropriate Lagrange multiplier A, the L;-norm minimization can

be tuned into an unconstraint convex function given by
1 2
F(a) = Aalli + ;[ly — Dall; (2.5)

It has been proven that the L;-norm minimization is convex and equivalent to
the Lo-norm minimization if the solution is sufficient sparse [62]. So conventional
optimization tools such as the steepest descent could be adopted to calculate

the sparse approximation of input examples. However, these approaches would
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be inefficient for the high dimensional image processing tasks, which requires
too many iteration and calculation. Researchers have proposed several kinds of
approaches to address the problem efficiently, for example, the classes of FOcal
Underdetermined System Solver (FOCUSS) [63, 64, 65] and iterative-shrinkage
algorithms. Besides, the greedy strategy and the principle of basis pursuit [66, 67]
were widely used to solve the sparse coding problem.

It should be noticed that although the L2-norm minimization (P) is strictly
convex (V2||al|3 = I > 0) and have an unique optimal solution given by Eq.2.7,

it cannot produce a sparse solution.

Py min, |lalls s.t. 3|y — Dall3 <e (2.6)
= a=D"y=(D"D)'Dy (2.7)

2.2.1 Greedy algorithms

The calculation of the greedy algorithms can be divided into two steps: (1) search-
ing the suitable atoms as the support of the solution and (2) calculating the co-
efficients of the selected atoms. The matching pursuit (MP)[68] and orthogonal
matching pursuit (OMP) [69] are two of the most popular choices to solve the
sparsity optimization problem (Fy). In the beginning, the support of the solution
was empty (||a|lo = 0). Then the atom was identified which can maximally reduce
the residual error, and the approximation of input example was updated at each
iteration, until the reconstruction error was small enough or the number of used
atoms was greater than the desired sparsity. There were two main differences
between the MP and OMP. Firstly, in each iteration, the MP identified the atom
from the set of all atoms, but the OMP searched the atom that had not been
used in the previous iteration(s). Secondly, the MP updated the coefficient of the
atom selected in the current iteration (the coefficients of other atoms were kept),
but the OMP calculated the coefficients of all selected atoms in each iteration.
Therefore, the OMP had a fast convergence speed and lower reconstruction error
than the MP.

The least angle regression stagewise (LARS) [70] was a greedy method for

the sparse coding with the L;-norm minimization. In the calculation, the LARS
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applied the derivative of unconstraint L;-norm function with respect to the coef-
ficient vector a (Eq.2.8).

1 ali] >0
g—i(a) = DT(y — Da)+ Xz, z[i]=<¢ [1,1] al[ij=0 (2.8)
-1 alil <0

Let the a, be the non-zero portion of the a, and the D, be the sub-matrix of
D constructed by the atoms used to represent the a,, the non-zero part of the

coefficient was obtained by solving the restricted zero-derivative function

STF(CLS) = Df(y —Dga,)+ Xz, =0 (2.9)
= a, = (D!ID,) ' (Dly, — \z,) (2.10)

The work [71] improved the LARS algorithm by adding a step of searching the
"feature-sign” of each entry in the approximation vector. And the solution was
updated by using an discrete line search between the current approximation and
as. In the study [72], the locality-constraint of the atoms was introduced in the
calculation of the approximation, because it was thought that the locality of the
atom can lead to the sparsity of the approximation. The object function can be
re-written as
win [ly; — Daill; + Allb; © aill3

b, — mp(w), (2.11)
g

dist(y;, D) = [dist(y;, d,), ..., dist(y,, di,)]"

where © stands for the element-wise multiplication, and the dist(y;, d;),7 =
1,2,...,k is the Euclidean distance between the vector y; and d;. The LLC can
be solved by

a; = (C; + Miag(d)) \ 1 (2.12)
a;=a;/1"a; (2.13)

2.2.2 FOcal Underdetermined System Solver (FOCUSS)

The core of the FOCUSS based approaches is to apply an iteratively reweighed
least squares (IRLS) strategy to update the approximation [73]. It was thought

18
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that the solution of the relaxed optimization (L;-norm) problem had the tendency
to spread the energy among a large number of entries in the a instead of choos-
ing just few non-zero entries. So in order to avoid this bias, a diagonal weighted
matrix W, W = diag(|a|) was introduced to scale the entries in the minimiza-
tion [74]. Because ||a|; = aW 'a, the unconstraint function of L;-norm with

weighted matrix can be expressed by

1
Fw(a) = XaW 'a + 5y - Dalf; (2.14)
The derivative of Eq.2.14 with respect to a is given by
OF
“W(a)=2AW 'a+ D" (y — Da) (2.15)
a

At k-th iteration, the approximation was calculated by
a, = (2\W_ ' + D'"D) D"y (2.16)

If ||ay — ag_1]|2 was smaller than a pre-defined threshold, the a; was output as the
resulting approximation. In the study [75], it was thought that the non-negative
coefficients would be advantageous in some cases in image processing. So a non-
negative FOCUSS algorithm was proposed, which forced all all negative entries
to 0.

2.2.3 TIterative-Shrinkage Algorithms

The main idea of the iterative-shrinkage based algorithms is to operate a shrink-
age (soft-threshold) step at each iteration. The shrinkage operator was original

designed in the work [76] expressed by
Shrinkage operator : Sy(a); = sign(a;) - (lal; — v) (2.17)

where v is a constant. For the sparse coding problem, even if the original function
was not convex, the obtained solution can be the globally optimal if the operator
was properly designed [77].

The work [78] proposed an algorithm named "iterative shrinkage thresholding”

(IST) by introducing an additional term ¢(a, ay).

p(a,a0) = 5lla— aol; — 5| Da — Daylf; (2.18)
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Adding this term into the Eq.2.5, the surrogate object function of the sparse

coding problem with L;-norm is given by
~ 1 c 1
Fla) = 5y — Dall} + \1"p(a) + £lla — aol} — 5|Da — Dagl} (219

where the function p(a) = ||a||; performs entry-wise on the vector a. The choice
of the parameter ¢ should satisfy the condition of ¢I — D" D > 0, which means
that the function (-) is strictly convex. By opening and re-organizing the terms,

Eq.2.19 can be expressed as

1 A 1
F(a) = constant + —||a — |5 + ElTp(a), vy = EDT(y — Day) +ayp (2.20)

The global minimizer of Eq.2.19 was given by

(afi] — woli}? + = (af)) (2.21)

MIH

1
Ain = Sa(vg) = SA(EDT(y — Day) + ag) (2.22)
In the k-th iteration, the approximation was calculated by
1
ag,1 — SA (ak) SA (/L . EDT(y — Dak) -+ ak) (223)

with a stepsize of p. The work [79] proposed a two-step IST (TwIST) structure,
where the approximation in the (k + 1)-th iteration depended on the previous

two iterations.

a; = I'x(x) (2.24)
g1 = (1 — a)ak_l -+ (a — B)ak -+ /BF/\(.'Bk), k>1 (2.25)

where T'y(a) = Sy(a + D" (y — Dx)). A similar approach was proposed in the
work [80], where the shrinkage step was operated on the point u; generated by a

linear combination of the previous two iterations aj_i, a,_».

1
ap = S(,uZDT(Duk —y) +uy) (2.26)
tr — 1

k+1

Upr1 = ay + ( Jay — ap1) (2.27)
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2.2 Sparse coding

1+ /1 + 482
SV (2.28)

lpt1 = 2

In the study [81], a IRLS-based iterative shrinkage algorithm was proposed.

1 A
ap1 = S . (ak — ;DT(y — Dak)), S = (;I + Wk)_lwk (229)

where W = diag(|ag|), and the matrix S played a role of shrinkage operator.

2.2.4 Basis Pursuit

The basis pursuit (BP) was an optimization principle to approximate the example
by using a set of optimal atoms with Li-norm constraint. It was suggested to
use the approach named ”basis pursuit de-noising” (BPDN) [82] to solve the BP
problem. The BPDN was formulated as the solution of

1
BPDN : min§||y—DaH§+/\||aH1 (2.30)

where the A\ was a parameter controlled the residual error. It can be found that
the BPDN was equivalent to the least absolute shrinkage and seclection operator
(LASSO) regression [83] in some sense which can be defined as a similar formu-
lation (Eq.2.31)

1
LASSO : minéﬂy —Dal|5<e¢e st. |al] <7 (2.31)

where 7 was a constant. The BPDN can be reformulated as a linear programming
problem, and solved by using a primal-dual logarithmic-barrier interior point
algorithm [84]. In the start, an initial basis was constructed by selecting n atoms
from the dictionary. Then some atoms used in the current basis were swapped by
new atoms and adopted to update the approximation, until the relative changes
between the two iterations was small enough.

In order to improve the performance of the BPDN, several approaches have
been proposed. In the work [85], a block coordinate relaxation (BCR) based
algorithm was developed. The BCR algorithm can be thought as an improvement
of the interior point (IP) algorithm to minimize the object function with respect

to a block of entries while kept other entries fixed in each iteration. In the BCR,
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the strategies of systematic cyclical and optimal descent were applied to select
the block of coefficient vector. The work [86] proposed a homotopy-continuation
based algorithm to generate the path of solutions with all possible values of A
with a low computational cost. It can fast optimize the parameter of the BPDN.
The study [87] applied the spectral projected-gradient (SPG) algorithm [88, 89|
to efficiently solve the object function of DPBN. By using the nonmonotone
line search scheme [90] and two-point step size gradient method [91], the SPG
algorithm had a fast convergence speed than the conventional gradient project
method. In the work [92, 93], a fix-point continuation (FPC) algorithm was
proposed which applied a gradient descent and shrinkage operator to update the

approximation in the each iteration

2.3 Dictionary Learning

In the sparse representation, a set of representative features which is used as the
atoms of the dictionary is essential to approximate the example. This dictionary
should contain the salient information of the examples. There are two choices to
generate the dictionary. The first one is using a parametric function with a group
of parameters, for example, the Gabor function [68] or 2D Gabor function [94].
Although the dictionary based on the off-the-shelf signals would be universal
to all classes of images, it would not capture the key features for the specific
kind of images. Therefore, it is better to learn the dictionary by extracting the
representative features from the training data.

Generally, the dictionary learning is an iterative process to reduce the recon-
struction error until it is small enough. There are two stages in each iteration:
(1) optimizing the sparse approximations with the fixed dictionary (sparse cod-
ing stage) and then (2) optimizing the dictionary with the fixed approximation
vectors (dictionary updating stage).

The method of optimal direction (MOD) [95] and K-SVD based on the singular
value decomposition (SVD) [96] are two of the most popular approaches for the
dictionary learning. Besides, it was considered that the dictionary simultaneously

used for reconstruction and classification may lose discriminative information, so
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2.3 Dictionary Learning

some algorithms were proposed to train the discriminative dictionary which can

represent the examples in a more discriminative way.

2.3.1 Method of Optimal Direction (MOD)

In order to reduce the reconstruction error of the sparse representation as many as
possible in each iteration, the optimal direction was thought to force the deriva-
tive of the reconstruction error with respect to the dictionary to 0. So this
approach was called method of optimal direction (MOD). The zero-derivation of

the reconstruction error with respect to the D can be solved by Eq.2.32

oF

op D) = (DA-Y)AT =0 (2.32)

Therefore, the dictionary could be updated by the following equation.
D=YA"(AA")"! (2.33)

In the work [71], the Lagrange multiplier was introduced and the dictionary was

updated by
D=YA"(AA" + A)! (2.34)

where A = diag(\),\ > 0. The MOD is a simple algorithm, and can produce a
good dictionary to minimize the overall reconstruction of the sparse representa-
tion. However, the major disadvantageous of the MOD is the high computational

complexity on the matrix inverse, particularly for the dictionary with a large size.

2.3.2 K-SVD

The K-SVD could be seemed as a generative of the K-Means algorithm. According
to the Eckart-Young Theorem, a matrix can be approximated by the another one
with a lower-rank [97]. And the SVD can decompose the input matrix into several
lower-rank matrixes. Therefore, when the k-th atom was being updated, the
reconstruction error matrix except the k-th atom Ey can be calculated by Eq.2.35
where a{r stands for the j-th column of coefficient matrix and then decomposed
into three rank-1 matrixes by using the SVD (Eq.2.36). The first left-singular
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2.3 Dictionary Learning

vector u, was used to update the atom, and the multiplication of the fist right-
singular vector and the first singular A;; X v; was treated as the corresponding
coefficient (Eq.2.37). In order to keep the sparsity, the input reconstruction error
matrix should be restricted by choosing the columns that used the updated atom

before the decomposition.

E,=Y - ) d;a) = E + diaj; (2.35)
J#k

E,=UAV" (2.36)

dip =uj,a=A1; X0 (2.37)

2.3.3 Discriminative Dictionary

In the work [98], the dictionary was learned based on the idea that the dictionary
D; associated to the examples of the class S; should have a better performance
to reconstruct this kind of examples than other dictionaries Dj,j # 4, while
bad to reconstruct other kinds of examples S}, 7 # ¢. In order to improve the
discriminative power, a discriminative term was introduced based on the soft-
max cost function. Assuming that there were total 2z classes of dictionaries, the

discriminative term of the example y belonging to the class S; was calculated by

C;\({R(y’ Dt)}le) = Ci)\(rla T2, .., TZ) = lOg(Z ei)\(ri_rt)%
t=1

Tt:R(y7Dt> = Hy_Dta’tHg’ t:1a27"'72

where A is a parameter, D; is the S; class of the dictionary, a; and r; are the

(2.38)

approximation vector and reconstruction error of the example obtained by using
the t-th class of the dictionary respectively. The value of the discriminative term
was close to zero when the class 5; of the dictionary produced the most accurate
reconstruction for the example. In other words, the value of r; was less than other
entries in the set {ry,ry, ..., 7. }.

The new dictionary learning problem with the discriminative term (Eq.2.38)
was formulated by the following equation

Jmin ) CXR(y, D) + M R(y,, D) (2.39)
Hi=1 e, i=1
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2.3 Dictionary Learning

where y,, [ € S; is the [-th of the example and belongs to the class S;, and the vy is a
parameter related to the trade-off between the reconstruction and discrimination.
It can improve the discriminative power of the model by decreasing the value of
the parameter v,y > 0.

When the j-th atom of the i-th class of the dictionary d; ; was being updated,
firstly a set of examples 6 that using the atom in the classes S,,p = 1,2, ..., 2 was

constructed.
0+ {l= 1,2,...,m|al7¢7é0} (2.40)

Then the weights of examples belonging to the set 0 for all classes S,,p = 1,2, ..., 2
were calculated. The weight was defined as the derivative of the object function

(Eq.2.40) with respect to the i-th class of the reconstruction error.

) =1
w = SR DY) e = { § P20 e

Finally the weighted matrix of the residual error B was constructed by using the
selected examples (Eq.2.42), and the atom was updated by the eigenvector of the

matrix corresponding to the greatest eigenvalues.

z
B-Y > wln+ailjd)r+alld) r=y - Day,  (242)
p=1leSpNw
The study [99] designed a label consist discriminative dictionary by combing
the reconstruction error with the sparse coding error e,. and classification error
e. respectively. The goal of introducing the sparse coding error was to force the

examples with the same label had a similar approximation, which was given by

where Q € R¥™ = [q,, ..., q,,] was the "discriminative” codes associated with
the original examples. The entry ¢; ; was set to 1 if the atom d; and the example
y; shared the same label, otherwise the entry was set to 0. U was a linear trans-
formation matrix used to transform the approximation a; to the discriminative

sparse codes. The classification error was calculated by

e. = |H - WA (2.44)
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2.4 Spatial pooling

where H = [hy,...,h,,] € RX™ h; = [0,0,...,1,...,0,0]7 was the labels of the
original examples, and the W € R™™* was the model parameters of the classifier.
By using the two terms, a new object function was defined
g i — Y — DA|? ~UA|? H - WA|?
arg LW | 12+ aoll@ 12+ 8] 12 (2.45)
st. laillo < T
The Eq.2.45 can be re-formulated and solved by using the K-SVD algorithm [96]

to calculate the following equation.

Y D
arg min =] \\;_EQ - f_aA Al3 st flallo< T 016
W, BH W .

— argmin ||[Y — DA|? st. |lailo< T
D

2.4 Spatial pooling

When the local features instead of global features are calculated on the original
images and then sparse coded, it is necessary to summarize the approximation
vectors over different local regions into a global descriptor by operating a step
of spatial pooling. There are several spatial pooling strategies, for example, the
average of the vectors (average pooling), the sums of the vectors (sum pooling) or
the maximum of the entries with the same index (maximum pooling). Let z € R*
and a € R* be the approximation vector and global descriptor respectively, and
{-}+ be the t-th element of the vector, the three pooling strategies of m vectors

are given from Eq.2.48 to Eq.2.49 respectively.

Average pooling : zy = # Soiapt=12 ..k (2.47)
Sum pooling : zi=y i agt=12 .k (2.48)
Maximum pooling :  z; = max(@y, Qo ooy Q) = 1,2,k (2.49)

Some researchers thought that the spatial pooling would disregard the spatial
layout of the local features and lack any sort of meaningful ordering. In order to

take advantage of the spatial arrangement of the local features, the work [100]
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proposed a "spatial pyramid” based approach. In the beginning, the entire images
(or regions of interest) was partitioned into increasing coarser blocks by a multi-
level recursive image decomposition. After extracting the local features from the
blocks and sparse coding, the ”spatial pyramid pooling” was performed to gen-
erate the global descriptor by weighted concentrating the sparse approximation
of the local features over the blocks at each level of scale.

The concept of spatial pyramid had been adopted in several works. For ex-
ample, in the work [101], the images were evenly divided into the blocks with 3
different levels respectively: 1 x 1, 2 x 2, 3 x 1. In the work [42], the images were
partitioned into 2! x 2! blocks in the scales [ = 0, 1,2, and the max pooling was

performed over different regions and scales.

2.5 Conclusion

In this chapter, we briefly introduce several sparse representation approaches.
The calculation of the sparse representation can be divided into two parts: train-
ing a good dictionary, and sparse approximate the input vectors according to a
given dictionary. If the input of the sparse representation based classification is
a set of local features, the step of spatial pooling is essential to summarize the
sparse representation of local features into a global descriptor as the input of the

classifier.
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Chapter 3

Classification of Diffuse lung

Disease Patterns

3.1 Introduction

In this chapter, we adopted and optimized the sparse representation approaches
to classify the NOR and five kinds of DLD patterns, including CON, GGO, HCM,
EMP and NOD. According to our knowledge, there is no work aimed to apply
the sparse representation approaches to analyze these six kinds of the pulmonary
patterns. Fig. 3.1 illustrates the framework of the proposed method. In the
training stage, firstly huge numbers of local features were extracted from the
training volumes of interest (VOIs), and used to train an overcomplete dictionary.
Secondly, the sparse representation of the local features was calculated according
to the dictionary (sparse coding) and the VOI-level descriptors of the training
VOIs were generated by the average pooling. Finally, the VOI-level descriptors
were used to train a support vector machine (SVM) classifier. In the testing
stage, after extracting the local features on the testing VOIs, the dictionary was
adopted to calculate the sparse representation of the local features, and the VOI-
level descriptors of the testing VOIs were generated. At last, the descriptors were

fed into the trained classifier and the results were given.
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3.2 Proposed Methods

3.2 Proposed Methods

3.2.1 Extraction of local features

From Fig. 1.6, it can be found that the main finding of the NOD and HCM is the
opacities with various shapes, which could be analyzed by the geometrical infor-
mation. Some other patterns, such as the CON and EMP are mainly featured by
the CT values. So, a combination of the measures based on the shape information
and CT values could be used for the classification of the DLD patterns. One the
other hand, it is thought that the local features can produce a specific semantic
interpretation for the image analysis [102, 103]. For example, the line components
can be associated with the vessels, and the blob components can be used to iden-
tify the nodule candidates. Therefore, we tried to calculate the shape information
and CT values based measures on the local regions in our work. In our method,
we adopted the local features proposed in the studies [104, 105], which used the
eigenvalues of the Hessian matrix to measure the geometrical information.

The calculation of the local features is illustrated in Fig.3.2. At each sam-
pling point on the VOIs, 1. A cubic-shape patch was constructed whose center
was located at the sampling point, and four kinds of statistical moments were
computed on the patch: mean, standard deviation, skewness and kurtosis. 2. Let
the eigenvalues of the Hessian matrix be Ay, Ao, A3, A1 > Ao > A3, we computed
the eigenvalues on each voxel within the patch, and arranged the eigenvalues by
the location of the voxels where the eigenvalues were calculated. So three new
patches can be generated whose components were A;, Ay and A3 respectively, and
the same kinds of statistical moments were calculated on these eigenvalues-based
patches. 4. The statistical moments were concentrated into a vector, and a 16-
dimensional feature vector was obtained. In the experiments, the step of the
sampling points was set to 4 x 4 x 4. The size of the cubic-shape patch was a
parameter, which was tuned from 2 x 2 x2to 6 x 6 x 6 with astepof 1 x1 x 1.

3.2.2 Dictionary Learning and Sparse Coding

The K-SVD [96] and OMP [69] are two of the most popular algorithms for the

dictionary learning and sparse coding in the sparse representation. By adopting

29



3.2 Proposed Methods

these two algorithms, we proposed a sparse representation based method that was
called SR1 in the thesis. Fig. 3.3 presents the K-SVD algorithm. In the K-SVD,
the reconstruction error was iteratively minimized until it was small enough. Two
steps were performed in each iteration: (1) computing the a with the fixed D
(sparse coding stage); and then (2) updating the D with the fixed a (dictionary
updating stage). In the step of the sparse coding, the OMP was used which is
recommended in the K-SVD [96]. Fig. 3.4 gives the OMP algorithm. In the
step of the dictionary updating, the atoms of the dictionary (columns of D) were
sequentially modified based on the SVD.

After training the dictionary, the OMP was also applied to calculate the sparse
representation of the local features in the SR1, the same as the sparse coding
stage of the K-SVD. There were two parameters in the sparse representation, the
number of atoms and the sparsity of the representation. We adjusted the number
of atoms from 500 to 3000 with an interval of 500, and the sparsity from 2 to 14

with an interval of 2 in the experiments.

3.2.3 Optimization of Sparse Representation

The SR1 using the K-SVD and OMP (see Subsection 3.2.2) can achieve a high
classification accuracy, but the runtime of the SR1 was relatively long (see Sub-
section 3.3.4). Considering that the dictionary learning and sparse coding spent
the most time on the training and testing respectively, we also tried to reduce
the runtime of these two stages.

Although the decreasing running time in the dictionary learning seemed use-
lessness in the clinical workflow, we thought that it can be convenient to update
the existing methods for the developers. It is reported that the K-Means algo-
rithm can achieve a competitive performance on the natural image classification
to the K-SVD when the same number of atoms were used [106]. Moreover, the
K-Means could be seen as a simple version of the K-SVD. Firstly, the dictionary
was updated by K times of means operation in the K-Means, or by K times
of SVD in the K-SVD. Secondly, in the K-Means, the example was assigned to
the closest atom and the coefficient of used atom was set to 1 (the coefficients
of other atoms were set to 0). However, in the K-SVD, the sophisticated OMP
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algorithm was used to approximate the example. Therefore, the runtime of the
K-Means on updating dictionary and approximating example can be shorter than
the K-SVD. In additional, the K-Means can be efficiently implemented by using
the k-dimensional tree (k-d tree) [107]. Therefore, we tried to adopt the K-Means
as a substitute of the K-SVD in the dictionary learning.

In the OMP, the sparse representation of the example was iteratively calcu-
lated until the stopping condition was achieved. For each iteration, only one
atom was selected and added to the solution support, and then the approxima-
tion of the example was solved according to the elements of the current solution
support. It could be deduced that the runtime of the OMP can be reduced by
selecting enough atoms at one time. We named this method OMP; in the thesis.
Fig. 3.5 gives the OMP; algorithm. After arranging the inner products of the
atoms and example by a descending order in the first iteration of OMP, the first
sufficient number of atoms were treated as the solution support, and the sparse
representation of the example was calculated as the projection onto the linear
space spanned by the selected atoms. Although the reconstruction error of the
OMP; would be larger than the OMP, the performance of this approach can be
ensured under a certain sparsity constraint [77].

In order to examine the performances of the sparse representation approaches,
we constructed another two sparse representation based methods: SR2 (K-Means-+OMP)
and SR3 (K-Means+OMP;). Table 3.1a summarizes the proposed three sparse
representation based methods. The parameters of the SR2 and SR3 were same as
the SR1: number of atoms and sparsity. The replacement of the dictionary learn-
ing approach was evaluated by comparing the SR1 and SR2, because both two
methods adopted the OMP for the sparse coding, and the substitution of sparse
coding approach was evaluated by comparing the SR2 and SR3, because both two
methods adopted K-Means for the dictionary learning. Table 3.1 summarizes the

experiments.

3.2.4 Spatial pooling

After calculating the sparse representation of local features, the procedure of

the spatial pooling was performed to summarize the sparse representation of the
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local features into VOI-level descriptors for each VOI. These descriptors could be
thought as the global features of VOIs. We used one of the most popular choices,
the average pooling in the work, which could be seen as an average operation on
the vectors. Let z € R¥ and a € RF be the sparse representation vector and
descriptor respectively, and {-}; be the ¢-th element of the vector, the average

pooling of m sparse representation vectors is given by Eq.3.1.

. 1 & ‘
Average pooling :  z; = - Z;ait,t =1,2,..,k (3.1)

3.2.5 Classification

In the research, the support vector machine (SVM) was adopted as the clas-
sifier. We used a version named LIBSVM [108]. Considering that the sparse
representation based classification using the linear kernel can achieve a competi-
tive performance and lower computational cost than the nonlinear kernel [42], we
employed the LIBSVM with a linear kernel which is given by Eq.3.2

Linear kernel :  K(x;,%;) = X! X; (3.2)

where x; and x; are both descriptors. Because the SVM was originally designed
as the binary (two-class) classifier, the ”one-against-one” approach was applied
to extend the binary SVM classifier for the solution of the multi-class tasks in
the LIBSVM [108]. There was one parameter in the classification: soft-margin
penalty C, which was set to 272,271, ..., 2! 212,

3.3 Experiment

3.3.1 Data

We obtained 117 scans from 117 subjects from Tokushima University Hospital in
Japan. In the 117 scans, there were 111 scans with the DLDs and 6 scans with the
normal tissues. All scans were acquired by Toshiba Aquilion 16-row multi-slice
CT when edge-enhanced filtering was not applied. A tube voltage of 120kVp and
current of 250mAs were used. The resolution of scans was 512 x 512, and the

in-plane resolution was 0.6mm. The slice thickness was 1mm.
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In the previous works [104, 105], the area of abnormal tissues in the VOIs was
not considered. We thought that it would be difficult to evaluate the classification
of the VOIs with only little area of abnormities. Therefore, we set a low-threshold
of 70% for the area of dominant pulmonary patterns in the generation of the VOIs.
We used the number of voxels belonging to the specific kind of pulmonary patterns
to determine whether this criterion was met or not. Furthermore, because the
diagnosis of DLDs mainly depends on the radiologists’ individual experiences,
we thought that the results made by only one radiologist cannot be used as the
"golden standard” for evaluation. So, we requested three radiologists to review
the images in the experiments.

The VOIs were constructed according to the following procedures: 1. All
scans were reviewed by one radiologist, and a maximum of three axial slices was
selected from the top, middle and bottom parts of the lung respectively in each
scan. Only one type of pattern dominantly existed on the selected slices, and the
radiologist should indicate what the dominant pulmonary texture was and where
it existed. 2. Another two radiologists reviewed the results of the first radiologist.
Only the slices which were thought to be correct by both two radiologists were
saved for the next procedures. 3. The regions of the pulmonary patterns on the
selected slices were marked by all three radiologists respectively. 4. The common
regions chosen by the radiologists were extracted. 5. The grids with a size of
32 x 32 were overlaid on the determined regions, and the square-shape patches
were generated where the number of voxels belonging to the determined regions
was greater than 716 (70% of 32 x 32). 6. By using the patches (generated in
the step 5) as the central-axial slices, the VOIs with a size of 32 x 32 x 32 were
constructed, and the label of each VOI was assigned according to the kind of the

pulmonary texture dominantly existed on the central-axial slice.

3.3.2 Experimental Setting

In the experiments, we separated the VOIs into two independent sets. One set
(1161 VOIs) was adopted as the training set to optimize the parameters of each
method and train each method with the optimal parameters. The other set (1049

VOIs) was used as the testing set to evaluate the performance of each method.
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The VOIs in the two sets belong to the different patients (subjects). In other
words, there were no crossing-subjects between the two sets. The number of
VOIs of each type of patterns for training and testing are summarized in Table
4.4.

There were four kinds of parameters in the proposed methods: the size of
cube-shape patches, the number of atoms, the sparsity of sparse representation
and the parameter related to the classifier. We tuned the values of patch size
from 2 x2x2to 6 x6x6 with a step of 1 x1 x 1, the number of atoms from 500
to 3000 with an interval of 500 and the sparsity from 2 to 14 with an interval of
2. The parameter of the SVM classifier was set to 272,271, ... 211 212 A 20-fold
cross-validation was used to optimize the parameters in the training stage. In the
beginning of the cross-validation, the training data was randomly divided into
20 subsets with a nearly equal size. In each iteration 19 subsets were selected to
train a classifier with the fitting parameters, and the remaining set was used to
validate the classifier. This procedure was repeated 20 times, so every example in
the training set was used to train the classifier 19 times and validate the classifier
once.

We simultaneously optimized all kinds of parameters, which means that every
possible combination of all kinds of parameters was tried. The combination of
parameters which produced the best overall accuracy in the 20-fold cross valida-

tion was chosen as the optimal parameters. All methods were operated on the

server with a 2.8GHz Intel Core i7 CPU and 24GB RAM.

3.3.3 Baseline methods

We compared the proposed methods with three kinds of published approaches,
which were called as SDF [49], CSE [109] and BOW [105] respectively. The pa-
rameters of the baseline methods were optimized in the same way as the proposed
methods.

1. In the work [49], the pulmonary patterns were determined by six kinds of
specially designed features. So this method was called SDF in the paper. The
six features adopted in the SDF were mean and standard deviation of C'T values,

air density components, nodular components, line components and multilocular
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components. The details of the air density components, nodular components,
line components and multilocular components had been reported in the work
[49]. In order to easily understand, we briefly introduced the calculation of these
four components. (1) Air density component: the area whose CT values ranged
from -910 HU to -1000 HU. (2) Nodular components and line components: firstly
the ”white” structures were extracted by performing the morphological white
top-hat transform on the original image. Secondly the small noise structures
were removed by applying the gray-level thresholding on the detected ”white”
structures. Finally, the nodule components and line components were determined
according to the two conditions: the degree of the circularity and contrast. The
degree of the circularity was defined by the fraction of the overlap area of the
component with the circle having the same area. And the contrast was defined by
the mean value of the five largest pixel values for each detected component on the
white top-hat-transformed image. (3) Multilocular components: the candidates
were extracted by performing the morphological black top-hat transform. Because
the SDF required the 2D regions of interest (ROIs), the central slices in the axial
direction of the VOIs were treated as the ROIs in the operation.

The SDF adopted a three-layered artificial neural network (ANN) with back-
propagation as the classifier. The training of the ANN was an iterative process.
In the beginning, the weights of hidden units were randomly evaluated. Then the
resulting output was produced by using the weights and activation function in the
hidden layer. Finally the weights were adjusted according to the error between
the desired output and resulting output, and used as the training pattern for the
next iteration. We used the symmetrical sigmoid given by Eq.3.3 as the activation

function.
Symmetric sigmoid :  f(x) = (1—e*)/(1+ e") (3.3)

There is a parameter in the ANN: the number of hidden units. In the work [49],
the number of hidden units was set to 10 empirically. We adjusted the number of
hidden units from 5 to 30 with an interval of 5 in the experiments. Additionally,

we designed a complementary method of SDF by using the SVM classifier instead
of the ANN. This method was called SDF-SVM in the paper. The LIBSVM with
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RBF kernel (Eq.3.4) was adopted.
RBF kernel : K(x;,x;) = e lIxi—xl? (3.4)

The parameter of the RBF kernel (v) and the soft-margin penalty (C') were set
tobe2 1029 2band 2 2,21 .. 211 2!2 yespectively.

2. In the work [109], the classification was performed based on the signatures
of VOIs. The signature was defined as the centroids and the weight of the clusters
(number of voxels in the clusters). The K-means algorithm was used to calculate
the centroids of the clusters. The earth mover’s distance (EMD) approach was
used to measure the similarity between the two signatures, and the nearest neigh-
bor (NN) was employed as the classifier. In order to reduce the computational
cost, the canonical signatures for each class were generated by combining and
re-clustering the signatures of the training data. Therefore, the VOIs were recog-
nized by comparing the signatures of VOIs with canonical signatures instead of
the signatures of training data. Because this technique used canonical signatures
and earth mover’s distance (EMD), it was called CSE in the paper. The CSE had
only one parameter: the number of clusters. Considering that the larger value
was suggested to be avoided, we adjusted the number of clusters from 5 to 60
with a step of 5.

3. The work [105] adopted a model named ”bag-of-words” (also named bag-of-
features) [110] to generate the global descriptors for classification, so this method
was called BOW in the thesis. The main idea of the BOW was to train a code-
book (dictionary), and used the histogram of the words (atoms) in the code-book
to describe the images. The BOW adopted the K-Means algorithm to cluster
the local features, and the centers of the clusters were saved as the words in the
code-book. The number of the words were adjusted from 50 to 400 with a step of
50 in the experiments. Because the local features adopted in the BOW were the
same as our methods, we adjusted the size of patches from 2 x2 x2to 6 X6 x 6
with a step of 1 x 1 x 1, the same as proposed methods. The SVM was used as
the classifier. Considering that it was reported that x? kernel achieved a better
result than other kernels in the work [105], the LIBSVM was employed with the

x? kernel. Eq. 3.5 gives the x? kernel, where o is the parameter for the kernel,
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and x;,x; are both histograms with k-bins.

2
ko Ri—%50)
e_a Zt:l et gt

RBF kernel : H(x;,x;) = ittt (3.5)

The possible value of the soft-margin penalty and o were set to be 272, 271 211,

212 and 2719, 270 . 2! respectively.

3.3.4 Results

Table 3.3 gives the overall accuracies of all methods with the optimal parame-
ters. It illustrates that the sparse representation based methods achieved better
results than the baseline methods (SR1:96.1%, SR2:95.6% and SR3:96.4% vs.
SDF:75.8%, SDF-SVM:73.6%, CSE:65.1% and BOW: 85.5%). The p-values for
the proposed methods against the baseline methods were all smaller than 0.0001,
which means that there were significant differences between the performances of
the proposed methods and baseline methods. The confusion tables of all methods
are given from Table 3.4 to Table 3.9.

Table 3.10 shows that the replacement of the K-SVD and OMP by the K-
Means and OMP; can reduce the runtimes of sparse representation based meth-
ods. When the K-SVD was replaced by the K-Means, the runtime of the dictio-
nary learning was decreased by 98.2% (SR1:13520s vs. SR2:241s). On the other
hand, when the OMP; was substituted for the OMP, the runtime of recognizing
one VOI was dropped by 55.2% (SR2:0.29s vs. SR3:0.13s).

3.4 Discussion

The experimental results show that the sparse representation based methods can
achieve good results (greater than 95%) for the classification of the pulmonary
patterns, and the runtimes of the sparse representation based methods can be
decreased by adopting the K-Means and OMP;.

By using the sparse representation approaches, it can extract the important
information of example while removing irrelevant details. Moreover, there would
be a similar distribution for the local features extracted from the same kind of

examples in the feature space. So the sparse representation of the local features
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could be distributed with a low intra-class variation and high inter-class variation
in a high dimensional feature space, which is advantageous for the pattern recog-
nition. Experimental results also illustrate that the sparse representation based
methods were efficient to classify the pulmonary patterns.

Comparing with the baseline methods, the proposed methods had a noticeably
better performance on the classification of the HCM and NOR. For the classifi-
cation of HCM, the sensitivity and precision by all methods were 99.5% \100.0%
(SR1), 99.5% \ 99.0% (SR2), 99.5% \ 99.5% (SR3). And the sensitivity and
precision to classify the NOR were 97.1% \ 96.4% (SR1), 97.4% \ 95.0% (SR2),
96.3% \ 96.3% (SR3). Fig. 3.6 and Fig. 3.7 illustrate two example images of the
HCM and NOR which were correctly classified by our methods. The HCM has a
presence of diffuse decreased lung opacities on the HRCT images ("blacker” than
the surrounding normal tissues), slightly similar to the normal tissues in compar-
ison to the increased pulmonary opacities. Although there were many ”white”
structures in the VOIs, our methods successfully recognized the VOIs.

On the other hand, the classification of the GGO and NOD by using the pro-
posed methods was relatively lower than other patterns, although it were better
than the baseline methods. According to the confusion tables of proposed meth-
ods, it can be found that all misclassified VOIs of GGO were identified to be EMP
or NOD. On the HRCT images, the appearance of the GGO is a hazy increased
in the pulmonary attenuation. So this kind of opacity is "whiter” than the nor-
mal pulmonary parenchyma, but ”blacker” than the soft-tissues such as vessels.
The existence of other kinds of opacities would affect the recognition of the GGO.
Fig. 3.8 and Fig. 3.9 give the example images of GGO which were classified as the
EMP and NOD respectively. For the NOD which appears to be of soft-tissue at-
tenuation ("whiter” than the surrounding normal tissues), the recognition of the
NOD would be affected by the distribution and extent of ”white” components.
In the Fig. 3.10, a large area of soft-tissues outside the lung-field was contained
in the VOI. So the pulmonary pattern of this VOI was false classified to be the
increased pulmonary opacity (GGO). For the VOI given by Fig. 3.11, the reason
of false misclassified would be the relatively lower extent of attenuation in the
VOL.
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By using the classical sparse representation approaches, the K-SVD and OMP
algorithm, the SR1 can achieve high recognition rates for the classification of the
pulmonary patterns, but the runtime of the SR1 was relatively long. Considering
that the dictionary learning and sparse coding spent the most time on the training
and testing respectively, another goal of our work was to reduce the runtime of
these two stages. For the optimization of the dictionary learning, we used the K-
Means to train the dictionary, which could be seen as a simple version of K-SVD.
Fig.3.13 compares the SR1 (using the K-SVD) and SR2 (using the K-Means)
when the same parameters were used. It can be found that the SR1 and SR2
had similar classification accuracies (SR1: from 90.2% to 95.2% vs. SR2: from
91.8% to 94.2%), and the recognition rates of both two methods revealed a trend
of increase with the raising of the number of atoms. The runtime of dictionary
learning of the SR1 was nearly 50 times as long as the SR2 when the same number
of atoms were used. It is demonstrated that the replacement of K-SVD by the
K-Means will not affect the classification results but can considerably decrease
the runtime of the dictionary learning.

Although the runtime of recognizing one VOI was seemed not very long, the
CAD systems would be used to analyze the whole lungs of patients in the clinical
practice, which can be divided into several hundreds of VOIs. So, the time of
recognizing a patient will be several hundred times longer than classifying a VOI,
and a small reduction of the runtime in the experiments (classify the individual
VOIs) is still meaningful which can lead to a remarkably decrease in the actual
practice (recognize the whole lungs of patients).

In order to reduce the runtime of the sparse coding, we applied a simple version
of OMP. In the OMP, the sparse representation of the example was iteratively
calculated, and only one atom was selected in each iteration. We simplified the
OMP by selecting the desired number of atoms at one time (OMP;). Fig. 3.14
compares the SR2 (using the OMP) and SR3 (using the OMP;) with the same
parameters. The recognition rates of the SR3 were similar to the SR2 when the
sparsity was set to 2 and 4 (SR2:95.5% and 95.5% vs. SR1:96.4% and 92.8%).
And It shows that the SR3 spent shorter time on classifying the VOI than the
SR2 (SR2: from 0.36s to 3.6s vs. SR3: from 0.13s to 0.17s). It is demonstrated
that the application of the OMP; with high sparsity can optimize the runtime of
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the sparse representation based method while keeping the classification accuracy.
On the other hand, although the runtime of dictionary learning in the SR2 can
be shorter than the SR3 (shown in Table 3.10), in the clinical practice the sparse
coding is an important step in the recognition of the examples which should be
performed on-line, while the dictionary can be trained off-line. Therefore, we
thought that the optimization of the sparse coding is more meaningful than the
dictionary learning, and it would be more suitable to apply the OMP; in the
clinical practice.

We compared our methods with the SDF (including SDF-SVM) due to the
two reasons. The first one was that the SDF had been successfully applied to
classify the most kinds of pulmonary patterns, including normal tissues and six
types of DLD patterns. The second one was that the features extracted from the
images were directly used as the input vectors of the classifier without a "sparse
coding” step in the SDF. However, the overall accuracy of the SDF was worse
in the experiments. We thought that the result of the SDF would be affected
by the accuracy of detecting geometrical-based components (nodular, linear and
multilocular component), which is still a difficult problem in the CAD especially
for the images of severe DLD.

The CSE was slightly similar to the SR2 and SR3. Firstly, the K-Means al-
gorithm was adopted in all three methods. Secondly, the signatures of the VOIs,
which were used as the input vectors of the classifier, were generated according
to the local features. It could be seemed as a ”coding” step but not the sparse
coding. Therefore, the CSE was used to compare with our methods. Unfortu-
nately the CSE produced a worst result in the experiments. The reason for the
bad performance of the CSE may be that the NN classifier is naive comparing to
the SVM.

The bag-of-words is a popular model for the image classification, and the bag-
of-words based methods have achieved good results in the previous works. The
bag-of-words model could be treated as a special version of the sparse representa-
tion, which was implemented with an extremely strict constraint on the sparsity.
In the bag-of-words, the input examples are assigned to the closet atom in terms
of Euclid distance. In other words, only one atom was used to approximate the

example, and the coefficient of the selected atom was fixed at 1. The work [42]
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thought that this constraint was too restrictive, so it would produce a large recon-
struction error. For the sparse coding strategy, the sparsity constraint was relaxed
by allowing a small number of atoms to describe the examples. Although more
time would cost, the sparse coding approach can achieve a fine reconstruction.
Therefore, it can reserve more important information of the examples, which was
advantageous for the classification. On the other hand, the experimental data
adopted in our experiments was different with the pervious work [105]. Tt also
would affect the classification of the BOW. Table 3.11 compares the overall accu-
racy and runtime of the SR3 and BOW. The BOW spent little time both on the
dictionary learning and recognizing. However, the SR3 achieved a significantly
better overall accuracy. Fig. 3.12 shows two example images of the NOR which
were correctly classified by the SR3, but falsely recognized as the NOD by the
BOW. The reason of the misclassification may be that the appearance of these
two VOIs was similar to the NOD. There were many structures with high CT
values (in the presence of ”whiter” than the normal pulmonary parenchyma) such
as vessels in the VOlIs.

There were two main limitations in our work. Firstly, the proposed methods
have not been tested on the clinical setting. It is better to evaluate the clas-
sification of the DLD patterns on the manually identified VOIs combined with
the clinical setting. Secondly, the source codes of our projects have not been
optimized, which may increase the runtime and require too much memory in
the operation. For example, the calculation of eigenvalues of the Hessian matrix
in the feature extraction cost nearly 10GB memory. It would limit the oper-
ating platform of our method. Therefore, in future research, we will improve
our method for the actual clinical practice on the following aspects. The first
one is to evaluate the proposed methods on the clinical setting. The second one
is to optimize the source codes of our methods. Besides, considering that the
quantitative analysis of the agreements between the results of CAD method and
each radiologist can be used to demonstrate the objective of the CAD method
(33, 111, 112], we will collect more HRCT scans and measure these agreements.
And it is necessary to integrate a lung-field algorithm with our method to au-
tomatically extract the lung-field as the pre-processing, and adapt our method

according to the experimental results on the clinical setting.
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3.5 Conclusion

In this chapter, we proposed and optimized a sparse representation based method
to classify the DLD patterns. The method using the K-SVD and OMP can achieve
a high classification accuracy (greater than 95%) in the experiments, but spend
too much time in the operation. So, in order to optimize this method, we applied
the K-Means as a substitute of the K-SVD, and simplified the OMP by selecting a
sufficient number of atoms at one time (OMP;). Experimental results showed that
the performances of the sparse representation based methods were significantly
better than the baseline methods (SR1: 96.1%, SR2: 95.6%, SR3:96.4% vs. SDF:
75.8%, SDF-SVM: 73.6%, CSE: 65.1% and BOW: 85.5%). Furthermore, when
the K-SVD was replaced by the K-Means, the runtime of the dictionary learning
was reduced by 98.2% (SR1:13520s vs. SR2:241s). And when the OMP; was
substituted for the OMP, the runtime of recognizing one VOI was dropped by
55.2% (SR2:0.29s vs. SR3:0.13s). So we concluded that the method using the
K-Means and OMP; (SR3) was efficient to classify the pulmonary patterns.
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Input: m examples y € R" as the columns of the matrix Y € R"*™
Output: The dictionary matrix D € R"**

1: Initialization: Initial dictionary D with normalized columns by random

2: repeat
3:

t

9: until [|[Y — DA||3 is small enough

entries

Sparse Coding Stage: Defining the sparse representation vector a €
R* as the column of matrix A € R™*™, using any pursuit algorithm to
calculate the sparse representation of examples by solving the solution:
ming, ||y; — Da;||3,1 < i < m subject to ||a;|lo < T

Dictionary Updating Stage: Sequentially update the atoms of dic-
tionary, when the i-th atom is updating:

Define the group of examples using the atom d;, where the a’ represents
the i-th row of matrix A : w = {j|1 < j < m,a(j) # 0}

Compute the reconstruction error matrix £, =Y — DA + diaiT
Restrict the error matrix by choosing the columns corresponding to w
and obtain a new error matrix E.*

Apply singular value decomposition (SVD) to decompose the error matrix
and update the atom by the first left-singular vector: E¥ = UAV  d; =

u;

Figure 3.3: K-SVD algorithm
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Input: The example y € R™ and the dictionary D € R™* n < k
Output: The sparse representation of example a € R*
1: Initialization: Initial residual r) = y, initial solution support 2 = &,
sparsity constraint 1’
2: for iteration counter J =1, J < T, J+ + do
3:  Find the atom that has the largest product with the residual r(; ;) and
has not been added to the solution support d, = maxd; - r(;_1),1 <1 <
k,d; & Q

4:  Add the selected atom to the solution support 2 = Q U d,

5. Compute the sparse representation of example as the projection of ex-
ample onto the linear space spanned by the elements of solution support
and update the residual: a(;) = (Q7Q) 10"y, o) =y — Qay)
if ||r()|[3 is small enough then

Stop the iteration and output a
end if

end for

Figure 3.4: Orthogonal-Matching-Pursuit (OMP) algorithm

Input: The example y € R" and the dictionary D € R"™* n < k
Output: The sparse representation of example a € R*
1: Initialization: Initial solution support £ = &, sparsity constraint 7T’
2: Computation:
3: Arrange the inner products of the atoms and example in a descending order,
and choose the first T atoms dg1 -y > dgo -y > ... >dsr-y > ... > dgy -y
4: Add the selected atoms to the solution support Q = {ds1, ..., ds2, ..., ds}
5: Compute the sparse representation of example as the projection of example

onto the linear space spanned by the elements of solution support: a =
(27Q) 'Q'y

Figure 3.5: OMP; algorithm
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y

Figure 3.6: Image of good classified by our methods, True:HCM, Esti-

mated:HCM
F

Figure 3.7: Image of good classified by our methods, True:NOR, Estimated:NOR

™~

Figure 3.8: Image of bad classified by our methods, True:GGO, Estimated: EMP
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-

Figure 3.9: Image of bad classified by our methods, True:GGO, Estimated:NOD

r ~

Figure 3.10: Image of bad classified by our methods, True:NOD, Estimated: GGO

4 A

Figure 3.11: Image of bad classified by our methods, True:NOD, Estimated:NOR
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Figure 3.12: Image of bad classified by the BOW, True:NOR, Estimated:NOD
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(b) Runtime of the dictionary learning

Figure 3.13: The classification accuracies and runtime of dictionary learning of

SR1 (K-SVD+OMP) and SR2 (K-Means+OMP) with the patch size:4d x 4 x 4
and number of non-zero entries:8
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K-Means+OMP (SR2)

(b) Time to recognize one VOI

Figure 3.14: The classification accuracies and runtime to recognize one VOI (ex-
cept feature calculation) of SR2 (K-Means+OMP) and SR3 (K-Means+OMP;)
with the patch size:3 x 3 x 3 and the number of atoms:3000.
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Table 3.1: Three proposed method to evaluate the sparse representation ap-

proaches

(a) The proposed methods

Dictionary learning | Sparse coding
SR1 K-SVD OMP
SR2 K-Means OMP
SR3 K-Means OMP;,
(b) Evaluation of sparse representation approaches
Evaluation Comparison of methods
Dictionary learning SR1 vs. SR2
Sparse coding SR2 vs. SR3

Table 3.2: Number of VOIs in the training and testing sets

CON | GGO | HCM | EMP | NOD | NOR | Total
Training set | 49 170 221 323 113 285 | 1161
Testing set 45 160 204 275 92 273 | 1049
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Table 3.3: Comparison on the overall accuracy and statistical difference for the

proposed methods and baseline methods

(a) Overall accuracy of all methods

Methods Overall accuracies
SR1 96.1%
SR2 95.6%
SR3 96.4%
SDF / SDF-SVM 75.8% | 73.6%
CSE 65.1%
BOW 85.5%

(b) P values of statistical differences

SR1 SR2 SR3 SDF | SDF-SVM | CSE BOW
SR1 vs. — 0.57 0.75 <0.0001 | <0.0001 | <0.0001 | <0.0001
SR2 vs. 0.57 — 0.31 <0.0001 | <0.0001 | <0.0001 | <0.0001
SR3 vs. 0.75 0.31 — | <0.0001 | <0.0001 | <0.0001 | <0.0001
SDF vs. <0.0001 | <0.0001 | <0.0001 | —— 0.09 <0.0001 | <0.0001
SDF-SVM vs. | <0.0001 | <0.0001 | <0.0001 0.09 — <0.0001 | <0.0001
CSE vs. <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 — | <0.0001
BOW vs. <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ——
Table 3.4: Confusion table of SR1, overall accuracy:96.1%
Estimated Label
True e
CON | GGO | HCM | EMP | NOD | NOR | Sensitivity
Label
CON 45 0 0 0 0 0 100.0%
GGO 0 142 0 15 3 0 88.8%
HCM 0 0 203 1 0 0 99.5%
EMP 0 1 0 270 0 4 98.2%
NOD 0 3 0 0 83 6 90.2%
NOR 0 0 6 2 265 97.1%
Precision | 100.0% | 97.3% | 100.0% | 92.5% | 94.3% | 96.4%
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Table 3.5: Confusion table of SR2, overall accuracy:95.6%

Estimated Label

e 1 con | @eo | moM | BMP | NOD | NOR | Sensitivity
Label

CON 45 0 0 0 0 0 100.0%
GGO 0 143 0 8 0 89.4%
HCM 0 1 203 0 0 99.5%
EMP 1 0 2 263 0 9 95.6%
NOD 0 4 0 0 33 5) 90.2%
NOR 0 2 0 0 5 266 97.4%

Precision | 97.8% | 95.3% | 99.0% | 96.7% | 86.5% | 95.0%

Table 3.6: Confusion table of SR3, overall accuracy:96.3%

Estimated Label

e 1 aon | eqo | mem | BEMp | NOD | NOR | Sensitivity
Label

CON 45 0 0 0 0 0 100.0%
GaGo 0 152 | 0 7 1 0 95.0%
HCM 0 1| 203 | 0 0 0 99.5%
EMP 0 1 1| 268 | 0 5 97.5%
NOD 0 7 0 0 80 5 87.0%
NOR 0 3 0 5 2 | 263 | 96.3%

Precision | 100.0% | 92.7% | 99.5% | 95.7% | 96.4% | 96.3%
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Table 3.7: Confusion table of SDF

(a) Original SDF (using ANN classifier), overall accuracy:75.8%

Estimated Label

True 1 ox | geo | moM | EMP | NOD | NOR | Sentivity
Label

CON 45 0 0 0 0 100.0%
GGO 1 157 | 0 0 0 98.1%
HOM 0 4 | 153 | 15 8 4 | 75.0%
EMP 0 0 0 249 7 19 | 90.5%
NOD 0 31 0 7 41 13 | 44.6%
NOR 0 80 3 28 12 | 150 | 54.9%

Precision | 97.8% | 55.7% | 98.1% | 83.3% | 60.3% | 75.8%

(b) SDF-SVM,overall accuracy:73.6%

Estimated Label
True .
CON | GGO | HCM | EMP | NOD | NOR | Sentivity

Label

CON 45 0 0 0 0 0 100.0%
GGO 0 159 0 0 0 1 99.4%
HCM 0 4 174 7 5 14 85.3%
EMP 0 0 5 188 23 59 68.4%
NOD 0 28 1 0 59 4 64.1%
NOR 0 97 2 5 22 147 53.8%

Precision | 100.0% | 55.2% | 95.6% | 94.0% | 54.1% | 65.3%
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Table 3.8: Confusion table of CSE,overall accuracy:65.1%

Estimated Label
True e
CON | GGO | HCM | EMP | NOD | NOR | Sensitivity

Label

CON 45 0 0 0 0 100.0%
GGO 10 94 28 28 58.8%
HCM 10 29 133 27 65.2%
EMP 0 23 216 16 20 78.5%
NOD 0 2 0 3 61 26 66.3%
NOR 0 17 20 6 96 134 49.1%

Precision | 69.2% | 66.2% | 65.2% | 93.9% | 26.8% | 74.4%

Table 3.9: Confusion table of BOW overall accuracy:85.5%

Estimated Label
True e
CON | GGO | HCM | EMP | NOD | NOR | Sensitivity

Label

CON 44 0 1 0 0 0 97.8%
GGO 0 160 28 0 28 0 100.0 %
HCM 0 2 201 0 0 98.5%
EMP 0 0 7 262 0 6 95.3%
NOD 0 29 0 1 56 6 60.9%
NOR 0 63 0 8 28 174 63.8%

Precision | 100.0% | 63.0% | 84.8% | 96.7% | 49.6% | 93.5%

Table 3.10: Comparison on runtime of proposed methods

Methods

Time of dictionary learning

Time to recognize one VOI

(except feature calculation)

SR1 13520s (using K-SVD) 1.27s (using OMP)
SR2 241s (using K-Mecans) 0.29s (using OMP)
SR3 350s (using K-Means) 0.13s (using OMP,)

o4




3.5 Conclusion

Table 3.11: Comparison of SR3 and BOW

Time to recognize one VOI

Methods | Overall accuracy | Time of dictionary learning )
(except feature calculation)
SR3 96.4% 350s (using K-Means) 0.13s
BOW 85.5% 241s (using K-Means) 0.013s
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Chapter 4

Classification of Pneumoconiosis

Images

4.1 Introduction

According to the Japan Pneumoconiosis Law, the pneumoconiosis is divided into
4 types based on the density and diameter of nodular opacities: Type 1 (no nod-
ules), Type 2 (few small-sized nodules (diameter < 10mm)), Type 3-a(numerous
small-sized nodules) and Type 3-b (numerous small nodules and presence of large-
sized nodules (diameter>10mm)). Fig. 4.1 illustrates the example images of 4
types of the pneumoconiosis.

The current diagnosis criterion of the pneumoconiosis is made based on the
CXR images, but the HRCT image is thought to be more sensitive than CXR
images for the diagnosis. For example, the superimposition of the large-sized
nodules on the CXR images would lead to a misdiagnosis for the cases of Type
3-b. Therefore, we designed a method to classify the four categories of the pneu-
moconiosis on HRCT images. According to our knowledge, there is no work to
classify the pneumoconiosis on HRCT images.

Although the performance of the bag-of-features method on the classifica-
tion of the six kinds of pulmonary patterns would be limited (see Chapter 3),
it achieved a good result when few number of pulmonary patterns were classi-
fied [113, 114]. Considering that the classification of the pneumoconiosis can be

seemed as the classification of two pulmonary patterns: NOR and NOD, and the
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bag-of-feature method can save the runtime, we adopted this method to classify
the pneumoconiosis. In additional, we design a novel nodule filter to detect the
pneumoconiotic nodules. Comparing with the conventional filters, more pneumo-

coniotic nodules can be extracted by using the proposed filter.

4.1.1 Nodule Extraction Method

The pneumoconiosis is diagnosed according to the size and density of the nodular
opacities. So, it is essential to detect pneumoconiotic nodules for the classifica-
tion. Researchers have proposed some methods to detect the nodules on the
HRCT images. Considering that the intensity of nodules is higher than its sur-
rounding normal tissues, many intensity-based methods have been developed,
such as local maximum density algorithm [115], local maximal gradient strength
[116] and morphological approaches [117]. However, most pneumoconiotic nod-
ules are low-contrast to vessels in intensity, and many nodules are connected to
vessels and airways. It is difficult to select suitable thresholds.

Researchers also designed several model-based methods to extract pulmonary
nodules. Osman [118] designed a three-dimensional nodule template to detect
nodule candidates by convolving regions of interest (ROIs) with the proposed
template. Farag [119] used four different types of deformable templates to de-
scribe typical geometry and gray-level distribution of pulmonary nodules. Felzen-
szwalb [120] proposed an object detection method based on mixtures of multiscale
deformable part models. Thellotti [121] combined an active contour model with
region growing method to extract pulmonary nodules on CT images.

Besides the model-based methods, the methods based on the eigenvalues of
Hessian matrix are another popular choice to detect the pulmonary nodules. It
is reported that the conditions of eigenvalues of the Hessian matrix can be used
to indicate the shape of objects [122]. Table 4.1 summarizes the conditions of
eigenvalues of the structures with three typical kinds of shapes: nodules, vessels
and cortex. Researchers have proposed some nodule filters [122, 123] to enhance
the nodule candidates at first, and then extract the nodules by thresholding the

response of the filter.
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4.2 Proposed Methods

The conventional methods devote to improve the accuracy of nodule extrac-
tion, in other words, the ability to distinguish nodules from other objects. So,
the large-sized pneumoconiotic nodules can be well detected, but most small-
sized pneumoconiotic nodules with a irregular shape may be failed detected. It
would affect the classification of Type 1,2 and 3-a because the diagnosis of these
three types of cases is according to the density of small-sized nodules. In order to
improve the performance of the classification, we designed a novel filter to detect

nodule candidates.

4.2 Proposed Methods

Considering that the pneumoconiosis are diagnosed according to the size (Type
3-b and other types) and density of nodules (Type 1,2,and 3-a), we recognized
the cases of type 3-b at first, and then classified the cases of type 1,2 and 3-a.
Fig. 4.2 illustrates the framework of proposed method. Firstly, the large-sized
nodules were extracted on all data, and the cases of Type 3-b and non-3-b were
classified. Secondly, the small-sized nodules were extracted from the cases of type
non-3-b; Thirdly, the local features were calculated on the patches located on the
centers of detected nodules. Finally, the bag-of-features was used to generate the
image-level descriptors as the input vectors of a SVM classifier, and the cases of

type 1,2 and 3-a were classified.

4.2.1 Nodule Extraction

In the research, we designed two filters based on the eigenvalues of the Hessian
matrix to detect nodule candidates as many as possible at first, and then carefully
eliminated false positives. Let the eigenvalues be Aj, Ay and A3, A3 < Ay < Ay,
considering that the three eigenvalues are approximately equal in the nodules’
center (A\; =~ Ay &~ J\3), we adopted an monotonically increasing function to

represent the difference between the eigenvalues A; and A;,

2(Ai/ )

fiAy) = 1+ (A/A))?

(4.1)
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4.2 Proposed Methods

When A; = A;, the function comes to its maximum. Our nodule filter was defined
as the product of differences between (Ay, Ay) and (Aa, A3)
4(A1/X3) A< A<\ <0

Joioo = (A1, A2) X f(Xa, Az) = D 2+ (4.2)
0, otherwise

Fig. 4.3a gives the response of our nodule filter. The less the difference between
eigenvalues, the greater will be response. The proposed nodule filter can produce
the maximum response on the voxels located in the centers of nodules. In other
words, the response reached the maximum where the eigenvalues meet the con-
dition A1 & Ay = A3. And the response of the filter descends with the increased
difference between the eigenvalues.

In order to enhance the nodules with various scales, the nodule filter was con-
volved with Gaussian kernels. By adjusting the standard deviation of Gaussian
convolution, the nodules with specific range of sizes can be enhanced. Fig. 4.3b
illustrates the color-code result of nodule enhancement by the proposed nodule
filter. The values of the standard variation were fixed to 0.6, 1, 1.5 and 2 vox-
els. When the response increases, the color will gradually change from blue by
yellow to red. Fig. 4.3c shows the result of nodule extraction after thresholding.
This threshold is called nodular threshold in this thesis. It can be found that a
large number of nodule candidates can be extracted, and our nodule filter had a
good sensitivity on detecting small-sized nodules. Fig. 4.3d shows the result of
enhancing the large-sized nodules when the scales were selected as 4 and 5 voxels.

It is inevitable that there were numerous false positives in the result of extract-
ing small-sized nodules, for example, the vascular intersections whose condition of
eigenvalues is similar with nodules. We designed a vessel filter to remove the false
positives meanwhile preserving nodules as many as possible. Since the condition
of eigenvalues in vessels’ centers is A3 & Ay < A\; ~ 0 [122], the vessel filter was
defined as:

A2
erpl=(G0)"?] X Tk

0, otherwise

A3 <A < 0,3 < A < Ny

flme = (43)

Fig. 4.3e shows the response of the proposed vessel filter. The proposed filter can

produce the maximum on the voxels located in the center line of the vessels.
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4.2 Proposed Methods

After enhancing the small-sized nodules and vessels, the false positives were
removed as follows. 1. Thresholding the response of nodule filter and vessel filter
respectively. 2.Removing the objects which exist in the both of two results. The
threshold of proposed vessel filter is called vascular threshold in this thesis. By
using the proposed filters, the result of extracting small nodules was determined
by the two parameters: nodular threshold and vascular threshold. Fig. 4.3f il-
lustrates the result of subtracting false positives from Fig. 4.3c¢ with a vascular
threshold of 0.7. The removed false positives are given in Fig. 4.3g. In the ex-
periments, the nodular threshold was adjusted from 0.35 to 0.55 with an interval
of 0.05, and the vascular threshold was adjusted from 0.6 to 0.8 with an interval
of 0.05. Considering that the scales of most false positives were less than the
large-sized nodules, the detected large-sized nodules were directly adopted in the

experiments without removing false positives.

4.2.2 Calculation of Local Features

After extracting the small-sized nodules, we calculated a set of 21 features based
on three kinds of measures on the patches whose centers located on the centers
of the detected nodules. The first kind of local feature was the number of voxels
belonging to nodules within the patches. Considering that it may be several
parts of nodules rather than entire nodules existed in the patches, the number of
voxels was more suitable to indicate the density of nodules in the local regions.
The other two kinds of local features were the measures based on the GLCM
[22] and GLRLM [21] respectively. From Fig. 4.1, it is clearly that the density of
nodules can affect the textures of pulmonary tissues. The more nodules exist, the
greater extent the tissues changes. Therefore, we adopted the statistical texture
features to discriminate various pneumoconiotic patterns. Table 4.2 and Table 4.3
summarize the measures based on the GLCM and GLRLM respectively. The size
of patches was a parameter in the calculation of local features. We thought that
the relatively large-sized patches would be better to indicate the information of
nodular intensity. So it was adjusted from 15 x 15 x 15 to 40 x 40 x 40 with an

interval of 5 voxels in the experiments.
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4.3 Experiment

4.2.3 Bag-of-features Based Classification

We used the bag-of-features to calculate the image-level descriptors as the input
vectors of a SVM classifier. Fig. 4.4 illustrates the framework of bag-of-features
based classification. After calculating huge number of local features from the
input data, the local features were aggregated into limit number of the clusters,
and the centers of clusters were saved as the words of a code-book (atoms of
the dictionary). By using the code-book, each local feature was assigned to the
closet atom in the term of Euclidean distance, and the histograms indicated the
frequencies of the words were generated. These histograms were used as the input
vectors of the classifier.

In the experiment, we adopted the K-Means algorithm to aggregate the local
features and calculate the centers of the clusters. The centers of the clusters were
saved as the atoms of the dictionary. The number of clusters in the K-means was
a parameter of the bag-of-features, which was adjusted from 50 to 200 with an
interval of 25.

For the SVM classifier, we used a version named LIBSVM with RBF (Radial
basis function) kernel [108]. The RBF kernel is defined as:

RBF kernel : G(h,h') = exp(—v||h — h'||?) (4.4)

where h and h' are both the N-bin histogram. The SVM classifier has two
parameters, the soft-margin penalty C and the parameter related to the RBF
kernel 7. The values of the C and v were set to be 272,271 . 21 212 and

2710279 2! respectively.

4.3 Experiment

4.3.1 Data

We collected 175 HRCT scans from 112 different subjects from Kochi University
to evaluate the performance of the proposed method. All scans were aquired by
GE Lightspeed VCT when edge-enhanced filtering was not applied. The resolu-
tion of HRCT scans was 512x512. The slice thickness was 1mm, and the in-plane
resolution was 0.625mm. A tube voltage of 140kV and a tube current of 250mA
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4.3 Experiment

were used. The scans were reviewed by experienced radiologists and divided into

4 types.

4.3.2 Experimental Setting

We separated the HRCT scans into two independent sets by splitting each type
of pneumoconiosis nearly in half. The training set (90 cases) was adopted to
optimize the parameters and train the algorithms with the optimized parameters,
and the test set (85 cases) was used to evaluate performance of the method.
The number of scans of each type of pneumoconiosis for training and test are
summarized in Table 4.4. There was no crossing-subject scan between the two
sets.

There were six parameters in the proposed method: nodular threshold, vas-
cular threshold, size of patch, number of clusters, the soft-margin penalty C and
the parameter related to the RBF kernel v. When the cases of type 3-b was
recognized, we set the nodular threshold and vascular threshold to 0.01 and 0.99
respectively. In the classification of type 1,2 and 3-a, all parameters were simulta-
neously adjusted. For the nodular threshold and vascular threshold, we tried the
values from 0.35 to 0.55 and 0.6 to 0.8 respectively. The intervals of two thresh-
olds were both 0.05. The path size was adjusted from 15x15x15 to 40x40x40
with a step of 5x5x5. On the choice of number of clusters, we tried the number
from 50 to 200 with an interval of 25. The values of the C and v were set to be
272 271 211 212 and 2710 279 . 2! respectively.

We used leave-one-out to optimize parameters in the training stage. The
combination of possible values which produced the best classification accuracy
was chosen as the optimal parameter. Then each method was trained with the

optimal parameters on training set, and finally evaluated on the testing set.

4.3.3 Baseline methods

Sato et al. [122] and Li et al. [123] have proposed two kinds of state-of-the-art

nodule filters based on the eigenvalues of the Hessian matrix respectively. These
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4.4 Discussion

two filters are given by Eq.4.5 and Eq.4.6 respectively.

Asl(32)7(32)7, A< A <A <0

/ : . J—
Satd's filter : Syop = { 0. otherwise (4.5)
g M2/ Asl, A3 <A <A <0
Li's filter : Ly = { |O 117/1As] oihgr'w?i;e ! (4.6)

where 7y is a parameter of Sato’s filter. The paraments of the baseline filters were

optimized in a same way as our method.

4.3.4 Results

The overall accuracies of all three methods are given in Table 4.5. The pro-
posed method achieved a recognition rate of 90.6%, better than the baseline
filters(Sato’s filter:80.0%, Li’s filter:76.5%). Table 4.9 shows that the p values of
the statistical difference were less than 0.05, which means that there were signif-
icantly statistical differences between the methods. The confusion tables of the
methods are summarized in Table 4.6 (our method), Table 4.7 (Sato’s filter) and
Table 4.8 (Li’s filter) respectively.

4.4 Discussion

According to the study [123], the quality of the nodule filter can be evaluated
from the two aspects: sensitivity and specificity. The sensitivity means that the
nodule filter should give a strong response to blob-like objects, and the specificity
indicates that the nodule filter should not produce strong response to other ob-
jects, such as line-like objects. Because the pneumoconiosis is featured by large
numbers of nodular opacities, a filter with good sensitivity is required to detect
pneumoconiotic nodules as many as possible for the classification. However, the
conventional filters aimed to improve the discriminatory power(specificity) rather
than detecting more nodule candidates(sensitivity).

The Sato’s filter can be simplified as —A; when « is fixed to 1, one of the
preferred values. This filter had a good performance on discriminating nodules
from other tissues, but the response of tiny nodules was as low as the false pos-

itives. Fig. 4.5a and Fig. 4.5b illustrate the results of nodule enhancement by
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4.5 Conclusion

using the Sato’s filter and the extracted nodules by thresholding of the result
of nodule enhancement. It can be found that numerous nodules were removed
after thresholding. Comparing with the Sato’s filter, the Li’s filter had a better
specificity but worse sensitivity on detecting small-sized nodules. Fig. 4.5¢ and
Fig. 4.5d show the result of nodule enhancement and its thresholding by Li’s filter
respectively. The number of nodules was further decreased after thresholding.

We compared the two kinds of the baseline filters in Fig. 4.5f. It is clearly that
the response of Sato’s filter descended slower than Li’s filter. So the small-sized
nodules can be given a stronger response whose magnitude of eigenvalues was
relative small, and greater number of nodules can be kept after thresholding. It
can be deduced that the slower descending response was advantageous to improve
the sensitivity of nodule filter.

In order to extract more pneumoconiotic nodules, we proposed a novel nodule
filter in the study. Because all eigenvalues are approximately equal in the nodules’
center, we adopted the product of differences between (A1, Ag) and (Mg, A3) to
indicate the shape of objects. Although this product was also considered in the
Sato’s filter, it was simplified and not used in the computation. We adopted
an monotonically increasing function to define the proposed nodule filter which
can avoid the simplification of the eigenvalues. Fig. 4.5g compares the response
between the proposed filter and Sato’s filter. It shows that the decreasing of
response of proposed filter was slower than the Sato’s filter. So more nodules can
be extracted, as be shown in Fig. 4.5e. Experimental results demonstrate that
increasing extracted nodules was advantageous for the classification of the Type
2 and Type 3-a which are featured by the density of the small-sized nodules. The
sensitivities of Type 2 and Type 3-a by using all filters were 91.7% \ 92.9% (ours),
25.0% \ 85.7% (Sato’s) and 41.7% \ 78.6% (Li’s) respectively.

4.5 Conclusion

In this chapter, we proposed a method to classify the four kinds of the pneumo-
coniosis on the HRCT images. Considering that main finding of the pneumoco-
niosis is the nodular opacities, but the performance of the conventional nodule

extraction approaches would be limited for the detection of the small-sized and
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4.5 Conclusion

irregular nodules, we designed two eigenvalues based filters to detect the nod-
ules and then remove the false positives while keeping the nodules as many as
possible. A total of 21 kinds of measures was calculated on the patches located
on the centers of the detected nodules. The image-level descriptor of each image
was generated by using the bag-of-features and employed as the input vector of
the SVM classifier with RBF kernel. The overall accuracy by using our filter was
90.6%, better than the two kinds of baseline filters (Sato’s filter: 80.0%, Li’ filter:
76.5%). We thought that the proposed method would be useful for the CAD of

the pneumoconiosis.
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4.5 Conclusion

(a) Type 1 (absence of nodule)

V R

(b) Type 2 (few small nodules)

N

(¢) Type 3-a (numerous small nodules)
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4.5 Conclusion

(d) Type 3-b (numerous small nodules and presence of

larger nodules)

Figure 4.1: HRCT images of pneumoconiosis
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Extraction of small-
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Bag-of-features

SVM classifier

Figure 4.2: Overall scheme of proposed CAD method
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4.5 Conclusion

(a) Response of nodule filter

(b) Multiscale enhancement of small nodules with scales
of 0.6, 1, 1.5, and 2 voxels

(¢) Thresholding of the nodule enhancement
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4.5 Conclusion

(d) Multiscale enhancement of large-sized nodules with
scales of 4 and 5 voxels

Response

(e) Response of our vessel filter

(f) Result of subtracting false positives
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(g) Removed false positives

Figure 4.3: Result of nodule extraction by our filter

Image

Histograms of words

(a) Training

Histograms of words

Localfeatures

(b) Test

Figure 4.4: Bag-of-features
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4.5 Conclusion

(a) Enhancement of small nodules by Sato’s filter

(b) Thresholding of (a) with a nodular threshold of 0.5

(c) Enhancement of small nodules by Li’s filter

71



4.5 Conclusion

(d) Thresholding of (c¢) with a nodular threshold of 0.5

(e) Result of nodule extraction by proposed filter with a
nodular threshold of 0.5

Response

Proposed filter

Sato’s filter
Sato’sfilter ——

- R 0 . \
0 0204 06 0.8 1 /4, 0 020406 08 1 RS

(f) Comparison of the response between Sato’s(g) Comparison of response between proposed
and Li’s filter and Sato’s filter

Figure 4.5: Comparison of three filters
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Table 4.1: Eigenvalue condition of local structures, A\, Ao, A3, represent the eigen-

values of Hessian matrix [122]

Structures

Eigenvalue condition

Nodule

)\3%}\2%/\1<<0

Vessel

/\3"&5}\2<</\1’R50

Cortex

/\3<<)\2%A1%0

Table 4.2: The features based on gray level co-occurrence matrix (GLCM)

Entropy

Energy

Contrast

Homogeneity

Mean

Variance

Correlation

Maximum Probability

Inverse Difference

Cluster Tendency
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Table 4.3: The features based on run-length matrix (GLRLM)

Short Run Emphasis

Long Run Emphasis

Low Gray-level Run Emphasis

High Gray-level Run Emphasis

Short Run Low Gray-level Run Emphasis
Short Run High Gray-level Run Emphasis
Long Run Low Gray-level Run Emphasis

Long Run High Gray-level Run Maximum Emphasis

Gray-Level Non-uniformity

Run Length Non-uniformity

Table 4.4: Number of scans for the four types of pneumoconiosis cases

Type 1 | Type 2 | Type 3-a | Type 3-b | Total
Training set 23 12 17 38 90
Test set 23 12 14 36 85

Table 4.5: Comparison of three methods

Method | Accuracy
Proposed | 90.6%
Sato’s 80.0%
Li’s 76.5%

Table 4.6: Confusion table of proposed method, overall accuracy:90.6%

Estimated Types
True Types | Type 1 | Type 2 | Type 3-a | Type 3-b | Sensitivity
Type 1 23 0 0 0 100%
Type 2 0 11 1 0 91.7%
Type 3-a 0 1 13 0 92.9%
Type 3-b 0 3 3 30 83.3%
Precision | 100.0% | 73.3% 76.5% 100.0%
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Table 4.7: Confusion table of Sato’s filter, overall accuracy:80.0%

Estimated Types

True Types | Type 1 | Type 2 | Type 3-a | Type 3-b | Sensitivity
Type 1 23 0 0 0 100.0%
Type 2 1 3 8 0 25.0%

Type 3-a 0 2 12 0 85.7%
Type 3-b 0 1 5 30 83.3%
Precision | 95.8% | 50.0% | 48.0% 100.0%

Table 4.8: Confusion table of Li’s filter, overall accuracy:76.5%

Estimated Types

True Types | Type 1 | Type 2 | Type 3-a | Type 3-b | Sensitivity
Type 1 19 0 4 0 82.6%
Type 2 0 5 7 0 41.7%

Type 3-a 2 1 11 0 78.6%
Type 3-b 0 0 6 30 83.3%
Precision | 90.5% | 83.3% 39.3% 100.0%

Table 4.9: Statistical differences by MCNEMAR's test

Methods P value
Proposed vs Sato’s | 0.046
Proposed vs Li’s 0.016
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Chapter 5

CAD Tools

5.1 Introduction

In our research, we designed two methods to classify the DLD patterns and pneu-
moconiosis on the HRCT images respectively. The Insight Segmentation and Reg-
istration Toolkit (ITK) was used to develop the methods. The ITK is a powerful
toolkit to process the medical images, but it cannot be used to visualized operate
and demonstrate the medical images. Considering that it would be convenient
for the radiologists to use the CAD methods with an interactive graphical user
interface (GUI), the visualized tool is required to operate the CAD applications
in the clinical practice. In our laboratory, a visualized CAD platform named
MARIMO (Medical Analyzer of Radiology for Images of Multi-Organs) had been
developed by Shikata [124], and we implemented the two proposed applications
as the plug-ins of the MARIMO.

5.1.1 Medical Analyzer of Radiology for Images of Multi-
Organs (MARIMO)

The MARIMO is a visualized platform developed for the radiologists’ clinical

practice. There are three main characteristics for the MARIMO. (1) The MA-

RIMO can be operated on several operating systems, such as Windows, Linux and
MacOS. (2) The MARIMO provides the ability of multi-threading programming,
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5.2 CAD of DLDs by MARIMO

which can reduce the runtime of the medical image processing. (3) Most applica-
tions are implemented as the plug-ins, so it can be casily updated by adding or
replacing the desired plug-ins. So far, many plug-ins have been developed to read,
process and save the 3-dimension HRCT images. In the practice, the source codes
of projects were firstly compiled as the dynamic link library (DLL) files, and then
placed in the plug-in subdirectory of the MARIMO. When the MARIMO start,
the plug-ins in the plug-in subdirectory were loaded and shown on the toolbar.
Fig. 5.1a and Fig.5.1b show the startup screen of the MARIMO without and with
plug-ins respectively. Fig. 5.2 gives the image of MARIMO with a three views

(axial, sagittal and coronal direction) of a HRCT image.

5.2 CAD of DLDs by MARIMO

In the research, we designed two algorithms to classify the DLD patterns and
pneumoconiosis respectively. In order to visualized operate the proposed algo-
rithms, these applications were implemented as the plug-ins of the MARIMO. Fur-
thermore, considering that only the regions located within the lung-field should
be analyzed, if the mask image of the lung-field was not provided, it is necessary

to automatically extract the lung-field as a preprocessing step of the classification.

5.2.1 Lung Segmentation

We integrated a simple lung-field segmentation algorithm based on the intensity-
threshold to extract the lung-field. Fig. 5.3a gives the framework of extracting the
lung-field. Firstly, the second largest structure was extracted by using the connect
component labeling on the original image after thresholding (the largest structure
was usually the background). This structure was composed of the lung and
bronchus. Fig. 5.3b and Fig. 5.3c give the images of extracted structure and its
volume rendering. Secondly, the region-growing approach with the manually set
seed was used to extract the bronchus. The image of the seed point is shown in the
Fig. 5.3d. Fig. 5.3e and Fig.5.3f show the images of the bronchus and its volume
rendering respectively. Thirdly, the bronchus was removed from the structure

extracted in the first step, and an initial result of the lung-field segmentation was
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5.2 CAD of DLDs by MARIMO

obtained. Fig. 5.3g gives the result of this step. It can be found that there were
numerous holes in the image. Finally, the morphological dilate and then erode
operation were implemented to fill the holes. Fig. 5.3h and Fig. 5.3i demonstrate
the final result of the lung-field segmentation and its volume rendering.

The threshold of lung-field and bronchus is important for the extraction of
lung structures and bronchus in the above method. However, in the clinical,
it is difficult to find suitable thresholds for the lungs, especially for the lungs
suffered from the severe DLDs, so this method would fail to extract the lung-
field. In order to improve the performance of our applications, we also integrated
a sophisticated algorithm based on the chamfer distance transform. This method
spent little runtime and need no to input any parameters. Although the lung can
be successfully extracted by this algorithm, but the main disadvantage is that
many other structures would be extracted. Fig. 5.4 gives the results of the lung

extraction and its volume rendering based on the chamfer distance transform.

5.2.2 Classification of DLD patterns and Pneumoconiosis

For the classification of DLD patterns, besides the sparse represent based method
proposed in this thesis, we also integrated another two state-of-the-art methods
[105, 124] which were developed by our laboratory in the previous research. These
three methods were named ” sparse representation”, ” bag-of-features” and ” shape-
texture” method respectively. The user can select any one method to classify the
DLD patterns. In the classification, firstly we divided the lung-field into several
3D cubic-shape patches. The size of patches can be adjusted by the user. Then
the VOIs with a size of 32 x 32 x 32 were generated on the centers of the patches,
and classified by the selected method. The recognized pulmonary pattern of each
VOI was indicated by a non-zero value, which was used to evaluate the pulmonary
pattern of the voxels within corresponding patch. Finally, the classification result
of voxels on the input HRCT image was saved as a image-mask and output.
Fig. 5.5a shows the dialogue of classifying the DLD patterns. The classification
method and size of patches can be set on the dialogue. The classification of
the CON, GGO, HCM and EMP by using the MARIMO are illustrated from
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5.2 CAD of DLDs by MARIMO

Fig. 5.5b to Fig. 5.5e respectively. After classification, the percentage of each
abnormal patterns can be summarized and reported, as be shown in the Fig. 5.6.

In order to improve the performance on the classification of DLD patterns in
the clinical application, it is important to often update the classification model.
The conventional training process can be divided into two stages. At first, the
radiologists collect the HRCT scans, and mark the normal or abnormal regions on
the scans. Then the programmers generate the VOIs according to the data, and
train the classification model. Unfortunately, the radiologists may spend a long
time for a new model. So, we thought it would be convenient for the radiologists
if they can train the classification model by themselves.

In the research, we designed some functions to train the model for the clas-
sification of the DLD patterns. The new training process composed of following
three steps. Firstly, the radiologists selected some slices from the HRCT im-
ages and marked the interested regions on the selected slices. Fig. 5.7 illustrates
the plug-ins to select the slices and draw interest regions on the HRCT images
(these plug-in were developed in the work [124]). Secondly, the regions marked
by different radiologists were summarized, and the common regions agreed by all
radiologists were generated. Fig. 5.8 illustrate the plug-in for the summarization
of regions. Finally, the MARIMO constructed the VOIs according to the com-
mon regions, and trained the classification model by the VOIs. Fig. 5.9a gives
the images of the plug-in for the training classification model. There were two
ways to construct the VOIs. The first one was to divide the selected slices into
the patches with a size of 32 x 32. If the center of the patch located in the regions
marked by the radiologists, the VOI was generated by treating this patch as the
center axial-slice of the VOI with a size of 32 x 32 x32. The second method for the
generation of VOIs was to move a grid with a size of 32 x 32 on the selected slices.
When the area of marked regions in the current grid was larger than the input
threshold and these regions had not been used to generate the VOIs, a patch was
extracted on the current grid and then the VOI was generated according to this
patch. The range of parameters of CAD methods can be adjusted by the users.
Fig. 5.9b gives the screen of setting parameters to train the sparse representation
method. We provide a default range of 500-3000 with an interval of 500 for num-
ber of atoms, 2-4 with an interval of 2 for the sparsity and 2 x 2 x2-6 x6 X 6
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with an interval of 1 x 1 x 1 for the size of patch. In the bag-of-features method,
the default range of number of atoms and size of patches were set to be 50-400
and 2-6 respectively. Fig. 5.9c¢ shows the screen of setting parameters to train
the bag-of-features method. For the SVM classifier adopted in all three methods,
the possible values of the soft-margin constant were set to be 272,271 ... 211 212,
and the gamma related to the y? kernel in the bag-of-features and RBF ker-
nel in the shape-textures were set to be 2712, 271 . 2! 22 These parameters
can be optimized by two kinds of evaluation approaches: n-fold cross validation
or leave-one-out. After selecting the classification model and setting the range
of parameters, the MARIMO optimized the parameters on the input data. The
combination of parameters which produced the best overall accuracy were treated
as the optimal parameters. Then the MARIMO trained the selected method with
the optimal parameters on the input data again, and the classification model was
output.

For the classification of the pneumoconiosis, there are three kinds of outputs
after the classification: the dialogue box (Fig. 5.10a) and text file (Fig. 5.10b)
that used to report the recognized class of the pneumoconiosis, and the mask of
the lung indicated the detected nodules (Fig. 5.10c¢).

5.3 Conclusion

In this chapter, we introduced a visualized CAD platform named MARIMO, and
our methods were implemented as the plug-ins of the MARIMO. Considering that
only the regions within the lung-filed should be analyzed, the lung-field segmen-
tation was integrated with the proposed methods to automatically extract the
lung-field as the preprocessing. We thought that the application of our methods
by using MARIMO was useful for the radiologists in the clinical practice.
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(b) MARIMO with plug-ins

Figure 5.1: The startup screen of the MARIMO
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Figure 5.2: The three views of a HRCT image (axial, sagittal and coronal direc-

tion)
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(¢) Volume rendering of the object composed of the lung-field and bronchus
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(d) Seed point for extracting the bronchus
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(e) Image of the extracted bronchus

(f) Volume rendering of the extracted bronchus
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(g) Lung-field without filling holes

(h) Final result of the lung-field segmentation
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(i) Volume rendering of lung-field

Figure 5.3: Lung-field segmentation
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(a) Lung extraction

e * o

(b) Volume rendering of lung-field

Figure 5.4: Lung extraction based on chamfer distance transform
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(c) Classified GGO

(d) Classified HCM
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(e) Classified EMP

Figure 5.5: Implementation of the DLD classifier
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5.3 Conclusion

Figure 5.6: Report of abnormal pulmonary patterns
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(a) Selection of slice

(b) Drawing interest regions

Figure 5.7: Preparation of interest regions by radiologists
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5.3 Conclusion

Figure 5.8: Summarization of regions marked by radiologists
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(a) Start screen of the training filter for classification of DLD patterns
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(¢) Setting parameters of the bag-of-features method

Figure 5.9: Implementation of the DLD training filter
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(b) The txt file as the output of classification of the DLD patterns
(a) The dialogue as the

output of classification of

Pneumoconiosis

(c¢) The detected of nodules as the output of CAD of Pneumoconiosis

Figure 5.10: Implementation of the pneumoconiosis classifier
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Chapter 6

Conclusion

In the thesis, we presented two methods to classify the DLD patterns and pneu-
moconiosis on the HRCT images, and implemented the proposed methods as the
plug-ins of a visualized CAD platform named MARIMO developed in our labo-
ratory. In order to improve the performance on the classification, we introduced
a concept of the sparse representation to calculate the image features. The main
idea of the sparse representation is to select few number of key features to ap-
proximate the examples. So it is important to construct a set of representative
features which can represent the salient information of examples, and approxi-
mate the examples in a suitable way. Experimental results show that the our
methods achieved good performance and would be useful in the clinical practice.

In the Chapter 3, we used and optimized the sparse representation approaches
to classify the normal tissues and five kinds of DLD patterns, including consolida-
tion, ground-glass opacity, honeycombing, emphysema and nodular. The K-SVD
and OMP are two of the most popular approaches for the dictionary learning and
sparse coding respectively, and the method using these two algorithms achieved
a good classification accuracy. However, it need too much time in the operation.
Considering that it is report that the application of the K-Means can obtain a
competitive result on the classification of natural image to the K-SVD, we used
the K-Means as a substitute of the K-SVD. On the other hand, we simplified the
OMP by selecting a sufficient number of atoms at one time (OMP;). The perfor-
mance of the OMP; can be ensured under a certain sparsity constraint although
the reconstruction error of OMP; is larger than the OMP. We designed three
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methods for evaluation: SR1 (K-SVD+OMP), SR2 (K-Means+OMP) and SR3
(K-Means + OMP;). The overall accuracies of all three methods were greater
than 95%, which means that the replacement of the K-SVD and OMP by the
K-Means and OMP; had not influence on the recognition of pulmonary patterns.
Furthermore, the runtimes of the dictionary learning and recognition were reduced
by 98.2% and 55.2% respectively when the K-Means and OMP; were employed.
Therefore, we conclude that the method using K-Means and OMP; was efficient
to classify the DLD patterns.

In the Chapter 4, we proposed a method to classify the four kinds of the
pneumoconiosis on the HRCT images. Because the diagnosis of the pneumoco-
niosis is according to the size and density of nodules, we designed a two-step
classification strategy. Firstly, we classified the Type 3-b and other kinds of data
based on the size of nodules. Then, we classified the Type 1, 2 and 3-a by using
the bag-of-features method which could be seemed as a special version of the
sparse representation on the sparsity of the approximation. Considering that the
nodular opacities are the main finding of pneumoconiosis, but the performance
of conventional methods for the nodule extraction is limited. We designed two
eigenvalues based filters to detect the nodules and then remove the false pos-
itives while keeping the nodules as many as possible. The recognition rate of
our method was 90.6%, better than the baseline methods. It demonstrates the
proposed method would be useful for the CAD of the pneumoconiosis.

The above two algorithms had good performance on the classification, but the
operation of these algorithms was based on the command-line interface. It would
be inconvenient for the radiologists in the clinical practice. In order to facilitate
the radiologists’ diagnosis, the proposed methods were visualized implemented
through a graphic use interface in the Chapter 6. We designed several plug-
ins to classify the DLD patterns and pneumoconiosis, and train the model for
the classification of DLD patterns. When the MARIMO started, the plug-ins
were shown in the menu. After reading the image, user can select CAD method
to analyze the image. Finally, the results were output. We thought that the
MARIMO with the proposed plug-ins would have a great potential for the CAD
of the DLDs on the HRCT images.
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In future research, we will improve the proposed methods from the two as-
pects. The first one is to optimize our methods based on the experimental results
in the actual clinical setting, and integrate an advanced lung-field segmentation
algorithm. The second one is to classify the pneumoconiosis according to the
international classification of HRCT for occupational and environmental respira-
tory diseases (ICOERD)[125].
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