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ABSTRACT

Fatty acid binding protein 7 (FABP7) expressed by astrocytes in developing and mature brains is 

involved in uptake and transportation of fatty acids, signal transduction, and gene transcription. 

Fabp7 knockout (Fabp7 KO) mice show behavioral phenotypes reminiscent of human 

neuropsychiatric disorders such as schizophrenia. However, direct evidence showing how 

FABP7 deficiency in astrocytes leads to behavioral impairments is lacking.  

Here, we examined neuronal dendritic morphology and synaptic plasticity in medial 

prefrontal cortex (mPFC) of Fabp7 KO mice and in primary cortical neuronal cultures. Golgi 

staining of cortical pyramidal neurons in Fabp7 KO mice revealed aberrant dendritic 

morphology and decreased spine density compared with those in wild-type (WT) mice. Aberrant 

dendritic morphology was also observed in primary cortical neurons co-cultured with FABP7-

deficient astrocytes and neurons cultured in Fabp7 KO astrocyte-conditioned medium. 

Excitatory synapse number was decreased in the mPFC of Fabp7 KO mice and in neurons co-

cultured with Fabp7 KO astrocytes. Accordingly, whole-cell voltage-clamp recording in brain 

slices from pyramidal cells in the mPFC showed that both amplitude and frequency of action 

potential-independent miniature excitatory postsynaptic currents (mEPSCs) were decreased in 

Fabp7 KO mice. Moreover, transplantation of WT astrocytes into the mPFC of Fabp7 KO mice 

partially attenuated behavioral impairments. To further explore the mechanistic roles of FABP7 

on astrocyte function, the proteome of astrocytes cultured from Fabp7 KO mice was compared 

with WT counterparts by two-dimensional gel electrophoresis (2-DE), and selected spots were 



analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. As a 

result, vimentin and PEA-15 were identified to be downregulated in Fabp7 KO astrocytes.

Collectively, these results suggest that astrocytic FABP7 is important for dendritic arbor 

growth, neuronal excitatory synapse formation, and synaptic transmission in cortical neurons, 

and FABP7 has regulatory role on astrocyte proteome. These findings provide new insights 

linking FABP7, lipid homeostasis, and CNS disorders and may lead to novel therapeutic 

interventions. 

Keywords: 2-DE, astrocyte, FABP7, glia, glioma, hyperactivity, mEPSCs, mPFC, LC-MS/MS, 

PEA-15, vimentin 
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1. INTRODUCTION 

1.1. Glial cells constitute most of the cells in the brain 

The central nervous system (CNS) is made up of two main cell types namely neurons and glia. 

Of interest, glial cells constitute up to 90% of cells population in the human brain. They adopted 

their name from the Greek word for glue, but now it is apparent that they do not just hold nerve 

cells together and hence should not just be regarded as supportive cells to neurons. Recent 

compelling evidence indicates that glial cells play active and crucial roles in the development 

and function of the brain (1, 2). 

There are three types of glial cells exist in the CNS: astrocytes, oligodendrocytes and 

microglia. Astrocytes are the most abundant glial cells with star-shaped cell bodies and extensive 

endfeet on their processes. They involve in the brain homeostasis, interact extensively with 

neurons and provide them with important structural, metabolic support and substrates for 

neurotransmission. Oligodendrocytes have several processes which wrap themselves around 

neuronal axons to form myelin sheaths, which enwrap axons, thereby speeding up the conduction 

of electrical impulses. Microglia, the smallest of the glial cells, are resident immune cells of the 

CNS, which act as phagocytes survey the brain for damage and infection, engulfing dead cells 

and debris [Fig. 1.1] (1, 3). 

1.2. Astrocytes multi-functional glial cells  

Astrocytes play important roles in normal brain organization through guidance of neuronal 

development, homeostatic synaptic scaling and modulation of neurophysiological mechanisms 

implicated in the regulation of complex behavioral processes (4-6). Currently, there is no doubt 
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that astrocytes are dynamically involved in antioxidant defense, inflammatory response, 

metabolic and ionic homeostasis, synaptic transmission, trophic support of neurons, and the 

establishment and maintenance of the blood-brain barrier (7). 

Fig. 1.1 Glial cells in the CNS and their interactions with surrounding cells. Scheme shows 

different types of glial cells interact with neurons and surrounding blood vessels. 

Oligodendrocytes enwrap myelin around axons to accelerate neuronal transmission. Astrocytes 

extend processes that ensheathe synapses and blood vessels. Microglia keep the brain under 

surveillance for damage or infection [figure taken from (1)].

Astrocytes also have pivotal influences on structural and synaptic plasticity of neurons 

directly through physical contact or indirectly by releasing humoral factors, such as growth 

factors, thrombospondins, and cholesterol (8-11). Therefore, even subtle functional impairment 
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of astrocytes could ultimately compromise neuronal responses and be associated with pathology 

of neurological disorders. 

1.3. Astrocytes dysfunction and disease 

Based on importance of astrocytes in normal brain function and their involvement in several 

activities there is no CNS disease that does not substantively involve astrocytes. Indeed, defects 

in the regulatory roles of astrocytes are major contributors in the pathophysiology of 

neurodevelopmental and neuropsychiatric disorders (12-14). 

Astrocytes involved in several neurodegenerative diseases including Alzheimer´s disease 

(AD), Parkinson´s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis 

(MS) in both exacerbation of damage and neuroprotective mechanisms; and in these disorders 

abundant evidence is already revealed that astrocytic abnormalities and physiological 

dysfunction occur before onset of clinical symptoms (15). 

Moreover, detailed analyses of neurodevelopmental disorders are revealed that 

dysfunction of astrocytes during development can be an important etiological factor in the 

pathology of diseases including Rett syndrome, fragile X mental retardation, Alexander’s disease, 

and autism. Strikingly, astrocyte dysfunction has profound noncell-autonomous effects on their 

nearby neurons (16). 

Astrocytes dysfunction have also been linked to the pathology of several neuropsychiatric 

disorders including major and bipolar depression, schizophrenia, and addiction (17). Therefore, 

understanding precise role of astrocytes in neurological and neuropsychiatric disorders requires 

further knowledge regarding to the biology, function, and especially their communications with 

surrounding neurons.  
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1.4. Fatty acid binding proteins (FABPs), a family of intracellular chaperons for lipophilic 

molecules 

FABPs are low molecular weight (~15 kDa) proteins which serve as cellular chaperons for 

lipophilic molecules as well as fatty acids (FAs) in a large verity of cells and organs with a 

spatiotemporal expression pattern (18). Besides FABPs contribution to govern uptake and 

intracellular distribution of FAs such as arachidonic acid (AA) and docosahexaenoic acid (DHA), 

they are thought to be involved in metabolism, signal transduction and gene regulating activities 

[Fig. 1.2; (19-22)]. 

The gene regulating activity of FABPs are thought to be done by their translocation to nucleus 

and thereby targeting ligands (FAs) to the nuclear receptors including peroxisome proliferator 

activated receptors (PPARs) and retinoid X receptors (RXR) (23-25). Consistently, body of 

evidence regarding to physical interaction of PPARs with some FABPs proposed them as PPARs 

co-activators [Fig. 1.2; (25, 26)]. 

Fig. 1.2 Cellular functions of FABPs. Simplified scheme shows cellular functions of FABPs. 

The uptake of FAs is facilitated by membrane associated proteins as well as fatty acid transport 
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protein (FATP) and fatty acid translocase (FAT; CD36). Intracellular FAs are bound to FABPs, 

and FABP modulates several cellular procedures including synthesis of acyl-CoA and/or 

eicosanoids, FA-mediated signal transduction, and gene transcription by nuclear receptors like 

PPARs and RXR; RA: retinoic acid [figure taken from (20), with modifications]. 

So far at least nine members of FABP family have been recognized in mammalian 

species among them, FABP3 (heart-type FABP), FABP5 (epidermal-type FABP) and FABP7 

(brain-type FABP) have been identified to be expressed in the brain [Fig. 1.3; (27-29)]. While 

FABP3 expression in brain is just confined to neurons, FABP5 and 7 are showing a broader 

expression pattern and have been shown to be expressed in neural stem cells (NSCs) and glial 

cells (19, 30-34). 

Fig. 1.3 Phylogenetic tree of fatty acid binding protein members of human. The bootstrap 

neighbor-joining phylogenetic tree was constructed using CLUSTALX. The human lipoclalin1 

protein sequence (LCN1; NP_002288) was used as an outgroup. The bootstrap values (based on 
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number per 1000 replicates) are indicated on each node. The three phylogenetically-related 

FABPs with brain functions are highlighted [figure taken from (29)]. 

1.5. FABP7, a glia-expressed FABP 

FABP7, which is preferentially bound to n-3 polyunsaturated fatty acids (PUFAs), was 

initially found to be expressed in neural stem cells and radial glia of the developing brain (19, 30, 

35) and to be essential for neurogenesis as a positive regulator of proliferation in neural stem 

progenitor cells (36). In the embryonic brain, FABP7 is essential for maintenance and 

proliferation of neural stem progenitor cells, and Fabp7 gene expression is downstream of Pax6 

and Notch signaling (37, 38). In the adult brain, FABP7 is expressed by astrocytes and 

oligodendrocyte progenitor cells, whereas it is not detected in neurons, microglia, and mature 

oligodendrocytes (33, 34). FABP7 is reportedly enriched within synaptoneurosomal fractions 

from mouse brain, and its presence exhibits circadian variations, implicating a role for FABP7 in 

the formation of complex behavioral processes (39, 40). Augmented levels of FABP7 are also 

detected in the fine astrocytic perisynaptic compartments near synapses, suggesting its role in the 

control of neuronal activation or synaptic homeostasis (40). Although these findings have 

introduced FABP7 as an important biological regulator for glial cells, several aspects of this 

contribution remain unknown. 

Our recent studies connected FABP7 to neuropsychiatric diseases (31, 41). The Fabp7

gene is mapped to a quantitative trait locus for deficiency in prepulse inhibition, an 

endophenotype of schizophrenia, and FABP7 mRNA levels are upregulated in the dorsolateral 

PFC of patients with schizophrenia (41). Mice with a Fabp7 knockout (Fabp7 KO) exhibit 

decreased prepulse inhibition and altered emotional behaviors (31, 41, 42). Genetic variants of 

FABP7 show significant associations with neuropsychiatric diseases (41, 42). Accordingly, it is 
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highly possible that the expression of FABP7 in astrocytes is essential for normal neuronal 

structure and function, and that impairment in FABP7 causes behavioral phenotypes in FABP7-

deficient mice, which can be used as a model of schizophrenia. 

1.6. Neuronal morphology and dendritic structures 

Dendrites are the major sites for information input into neurons and dendritic branching pattern 

(dendritic arbor) varies to a great extent with the neuronal type. In fact the dendritic arborization 

is an important determinant of the synaptic or sensory input received by a neuron (43). Several 

neurological disorders are linked with abnormalities in the dendritic arborization, including 

neurodegenerative diseases, mental retardation syndromes (such as Down’s syndrome, Rett 

syndrome and fragile X syndrome, and neuropsychiatric disorders like schizophrenia (44-46). 

Neuronal dendritic development is a complex process which should be highly 

coordinated at the molecular level. Recently it has been shown that a complicated interacting 

network of several molecules involved in signal transduction, macromolecule synthesis, 

cytoskeleton rearrangements and intracellular trafficking of proteins and membranes are engaged 

in this process. These processes are regulated by both an intrinsic ability of neurons by their 

genetic programs and a wide variety of extracellular signals, and astrocytes provide a number of 

such external cues engaged in the formation and maturation of dendritic arbor [Fig. 1.4 (47)]. 

The dendrites of many neurons have numerous small protrusions (usually no longer than 

2 µm) known as dendritic spines, which are often ending in a bulbous head attached to dendrite 

by a narrow neck (46, 48). Generally, dendritic spines are actin rich structures and consist of 

membrane compartments for protein synthesis and processing. In the mammalian CNS dendritic 

spines are the sites for more than 90% of excitatory synapses and contain post synaptic signaling 

complexes for excitatory synaptic transmission as well as postsynaptic density (PSD) (48, 49). 
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Fig. 1.4 Several overlapping processes towards development of dendritic arbor. Dendrite 

formation is a process regulated by combination of neuronal intrinsic genetic programs and 

extracellular signals triggering changes in cytoskeleton, macromolecule synthesis and membrane 

turnover [scheme prepared based on (43)]. 

Therefore, because neuronal dendrites and their dendritic spines are the principle 

components for synaptic formation/transmission, alterations in formation of dendritic arbor and 

dendritic structures are contributed to several neuropsychiatric disorders (50).  

1.7. Altered neuronal morphology in neurological disorders 

Neuronal dendrites and their dendritic spines are the principle components for synaptic 

transmission, and alterations in dendritic formation contribute to neuropsychiatric disorders (50). 

The prefrontal cortex (PFC) is associated with higher-order cognitive and emotional functions 

(51). In particular, a reduction in the complexity of dendritic branches and spine density of 
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pyramidal neurons in the human dorsolateral PFC, which is considered the homolog of the 

mouse medial PFC (mPFC), has been attributed to the pathology of neuropsychiatric disorders, 

including schizophrenia and autism (52, 53). However, the mechanisms underlying the 

regulation of synaptic formation and activity in this cortical region remain unknown. 

1.8. Aim of present study 

The exact functions of FABPs in different cells and organs are still poorly understood. However, 

development of FABPs transgenic mice and new techniques have somehow facilitated study on 

their roles which are leading to increase our knowledge about importance of these molecules in 

normal and pathological conditions and attracted further attention to their therapeutic potentials 

(22). 

FABP7 is known to be expressed in brain and it seems that FABP7 is the most specific 

member of FABP family in brain. Several studies in recent years have provided evidence 

regarding to importance of FABP7 in the normal brain function and its implication for 

neurological disorders, especially neuropsychiatric disorders and gliomas. Accordingly, in this 

study I hypothesized that expression of FABP7 in astrocytes is essential for normal neuronal 

structure and function, and that impairment in FABP7 causes behavioral phenotypes in FABP7-

deficient mice, which can be used as a model of schizophrenia. 

The aim of this research was to explore whether the alteration in the behavioral 

phenotypes of Fabp7 KO mice are associated with impairments of neuronal dendritic 

arborization and synaptic activity, I examined dendritic morphology, synapse formation, and 

basal synaptic activity in Fabp7 KO mice and the impact of a FABP7 deficiency in astrocytes on 

neuronal development in vitro using primary cortical neuronal culture systems. Through my 

work, described in this section of the present thesis, I hoped to provide new insights linking 
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FABP7, lipid homeostasis, and neuropsychiatric disorders, which may lead to novel therapeutic 

interventions for such disorders. 

To further explore the regulatory roles of FABP7 in astrocytes, I also needed to test the 

possible impacts of FABP7 deficiency on astrocyte proteome. Looking for a proof about the 

hypothetic influence of FABP7 on astrocyte proteomic signature; in this study I also compared 

the proteome of cultured astrocytes from FABP7-deficient and wild-type (WT) mice using two-

dimensional gel electrophoresis (2-DE) followed by liquid chromatography mass spectrometry 

(LC-MS) and finally confirmed the results by Western blotting.



2.  MATERIALS AND METHODS 

2.1. Animals 

Ten-week-old (postnatal day 70, P70) male Fabp7 KO mice (31) and their C57BL/6 

wild-type (WT) littermates were utilized for Golgi staining, immunohistochemical analyses and 

behavioral tests. For cell culture experiments, embryonic day 17 (E17) embryos and newborn 

mice (P0-P1) from both genotypes were used. For astrocyte transplantation experiments, green 

fluorescent protein (GFP)-expressing mice (under the control of a chicken beta-actin promoter 

and cytomegalovirus enhancer; C57BL/6-Tg[CAG-EGFP]) were used (54). To establish Fabp7

KO mice with GFP expression, Fabp7 KO mice were crossed with C57BL/6-Tg(CAG-EGFP) 

mice to produce heterozygous offspring. Subsequently, heterozygote mice were intercrossed, and 

Fabp7 KO(CAG-EGFP) mice were identified by genotyping (data not shown). Mice were 

maintained under a 12 h light:dark cycle (lights on at 8:00 am) with ad libitum access to food and 

water. 

All experimental protocols were reviewed by the Ethics Committee for Animal 

Experimentation of Yamaguchi University School of Medicine and were performed according to 

the Guidelines for Animal Experimentation of the Yamaguchi University School of Medicine 

under the laws and notification requirements of the Japanese Government. 

2.2. Neuron-enriched primary mixed cortical cultures 

Neuron-enriched primary mixed cortical cultures were prepared from cerebral cortices of 

newborn Fabp7 KO and WT mice (P0-P1) as previously described (55) with some modifications 

[Fig. 2.1]. Briefly, mouse cortical cells were dissociated by papain (90 units/ml; Worthington 
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Biochemicals, Lakewood, NJ, USA) treatment at 37 °C for 15 min with gentle shaking, followed 

by trituration with a plastic serological pipette (Greiner Bio-One, Frickenhausen, Germany). 

Isolated cells were seeded onto 35-mm culture dishes (Becton Dickinson Labware, Franklin 

Lakes, NJ, USA) coated with polyethyleneimine (Wako Pure Chemical Industries, Osaka, Japan) 

at a final seeding density of 2.5 × 105 cells/ml. The culture medium consisted of DMEM-F12 

(GIBCO, Grand Island, NY, USA) supplemented with 5% heat-inactivated fetal bovine serum 

(FBS; HyClone; Thermo Scientific, Waltham, MA, USA), 5% heat-inactivated horse serum (HS; 

Invitrogen, Carlsbad, CA, USA), and 1% penicillin-streptomycin (Sigma-Aldrich, St. Louis, MO, 

USA). The cortical cultures were grown for 7 days in vitro (DIV-7) and then assessed for 

neuronal dendritic morphology using immunocytochemistry. In total, three independent cortical 

cultures (at least three dishes per genotype per culture) were used. 

Fig. 2.1 Neuron-enriched primary mixed cortical culture. Scheme shows cortical neuron 

culture. Fabp7 KO and WT postnatal day 0-1 were used for this culture system, morphological 

assessments were performed at DIV-7.  

The survival of cortical neurons in primary mixed cortical cultures was evaluated as 

previously described (56). Briefly, cell survival was measured by counting the number of 

neurons observed in phase contrast microscopic images captured from pre-marked microscopic 

fields (1 mm2), 1 day after plating and at DIV-7. The percentage of viable neurons was 
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calculated based on the number of neurons surviving at DIV-7. Three independent cultures from 

each genotype were examined (at least three dishes per genotype per experiment). 

2.3. Primary cortical neuron-astrocyte co-cultures 

Primary dissociated neuron-astrocyte co-cultures were prepared as previously described (57). 

Briefly, to prepare astrocytic cultures, cerebral cortices from Fabp7 KO and WT mice (P0-P1) 

were sampled and dissociated by trypsin treatment (0.25%; Invitrogen) at 37 °C for 15 min 

followed by trituration with a serological plastic pipette (Greiner Bio-One). Harvested cells from 

three cortical hemispheres were seeded onto a T75 culture flask (Becton Dickinson Labware) in 

MEM (Invitrogen) supplemented with 10% HS (Invitrogen) and 0.6% glucose (Wako Pure 

Chemical Industries). After the cells became confluent (10-14 days), flasks were shaken on an 

orbital shaker (BR-40LF; TAITEC, Koshigaya, Japan) at 200 rpm for 24 h at 37 °C to eliminate 

other glial cells. Subsequently, astrocytes were subcultured on 12-mm glass coverslips 

(Matsunami, Kishiwada, Japan) coated with poly-l-lysine (1 mg/ml; Sigma-Aldrich) and laminin 

(0.1 mg/ml; Invitrogen) in 24-well plates (Becton Dickinson Labware) at a final seeding density 

of 2.5 × 104 cells/well for 8 to 10 days [Fig. 2.2]. 

To prepare primary cortical neuronal cultures, cerebral cortices from WT embryos (E17) 

were sampled and dissociated using trypsin (0.25%; Invitrogen) followed by trituration with a 

fire-polished glass Pasteur pipette. The obtained WT neurons were seeded at a density of 2 × 104

cells/well over WT or Fabp7 KO astrocytic monolayers and grown for 7 days in serum-free 

medium consisting of MEM enriched with 1% N2 supplement (Invitrogen), 1 mM sodium 

pyruvate (Invitrogen) and 0.6% glucose (Wako Pure Chemical Industries). Quantitative 

immunocytochemical evaluation of neuronal morphology and synaptic protein expression was 
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performed. Three independent experiments (at least three coverslips per genotype per 

experiment) were performed [Fig. 2.2]. 

Fig. 2.2 Primary cortical neuron-astrocyte co-culture. Scheme shows cortical neuron/ 

astrocyte hybrid co-culture. WT embryonic (E17) neurons were co-cultured for 7 days with 

primary cortical astrocytes from either WT or FABP7-KO mice. 

The population density of astrocytes was obtained using 20 random images (40× lens, 

image area 0.05 mm2) from each coverslip under a fluorescence microscope (AxioObserver; Carl 

Zeiss, Oberkochen, Germany). The population density of astrocytes in WT and Fabp7 KO co-

cultures was evaluated by counting those nuclei stained with 4',6-diamidino-2-phenylindole 

(DAPI, 0.5 g/ml; Invitrogen) in each microscopic field. Astrocytes were identified by their 

large bean-shaped nuclei containing several nucleoli, and neurons were identified by their 

smaller and compact round-shaped nuclei (58). For quantitative analyses, three independent 
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cortical neuron-astrocyte co-cultures with either Fabp7 KO or WT astrocytes were examined (at 

least three coverslips per condition per independent culture). 

2.4. Preparation of astrocyte-conditioned medium (ACM) and cortical neuronal cultures 

with ACM

For ACM preparation, astrocytic cultures were established from cerebral cortices of newborn 

mice (Fabp7 KO and WT) as described above. After shaking, astrocytes were passaged and 

seeded in 60-mm culture dishes (Becton Dickinson Labware) at a density of 1.5 × 105 cells/ml 

and maintained until the cultures became confluent (approximately 7 days). After reaching 

confluency, the cells were thoroughly washed with D-PBS (Nissui Pharmaceutical, Tokyo, 

Japan), and the medium was changed to DMEM-F12 (GIBCO) without serum for conditioning. 

The ACM was collected 24 h later, passed through 0.2-µm filters (Minisart; Sartorius, Gottingen, 

Germany) to remove debris and applied to the cortical neuronal cultures. After obtaining ACM, 

the population density of astrocytes was examined under phase contrast imaging, and no 

significant difference was detected between the two genotypes (data not shown). 

In this experiment, WT cortical neurons (E17; 5 × 104 cells) were seeded onto 12-mm 

glass coverslips (Matsunami) coated with poly-l-lysine (1 mg/ml; Sigma) in neuronal plating 

medium consisting of DMEM-F12 (GIBCO) supplemented with 5% FBS (HyClone; Thermo 

Scientific), 5% HS (Invitrogen), and 1% penicillin-streptomycin (Sigma-Aldrich). After 4-5 h of 

incubation for optimal attachment of neural cells, the neuronal plating medium was replaced with 

neural maintenance medium, consisting of DMEM-F12 (GIBCO) enriched with 2% B27 

supplement (Invitrogen), 1 mM sodium pyruvate (Invitrogen), and 1% penicillin-streptomycin 

(Sigma-Aldrich). Three days after plating, the neural maintenance medium was replaced with 

freshly prepared ACM (Fabp7 KO and WT) enriched with 2% B27 supplement (Invitrogen) 
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after first thoroughly rinsing with D-PBS (Nissui Pharmaceutical). To inhibit glial cell 

proliferation, cytosine arabinoside (AraC; Sigma-Aldrich) was added to the neuronal culture 

medium at a final concentration of 5 µM. One-third of the culture medium was replaced with 

fresh ACM every 3 days, and the immunocytochemical morphometric investigation of neurons 

was conducted after 7 days [Fig. 2.3]. 

Fig. 2.3 Scheme shows preparation of cortical neuronal cultures with ACM. 

The population density of cortical neurons was examined after 7 days of culture with 

ACM (WT and Fabp7 KO). The cells were fixed with 4% PFA (Nacalai Tesque, Kyoto, Japan) 

and immunostained with a microtubule-associated protein 2 (MAP2) antibody 

(immunocytochemistry is described in detail in the following sections). From each coverslip, five 

random images were captured using a fluorescence microscope (20× lens; Zeiss; image area 0.2 

mm2). The population density was evaluated by counting MAP2-positive (MAP2+) cells in each 

microscopic field. Three independent cortical neuron cultures with either Fabp7 KO or WT 

ACM were evaluated (at least three coverslips per condition per independent culture). 

2.5. Immunohistochemistry 

Immunohistochemistry was performed as described previously (33, 34). Briefly, mice (P70) were 

transcardially perfused with freshly prepared 4% PFA (Nacalai Tesque) in 0.1 M sodium 
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phosphate buffer (pH 7.4), and the brains were postfixed in 4% PFA overnight at 4 °C. After 

cryoprotection in graded concentrations of sucrose (Wako Pure Chemical Industries; 10%, 20%, 

and 30%) in PBS, coronal sections containing mPFC (bregma +2.4 mm to +1.5 mm) were sliced 

at 14 µm thick using a cryostat (CM1850; Leica, Nussloch, Germany) in accordance with a 

mouse brain atlas (59). Brain sections were permeabilized with 0.3% Triton X-100 (Sigma-

Aldrich) in PBS, blocked with 5% skim milk in T-PBS, and incubated overnight at 4 °C with a 

combination of specific primary antibodies, including chicken anti-MAP2 (1:10,000; Neuromics, 

Edina, MN, USA), rabbit anti-FABP7 (0.5 g/ml) (31), rat anti-CD11b (1:50; Chemicon 

Temecula, CA, USA), rat anti-GFAP (1:200; Invitrogen), rat anti-PDGFR  (1:500; eBioscience, 

San Diego, CA), mouse anti-NeuN (1:100; Millipore, Billerica, MA, USA), and mouse anti-

OLIG2 (1:500; Millipore) [Table 2.1]. The sections were then incubated with a combination of 

Alexa-conjugated secondary antibodies (goat anti-chicken IgG-Alexa 594, goat anti-rabbit IgG-

Alexa 488 or IgG-Alexa 568, goat anti-rat IgG-Alexa 488 or IgG-Alexa 568, and goat anti-

mouse IgG-Alexa 488 or IgG-Alexa 568; Invitrogen). After nuclear staining with DAPI (0.5 

g/ml; Invitrogen), slides were coverslipped using Fluoromount (Diagnostic BioSystems, 

Pleasanton, CA, USA). 

To evaluate the population density of different neural cell types in the mPFC, images 

(four sections per animal, six images per section) were captured and processed with a confocal 

laser scanning microscope (LSM510 META; Carl Zeiss) using a 40× lens (digital zoom 0.8, 

image area 0.08 mm2) and ZEN 2011 imaging software (Carl Zeiss), respectively. The 

population densities of NeuN+ neurons (WT = 94 images and Fabp7 KO = 98 images), GFAP+

astrocytes (WT = 93 images and Fabp7 KO = 94 images), and OLIG2+ oligodendrocyte lineage 



18 

cells (WT = 94 images and Fabp7 KO = 95 images) were compared between Fabp7 KO and WT 

mice. 

Table 2.1 Information of primary antibodies utilized in this study.

2.6. Golgi staining and in vivo assessment of neuronal morphology 

Golgi staining was performed using a Rapid GolgiStain kit according to the manufacturer’s 

protocol (FD NeuroTechnologies, Columbia, MD, USA). Briefly, brains of Fabp7 KO mice and 

their WT littermates (five mice per genotype, P70) were immediately removed after cervical 

dislocation, and the dissected brains were immersed in impregnation solutions (solutions A and 

B) for two weeks, cryoprotected (solution C) for three days at 4 °C, and then snap frozen and 

stored at -80 °C. The brain samples were coronally sectioned at a thickness of 120 m using a 
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cryostat (CM1850; Leica) and mounted on 1% gelatin-coated glass slides [Fig. 2.4]. The sections 

were then stained with the staining solution (solutions D and E) and coverslipped using 

Permount (Fisher Scientific, Houston, TX, USA). 

To assess dendritic morphology, low magnification (20× lens) images (Z-stack with 1 m 

intervals) of pyramidal neurons, with cell bodies located in layer II/III of mPFC [Fig. 2.4], were 

randomly captured using a confocal laser scanning microscope (LSM510 META; Carl Zeiss). 

All captured images from Sholl analysis Fabp7 KO (n = 41 neurons) and WT brains (n = 39 

neurons) were manually traced using Neurolucida software (MBF Biosciences, Williston, VT, 

USA). For traced neurons, the total dendritic length, number of dendritic branches, and area 

covered by the dendritic tree were measured with Neurolucida Explorer software (MBF 

Biosciences). The complexity of the dendritic trees from the apical and basal dendrites was also 

evaluated using Neurolucida Explorer software. 

Fig. 2.4 Location of mPFC in the mouse brain [cartoons and Nissl staining image taken 

from (59)] and representative image of Golgi staining of mPFC in the mouse brain.

To assess dendritic spine morphology, high magnification (63× lens and digital zoom 3) 

images (Z-stack with 0.33 µm intervals) of the pyramidal neurons described above were captured. 
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The density of the dendritic spines was quantified by counting the number of spines on the 

following segments: dendritic segments (50-100 µm) of the apical dendrites located farther than 

50 µm from the cell soma of Fabp7 KO (n = 39 dendrites) and WT (n = 43 dendrites) pyramidal 

neurons; dendritic segments (50-100 µm) of basal dendrites located farther than 20 µm from the 

cell soma of Fabp7 KO (n = 40 dendrites) and WT (n = 39 dendrites) pyramidal neurons. The 

morphology of the dendritic spines was classified based on their morphological appearance as 

described elsewhere (60). An investigator who was blinded to the genotype of samples 

performed the assessments using Neurolucida Explorer software (MBF Biosciences). 

2.7. Immunocytochemistry and assessment of neuronal morphology 

For the immunocytochemical study, the cultured samples were fixed using 4% PFA (Nacalai 

Tesque) in phosphate buffer for 15 min, and then washed three times with cold D-PBS (Nissui 

Pharmaceutical). The blocking procedure was performed with a solution containing 10% HS and 

0.2% Triton X-100 (Sigma-Aldrich) in D-PBS (Nissui Pharmaceutical). The immunostaining 

was performed by incubating samples with specific primary antibodies overnight at 4 °C [Table 

2.1]. The following primary antibodies diluted in the blocking solution were applied: chicken 

anti-MAP2 (1:10,000; Neuromics), rat anti-GFAP (1:200, Invitrogen), and rabbit anti-FABP7 

(0.5 g/ml) (31). Following the primary antibody incubations, samples were washed three times 

with D-PBS (Nissui Pharmaceutical) and incubated for 1 h with a combination of Alexa-

conjugated secondary antibodies (goat anti-chicken IgG-Alexa 594; goat anti-mouse IgG-Alexa 

488 or IgG-Alexa 568; goat anti-rat IgG-Alexa 488 or IgG-Alexa 568, and goat anti-rabbit IgG-

Alexa 488 or IgG-Alexa 568; Invitrogen) diluted to a ratio of 1:1000 in the blocking solution. 

DAPI was added (0.5 g/ml; Invitrogen) as a nuclear stain, and samples were coverslipped using 

Fluoromount (Diagnostic BioSystems). 
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To evaluate the morphology of the cultured neurons described above, more than 20 MAP2+

neurons (per coverslip or culture dish) were randomly imaged using a fluorescence microscope 

(AxioObserver; Carl Zeiss) with AxioVision image acquisition software (Rel4.8; Carl Zeiss). A 

plug-in written for ImageJ (NIH), NeuronMetrics (http://www.ibridgenetwork.org/arizona/; 

UA07-56-Neuronmetrics) (61), was used to evaluate the number of dendritic branches, total 

length of dendritic branches and the area covered by the dendritic arbor [Fig. 2.5]. 

Fig. 2.5 Neuronal morphological parameters evaluated using NeuronMetrics. 

Immunofluorescence micrograph representing a cortical neuron stained with the MAP2 antibody 

and overlaid with skeletons generated by NeuronMetrics software showing the parameters 

measured to evaluate neuronal morphological characteristics. 

2.8. Quantification of synapse number 
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The number of excitatory synapses in the mPFC of mice was quantified using an 

immunohistochemical-based method described elsewhere with slight modifications (62, 63). 

Briefly, Fabp7 KO mice and their WT littermates were used for in vivo synapse quantification 

(four mice per genotype, P70). After perfusion with sufficient PBS to remove the blood from the 

capillaries, brains were immersed in freshly prepared 4% PFA (Nacalai Tesque) at 4 °C 

overnight for fixation. Subsequently, the samples were cryoprotected in 30% sucrose (Wako

Pure Chemical Industries) in PBS. Coronal sections containing mPFC (at least three sections per 

brain) at a thickness of 14 µm were cut using a cryostat (CM1850; Leica). The sections were 

dried at room temperature for less than 30 min, and after a brief wash in PBS, they were blocked 

with 20% normal goat serum (Invitrogen) in PBS for 1 h. The sections were incubated in a PBS 

solution containing 10% normal goat serum and 0.3% Triton X-100 (Sigma-Aldrich) with a 

combination of specific primary antibodies against presynaptic protein VGlut1 (guinea pig; 

1:1000; Millipore) and postsynaptic protein PSD95 (rabbit; 1:250; Invitrogen) overnight at 4 °C 

[Table 2.1]. After incubation with primary antibodies, the sections were incubated for 2 h with a 

combination of Alexa-conjugated secondary antibodies (goat anti-rabbit IgG-Alexa 488 and goat 

anti-guinea pig IgG-Alexa 555; Invitrogen) diluted at 1:1000 in the same solution as that used for 

primary antibodies. DAPI (0.5 g/ml; Invitrogen) was added as a nuclear stain, and slides were 

coverslipped using Fluoromount (Diagnostic BioSystems). 

Using a confocal laser scanning microscope (LSM510 META; Carl Zeiss), images of 

mPFC layer II/III were obtained (six images per section). Briefly, a 9 µm confocal scan was 

performed with an optical thickness of 0.33 µm (28 optical slices per image) using a 63× lens 

(scanned area 0.02 mm2). The maximum intensity projections (MIP) of the consecutive optical 

slices were analyzed using Puncta Analyzer, a plug-in written for ImageJ (NIH, ver. 1.26; written 
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by Bary Wark; kindly provided by Dr. Cagla Eroglu, Department of Cell Biology, Duke 

University Medical Center, Durham, North Carolina) for counting co-localized pre- and 

postsynaptic markers (puncta). Based on the analysis of co-localized pre- and postsynaptic 

puncta, the number of excitatory synapses was calculated and compared between Fabp7 KO and 

WT mice (more than 50 images each for WT and Fabp7 KO mice). 

The number of excitatory synapses in the cortical neurons co-cultured with either Fabp7 

KO or WT cortical astrocytes was quantified utilizing an immunocytochemical-based method as 

previously described (62). Briefly, after incubations with primary antibodies against the 

presynaptic proteins synaptophysin (mouse; 1:250; Sigma-Aldrich) and PSD95 (rabbit; 1:250; 

Invitrogen) [Table 2.1], the cells were incubated with a combination of Alexa-conjugated 

secondary antibodies (goat anti-rabbit IgG-Alexa 488 and goat anti-mouse IgG-Alexa 568; 

Invitrogen). DAPI (0.5 g/ml; Invitrogen) was added as a nuclear dye, and coverslips were 

mounted on glass slides using Fluoromount (Diagnostic BioSystems). 

To quantify the number of excitatory synapses, isolated neurons were randomly selected 

based on DAPI staining, and images were captured on all channels. To avoid bias, an 

investigator blind to the identity of samples randomly chose neurons from coded slides. Three 

dendritic segments farther than 20 µm from the cell soma were imaged from 20 neurons selected 

from each independent culture (three independent cultures) using a 63× lens on a fluorescence 

microscope (AxioObserver; Carl Zeiss) and AxioVision image acquisition software (Rel4.8; Carl 

Zeiss). Co-localized pre- and postsynaptic puncta were considered excitatory synapses and were 

assessed using Puncta Analyzer. The number of co-localized puncta was calculated and the 

results presented as the average number of synapses per 50 µm of the dendrite for comparisons 

between WT cortical neurons co-cultured with Fabp7 KO and WT cortical astrocytes. 
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2.9. Electrophysiology 

The whole-cell patch-clamp recordings were performed on 10-week-old Fabp7 KO male mice 

and age-matched WT littermates (n = 4 mice/genotype) as previously described (64). Briefly, 

following to deep anesthetization of animals with pentobarbital (40 mg/Kg) and perfusion with 

carbogenated (95% O2/5% CO2) ice-cold dissection buffer (containing: 25.0 mM NaHCO3, 1.25 

mM NaH2PO4, 2.5 mM KCl, 0.5 mM, CaCl2, 7.0 mM MgCl2, 25.0 mM glucose, 110.0 mM 

choline chloride, 11.6 mM ascorbic acid) animals were quickly decapitated, and their brains were 

removed. Acute coronal brain slices (350 m) from mPFC were cut by using a vibratome (Leica 

VT-1200, Nussloch, Germany) in dissection buffer and transferred into carbogenated 

physiological solution (containing: 118 mM NaCl, 2.5 mM KCl, 26 mM NaHCO3, 1 mM 

NaH2PO4, 10 mM glucose, 4 mM MgCl2, 4 mM CaCl2, pH 7.4) at room temperature (22–25 °C). 

For whole-cell patch-clamp recordings, glass recording electrodes (4-7 M ) were made with a 

horizontal puller (P97, Sutter Instrument, Novato, CA) and filled with intracellular solution 

(containing: 115 mM cesium methanesulfonate, 20 mM CsCl, 10 mM Hepes, 2.5 mM MgCl2, 4 

mM Na2ATP, 0.4 mM Na3GTP, 10 mM sodium phosphocreatine, 0.6 mM EGTA at pH 7.25). 

The recordings were made using Axopatch–1D amplifier (Axon Instruments, Foster City, CA); 

signals were digitized at 5 kHz by Digidata 1440 AD board (Axon Instruments) and 

subsequently analyzed offline with pCLAMP 10 software (Axon Instruments). The action 

potential-independent miniature excitatory postsynaptic currents (mEPSCs) and miniature 

inhibitory postsynaptic currents (mIPSCs) were obtained from the mPFC layer II/III cortical 

pyramidal neurons. The pyramidal neurons were identified based on their morphological 

characteristics under microscope. The mEPSCs (holding potential at -60 mV; n = 55 neurons 

from Fabp7 KO mice and n = 56 neurons from WT mice) and mIPSCs (holding potential at 0 
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mV; n = 35 neurons from Fabp7 KO mice and n = 34 neurons from WT mice) were recorded for 

5 min in the presence of tetrodotoxin (TTX; 0.5 µM; Wako Pure Chemical Industries) in bath 

solution to block APs. Frequency and amplitude of mEPSCs and mIPSCs above 10 pA were 

analyzed and compared between Fabp7 KO and WT mice. 

2.10. Behavioral tests and cell transplantation 

For behavioral analysis, the open field test was performed. Behavioral measurements were 

conducted in a dimly lit, isolated experimentation room during the first half of the dark period. 

For acclimation, mice were transferred in their home cages to the examination room at least 1 h 

prior to the onset of tests. Male P70 Fabp7 KO (n = 18) and WT (n = 16) mice were placed in 

the center of a rectangular chamber (50 × 50 × 40 cm). The floor of the field, equally divided 

into 36 virtual squares, was made of gray plastic (Muromachi kikai, Tokyo, Japan). Each mouse 

was permitted to freely explore the arena for 5 min, and its exploration was recorded with a 

video camera connected to tracer software (Muromachi kikai). During a mouse’s only experience 

in the field, a number of parameters, such as total distance traveled, total time traveled, and the 

number of crossings from one square to another was recorded, and results for Fabp7 KO and WT 

mice were compared. 

For transplantation studies, GFP-expressing astrocytes were prepared from newborn 

Fabp7 KO(CAG-EGFP) mice and their WT(CAG-EGFP) littermates. Astrocytes were cultured 

as described above. Before transplantation, GFP-expressing astrocytes obtained from Fabp7 KO 

or WT mice were dissociated by mild trypsinization (0.05% trypsin) and resuspended in D-PBS 

(Nissui Pharmaceutical) at a density of 2.5 × 104 cells/µl. The cells were stereotaxically 

transplanted bilaterally into the mPFC (2 mm anterior to bregma, ± 0.4 mm lateral to midline and 

1.5 mm below the skull surface) of male Fabp7 KO mice (P56). The microinjection was 
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manually performed using a 10 µl glass Hamilton syringe (Hamilton, Reno, NV, USA) 

connected to a 29 gauge needle at a rate of 1 µl/min. In total, 2 µl of the cell suspension was 

injected into each side of brain (5 × 104 cells/side), and after the injection, the needle remained in 

the injection site for an additional 5 min. For control mice, the vehicle (2 µl of D-PBS without 

cells) was injected into the mPFC of Fabp7 KO mice (n = 14) following the same surgical 

procedure as that for the experimental groups. Two weeks after the operation, mice performed 

the open field test as described above, and the results were compared across experimental groups 

[Fig. 2.6]. 

Fig. 2.6 Outline of experiment for transplantation of astrocytes into the mPFC of Fabp7 KO 

mice.

After the behavioral tests, the brains of the operated mice were perfused and postfixed 

with 4% PFA (Nacalai Tesque), and frozen sections containing the transplantation site were 

prepared. The presence of GFP-expressing cells was confirmed using a fluorescence microscope 

(data not shown). 

2. 11. Preparation of protein samples for Proteomic differential display analysis 

To preparation protein samples, astrocytic cultures were established from cerebral cortices of 

newborn mice (Fabp7 KO and WT) as described above. The harvested pellets from Fabp7 KO 



27 

and WT astrocyte were homogenized in a lysis buffer containing 50 mM Tris-HCl (pH 7.5), 165 

mM sodium chloride, 10 mM sodium fluoride, 1 mM sodium vanadate, 1 mM 

phenylmethylsulfonyl fluoride, 10 mM EDTA, 10 mg/mL aprotinin, 10 mg/ml leupeptin (all 

from Sigma-Aldrich), and 1% NP-40 (Nacalai Tesque) on ice. Cell suspensions were incubated 

for 1 h at 4 °C, centrifuged at 21,500 × g for 30 min at 4 °C, and the supernatants were stored at -

80 °C till use in the next steps (65, 66). 

2.12. 2-DE analysis 

To perform each 2-DE, 80 micrograms of isolated protein was used. For the first dimension, 

isoelectric focusing (IEF) was accomplished in an IPGphor 3 IEF unit (GE Healthcare, 

Buckinghamshire, UK) on 11 cm, immobilized, linear gradient strips (pH 3-10; Bio-Rad, 

Hercules, CA, USA) at 50 µA/strip. At first protein samples were dissolved in 200 µl of 

rehydration buffer [consist of 8M urea (Sigma-Aldrich), 2% CHAPS (Sigma-Aldrich), 0.01% 

bromophenol blue (Wako Pure Chemical Industries), and 1.2% Destreak reagent (GE 

Healthcare)] and 0.5% IPG (immobilized pH gradient) buffer (GE Healthcare), and then loaded 

into the IPGphor strip holder (GE Healthcare). IEF was done according to the following voltage 

program: rehydration for 10 h (no voltage), 0 to 500 V for 4 h, 500 to 1000 V for 1 h, 1000 to 

8000 V for 4 h, 8000 V for 20 min, and a final phase of 500 V from 20,000 to 30,000 Vh. For the 

second dimension the IPG strips were then transferred onto precast polyacrylamide gels with a 

linear concentration gradient of 5-20% (Bio-Rad) and run for 1 h at 200 V (66). 

Following the 2-DE, the SDS-PAGE gels were fixed using a fixing solution consists of 

40% ethanol (Wako Pure Chemical Industries) and 10% acetic acid (Wako Pure Chemical 

Industries) for more than 2 h. To label proteins with fluorescent dye, gels were stained with 

FlamingoTM Fluorescent Gel Stain (Bio-Rad) overnight (66). 
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2.13. Image analysis and spot picking and in gel digestion

To evaluate the protein spots, stained gels were washed with Milli-Q water three times each for 5 

min and then were observed using the ProEXPRESS 2D Proteomic Imaging System 

(PerkinElmer, Waltham, MA, USA). The intensity of each spot was quantified with Progenesis 

Samespots software (Nonlinear, Newcastle, upon Tyne, UK) (67). Using five biological 

replicates and two technical replicates, the differences in expression levels between Fabp7 KO 

and WT (astrocyte lysate) were analyzed statistically by the student’s t-test. The gels were 

restained with See PicoTM (Benebiosis, Seoul, Korea), and the selected spots with differential 

intensity between the two genotypes were cut and removed for the MS analysis.

To remove See PicoTM dye (Benebiosis), gel pieces were washed three times in 60% 

methanol (Sigma-Aldrich), 50 mM ammonium bicarbonate, and 5 mM DTT (both from Wako 

Pure Chemical Industries) for 15 min. The sample in the gel pieces was reduced twice in 50% 

ACN (Sigma-Aldrich), 50 mM ammonium bicarbonate, and 5 mM DTT for 10 min. The gel 

pieces were dehydrated in 100% ACN twice for 30 min, and then in-gel digestion was done with 

a reagent containing 10 µg/ml sequencing grade-modified trypsin (Promega, Madison, WI) in 

30% ACN, 50 mM ammonium bicarbonate, and 5 mM DTT. The in-gel digestion procedure was 

completed at 30 °C overnight. Then, digested samples were lyophilized overnight using a 

lyophilizer (Lyph-lock 1L Model 77400, Labconco, Kansas, MO, USA). 

2.14. LC-MS/MS analysis 

The lyophilized samples were dissolved in 0.1% formic acid (Sigma-Aldrich), centrifuged at 

21,500 × g for 5 min, and the supernatant was used for MS analysis. Twenty-five microliters of 

each sample was analyzed using a LC-MS/MS system (Agilent 1100 LC-MSD Trap XCT, 

Agilent Technologies, Palo Alto, CA, USA). Protein identification procedure was performed 
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using Agilent Spectrum MILL MS proteomics workbench against the Swiss-Prot protein 

database search engine (http://kr.expasy.org/sprot/) and MASCOT MS/MS Ions Search engine 

(http://www.matrixscience.com/ search_form_select.html). The criteria for positive identification 

of proteins were set as follows: filter by protein score > 10, filter peptide by score > 8, and 

percentage scored peak intensity (% SPI) > 70 (67).

2.15. Western blotting 

Ten micrograms of WT and Fabp7 KO (astrocyte lysate) were separated on a SDS-PAGE gel 

(15%), transferred onto a polyvinylidene difluoride membrane (Immobilon-P; Millipore, Bedford, 

MA, USA), and blocked with tris-buffered saline (TBS) containing 0.1% Tween 20 (Sigma-

Aldrich) and 5% skimmed milk for 1 h at room temperature. Membranes were incubated with 

specific primary antibodies, including rabbit anti-FABP7 (0.125 µg/ml) (31), rabbit anti-PEA-15 

(1:500; Santa Cruz Biotech, Santa Cruz, CA, USA), mouse anti-vimentin (1:500; Abcam, 

Cambridge, UK), rat anti-GFAP (1:2500; Invitrogen) and mouse anti- -actin (1:5000; Santa 

Cruz Biotech) overnight at 4 °C. Subsequently, membranes were incubated with HRP-

conjugated secondary antibodies, including goat anti-rabbit (1:2000; Chemicon, Temecula, CA), 

goat anti-rat (1:1000; Chemicon), and goat anti-mouse (1:5000; Chemicon) for 1 h at room 

temperature, and developed with an ECL Western blot detection kit (Amersham Pharmacia 

Biotech, Piscataway, NJ, USA). The images of blots were captured using Image Reader LAS-

1000 (Fujifilm, Tokyo, Japan) and the intensity of protein bands were analyzed using Multi 

Gauge software (Fujifilm). Totally two sets of Western blot (at least three biological replicates 

per each experiment) were performed and expression levels of proteins of interest (PEA-15 and 

vimentin) were normalized to the expression of -actin, as a control for loading. 

2.16. Statistics 
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All results are presented as mean ± SEM of at least three independent experiments or at least 

four individual animals (in the case of in vivo experiments) with at least three biological 

replicates. Statistical analyses were conducted with SPSS software (version 13.0; SPSS Inc, 

Chicago, IL). I used t-test except for electrophysiological data and Western blotting, which were 

analyzed using Mann-Whitney U test. P < 0.05 was considered statistically significant. 



3. RESULTS 

3.1. Dendritic complexity and spine density is altered in the prefrontal cortex of FABP7-

deficient mice 

I first examined the localization pattern of FABP7 in the mouse mPFC. Consistent with our 

former findings in the mouse cerebral cortex (31, 33, 34), FABP7 was localized in the mPFC in 

GFAP+ astrocytes [Fig. 3.1A] and PDGFR + oligodendrocyte progenitor cells [Fig. 3.1B] but 

not in MAP2+ neurons [Fig. 3.1C] or CD11b+ microglia [Fig. 3.1D].  

Fig. 3.1 Identification of FABP7-expressing cells in the mPFC of normal mouse brain. 

Immunofluorescence micrographs indicate expression of FABP7 in the mPFC of mouse brain. 

Expression of FABP7 in astrocytes (A) and oligodendrocyte progenitor cells (OPCs) (B) was 

confirmed by co-localization of FABP7 (green) with GFAP (red) and PDGFR  (red), respectively. 



32 

No FABP7 expression was found in MAP2+ neurons (C) and CD11b+ microglia cells (D). Scale 

bars: 50 m.

Furthermore, the mPFC of Fabp7 KO mice showed no significant difference from WT 

mice in the population density of NeuN+ neurons [151 ± 3.3 cells/0.08 mm2 in WT vs. 146 ± 2.3 

cells/0.08 mm2 in Fabp7 KO, P = 0.27; Fig. Fig. 3.2A-C], GFAP+ astrocytes [6.6 ± 0.5 cells/0.08 

mm2 in WT vs. 6.4 ± 0.5 cells/0.08 mm2 in Fabp7 KO, P = 0.69; Fig. 3.2D-F] and OLIG2+

oligodendrocyte lineage cells [7.2 ± 0.3 cells/0.08 mm2 in WT vs. 6.8 ± 0.3 cells/0.08 mm2 in 

Fabp7 KO, P = 0.28; Fig. 3.2G-I]. 

Fig. 3.2 The population density of neural cells in the mPFC of Fabp7 KO mice. 

Immunofluorescence micrographs showing cells labeled with specific markers for neurons (NeuN, 

A, B), astrocytes (GFAP, D, E) and oligodendrocyte lineage cells (OLIG2, G, H) in the mPFC of 
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Fabp7 KO mice and their WT littermates. Bar graphs represent the population density of neurons 

(C), astrocytes (F), and oligodendrocyte progenitor cells (OPCs) (I) in the mPFC of Fabp7 KO 

mice compared with those in their WT littermates. Data are presented as mean ± SEM of images 

(0.08 mm2) from Fabp7 KO (n > 90 images) and WT (n > 90 images) mPFC (n = 4 

mice/genotype). *P < 0.05; scale bars: 50 m.

Next, to explore the possibility that a FABP7 deficiency may lead to alterations in 

neuronal morphology in vivo, including spine density, I performed Golgi staining on the age- and 

background-matched Fabp7 KO and WT mice, and analyzed the morphological characteristics 

of pyramidal neurons in the mPFC. Notably, a Sholl analysis examining dendritic complexity 

revealed that the pyramidal neurons of Fabp7 KO mice showed less complex dendritic trees than 

their WT counterparts for both basal and apical dendrites [Fig. 3.3A-D]. The morphometric 

analyses of pyramidal neuron dendrites revealed that the number of dendritic branches [32.5 ± 

1.46 in WT vs. 19.8 ± 0.75 in Fabp7 KO, P < 0.001], the total length of dendritic branches [3480 

± 140 µm in WT vs. 2209 ± 78 µm in Fabp7 KO, P < 0.001], and the extent of the area covered 

by the dendritic arbor [74654 ± 3067 µm2 in WT vs. 59738 ± 3422 µm2 in Fabp7 KO, P < 

0.001] were significantly decreased in Fabp7 KO mice compared with those in WT mice [Fig. 

3.3E-G].  
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Fig. 3.3 Alteration of neuronal dendritic morphology in the mPFC of Fabp7 KO mice. Phase 

contrast micrographs show representative Golgi stained layer II/III pyramidal neurons in the 

mPFC of wild-type (WT) (A) and Fabp7 KO (B) mice. Line charts represent Sholl analysis 

results for apical (C) and basal (D) dendrites of Fabp7 KO and WT mice. Bar graphs represent 

analyses of the number of dendritic branches per cell (E), total length of dendritic branches per 

cell (F) and area covered by the dendritic tree (G) of pyramidal neurons in the mPFC of Fabp7

KO and WT mice. Data are presented as mean ± SEM from pyramidal neurons of Fabp7 KO (n = 

41 neurons) and WT (n = 39 neurons) mice (n = 5 mice/genotype); *P < 0.05; scale bars: 50 m.
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I also found that the dendritic spine density of cortical pyramidal neurons for apical [0.96 

± 0.02/µm of dendrite in WT vs. 0.83 ± 0.02/µm of dendrite in Fabp7 KO, P < 0.001] and basal 

dendrites [1.0 ± 0.02/µm of dendrite in WT vs. 0.84 ± 0.03/µm of dendrite in Fabp7 KO, P < 

0.001] was significantly decreased in Fabp7 KO mice compared with that in WT mice [Fig. 

3.4A-C].  

Fig. 3.4 Alteration of density and maturity of dendritic spines in the mPFC of FABP7-

deficient mice. High-magnification phase contrast micrographs show dendritic spines of 

pyramidal neurons in the mPFC of WT (A) and Fabp7 KO (B) mice. Bar graphs represent the 

spine density (C) and ratio of mature to immature spines (D) in the apical and basal dendrites of 

pyramidal neurons. Data are presented as mean ± SEM from dendrites of Fabp7 KO (n = 39 

apical dendrites and n = 40 basal dendrites) and WT (n = 43 apical dendrites and n = 39 basal 

dendrites) pyramidal neurons (n = 5 mice/genotype); *P < 0.05; scale bars: 5 m. 

Moreover, the ratio of stubby, mushroom-shaped mature spines to thin, filopodium-like 

immature spines was significantly decreased in Fabp7 KO mice compared with that in WT mice 

[0.6 ± 0.02 in WT vs. 0.44 ± 0.01 in Fabp7 KO for apical dendrites, P < 0.001; 0.64 ± 0.02 in 
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WT vs. 0.44 ± 0.01 in Fabp7 KO for basal dendrites, P < 0.001; Fig. 3.4D]. Thus, these results 

indicate that a FABP7 deficiency in cortical astrocytes is associated with a reduction in dendritic 

complexity, spine density and maturity of spines in cortical pyramidal neurons in vivo. 

3.2. Neuronal morphology is altered in FABP7-deficient neuron-enriched mixed cortical 

cultures 

To further explore the possibility that astrocytic FABP7 is involved in the regulation of neuronal 

dendritic formation, neuron-enriched primary mixed cortical cultures were established from 

Fabp7 KO and WT mice (P0-P1). Under the appropriate culture conditions, neurons can mimic 

many essential properties of neurons in vivo, develop asymmetrical distributions of axonal and 

dendritic proteins, produce dendritic arborization, and form synapses (68). 

Using a cell survival assay, we first confirmed that the FABP7 deficiency in astrocytes 

had no obvious impact on the viability of cortical neurons [Fig. 3.5A]. After 7 days, the survival 

of neurons in Fabp7 KO cultures showed no significant difference from that in WT cultures 

[67.2 ± 2.34 % in WT vs. 57.31 ± 10.2 % in Fabp7 KO, P = 0.67; Fig. 3.5B]. 

Fig. 3.5 Viability of neurons in culture is not influenced by FABP7 deficiency. Scheme shows 

the cell survival assay that was used to evaluate viability of neurons in neuron-enriched mixed 

cortical cultures (A, for a detailed explanation, see Methods part). Bar graph represents the 

percentage of surviving neurons in WT and Fabp7 KO mixed cortical cultures at DIV-7 (B). Data 
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are presented as mean ± SEM of five images per culture dish from three independent experiments 

(three dishes/genotype/independent experiment).

I next examined the dendritic morphology of pyramidal neurons in the two genotypes at 

DIV-7 and found that compared with those in WT cultures, neurons in Fabp7 KO cultures [Fig. 

3.6B] exhibited aberrant dendritic morphology [Fig. 3.6A] and showed a significant decrease in 

the total length of dendritic branches [563 ± 20.2 µm in WT vs. 497 ± 20.1 µm in Fabp7 KO, P 

= 0.02; Fig. 3.6D] and the extent of the area covered by the dendritic tree [10932 ± 535 in WT vs. 

9241 ± 535 µm2 in Fabp7 KO, P = 0.03; Fig. 3.6E]. The number of neuronal dendritic branches 

in Fabp7 KO cultures was lower than that in WT cultures, although this was not statistically 

significant [22.8 ± 1.2/neuron in WT vs. 20.7 ± 1.1/neuron in Fabp7 KO, P = 0.19; Fig. 3.6C]. 

These results indicate that a FABP7 deficiency in astrocytes may cause abnormal neuronal 

dendritic morphology in neuron-enriched mixed cortical cultures. 

Fig. 3.6 Alteration of neuronal morphology in FABP7-deficient neuron-enriched primary 

mixed cortical cultures. Immunofluorescence micrographs show representative neurons at DIV-
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7 stained with the MAP2 antibody in neuron-enriched mixed cortical cultures prepared from WT 

(A) and Fabp7 KO (B) mice. Bar graphs represent the number of dendritic branches per cell (C), 

total length of dendritic branches per cell (D) and area covered by the dendritic tree (E) of 

cortical neurons in WT and Fabp7 KO neuron-enriched mixed cortical cultures. Data are 

presented as mean ± SEM from neurons of Fabp7 KO (n = 184 neurons) and WT (n = 219 

neurons) cultures; *P < 0.05; scale bars: 50 m. 

3.3. Neuronal morphology is altered in FABP7-deficient neuron-astrocyte co-cultures 

To more clearly elucidate the role of FABP7 expressed by astrocytes on neuronal dendritic 

formation, a tractable dissociated neuron-astrocyte co-culture was established. Cortical 

embryonic neurons were dissociated from timed pregnant WT dams (E17) and then co-cultured 

with either WT or Fabp7 KO astrocytes. After 7 days of co-culture, the morphological 

characteristics of the neurons co-cultured with either WT or Fabp7 KO astrocytes were 

evaluated. 

As expected, WT neurons co-cultured with Fabp7 KO astrocytes exhibited altered 

dendritic morphology [Fig. 3.7B] compared with those co-cultured with WT astrocytes [Fig. 

3.7A]. The density of dendritic branches [29.2 ± 0.6 in WT co-culture vs. 22.9 ± 0.5 in Fabp7

KO co-culture, P < 0.001; Fig. 3.7C], total length of dendritic branches [1487 ± 28.4 µm in WT 

co-culture vs. 1189 ± 23.4 µm in Fabp7 KO co-culture, P < 0.001; Fig. 3.7D] and extent of the 

area covered by dendritic tree [40886 ± 942 µm2 in WT co-culture vs. 34275 ± 870 µm2 in 

Fabp7 KO co-culture, P < 0.001; Fig. 3.7E] of WT cortical neurons were significantly reduced

for those neurons grown with FABP7-deficient astrocytes.  
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Fig. 3.7 Alteration of neuronal morphology in FABP7-deficient neuron-astrocyte co-culture. 

Immunofluorescence micrographs show representative WT cortical neurons co-cultured with WT 

(A) or Fabp7 KO (B) astrocytes after 7 days in co-culture stained with the MAP2 antibody. Bar 

graphs represent the number of dendritic branches per cell (C), total length of dendritic branches 

per cell (D) and area covered by the dendritic tree (E) of cortical neurons co-cultured with WT or 

Fabp7 KO astrocytes. Data are presented as mean ± SEM from cortical neurons co-cultured with 

Fabp7 KO (n = 277 neurons) and WT (n = 295 neurons) astrocytes; *P < 0.05; scale bars: 50 m.

By contrast, there was no significant difference in the population density Fabp7 KO and 

WT astrocytes in co-cultures [9.8 ± 0.5/0.05 mm2 and 10.6 ± 0.6/0.05 mm2, respectively, P = 

0.32; Fig. Fig. 3.8A-C], suggesting that these results are not attributable to deviations in the 

population density of astrocytes in co-cultures.  
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Fig. 3.8 No significant difference is detected in the population density of astrocytes between 

WT and FABP7-deficient co-cultures. Fluorescence micrographs show WT (A) and Fabp7 KO 

(B) co-cultures stained with DAPI nuclei stain (blue) after 7 days of incubation. Astrocytes were 

detected by their large and bean-shaped nuclei containing several nucleoli, and neurons were 

identified by their smaller and compact round-shaped nuclei (white arrows). Bar graph represents 

the number of astrocytic nuclei in random microscopic images (0.05 mm2) captured from Fabp7 

KO and WT co-cultures (C). Data are presented as mean ± SEM of 20 images/coverslip from 

three independent experiments of co-cultures with Fabp7 KO and WT astrocytes (three 

coverslips/astrocyte genotype/independent experiment); scale bars: 20 m. 

Taken together, these data confirm that FABP7-deficient astrocytes cannot fully support 

normal dendritic arborization of cortical neurons, indicating that astrocytic FABP7 may be an 

important factor regulating the formation of accurate cortical neuronal networks. 

3.4. Neuronal morphology is altered in cortical neurons cultured with ACM derived from 

FABP7-deficient astrocytes 

The regulatory roles of astrocyte-expressed FABP7 on neuronal morphology may be mediated 

through humoral factors. To evaluate this hypothesis, I established a cortical neuronal culture 

system using ACM. WT embryonic neurons (E17) were cultured on coated glass coverslips, and 

the medium was replaced with ACM obtained either from Fabp7 KO or WT astrocyte cultures; 
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the population density of the astrocytes was standardized, with no significant difference detected 

between the two genotypes (data not shown).  

I found no significant difference in the population density of cortical neurons treated with either 

Fabp7 KO or WT ACM for 7 days [4.1 ± 0.6 and 4.6 ± 0.4, respectively, P = 0.52; Fig. 3.9A-C], 

suggesting that Fabp7 KO ACM had no obvious impact on neuronal survival.  

Fig. 3.9 No significant difference is detected in population densities from cortical neurons 

cultured with ACM derived from WT or FABP7-deficient astrocytes. Immunofluorescence 

micrographs showing WT cortical neurons stained with MAP2 antibody (red) after 7 days of 

incubation with ACM prepared from WT (A) or Fabp7 KO (B) astrocytes. Bar graph represents 

the number of MAP2+ neurons in random microscopic images (0.2 mm2) captured from neuronal 

cultures with Fabp7 KO or WT ACM (C). Data are presented as mean ± SEM of five 

images/coverslips from three independent experiments (three coverslips/ACM 

genotype/independent experiment); scale bars: 100 m.

However, cortical neurons cultured in Fabp7 KO ACM showed significant differences in 

their dendritic morphology compared with those cultured in WT ACM [Fig. 3.10A,B] for the 

total number of dendritic branches [18.2 ± 0.4 in WT ACM vs. 15.2 ± 0.4 in Fabp7 KO ACM, P 

< 0.001; Fig. 3.10C], total length of dendritic branches [647 ± 14.2 µm in WT ACM vs. 462 ± 

12.5 µm in Fabp7 KO ACM, P < 0.001; Fig. 3.10D], and extent of the area covered by dendritic 
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trees [1410 ± 39.4 µm2 in WT ACM vs. 1102 ± 39.9 µm2 in Fabp7 KO ACM, P < 0.001; Fig. 

3.10E]. Therefore, it is likely that astrocytic FABP7 humorally regulates neuronal morphology. 

Fig. 3.10 Alteration of neuronal morphology in cortical neurons cultured with ACM 

prepared from FABP7-deficient astrocytes. Immunofluorescence micrographs show 

representative WT cortical neurons treated with ACM prepared from WT (A) or Fabp7 KO (B) 

astrocytes for 7 days and stained with MAP2 antibody. Bar graphs represent the number of 

dendritic branches per cell (C), total length of dendritic branches per cell (D) and area covered by 

the dendritic tree (E) of cortical neurons cultured with ACM from WT or Fabp7 KO astrocytes. 

Data are presented as mean ± SEM from cortical neurons treated with ACM from Fabp7 KO (n = 

304 neurons) and WT (n = 301 neurons) astrocytes; *P < 0.05; scale bars: 50 m.

3.5. FABP7 deficiency in astrocytes impairs synapse formation 

Dendritic spines provide the sites for most of the excitatory synaptic inputs on pyramidal neurons 

(69). Therefore, I next examined the impact of a FABP7 deficiency on excitatory synapse 
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formation. The density of excitatory synapses in the mPFC as indicated by the co-localization of 

VGlut1+ and PSD95+ puncta showed a 30% decrease in Fabp7 KO mice compared with that in 

WT mice [28.2 ± 2.3 in WT and 19.6 ± 1.4 in Fabp7 KO, P = 0.002; Fig. 3.11 A-C].  

Fig. 3.11 Alteration of excitatory synapse formation in the mPFC of Fabp7 KO mice. High-

magnification immunofluorescence micrographs show synaptic staining in the mPFC of WT (A) 

and Fabp7 KO (B) mice. Synapses (yellow puncta) are detected by co-localization of the 

presynaptic marker VGlut1 (red) and postsynaptic marker PSD95 (green). White dashed circles 

highlight some of the synapses. Bar graph represents the number of synapses in the mPFC (layer 

II/III, 0.02 mm2) of Fabp7 KO and WT mice (C). Data are presented as mean ± SEM from 

images of Fabp7 KO (n = 51 images) and WT (n = 51 images) mPFC (n = 4 mice/genotype). *P

< 0.05; scale bars: 20 m. 

Consistent with this finding, cortical neurons grown over a monolayer of WT astrocytes 

developed more excitatory synapses, as indicated by the co-localization of synaptophysin+ and 

PSD95+ puncta, than neurons grown with Fabp7 KO astrocytes [1.78 ± 0.2 and 1.27 ± 0.1, 

respectively, P = 0.014; Fig. 3.12A-C].
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Fig. 3.12 Alteration of excitatory synapse formation in the cortical neurons co-cultured with 

FABP7-deficient astrocytes. High-magnification immunofluorescence micrographs show 

dendritic segments of WT cortical neurons after 7 days co-culture with WT (A) or Fabp7 KO (B) 

astrocytes stained with synaptic markers. Synapses are detected by co-localization (yellow puncta, 

white arrows in lower panels) of the presynaptic marker synaptophysin (middle panels) and 

postsynaptic marker PSD95 (upper panels). Bar graph represents the density of excitatory 

synapses per 50 µm of dendrites (C). Data are presented as mean ± SEM from neurons co-

cultured with Fabp7 KO (n = 60 neurons, three segments/neuron) and WT (n = 60 neurons, three 

segments/neuron) astrocytes; *P < 0.05; scale bars: 10 m.

3.6. Excitatory synaptic transmission is decreased in the mPFC of FABP7-deficient mice 

To further examine whether alterations in the dendritic spine density and reduction in the 

excitatory synapse formation in the mPFC of Fabp7 KO mice were also reflected at 

electrophysiological level, whole-cell patch-clamp recordings in the acute brain slices were 

performed [Fig. 3.13]. The mEPSCs were recorded to investigate whether deficiency of FABP7 

affects the excitatory synaptic transmission into mPFC pyramidal neurons [Fig. 3.13A]. In 

accordance with the morphological results, cortical pyramidal neurons in the mPFC of Fabp7

KO mice exhibited significant reduction in frequency [36.39 ± 8.40 events/5 min in WT vs. 

19.95 ± 3.97 events/5 min in Fabp7 KO, P = 0.01; Fig. 3.13B] and amplitude [17.08 ± 0.46 pA 
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in WT vs. 13.94 ± 0.39 pA in Fabp7 KO, P < 0.001; Fig. 3.13C] of mEPSCs in comparison with 

WT counterparts.  

Fig. 3.13 Excitatory synaptic transmission is decreased in pyramidal neurons in the mPFC 

of FABP7-deficient mice. Representative traces from whole-cell patch-clamp recordings of 

mEPSCs from pyramidal neurons in layer II/III mPFC of Fabp7 KO and WT mice (A). The 

mEPSCs were recorded at holding potential of -60 mV for 5 min in the presence of TTX (0.5µM). 

Bar graphs represent analyses of the frequency (B) and amplitude (C) of recorded mEPSCs from 

Fabp7 KO (n = 55 cells) and WT (n = 56 cells) mice. Representative traces of mIPSCs from layer 

II/III pyramidal neurons in the mPFC of Fabp7 KO and WT mice (D). The mIPSCs were 

recorded at holding potential of 0 mV for 5 min in the presence of TTX (0.5µM). Bar graphs 

represent analyses of the frequency (E) and amplitude (F) of recorded mIPSCs from Fabp7 KO 

(n = 35 cells) and WT (n = 34 cells) mice. Data are presented as mean ± SEM of neurons 

recorded from four mice per genotype; Mann-Whitney U test, *P < 0.05; vertical scale bar: 20 

pA; horizontal scale bars: 200 ms.

I next examined whether inhibitory synaptic transmission was also affected in the mPFC 

of Fabp7 KO mice, by whole-cell recordings of mIPSCs [Fig. 3.13D]. Pyramidal neurons in the 
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mPFC of Fabp7 KO mice showed no significant difference in mIPSCs frequency [80.74 ± 14.61 

events/5 min in WT vs. 85.14 ± 15.47 events/5 min in Fabp7 KO, P = 0.74; Fig. 3.13E] and 

amplitude [22.94 ± 0.60 pA in WT vs. 22.10 ± 0.73pA in Fabp7 KO, P = 0.35; Fig. 3.13F] in 

comparison with WT counterparts. These results suggest that FABP7-deficiency in astrocytes 

has selectively impacted on excitatory, but not inhibitory, basal synaptic functions in the mPFC 

of Fabp7 KO mice. 

3.7. Transplantation of WT astrocytes rescues altered behavioral phenotypes in FABP7-

deficient mice 

We recently reported on hyperactivity and anxiety-related phenotypes in Fabp7 KO mice and 

suggested the possible involvement of FABP7 mutations in the pathology of human 

neuropsychiatric illnesses, including schizophrenia (42) . Here, I found that the total distance 

traveled [1526 ± 113 cm in WT vs. 2720 ± 107 cm in Fabp7 KO, P < 0.001; Fig. 3.14A], total 

time spent traveling [84.8 ± 4.6 s in WT vs. 117 ± 3.6 s in Fabp7 KO, P < 0.001; Fig. 3.14B] and 

number of crossings between squares [235 ± 22.3 in WT vs. 289 ± 14.2 in Fabp7 KO, P = 0.04; 

Fig. 3.14C] were significantly increased in Fabp7 KO mice compared with those values in their 

WT littermates, consistent with our recent findings (42). To determine whether the 

transplantation of WT astrocytes into the mPFC could rescue the hyperactive phenotype of the 

Fabp7 KO mice, GFP-expressing WT and Fabp7 KO astrocytes were locally transplanted into 

the mPFC of Fabp7 KO mice at P56. The effect of the transplants was evaluated using the open 

field test on P70 (14 days after the transplantation). Notably, the transplantation of WT 

astrocytes significantly rescued most of the hyperactive phenotype in Fabp7 KO mice, as 

compared with vehicle-injected control mice, including the total time spent traveling [125 ± 5.5 s 

in WT astrocyte transplanted vs. 141 ± 4.5 s in control, P = 0.04; Fig. 3.14E] and number of 
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crossings between squares [350 ± 20.6 in WT astrocyte transplanted vs. 405 ± 16.9 in control, P 

= 0.04; Fig. 3.14F]. By contrast, no significant improvement was noted in the hyperactive 

phenotype of Fabp7 KO mice in the open field test after transplantation of Fabp7 KO astrocytes 

[Fig. 3.14D-F]. These results suggest that a FABP7 deficiency in mPFC astrocytes is associated 

with the hyperactive phenotype in Fabp7 KO mice. 

Fig. 3.14 Astrocyte transplantation partially rescues behavioral phenotype in Fabp7 KO 

mice. Bar graphs represent the results of the behavioral analysis for Fabp7 KO and WT mice in 

the open field test. Fabp7 KO mice show increased distance traveled (A), time spent traveling (B) 

and number of crossings between intersections of the field (C) compared with their WT 

littermates. Data are presented as mean ± SEM in Fabp7 KO (n = 18) and WT (n = 16) mice; *P 

< 0.05. Bar graphs showing the results of behavioral analysis of Fabp7 KO mice in the open field 

test 14 days after transplantation (astrocytes or vehicle microinjection). Transplantation of WT 

but not Fabp7 KO astrocytes into the mPFC of Fabp7 KO mice improve performance of mice in 

the open field test by decreasing traveling time (E) and the number of crossings (F) compared 

with those measures in the control group. Transplantation of astrocytes into the mPFC of Fabp7 

KO mice has no significant impact on the distance traveled in the open field test (D). Data are 
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presented as mean ± SEM from Fabp7 KO mice receiving WT astrocytes (n = 14 mice), Fabp7 

KO astrocytes (n = 15 mice) or a PBS microinjection (n = 14 mice); *P < 0.05. 

3.8. Detection of spots with differential expression between WT and Fabp7 KO astrocytes 

on 2-DE gels 

Protein expressions by primary cultured astrocytes from WT and Fabp7 KO mice were assessed 

by 2-DE (five biological and two technical replicates for each genotype). Protein spots were 

visualized with a fluorescent gel staining and differences in the spot intensities between the two 

genotypes were analyzed and quantified by Progenesis Samespots software. At least 16 protein 

spots showed altered expression in Fabp7 KO astrocytes [Fig. 3.15]. By visual assessment one 

spot was almost absent in Fabp7 KO gels (spot number 16) which was expected to be FABP7 

[Fig. 3.15A]. Seven spots showed increased intensities and nine spots showed decreased 

intensities in Fabp7 KO astrocytes [Fig. 3.15A,B].

Fig. 3.15 Representative images of 2-DE gels of WT and Fabp7 KO astrocytes stained with 

fluorescent dye (Flamingo Gel Stain). Protein spots whose expression levels were different 
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between Fabp7 KO and WT astrocytes are numbered and pointed out by arrows. Nine protein 

spots show reduction and seven other protein spots represent higher expression in Fabp7 KO 

astrocytes (B) in comparison with WT counterparts (A). Spot number 16 expected to be FABP7 

due to its absence in the Fabp7 KO gel. 

3.9. Identification of proteins 

The spots with differential expressions between the two genotypes were digested and forwarded 

for identification by LC-MS/MS. The result of protein identification is summarized in Table 3.1. 

Among 16 differentially expressed spots, four spots with more than two distinct peptides (  2) or 

MS/MS search scores over 30 were selected for further confirmation by Western blotting. These 

proteins included FABP7, GFAP, PEA-15, and vimentin. 

Table 3.1. Identification of proteins that are differentially expressed between Fabp7 KO and 

WT astrocytes by LC-MS/MS analysis.
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3.10. Decreased expression of vimentin and PEA-15 in Fabp7 KO astrocytes 

Western blotting analysis was performed and confirmed the significant decrease in the 

expression of vimentin [1.57 ± 0.07 in WT astrocytes vs. 0.52 ± 0.19 in Fabp7 KO astrocytes, P 

= 0.03; Fig. 3.16A,B] and PEA-15 [1.51 ± 0.18 in WT astrocytes vs. 0.8 ± 0.09 in Fabp7 KO 

astrocytes, P = 0.03; Fig. 3.16A,B] proteins in Fabp7 KO astrocytes compared to WT astrocytes. 

Moreover, expression of FABP7 was not discerned in Fabp7 KO astrocyte samples which 

further confirm the authenticity of our experiments [Fig. 3.16A]. However, Western blotting 

results did not confirm GFAP upregulation in Fabp7 KO astrocytes and no change was detected 

in the expression of GFAP between Fabp7 KO and WT astrocytes [2.03 ± 0.52 in WT astrocytes

vs. 2.11 ± 0.39 in Fabp7 KO astrocytes, P = 0.89 Fig. 3.16A,B]. 

Fig. 3.16 Protein levels of FABP7, GFAP, PEA-15 and vimentin in WT and Fabp7 KO 

astrocytes were evaluated by Western blotting. Fabp7 KO and WT astrocyte were lysed and 10 
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micrograms of cell lysates were resolved by 15% SDS-PAGE and probed by specific antibodies. 

Density of bands was analyzed using Multi Gauge software, and -actin was used as loading control 

to normalize the loading level of proteins. (A) PEA-15 and vimentin expression level were 

significantly downregulated in Fabp7 KO astrocytes in comparison with their WT counterparts. No 

significant change was observed in the expression of GFAP between Fabp7 KO and WT astrocytes. 

(B) Bar graphs Represent analyses of the relative expression of PEA-15, vimentin, and GFAP in 

Fabp7 KO and WT astrocytes analyzed by Mann-Whitney U test. Data are presented as mean ± SEM 

from two independent Western blotting experiments with at least three biological replicates per 

genotype; *P < 0.05. 
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4. DISCUSSION 

In the present study, I showed for the first time that the dendritic formation of cortical pyramidal 

neurons, including the complexity of dendritic branching, area covered by the dendritic arbor, 

and density and maturation of dendritic spines, was reduced in the mPFC of Fabp7 KO mice. 

The number of excitatory synapses and their basal activity were also decreased in Fabp7 KO 

mice. By using primary neuronal culture systems, I determined that astrocytes expressing FABP7 

were critical for these phenotypes. Pyramidal neurons cultured in the ACM derived from Fabp7 

KO astrocytes developed less complex dendritic arbors than those cultured in WT-derived ACM, 

suggesting that humoral factors secreted from astrocytes were likely involved in the control of 

this process. Furthermore, rescue of FABP7 expression in the mPFC of Fabp7 KO mice by 

transplantation of WT astrocytes partially ameliorated the hyperactive phenotype of Fabp7 KO 

mice. Moreover, I presented proteomic differential display analysis of Fabp7 KO astrocytes 

compared with WT astrocytes. My findings provide a proof of the principle that FABP7 

deficiency can alter the astrocyte proteome. These results strongly suggest that FABP7-mediated 

astrocytic lipid homeostasis may affect cortical neuronal development; and as the first report of 

proteomic screening on isolated cells from Fabp7 KO mice, suggests the application of such 

strategies for clarifying the regulatory roles of FABP7 in the brain development and various 

brain diseases.  

Neuronal dendritic and spine development is complex and highly coordinated process 

(70). In the current study, the formation of neuronal dendrites and their spines was altered in 

cortical pyramidal neurons of Fabp7 KO mice. Dendritic spines are the major postsynaptic 

compartments of excitatory glutamatergic synapses (69), and alteration in spine shape potentially 
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influences neurotransmission and synaptic plasticity (71). Mature spines (mushroom- and 

stubby-shaped) are more stable, contain more alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) glutamate receptors and contribute to the stronger synaptic 

connections, while immature spines (thin- and filopodium-shaped) are contribute to weak or 

silent synaptic connections (72). Consistent with reduced number and maturity of dendritic 

spines, I found the number of excitatory synapses was decreased in the mPFC of Fabp7 KO mice 

and in the cortical neurons co-cultured with FABP7-deficient astrocytes. Furthermore, 

electrophysiological recordings in the cortical pyramidal neurons showed the significant 

impairment of mEPSCs in Fabp7 KO mice. Therefore, it is highly possible that functional 

alterations in astrocytes due to the FABP7 deficiency further disrupted their ability to fully 

support spinogenesis and synaptogenesis on their neighboring neurons, which leads to the 

impaired excitatory synaptic activation.  

In the current study, I showed that astrocytic FABP7 likely regulates neuronal dendritic 

and/or spine formation by controlling the production or secretion of humoral factors. It has been 

shown that the formation of the neuronal dendritic arbor is regulated by intrinsic ability, external 

signals, or both, and astrocytes provide a number of external cues engaged in the formation and 

maturation of the dendritic arbor (47). Moreover, astrocytes are able to regulate the number, 

stability and maturation of dendritic spines (73, 74). Astrocytes secrete several growth factor 

proteins, such as brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3 (11), 

ciliary neurotrophic factor and fibroblast growth factor (FGF) (75), which can regulate neuronal 

growth, differentiation, and maturation (76). Notably, the transfection of Fabp7 into U87 glioma 

cells resulted in augmented expression of a number of growth factors, including FGF2 (77), and 

astrocyte-released FGF2 was shown to promote neurite extension and branching in cerebral 
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cortical neurons (78). Interestingly, supplementation of culture medium of hippocampal neurons 

with exogenous FGF2 was shown to increase the number of structurally mature and functionally 

active excitatory synapses (79). In addition to growth factors, which are proteins, the possible 

involvement of lipid mediators should be taken into consideration. It is known that lipids 

including PUFAs promote synaptic plasticity by modulation of synaptic protein expression, and 

stimulates the dendritic arborization and spines formation (80-83). Neurons are mainly 

dependent on the lipid molecules that are synthesized and released by glial cells (84). Astrocytes 

may provide several lipid molecules, although their possible roles in the regulation of neuronal 

characteristics have received little attention (47). For instance, oleic acid released by astrocytes 

promoted neurite outgrowth of cortical neurons (85). Considering that FABP7 is a preferential 

cellular chaperone for n-3 PUFAs (35, 42), impaired uptake, synthesis, and release of n-3 PUFAs 

would be expected in FABP7-deficient astrocytes. Indeed, we recently reported that uptake of -

linolenic acid, the precursor of DHA, was significantly impaired in Fabp7 KO astrocytes (34). 

Therefore, the abnormal neuronal morphology caused by a FABP7 deficiency may also be 

attributed to the impaired production and release of lipid molecules by astrocytes. Further studies 

are ongoing to identify the astrocyte-secreted protein and lipid mediators affecting the neuronal 

plasticity regulated by FABP7. 

The mPFC contains profound reciprocal projections to the hippocampus and amygdala 

(86) and has been associated with a wide scope of behaviors. Miscommunications between these 

neurons due to impairments in their synaptic inputs can be a major determinant of several 

cognitive and neurological disorders, including schizophrenia (87), mental retardation (45), 

autism (88), and Alzheimer’s disease (89). Reduced complexity of dendritic branches along with 

reduced spine density of pyramidal neurons has been reported in the mPFC of patients with 
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schizophrenia (52, 53). We recently reported that Fabp7 KO mice show impaired prepulse 

inhibition (41, 42), a useful endophenotype of schizophrenia (90), and that FABP7 expression is 

altered in the mPFC of postmortem schizophrenic brains (41). Notably, we also demonstrated 

that the frameshift mutant FABP7 N89fs found in schizophrenia forms cellular aggregates, and 

the point mutants including FABP7 S86G and FABP7 V126L lose their preference for DHA to 

linoleic acid (42). Although the significance of such mutations in schizophrenia pathology 

remains unknown, further studies are warranted focusing on the neuronal connections between 

mPFC and other brain regions in Fabp7 KO mice and on the relationship between astrocyte lipid 

metabolism and its involvement in the control of neuronal plasticity. 

Previous studies suggested a substantial association of tonic activation in the mPFC with 

hyperactive behaviors (91). In the present study in accordance with our recent report (42), Fabp7 

KO mice exhibited a hyperactive phenotype, which might mimic some of the positive symptoms 

of schizophrenia as well as psychomotor agitation (92). I also showed that the transplantation of 

FABP7-expressing (WT) astrocytes into the mPFC of Fabp7 KO mice partially rescued the 

hyperactive phenotype observed in FABP7-deficient mice. Astrocytes have been shown to 

survive and migrate after grafting and produce trophic factors to enhance neuronal survival, 

neurite extension, and neuronal function (93). However, little is known about the potential utility 

of astrocytes for promoting functional recovery. Transplantation of astrocytes was capable of 

facilitating behavioral recovery in an animal model of Parkinson’s disease (94). It was also 

shown that transplantation of WT or neurotrophin-3 shRNA infected Fmr1 KO astrocytes into 

the anterior cingulate cortex of Fmr1 KO mice (a model of fragile X syndrome) significantly 

rescued defects in fear memory (95). Moreover, the intra-hippocampal transplantation of 

astrocyte-restricted neural precursor cells derived from WT mice improved the impairment in 
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memory performance and long-term potentiation exhibited by IL-1r KO mice (a model of 

impaired learning, memory and long-term potentiation) (96). Although further study is required 

to unveil the mechanism, it is likely that the transplanted WT astrocytes affected local neural 

networks in the mPFC of Fabp7 KO mice through graft host communication, thereby restoring 

their behavioral phenotypes. 

Here, I showed the decreased expression of PEA-15 in FABP7-deficient astrocytes. PEA-

15 is a ubiquitously expressed protein with high levels of expression in astrocytes (97). This 

protein of low molecular weight (15 kDa) is considered a multi-protein binding molecule serving 

as an endogenous substrate and molecular adaptor which interacts with various key cellular 

effectors including protein kinase C (PKC), calcium/calmodulin-dependent protein kinase II 

(CAM kinase II), Akt, and ERK and thereby modulates major cell functions such as proliferation, 

apoptosis, and glucose metabolism (97). PEA-15 is involved in epithelial-mesenchymal 

transition (EMT) (98) and high levels of PEA-15 expression is linked with development of 

malignancy (97). PEA 15 is reported to be overexpressed in gliomas and mammary carcinomas 

and may regulate chemoresistance (97). Interestingly, FABP7 is also upregulated in a variety of 

malignancies, including malignant glioma and mammary carcinoma (99, 100). Furthermore, 

increased expression of PEA-15 has been reported in reactive astrocytes in postmortem human 

Alzheimer’s disease brain, as well as in the brains of a mouse model of Alzheimer’s disease 

(101) and of amyotrophic lateral sclerosis (102). Consistently, FABP7 is upregulated in reactive 

astrocytes (34) and is increased in neurodegenerative disorders such as Alzheimer’s disease (103, 

104). Although the mechanism how FABP7 regulates PEA-15 expression remains to be further 

studied, it is of note that transcriptional regulation of PEA-15 by peroxisome proliferator-

activated receptor gamma (PPAR ), a transcription factor activated by FA-FABP complex, has 
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been reported (23, 105). Together with the known evidence from the literature, my finding 

suggests that the known associations of FABP7 with glioma, reactive astrogliosis and 

neurodegenerative disorders might be partly due to FABP7-mediated regulation of PEA-15 in 

astrocytes. Further studies on the FABP7-mediated regulation of PEA-15, may highlight the 

diagnostic or therapeutic potentials of FABP7 in malignancies and other CNS pathologies. 

I also showed the decreased expression of vimentin in FABP7-deficient astrocytes. 

Vimentin is an intermediate filament abundantly expressed in radial glia and immature astrocytes 

during early development, and it is downregulated towards maturation (106, 107) and is 

upregualted in reactive astrocytes (108) and glioma (109). This expression pattern highly mimics 

that of FABP7, suggesting involvement of both molecules in common regulatory networks and 

supports the FABP7-mediated regulation of vimentin expression. Vimentin is known as a marker 

for EMT. Overexpression of vimentin is linked with poor prognosis, invasion and tumor growth 

(110). Known association of vimentin in tumorigenesis in several malignancies including CNS 

cancers has turned vimentin to an attractive diagnostic and therapeutic target in cancer (110). 

Thus, FABP7-mediated regulation of vimentin can highlight the diagnostic and therapeutic 

potentials of FABP7 in malignancies such as glioblastoma. In contrast to vimentin, expression of 

GFAP did not markedly change in Fabp7 KO astrocytes as confirmed by Western blotting. 

Regarding this issue, it has been shown that elevated expression of GFAP and decreased 

vimentin expression represents astrocytes differentiation (111); vimentin-deficient cells exhibited 

a slower rate of cell proliferation and DNA synthesis compared with WT cells (112); vimentin-

deficient astrocytes were predominantly found to be in G0/G1 stage of cell cycle (113). These 

data indicate that vimentin downregulation in Fabp7 KO astrocytes is partly associated with their 

lower proliferation capacity, and it is interesting to note that Fabp7 KO astrocytes show the 
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decreased proliferation compared with WT astrocytes in our previous study (34). Therefore, it is 

likely that FABP7 is involved in the control of differentiation status of astrocytes possibly 

through regulation of vimentin expression. 

In conclusion, the present study was the first to suggest that FABP7, as an intracellular 

lipid chaperon expressed by astrocytes, is crucial for the normal development of dendritic arbors 

and formation/transmission of excitatory synapses in cortical neurons; and as the first proteomic 

screening on isolated cell cultures from Fabp7 KO mice, suggests the regulatory roles of FABP7 

on the astrocytic expression of PEA-15 and vimentin. Unfortunately, I could not detect any 

protein candidate known to be involved in the control of neuronal morphological and synaptic 

plasticity, but these data suggest the regulatory role of FABP7 on astrocyte proteome which 

should be further evaluated by more accurate quantitative proteomic methods. My findings 

provide new insights and hypotheses regarding to the association of FABP7 with CNS diseases 

and may lead to novel therapeutic interventions for such diseases. 
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