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To investigate electron energy dependence of pure H™ volume production, we have recently
designed a double-plasma-type negative ion source. In this source, both energy and density of
fast electrons are well controlled. With the use of this source, the effect of fast electrons on H™
production, i.e., the so-called two-step process of H™ production, is discussed.

I. INTRODUCTION

According to our recent simulation results, -3 most of
the H™ ions are produced by a two-step process.* Namely,
H~ ions are generated by dissociative attachment of slow
plasma electrons e (with an electron temperature k T',~ 1
eV) to highly vibrationally excited molecules H,(v"”) (ef-
fective vibrational levels v”>5-6), and these H,(v") are
mainly produced by the collisional excitation of fast elec-
trons e, with energies in excess of 3540 eV. Although
different techniques (i.e., optimizing the magnetic filter
and the plasma grid potential, and introducing cesium va-
por) to increase the H™ yield in a multicusp source have
been investigated by many authors, there are a few reports
on studying physically the two-step process of H™ produc-
tion or its enhancement.>

Recently, we have developed a double-plasma DP-
negative ion source.® In this paper, we show that fast elec-
tron energy distribution and its density 7 are well con-
trolled with the use of this source. We also report the
results on the relation between the n;, and H™ current, and
between fast electron energy Eg, and the H™ current.

Il. EXPERIMENTAL SETUP AND PROCEDURE

Figure 1 shows a schematic diagram of the DP-type
negative ion source. The source chamber is made of stain-
less steel, and is divided by a mesh grid into two regions,
i.e., a driver plasma region (the right-hand side) and a
target plasma region (the left-hand side). The target
plasma region is a conventional volume production type of
the negative ion source equipped with a magnetic filter and
a plasma grid.>’ Electrons in the driver plasma are ex-
tracted and injected into the target plasma region as an
electron beam with acceleration voltage V5 (i.e., the po-
tential difference between two chambers) and the beam
current J 5. With the change of ¥ 3 and I, e/ in the target
plasma region [i.e., the source region of the ion source or
the reg10n of H,(v") production caused by e/] are well
controlled.®

Plasma parameters are measured by Langmuir probes.
To obtain an electron energy distribution function
(EEDF) using the Druyvesteyn method, the second deriv-
ative of the probe characteristics was also measured. From
those data, the density of fast electrons ng(E) with an
energy higher than E was estimated.”
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The left-end plate, i.e., the plasma grid, has a single
hole (10 mm diameter) through which ions were extracted
from the source. A magnetic-deflection-type ion analyzer
was used for relative measurement of the extracted H™
ions.

lll. EXPERIMENTAL RESULTS AND DISCUSSION

Throughout the present experiment plasma production
in the target plasma region is carried out only by beam-
plasma discharge of the injected electron beam. The elec-
tron beam is injected at z=0 cm, i.e., the position of the
mesh grid, and plasma is produced. There is a spatial vari-
ation in electron density n, (n, increases gradually with z
and then saturates near z=15-17 cm), although electron
temperature T, is kept at a nearly constant value. Both 7,
and T, change remarkably across the magnetic filter in the
same manner of the usual volume source, where filter po-
sition z,=20 cm.

Figure 2 shows the dependence of plasma parameters
on V. They are measured at z=15 cm in the source re-
gion and at z=21 cm in the extraction region, where the
plasma grid is set at z=22 cm. As [z is kept constant at 1
A in this case, the discharge power in the target plasma
region becomes high with increasing V. Although T,
keeps nearly constant value with increasing ¥V 3(>30V), n,
increases linearly and then saturates.

Figure 3 shows the dependence of the EEDF on Vpin
the source region, corresponding to the results in Fig. 2.
They are also measured at z=15 cm. With increasing ¥z,
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FIG. 1. Schematic diagram of the DP-type negative ion source.
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FIG. 2. Plasma parameters in the source and extraction regions vs ¥,
ie., (a) n(1) and n,(2), and (b) T.(1) and T,(2). They are measured
at z=15 cm in the source region and z=21 cm in the extraction region,
respectively. Here, the electron beam is injected into the target plasma at
z=0, and the magnetic filter and the plasma grid are set at z=20 and 22
cm. Experimental conditions are as follows: Discharge voltage in the
driver plasma Vd=45 V, gas pressure p(H, gas) =4 mTorr and injected
beam current / ;=1 A.

the EEDF increases in magnitude, particularly its high
energy tail [see Fig. 3(b)]. It is, therefore, expected that,
e.g., ng(E;>20-30 eV) in the source region will be con-
trolled by changing V'3 and /5.

We will show later the dependence of ng(E) on Vg for
some different electron energies. These ng (E) are derived
from the EEDF shown in Fig. 3 and the 7, in Fig. 2. In
order to study the electron energy dependence of H™ pro-
duction, i.e., to compare the behavior of energetic electrons
with H™ production, ng(E) for four different energies are
plotted as a function of V3 in Fig. 5.

Figure 4 shows the dependence of H™ current on V.
As the plasma grid is set at z=22 cm in this case, the
distance between the plasma grid and the magnetic filter is
2 cm. The plasma grid potential ¥, is kept at the same
potential of the chamber anode, and is not optimized to
extract the highest H™ current at every V. It is quite
interesting that the H™ current increases steeply when V5
is higher than 30 eV. On the other hand, electron densities
in both the source and the extraction regions increase lin-
early with V5. The plasma characteristics shown in Figs. 2
and 3 correspond to the H™ current in Fig. 4. According to
the results in Fig. 3, with increasing V3, the EEDF
changes its shape. At the same time, fast electron density,
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FIG. 3. EEDF in the source region vs ¥, i.e., (a) bulk plasma electrons
and (b) high energy tail. They are measured at z=15 cm. Experimental
conditions are the same as ones in Fig. 2.

e.g., ne(E£>30 eV), increases markedly when V5 becomes
higher than 30 eV. It can be said that H,(v”) and then H™
production hardly depend on the shape of the energy dis-
tribution of e, if e, with energies in excess of 3040 eV are
present.’

When H™ ions are produced by the so-called two-step
process, where H,(v"”) are produced in the source region
and H™ ions are formed in the extraction region, H™ den-
sity is written briefly as follows:

H~ density=n(1 )ne(Z)NHZ(Uv)U,,(av) DAT 5 T— 5

where ng(1) is e, density in the source region, 7,(2) is n,
in the extraction region, Ny, is density of hydrogen mole-
cules, (ov),~ is reaction rate of vibrational excitation by e,
in the source region, {(ov)p, is reaction rate of dissociative
attachment in the extraction region, 7, is the lifetime of
H,(v"”), and 7_ is the lifetime of H™ ions. Roughly speak-
ing, H™ density is proportional to the product of ng(1)
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FIG. 4. Extracted H™ current vs ¥ 5, where plasma grid potential ¥ is
not optimized but equal to the anode potential. Experimental conditions
are the same as ones in Fig. 2.

and n,(2), if T, keeps a certain constant value during the
change of electron densities—because reaction rates and
lifetimes depend on T,.

The present experimental results qualitatively support
the above-mentioned feature. We will test this point in the
following: In Fig. 2 variations of plasma parameters in the
extraction region, i.e., n,(2) and T,(2) are shown as a
function of ¥ 5. With increasing ¥ g, n,(2) increases grad-
ually while 7',(2) keeps nearly the constant value. Then,
{ov)pa would be kept at a certain constant value. By using
the experimental results shown in Figs. 24, we can discuss
the relationship between the increase in H™ current and
key parameters, i.e., n¢(1) and n,(2). Figure 5 shows the
ratio H™/n,(2) and ng(1) as a function of V3. As H™
current is proportional to 7,(2), H™/n,(2) represents di-
rectly the effects of plasma parameters in the source region.
Here, all data points are normalized by the value at
¥V 3=30 V. Namely, we treat the values of H™, ng(1), and
n,(2) at V=30 V as reference levels, respectively. Be-
cause the H™ current increases steeply when ¥ is equal or
higher than 30 V. At the same time, as ng(1) is a function
of electron energy, we plot the five examples of ng(1) for
five different electron energies, i.e., E=40, 30, 20, 10, and
0 eV. When E=0 eV, ng(0) means n,(1). To get a good
correspondence between H™/n,(2) and ng(1), energy of
fast electrons must be at least higher than 20 eV. This is a
typical example of electron energy dependence of H™ pro-
duction. It also means that e is essential to H™ volume
production.

At a certain value of ¥ (i.e., higher than 3040 V),
densities ng(1) and n,(2) increase with 7, and then H™
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FIG. 5. Normalized H™ current and fast electron densities ng, (E) with an
energy higher than E vs Vp.

also increases markedly. According to these results, it
would be possible to enhance H™ production by optimizing
beam parameters ¥z and I, i.e., increasing ng(1) with
efficient high energy.

IV. CONCLUSIONS

We have recently developed the DP-type negative ion
source. Plasma parameters, especially the energy and den-
sity of e, are well controlled by changing the injected beam
parameters (i.e., V' and I3). By using this source, the
effect of e, on H™ production is investigated, and the
present results support qualitatively the two-step process of
H™ production. Optimization of the DP source for H™
production is now under study. In the future, we will also
study D™ production and its isotope effect.
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