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Abstract

Melatonin protects luteinized granulosa cells (GCs) from oxidative stress in the follicle during
ovulation. However, it is unclear in which cellular components (e.g., nuclei, mitochondria, or plasma
membranes) melatonin works as an antioxidant. GCs from immature (3 wks) ICR mice were
incubated with hydrogen peroxide (H202; 0.01, 0.1, 1, 10 mM) in the presence or absence of
melatonin (100 upg/ml) for 2 h. DNA damage was assessed by fluorescence-based
immunocytochemistry using specific antibodies for 8-hydroxydeoxyguanosine (8-OHdG), an indicator
of oxidative guanine base damage in DNA, and for histone H2AX phosphorylation (yYH2AX), a
marker of double-strand breaks of DNA. Mitochondrial function was assessed by the fluorescence
intensity of MitoTracker Red probes, which diffuse across the membrane and accumulate in
mitochondria with active membrane potentials. Lipid peroxidation of plasma membranes was
analyzed by measuring hexanoyl-lysine (HEL), a oxidative stress marker for lipid peroxidation.
Apoptosis of GCs was assessed by nuclear fragmentation using DAPI staining, and apoptotic activities
were evaluated by caspase-3/7 activities. H2O02 treatment significantly increased the fluorescence
intensities of 8-OHdG and YH2AX, reduced the intensity of MitoTracker Red in the mitochondria,
increased HEL concentrations in GCs, and enhanced the number of apoptotic cells and caspase-3/7
activities. All these changes were significantly decreased by melatonin treatment. Melatonin
reduced oxidative stress-induced DNA damage, mitochondrial dysfunction, lipid peroxidation, and
apoptosis in GCs, suggesting that melatonin protects GCs by reducing oxidative stress of cellular
components including nuclei, mitochondria, and plasma membranes. Melatonin helps to maintain

the integrity of GCs as an antioxidant in the preovulatory follicle.
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Introduction

Granulosa cells are induced to differentiate into luteal cells by a surge of ovulatory luteinizing
hormone (LH). The ovulatory LH surge induces the expression of steroidogenic acute regulatory
(StAR) protein, a rate-limiting enzyme for progesterone synthesis [1-3]. Progesterone produced by
granulosa cells undergoing luteinization is necessary for ovulation and subsequent corpus luteum
formation. On the other hand, during ovulation after the LH surge, reactive oxygen species (ROS)
are locally produced by macrophages, neutrophils and vascular endothelial cells within the follicle [4],
suggesting that granulosa cells are exposed to elevated levels of ROS. ROS play a physiological role
in ovulation, e.g., in follicle rupture, while an excessive amount of ROS can damage both the ovum
and the granulosa cells undergoing luteinization.

Reactive species damage cellular components including nuclei, mitochondria and plasma
membranes, resulting malfunctioning DNA, loss of membrane integrity and mitochondrial
dysfunction; the latter in particular is often related to apoptosis [5-8]. Importantly, antioxidant
enzymes including superoxide dismutase, glutathione peroxidase and catalase, and non-enzymatic
antioxidants such as melatonin, vitamin E, vitamin C, glutathione, uric acid and albumin are present in
the follicles [9-11]. The balance between ROS and the antioxidants within the follicle seems to be
critical to the integrity and function of granulosa cells undergoing luteinization during ovulation.

Melatonin and its metabolites are powerful free radical scavengers and broad-spectrum
antioxidants [12-14]. Interestingly, melatonin is present in high concentrations in the preovulatory
follicle [15-19], and the concentration of melatonin in follicular fluids increases with increasing
follicle size [15, 16]. Because of its small size and highly lipophilic properties [12, 20], melatonin
passes through all cell membranes and easily reaches cellular components including nuclei,
mitochondria, and plasma membranes, where it seems to accumulate in high concentrations [21-23].
Melatonin prevents DNA damage [24, 25] and lipid peroxidation of plasma membranes [26, 27]. In

particular, melatonin preserves optimal mitochondrial function and homeostasis by reducing and
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preventing oxidative stress, thereby curtailing subsequent apoptotic events and cell death [12, 28, 29].
We recently reported that hydrogen peroxide (H202) inhibited progesterone production by human
luteinized granulosa cells and that melatonin abolished the inhibitory effect of H202 [30]. However,
it is unclear on which cellular components melatonin works as an antioxidant to protect granulosa cells.
Therefore, this study was conducted to investigate whether melatonin reduces oxidative stress in

granulosal cellular components including in the nuclei, mitochondria, and plasma membranes.



80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Materials and methods
Collection and culture of granulosa cells

The experimental protocol was approved by the Committee for Ethics on Animal
Experimentation, and performed under the Guidelines for Animal Experiments at Yamaguchi
University Graduate School of Medicine in accordance with Law No. 105 and Notification No. 6 of
the Japanese Government. Immature (3 wks) ICR mice (Japan SLC Inc., Hamamatsu, Japan) were
housed in a controlled room with a 14:10 light:dark photoperiod and free access to standard mouse
chow and water. All mice received a subcutaneous injection of 20 units of pregnant mare serum
gonadotropin (PMSG, G4877; Sigma-Aldrich, St. Louis, MO, USA) to stimulate the development of
multiple follicles. All mice were laparotomized under deep ether anesthesia 48 h after the PMSG
injection; the ovaries were quickly removed for the following experiments, and the mice were
euthanized by exsanguinations. The ovaries were transferred to alpha Modified Eagle Minimum
Essential Medium (aMEM) without phenol red (M4655, Sigma-Aldrich) supplemented with
penicillin-streptomycin (15070-063, Invitrogen, Carlsbad, CA, USA). Granulosa cells were collected
by puncturing mature preovulatory follicles with a 26-gauge needle under a dissecting microscope.
Granulosa cells were isolated, centrifuged at 800 x g, washed in PBS (Wako Pure Chemical Industries,
Osaka, Japan) twice, and used for cell culture. The cells were preincubated at a density of 2.5 x 10*
cells/well in 100 pl of aMEM for 30 min, and then incubated with H202 (8104215, 0.01, 0.1, 1, and
10 mM; Wako Pure Chemical Industries) in the presence or absence of melatonin (M5250, 100 pg/ml;
Sigma-Aldrich) for 2 h. After incubation, cells were used for evaluation of DNA damages,

mitochondrial function, lipid peroxidation, and apoptosis as described below.

DNA damage
DNA damage was assessed by fluorescence-based immunocytochemistry using specific

antibodies for 8-hydroxydeoxyguanosine (8-OHdG), an indicator of oxidative guanine base damage of
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DNA, and for histone H2AX phosphorylation (YH2AX), a marker of double-strand breaks of DNA.
Granulosa cells were fixed with 4% paraformaldehyde (L3N8367, Nacalai Tesque, Kyoto, Japan) for
15 min, washed three times in PBS, and incubated in 0.5% Triton X-100 (T8787, Sigma-Aldrich) in
PBS for 15 min. Then, the cells were incubated with primary antibodies against either 8-OHdG
(mouse monoclonal IgG, sc-66036, 1:50 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA)
at room temperature for 2 h, and they were then incubated with a secondary antibody (Alexa Fluor
488-labeled goat anti mouse IgG, A-11001, 1:200 dilution; Invitrogen) at room temperature for 40 min.
The cells were also incubated with the antibody against YH2AX (Alexa Fluor 488-labeled rabbit
monoclonal IgG, 9719S, 1:100 dilution; Cell Signaling Technology, Danvers, MA, USA) at room
temperature for 2 h. To counterstain the DNA material, granulosa cells were mounted onto slides
and counterstained with 50 pg/ml 4°,6’-diamidino-2-phenylondole (DAPI, 340-07971; Wako Pure
Chemical Industries) in Vectashield mounting medium (H-1200, Vector Laboratories, Burlingame,
CA, USA) under a cover slip. Fluorescence of 8-OHdG and yH2AX in the nuclei was detected and
imaged under a confocal laser scanning microscope (Zeiss LSM 510 META; Carl Zeiss, Jena,
Germany) utilizing a 488 nm excitation. Fluorescence images were captured by ZEN imaging
software (ZEN 2008; Carl Zeiss), and the fluorescence intensity from each cell was quantified using
the CellProfiler and ImageJ software (National Institutes of Health, Bethesda, MD, USA). The
fluorescence intensities of 8-OHdG and yH2AX were measured in at least 200 cells per treatment

group, and the mean fluorescence intensity was used as the level of DNA damage.

Mitochondrial function

Mitochondrial function was evaluated by the mitochondrial membrane potential, which was
quantified by using mitochondrial-targeted fluorescent probes (MitoTracker Red, M7512, Invitrogen).
MitoTracker Red diffuses across cell membranes and accumulates in mitochondria with active

membrane potentials. Granulosa cells were incubated with MitoTracker Red (100 nM) at room
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temperature for 15 min. The cells were washed twice with PBS and fixed with 4% paraformaldehyde
for 15 min. Then, the cells were washed three times with PBS and mounted on glass slides.
Fluorescence was detected and imaged under a confocal laser scanning microscope (Zeiss LSM 510
META) utilizing 543 nm excitation. Fluorescence images were captured by the ZEN software, and
the fluorescence intensity and area of MitoTracker Red staining in at least 200 granulosa cells was
quantified by the ImageJ software. A reduction in the intensity and area of MitoTracker Red staining

is an indicative of reduced mitochondrial membrane potentials.

Hexanoyl-lysine (HEL) assay

Lipid peroxidation of cell membranes was analyzed by measuring HEL, a stable oxidative stress
marker for lipid peroxidation. HEL levels in cells were measured with a competitive enzyme-linked
immunosorbent assay (ELISA) kit (KHL-700, Japan Institute for the Control of Aging, Nikken SEIL,
Shizuoka, Japan) as reported previously [17].  After incubation, granulosa cells were resuspended in
100 pl aMEM, lysed by sonication and used for the HEL assay. The assay procedures were
performed according to the manufacturer’s recommendations. Lipid peroxidation of cell membranes
was determined as the overall HEL level per well with 2.5x10* granulosa cells. The minimal

detectable concentration of HEL was estimated to be 2 nmol/I.

Apoptosis

Apoptosis of granulosa cells was assessed by morphological changes of nuclei and caspase-3/7
activities. Apoptotic morphological changes of nuclei were evaluated by DAPI staining. Granulosa
cells were fixed with 4% paraformaldehyde for 15 min. Then, the cells were washed three times in
PBS, mounted on glass slides, and stained with 50 pg/ml DAPI in Vectashield mounting medium
under a cover slip. Fluorescence was detected and imaged under a confocal laser scanning

microscope (Zeiss LSM 510 META). Apoptotic cells were identified by condensation and
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fragmentation of the nuclei, and apoptosis was quantified by calculating the percentage of apoptotic
nuclei in a total of 200 nuclei in each treatment group.

Caspase-3/7 activities were determined by a Caspase-Glo™ 3/7 Assay (G8091, Promega,
Mannheim, Germany) according to the manufacturer’s protocol. Briefly, granulosa cells were
cultured on a 96-well plate with 2.5x10* cells in 100 pl medium/well, and 100 pl of Caspase-Glo®
reagent was added to each well and incubated for 2 h at room temperature. The luminescence of
each well was measured by luminometer (Berthold Micro Lumat LB96P; Berthold Technologies, Bad
Wildbad, Germany) with an excitation wavelength of 499 nm and an emission wavelength of 521 nm.
Apoptotic activities were quantified as the level of fluorescence emitted from Caspase-Glo® reagent
bound to caspase-3/7. Caspase-3/7 activities were determined as the overall activities per well with

2.5x10* granulosa cells and shown as relative fluorescence units (RFU).

Statistical analysis

All experiments were performed with three independent incubations. Statistical analysis was
carried out using the computer program SPSS for Windows13.0. The Kruskal-Wallis H-test and
Mann-Whitney U-test with Bonferroni correction analysis were used. A value of P < 0.05 was

considered significant.
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Results

DNA damage in granulosa cells was assessed by fluorescence-based immunocytochemistry using
specific antibodies for 8-OHdG (an indicator of oxidative guanine base damage of DNA) and yYH2AX
(a marker of double-strand breaks of DNA). The fluorescence intensity of 8-OHdG was
dose-dependently increased by H202 treatment (Fig. 1 A-1D), and the increase in 8-OHdG intensities
induced by H202 was completely blocked by melatonin treatment (Fig. 1E-11). The fluorescence
intensity of YH2A X was also dose-dependently increased by H202 treatment (Fig. 2A-2D), and the
increase in YH2AX intensities induced by H202 was completely blocked by melatonin treatment (Fig.
2E-21).

Mitochondrial function of granulosa cells was assessed by the fluorescence intensities of
MitoTracker Red probes, which diffuse across the membrane and accumulate in mitochondria with
active membrane potentials. The intensity of MitoTracker Red was significantly decreased by 10
mM of H202 (Fig. 3A-3E). The decrease in MitoTracker Red intensities caused by H202 was
significantly reversed by melatonin treatment (Fig. 3F-3J).

Lipid peroxidation of plasma membranes in granulosa cells was evaluated by measuring HEL, a
stable oxidative stress marker for lipid peroxidation. The HEL concentrations were significantly
increased by 10 mM of H202 (Fig. 4A), and the increase was significantly blocked by melatonin
treatment (Fig. 4B).

Apoptosis of granulosa cells was assessed by nuclear fragmentation using DAPI staining and by
the caspase-3/7 activities. The percentage of apoptotic cells was dose-dependently increased by
H202 (Fig. 5A), and the increase in numbers of apoptotic cells induced by H202 was completely
blocked by melatonin treatment (Fig. 5B). Caspase-3/7 activities in granulosa cells were
significantly increased by 10 mM of H202 (Fig. 6A), and the increase was significantly decreased by

melatonin treatment (Fig. 6B).
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Discussion

The present study showed that oxidative stress damages nuclei, mitochondria and plasma
membranes in granulosa cells, resulting in DNA damage, mitochondrial dysfunction, and lipid
peroxidation of plasma membranes, which likely cause disruption of cellular integrity and apoptosis.
Furthermore, our results clearly showed that melatonin protects the integrity of granulosa cells by
reducing oxidative stress in each of these cellular components.

Various indicators of DNA damage have been reported; these include, oxidative base damage,
telomere shortening, chromosome fragmentation, single-strand breaks and double-strand breaks. The
double-strand breaks are the most lethal forms of DNA damages because they cause cellular
senescence and apoptosis [31-33]. In the present study, DNA damage by oxidative stress was
evaluated by YH2AX (a sensitive marker of double-strand breaks) [33] in addition to 8-OHdG (an
indicator of oxidative guanine base damage). The present study showed that melatonin blocks both
oxidative stress-induced guanine base damages and double-strand breaks in granulosa cells. This is
consistent with previous reports that melatonin reduces the DNA damage as assessed by YH2AX in rat
germ cells [34] and the rat brain [35].

The mitochondrial membranes are important sites for steroidogenesis in granulosa cells.
Cholesterol, a substrate of steroid hormones, is transferred from the outer to the inner mitochondrial
membrane by StAR protein [36, 37], which is in turn metabolized to pregnenolone by the cytochrome
P450 cholesterol side-chain cleavage enzyme (P450scc). Damage to mitochondrial membranes by
oxidative stress impairs steroidogenesis in granulosa cells. In fact, oxidative stress has been reported
to inhibit steroidogenic enzymes and a mitochondrial carrier protein (StAR protein) involved in
cholesterol transport into mitochondria of luteal cells [38]. The present study showed that oxidative
stress damages mitochondrial function of granulosa cells and that melatonin reduces the oxidative
stress in the mitochondria, suggesting that melatonin protects granulosa cells by reducing the

mitochondrial membrane damage caused by oxidative stress. These findings support the previous
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reports that melatonin preserves mitochondrial function by reducing electron leakage and protecting
the mitochondrial membrane [39, 40] and that melatonin increases respiratory chain complex I and IV
activities and ATP synthesis [41].

Oxidative stress-induced damage to plasma membranes was evaluated by lipid peroxidation. A
number of studies have reported that oxidative stress inhibits progesterone production by luteal cells
through lipid peroxidation of the plasma membrane [38, 42]. Our previous study also showed that
H202 inhibits progesterone production by human luteinized granulosa cells and that melatonin
abolished the inhibitory effect of H202 on progesterone production [30]. Furthermore, it has been
reported that lipid peroxidation of the plasma membranes of luteal cells is involved in corpus luteum
regression through the disruption of cellular integrity [43, 44]. Taken together, the present results
document that melatonin prevents oxidative stress-induced lipid peroxidation of plasma membranes in
granulosa cells, as in other cells.

The primary function of mitochondria is to generate ATP through the five-complex electron
transport chain in the mitochondrial membrane. Mitochondrial damage by oxidative stress is
commonly related to cell death. Oxidative stress induces the mitochondrial membrane to release
cytochrome c, which activates caspase-9 activity and triggers the downstream caspase cascade
including the activation of caspase-3 [45]. Caspases are central mediators of apoptosis [46]; in
particular, caspase-3 activation is a major contributor to apoptotic processes [47]. The present study
showed that oxidative stress increased the caspase-3/7 activities and the percentage of apoptotic
granulosa cells; moreover, the results showed that the apoptotic effects of oxidative stress were
blocked by melatonin treatment. Thus, melatonin likely prevented apoptosis of granulosa cells by
reducing oxidative stress. These data are consistent with recent reports that melatonin prevents
apoptosis by regulating caspase-3 and Bax/BCL-2 in the gastric mucosa [48], leukocytes [49], and

bone marrow mesenchymal stem cells [50].
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Although melatonin directly scavenges free radicals, recent reports showed that melatonin
receptors are present in granulosa cells [51, 52]. However, the role of receptor-mediated actions of
melatonin in ovarian function is unclear, and little information is available concerning how melatonin
receptors change during estrous cycle. It has been reported that melatonin increases the expression
of other antioxidant enzymes such as SOD and glutathione peroxidase through melatonin receptors [53,
54]. In this study, the antioxidant effect was found 2 h after melatonin treatment, suggesting the
direct antioxidant action of melatonin, but not the receptor-mediated action. However, it would be
interesting to investigate whether melatonin works as an antioxidant through its receptors, for example,
by upregulating the expression of antioxidant enzymes, in a future study.

H202 caused significant DNA damage at the concentration of 10 uM, while concentrations of
H202 higher than 10 mM were necessary to cause mitochondrial damages, lipid peroxidation and
apoptosis with increased caspase 3/7 activities. The difference in the effective concentrations of
H202 may be due to the difference in sensitivities to ROS among cellular components of granulosa
cells. DNA has high sensitivity to ROS, but it is rapidly repaired. In contrast, mitochondria is
relatively resistant to ROS because it is always exposed to ROS that it produces. Therefore, DNA is
damaged by relatively low H202 concentrations, and higher concentrations of H20O2 are necessary to
cause mitochondrial damages and the subsequent apoptotic events.

The melatonin concentration used in this study was high compared with the physiological
concentrations in the follicle [15]. After melatonin reacts with ROS, the melatonin metabolites are
produced and accumulated in vivo. Interestingly, the melatonin metabolites also work as
antioxidants, resulting in melatonin and melatonin metabolites working together as powerful
antioxidants in vivo. Therefore, a high concentration of melatonin was used in this study to well
reflect the in vivo condition.

The present study showed that melatonin reduces the oxidative stress-induced DNA damage,

mitochondrial dysfunction, lipid peroxidation, and apoptosis of granulosa cells, showing that
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melatonin protects these cells by reducing free radical damage of cellular components including nuclei,
mitochondria, and plasma membranes. We previously reported that melatonin is present in high
concentrations in the preovulatory follicle [15, 16]. Collectively, these results suggest that melatonin
helps to maintain the integrity of granulosa cells in the follicle as an antioxidant. In addition, we
recently found that melatonin protects oocytes from oxidative stress in the follicle during ovulation
[15-19, 55]. Thus, melatonin, acting as an antioxidant, contributes to not only oocyte maturation but

also luteinization of granulosa cells in the follicle during ovulation.
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Fig. 1.  Effects of H202 and/or melatonin on 8-Hydroxydeoxyguanosine (8-OHdG) in granulosa cells.
Granulosa cells were incubated with H202 (0, 10, 100 uM) for 2 h. The oxidative guanine
base damage of DNA was assessed by fluorescence-based immunocytochemistry using specific
antibodies for 8-OHdG. (A) Control. (B) H202 (10 uM). (C) H202 (100 pM). (D) The
fluorescence intensity of each group was analyzed using the CellProfiler software. Granulosa
cells were also incubated with H202 (100 uM) in the presence or absence of melatonin (100
pg/ml) for 2 h. (E) Control. (F) Melatonin (100 pg/ml). (G) H202 (100 pM). (H) H202 (100
uM) + melatonin (100 pg/ml). (I) The fluorescence intensity of each group was analyzed as
described above. Data are shown as the mean = SEM of three independent incubations. a, P <
0.05 vs. control, and b, P <0.05 vs. the other groups (Kruskal-Wallis H-test and Mann-Whitney
U-test with Bonferroni correction).
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Effects of H202 and/or melatonin on histone H2AX phosphorylation (YH2AX) in granulosa
cells. Granulosa cells were incubated with H202 (0, 10, 100 uM) for 2 h. The double-strand
breaks of DNA were assessed by fluorescence-based immunocytochemistry using specific
antibodies for yH2AX. (A) Control. (B) H202 (10 uM). (C) H202 (100 uM). (D) The
fluorescence intensity of each group was analyzed using the CellProfiler software. Granulosa
cells were also incubated with H202 (100 pM) in the presence or absence of melatonin (100
pg/ml) for 2 h. (E) Control. (F) Melatonin (100 pg/ml). (G) H202 (100 uM). (H) H202 (100
uM) + melatonin (100 pg/ml). (I) The fluorescence intensity of each group was analyzed as
described above. Data are shown as the mean £ SEM of three independent incubations. a, P <
0.05 vs. control, and b, P < 0.05 vs. the other groups (Kruskal-Wallis H-test and Mann-
Whitney U-test with Bonferroni correction).
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Fig. 3.

Effects of H202 and/or melatonin on mitochondrial function.  Granulosa cells were
incubated with H202 (0.1, 1, 10 mM) for 2 h, and then the cells were loaded with a
mitochondrial-targeted fluorescent probe, MitoTracker Red, at a concentration of 100 nM for
15 min. The fluorescence images were obtained using a confocal laser scanning microscope.
(A) Control. (B) H202 (0.1 uM). (C) H202 (1 mM). (D) H202 (10 mM). (E) The
fluorescence intensity of each group was analyzed using the ImageJ software. Granulosa
cells were also incubated with H202 (10 mM) in the presence or absence of melatonin (100
pg/ml) for 2 h. (F) Control. (G) Melatonin (100 pg/ml). (H) H202 (10 mM). (I) H202 (10
mM) + melatonin (100 pg/ml). (J) The fluorescence intensity of each group was analyzed as
described above. Data are shown as the mean = SEM of three independent incubations. a, P
< 0.05 vs. control, and b, P < 0.05 vs. the other groups (Kruskal-Wallis H-test and Mann-
Whitney U-test with Bonferroni correction).
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Effects of H202 and/or melatonin on lipid peroxidation. (A) Granulosa cells were incubated
with H202 (0.1, 1, 10 mM) for 2 h. (B) Granulosa cells were incubated with H202 (10 mM)
in the presence or absence of melatonin (100 pug/ml) for 2 h. Lipid peroxidation of cell
membranes was analyzed by measuring hexanoyl-lysine (HEL). Data are shown as the mean
+ SEM of three independent incubations. a, P < 0.05 vs. control, and b, P < 0.05 vs. the
other groups (Kruskal-Wallis H-test and Mann-Whitney U-test with Bonferroni correction).
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Fig. 5.  Effects of H202 and/or melatonin on apoptosis of granulosa cells. (A) Granulosa cells were

incubated with H202 (0.1, 1, 10 mM) for 2 h. (B) Granulosa cells were incubated with
H202 (10 mM) in the presence or absence of melatonin (100 pg/ml) for 2 h. Apoptosis of
granulosa cells was assessed by nuclear fragmentation using DAPI staining. Apoptotic cells
were identified by condensation and fragmentation of the nuclei. Apoptosis was quantified
by calculating the percentage of apoptotic nuclei in a total of 200 nuclei in each group. Data
are shown as the mean £ SEM of three independent incubations. a, P < 0.05 vs. control, and
b, P < 0.05 vs. the other groups (Kruskal-Wallis H-test and Mann-Whitney U-test with
Bonferroni correction).
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Fig. 6. Effects of H202 and/or melatonin on caspase-3/7 activities of granulosa cells. (A)

Granulosa cells were incubated with H202 (0.1, 1, 10 mM) for 2 h. (B) Granulosa cells
were incubated with H202 (10 mM) in the presence or absence of melatonin (100 pg/ml)
for 2 h. Caspase-3/7 activities were determined as overall activities in 2.5x10* granulosa
cells and shown as relative fluorescence units (RFU). Data are shown as the mean £ SEM
of three independent incubations. a, P < 0.01 vs. control, and b, P < 0.05 vs. H202
(Kruskal-Wallis H-test and Mann-Whitney U-test with Bonferroni correction).



