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Abstract

In this dissertation, my doctoral research of intelligent self-tuning PID controller
using Enhanced Particle Swarm Optimization (EPSO) for ultrasonic motor (USM)
is presented. In order to get a satisfactory performance of USM servo system, a
new control method based on intelligence soft computation called EPSO has been
proposed and verified in this research.

The object of the research is USM. USM is new type motor that is driven by
ultrasonic vibration of piezoelectric materials. USM was produced commercially
at the first time by Sashida in 1980. USM has excellent features such as
compactness, lightweight, high torque, high position accuracy, Electromagnetic
Compatibility (EMC) compliance, silence, self-brake without power and quick
response. In recent years, USM can be applied in many applications such as for
auto-focus of camera, micro-robot, meal robot assistance, finger robot, MRI
(Magnetic Resonance Imaging) and micro-surgical robot.

Although, USM has excellent features and offers great advantages, USM has
problems. Because of no accurate mathematical model and characteristic changes
during operation, the control of USM is not easy. Deriving a mathematical model
of USM using physical analysis is too hard because of its strong nonlinearity,
uncertainty, and complexity in working principle. Moreover, due to temperature,
loading, input frequency and other disturbances, the characteristics of USM are
easily changed during operation. How to control USM is the focus of our
research. To overcome those problems, we proposed a new control method for
USM called intelligent PID controller using Enhanced Particle Swarm
Optimization (EPSO). We decided to use PID controller because of no accurate
model of USM. Moreover, PID controller has superior features, such as simple,
efficient, effective and robust. Then, to compensate the characteristic changes of
USM and difficulties of tuning process, self-tuning scheme was used. Due to self-

tuning scheme, the PID gain can be adjusted automatically and easily according to
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USM’s behavior. Recently, self-tuning scheme using intelligence soft
computation called intelligent self-tuning is developed to avoid the difficulty and
complexity in conventional self-tuning scheme. PSO is one of the intelligent self-
tuning that has superior features such as simple algorithm, faster convergence and
efficient in time-calculation. EPSO is a new development of PSO to overcome
the shortcoming of PSO, namely premature convergence and easy to get stuck or
fall into local optima. The shortcoming of PSO may lead to a poor performance,
especially in loaded condition.

PSO is a population-based optimization technique inspired by behavior of birds
flocking or fish schooling for finding a food. It was reported that the causes of the
shortcoming of PSO are unbalance between exploration-exploitation ability, lost-
diversity and lack-information due to fast rate flow in sharing information. There
are three parameters in PSO, i.e., inertia weight, cognitive coefficient and social
coefficient. Among them, the most important parameter is inertia weight because
of its capability in control the balance between exploration-exploitation abilities.
We proposed and investigated two types of EPSO, i.e., new inertia weight
approach PSO (e.g., PSO with nonlinearly decreased inertia weight or PSO-NDW
and PSO with random inertia weight or PSO-RIW) and adaptive inertia weight
approach PSO (e.g., adaptive PSO or APSO, adaptive PSO with random inertia
weight or APSO-RIW and hybrid adaptive improved PSO or HAIPSO). PSO-
NDW is proposed to control the usage period of exploration-exploitation abilities.
In here, inertia weight is decreased nonlinearly from maximum value to minimum
value. PSO-RIW is proposed to overcome the lack ability in PSO-NDW and
PSO-LDW (PSO with linearly decreased inertia weight). In here, inertia weight is
randomized from minimum value to maximum value. APSO is proposed to
accelerate in obtaining a proper balance between exploration-exploitation abilities.
In here, inertia weight is adjusted according to the swarm condition, i.e., fitness
value of Pbest (best known position of particle) and gbest (best known position
among all particles). APSO-RIW is proposed to combine the benefit of APSO
and PSO-RIW. The benefit of APSO is faster in obtaining a proper balance. The
benefit of PSO-RIW is high searching ability. In here, inertia weight is adjusted

according to the swarm condition and then randomized. HAIPSO is proposed to
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overcome the causes of shortcoming simultaneously by using combination of
three strategies. The first strategy called adaptive inertia weight is to accelerate in
obtaining a proper balance. The second strategy called additional part is to create
a new particle’s movement and to compensate the lack-information and fast rate
flow in sharing information. In the second strategy, a new additional part called
socio-cognitive part for connecting directly between gbest and pbest is inserted
into PSO algorithm. The third strategy called mutation operator is to keep the
diversity of swarm and to avoid premature convergence.

To evaluate the effectiveness of the proposed control method, we tested it and
compare with the previous control methods by using histogram, average error,
success-rate (SR) and convergence speed. The experimental results showed that
the proposed control method has a best performance in both unloaded and loaded
condition. The proposed EPSO has shown faster convergence speed and higher
SR. It means the proposed EPSO can reduce effectively the risk of premature
convergence and fall into local optima. The proposed EPSO has proved an
effective strategy for improving PSO. Due to EPSO-based PID controller, the
accuracy of USM servo system can be increased significantly. The contents of the
research are organized into five chapters summarized as the following.

Chapter 1 is the introduction of this research. In this chapter, the background of
the research, related works, the motivation, the problem statement and target are
introduced.

In Chapter 2, USM and PSO-based PID controller are provided. The basic
principle of USM, PID controller, PSO algorithm, and the configuration of PSO-
based PID controller for USM are explained.

In Chapter 3, new inertia weight approach PSO (PSO-NDW and PSO-RIW) is
explained. Then, the effectiveness of PSO-NDW based PID and PSO-RIW based
PID are investigated experimentally.

In Chapter 4, adaptive inertia weight approach PSO (APSO, APSO-RIW and
HAIPSO) is explained. Then, the effectiveness of APSO based PID, APSO-RIW
based PID and HAIPSO based PID are investigated experimentally.

Finally, in Chapter 5, the discussion and conclusion are summarized.
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Chapter 1

Introduction

In this chapter, the background, related works, the motivation, the problem
statement and target of the research about intelligent self-tuning PID controller
using Enhanced Particle Swarm Optimization (EPSO) for ultrasonic motor (USM)

are introduced.

1.1 Background

The ultrasonic motor (USM) is a new type motor that has different
construction, characteristics and operating principles than the common
electromagnetic (EM) motors. The USM is driven by the ultrasonic vibration
force of piezoelectric materials. USM was introduced at the first time by H.V.
Bart and V.V Lavrinenco in 1973 and was produced commercially at the first time
by Sashida in 1980. After that, USM has been widely used in many applications
where the size, torque and other requirements could not be satisfied by the
common EM motors. USM has excellent features, such as compact size,
lightweight, high torque, high position accuracy, Electromagnetic Compatibility
(EMC) compliance (unaffected by external magnetic field), silence operation,
self-brake without power, and quick response. Owing to those performances,
recently the USM has been used in many purposes applications. In actual
applications, USM has been used as ultra-precision actuator in autofocus of
camera (including camera on cellular phone), autofocus of spacecraft telescope,

micro robot, finger robot, meal robot, electron beam lithography and a ’fly-by-



wire’ of aeronautics. In the future, we expect that USM will be an important
actuator in specific applications. For examples, in medical equipment and surgery
(e.g. electron or ion beam apparatus, X-Ray, scanning probe microscopy,
catheters, micro-surgery knives, tele-surgery) and in high magnetic field area (e.g.
in MRI or magnetic resonance imaging) [1-7].

Although USM has several advantages and excellent features, they have
some problems. Due to no-accurate mathematical model and characteristic
changes during operation, it is difficult to control USM in order to get a best
performance. Deriving the mathematical model of USM using physical analysis
is too hard because of its nonlinearity, uncertainty, complexity in working
principle. Moreover, due to temperature, loading, input frequency and other
disturbances, the characteristic of USM is easily changing during operation.
Although, some mathematical models of USM are available and have been
proposed, they are unsatisfactory because the given models used the simplified
model with some assumptions as limiting variables, so they have limitations and
significant modeling error. They cannot cover all properties of USM [8-13]. How
to control USM or what is the proper controller for USM is an important problem.
The research to develop the proper controller for USM is being conducted
intensively [14].

There are no perfect control schemes for USM, especially in the precise
speed and position servo system. In general, there are two control schemes for
USM, i.e., model-based controller and model-free controller. Designing of
model-based controller absolutely requires a mathematical model of USM and
needs a complex mathematical calculation or a high expertise in control theory.
Using the simplified model of the USM in this scheme will cause difficulties in
achieving a best performance. Thus, it is not easy to apply model-based controller
for USM. This scheme is rarely used for USM. For examples of model-based
controller are robust controllers [15-16] and generalized predictive control [12].
Designing of model-free controller for USM is easier because they can be
designed without using a mathematical model of plant. The popular of model-free
controller are fuzzy logic controller (FLC), neural network (NN) controller and

PID controller. FLC is a new type controller based on the linguistic control rules.



FLC has been successfully applied for USM in recent years [17-19]. But, FLC
has disadvantages. The performance of system controlled by FLC absolutely
depends on the designer’s experiences and intuitions. FLC has a lot of
parameters. So, it is difficult to represent the designer’s experiences and
intuitions perfectly into linguistic control rules. It is difficult to make a proper
control rules. If the characteristic of plant is changed during operation, the control
rules must be changed or updated. It is ineffective and time-consuming. Neural
network (NN) controller is a new type controller based on the structure and
functions of biological brain called neural network. The NN controller and FLC
are suitable in controlling a nonlinear system with unknown mathematical model,
such as USM [33-34]. The NN can be used to find the parameters of a fuzzy
system (i.e., fuzzy set and fuzzy rule). The combination between fuzzy system
and NN creates a new type controller called fuzzy neural network (FNN) or
neuro-fuzzy controller and has been applied to USM [31-32]. The performance of
system controlled by NN controller absolutely depends on the configurations or
model of the used NN and learning process. It is not easy to create or determine a
proper model of NN because too many configurations are available. Each
configuration for solving one problem may not be able or suitable to solve other
problems.  Sophisticated or complicated configuration may give a better
performance. But, the sophisticated model of NN requires a long time in learning
process. NN controller should be trained using learning process. There are
several learning methods and they are not easy. Unsuccessfully learning process
may lead to a poor performance. Learning process cannot guarantee to get a best
performance. According to those reasons, PID controller is widely used for USM.
PID controller has superior features, such as simple, easy implementation,
efficient, effective and quite robust [20-22]. PID controller has three parameters
to be tuned, i.e., K, K; and K;. The performance of system absolutely depends on
these parameters. The process to determine the parameters of PID controller is
called tuning. Sometimes, we called it as optimal tuning because the goal of this
process is to get the best possible performance. Many tuning methods are
available, e.g., Ziegler-Nichols, Cohen-Coon, Astrom-Hagglund and Paulin-

Pemerleau. Self-tuning scheme is developed to compensate the characteristic



changes of USM during operation. Due to this scheme, the parameters of PID
controller can be adjusted automatically and easily according the USM’s behavior.
Recently, self-tuning scheme using intelligent soft computations called intelligent
self-tuning is developed to avoid the difficulties or complexity of the conventional
self-tuning scheme. Intelligent self-tuning PID controller has been applied
successfully for USM in recent years, e.g., BPNN-PID [23], NN-PID [24], GA-
PID [25], Fuzzy-PID [26, 30], PSO-PID [27- 28] and IMC-PID-NN [29].

1.2 Related Works

As stated in previous section, because of no accurate mathematical model
of USM and characteristic changes of USM during operation, it is difficult to
control USM in order to get a best performance. Developing of proper control
scheme for USM is being conducted intensively because the using USM offers
great advantages than the common EM motor. Some control schemes have been
proposed for USM in recent years.

Due to complexities and difficulties in designing fuzzy logic controller and
neural network controller, PID controller is widely used for USM. Designing PID
controller is easier because this controller has only three parameters to be tuned.
PID controller has a long history since 1900 and has been applied in many
applications in industry. Many systems in industry, including nonlinear systems
and complicated or sophisticated systems, controlled by PID controller show a
satisfactory performance.

K. Tanaka et al. designed variable gain-type PID controller using PSO for
USM [28]. In the scheme, PSO algorithm is used to determine or optimize the
gains of PID controller automatically. PSO is used as self-tuning scheme instead
of the other intelligent soft computations, e.g., fuzzy, BPNN, NN, GA, FNN,
ACO, and BFO, because of its superior features, such as simple algorithm, easy
implantation, faster convergence and efficient in time-calculation. The
effectiveness of PSO as intelligent self-tuning PID controller has been proved and
demonstrated by other researchers in various plants, e.g., linear brushless DC

motor [35], the ball and hoop system [36], the drilling machine [37], rotary



inverted pendulum [38], automatic voltage regulator (AVR) [39], and nonlinear
systems [40]. PID controller tuned by PSO algorithm has superiority in term of
simplicity, easy implementation, effectiveness, efficient, robustness and good or
suitable controller for USM. However, this method has disadvantages. The used
PSO is still a standard type of PSO that has shortcoming, i.e., premature
convergence and easy to get stuck or fall into local optima Due to the
shortcoming, the performance of system is not optimal. The shortcoming may
lead to a poor performance, especially in loaded condition.

In computer science, PSO is very popular as a powerfully optimization
technique instead of genetic algorithm (GA). Since the shortcoming of PSO is
known, research to overcome the shortcoming was conducted intensively. It was
reported that the causes of the shortcoming has to be indicated as follows:
unbalance between exploration-exploitation ability, lost diversity and lack-
information due to fast rate flow in sharing information and particle’s movement
mechanism. These causes are very closely related to parameters setting of PSO.
However, how to adjust these parameters is still unclear and more need
investigation. A. Chatterjee et al. proposed a strategy for adjusting inertia weight
called nonlinearly decreased inertia weight (PSO-NDW) instead of linearly
decreased inertia weight that is used in the standard type of PSO or PSO-LDW
[64]. PSO-NDW has been tested successfully for several benchmark functions.
Dawei Zhou et al. proposed a strategy for adjusting inertia weight called random
inertia weigh (PSO-RIW) to increase global ability [65]. Chen Dong et al.
proposed a strategy for adjusting inertia weight called adaptive inertia weight
(PSO-AIW), where inertia weight is adjusted based on number of population,
dimensions and fitness of particles [66]. Research of Enhanced PSO is still
conducted intensively [41-45, 67-68].

According to the related works introduced above, it is clear that the self-
tuning PID controller for USM based on an Enhanced PSO can be considered as
an attractive, effective and efficient controller, which is able to compensate the
characteristic changes of USM in real applications. However, there are still some
weakness may reduce the performance of USM. For developing of the method,

the motivation of this research is introduced in the following section.



1.3 Motivation

The research is motivated by several reasons as follows:

1.

1.4

We chose USM as an object or a plant of the research because USM is a
new type motor that has many advantages than the common
electromagnetic motor. The USM is better and more suitable than the
common EM motor for several applications. For special cases, it is too
difficult or impossible to apply the common EM motor. For examples, in
area with strong magnetic field and as micro-actuator with high-torque on
micro-robot.

How to control USM is not easy because of no-accurate mathematical
model of USM and characteristic changes during operation. Many control
strategies have been proposed for USM. However, the research to develop
the proper controller for USM is still being conducted intensively.

The previous research or method, called Self-Tuning PID Controller using
PSO Algorithm, has disadvantage or weakness. The used PSO is the
standard type of PSO algorithm that is commonly used in many
applications as optimization technique. The standard type of PSO has
shortcoming, namely premature convergence and easy to get stuck or fall
into local optima. The shortcoming may lead to a poor performance.
Recently, PSO has become popular and many researchers are trying to
develop PSO for solving the shortcoming of PSO because PSO is a new
optimization technique that has superior features than other techniques,
such as simple algorithm, easy implementation, faster convergence and
efficient in time-calculation. Compare with other tecgniques, PSO has a
few of parameters. However, the selection of these parameters is still

unclear and need more investigation. This is a new challange.

Problem Statement and Target

According to previous sections, there are two problems to be solved in the

research. The first problem is the difficulties in controlling USM and how to



develop a new proper controller for USM in order to get a best performance in
term of position accuracy and ability to compensate its characteristic changes
during operation. The second problem is the difficulties in parameters setting of
PSO and how to improve PSO in order to overcome its shortcoming.
Investigation to develop the new or proper strategy is focused on how to reduce
the risk of premature convergence and possibility of particles trapped into local
optima.

The target of the research is to make or design a new proper controller for
USM with hold on the properties of simplicity, reliability, effectiveness, efficient,

and robust. Also, increasing accuracy in USM servo system is an important target.

1.5 Outline

In this dissertation, the contents of the research about “Enhanced PSO and
Its Applications for Intelligent Self-Tuning PID Controller on Ultrasonic Motor”
in my doctoral course are organized into five chapters summarized as follows.

This Chapter 1 is the introduction of this research. In this chapter, the
background of the research, related works, the motivation, the problem statement
and target are introduced.

In Chapter 2, Ultrasonic Motor and PID-PSO Controller for Ultrasonic
Motor are provided. The basic principle and applications of ultrasonic motor, the
basic principle of PID controller, the theory of PSO algorithm and several
strategies for addressing the shortcoming of PSO are explained to give
understanding of the research.

In Chapter 3, New Inertia Weight Approach PSO based Intelligent PID
Controller for USM are explained. In here, two inertia weight approaches, i.e.,
Nonlinearly Inertia Weight (NDW) and Random Inertia Weight (RIW), for
improving PSO are delivered. Each New Inertia Weight Approach PSO is
investigated on USM servo system to know its properties and its characteristics.
Then, the comparison of performances, i.e., accuracy in histogram, convergence

speed, Success Rate (SR) and number of parameters, are described in detail.



In Chapter 4, Adaptive Inertia Weight Approach PSO based Intelligent
Self-Tuning PID Controller for USM is delivered. There are three types of these
Adaptive PSO used as intelligent self-tuning PID controller, i.e., APSO (Adaptive
Particle Swarm Optimization), APSO-RIW (Adaptive Particle Swarm
Optimization with Random Inertia Weight) and HAIPSO (Hybrid Adaptive
Improved Particle Swarm Optimization). Each Adaptive PSO is investigated on
USM servo system to know its properties and its characteristics. Then, the
comparison of performances, i.e., accuracy in histogram, convergence speed,
Success Rate (SR) and number of parameters, are described in detail.

Finally, in Chapter 5, the discussion about general performances of all
proposed methods and using policy of PSO algorithm, the general conclusion, the
originality and the contribution are provided. Based on the results, the future

works are studied for research in next phase.



Chapter 2
Ultrasonic Motor and PID-PSO

Controller for Ultrasonic Motor

2.1 Ultrasonic Motor Review

Ultrasonic motor (USM) is a new type of motor driven by ultrasonic
vibration generated by piezoelectric materials [1-2, 4]. USM can be considered as
a new actuator since they are commercialized in 1980. Even in the future, USM
will be an important actuator for special applications where the size, torque and
other requirements could not be satisfied by the common electromagnetic (EM)
motor. Actually, the development of the actuator that applies piezoelectric
materials has been started since 1948 by William and Brown [46]. Their
inventions have become the beginning of the development of the USM in the
future. Nevertheless, USM was not developed quickly because of the limitation
of resources and processing technologies at that time [47]. In 1973, H.V. Bart and
V.V. Lavrinenco have introduced a new concept of USM. After a long research,
in 1982, a standing wave ultrasonic motor (SWUSM) was successfully made by
Sashida and after that the USM began to be produced commercially for some
applications at the first time. Later, in 1983, Sashida designed a new type of
USM, called travelling wave ultrasonic motor (TWUSM) and in 1984 was granted
a patent in USA [48]. Owing to USM’s excellent features, e.g., compactness,
lightweight, high retention torque, high position accuracy, Electromagnetic

Compatibility (EMC) compliance (no emitted electromagnetic noise or no-



affected by external electromagnetic fields), no running sound, self-brake without
power and quick response, over the common EM motor, they were widely applied
in various kinds of applications, especially, applications that require high
accuracy, for micro or nano-actuator and for medical equipment with EMC
compliance.

A common application of USM we can see in our real life is the autofocus
of camera (including camera on cellular phone). Figure 2.1 shows the illustration
of USM applied in autofocus of camera. Conventional autofocus camera lens
used to be driven by motors with gears. These are characterized by a somewhat
loud whirring/gears grinding sound while it focuses. It would be very disturbing
for camera-equipped sensitive microphone like a handy-cam. By using USM on
camera, the problem can be solved. Moreover, the accuracy of the focusing lens

to be getting better and finally the image processing can be increased significantly.

Fig. 2.1: Canon zoom auto-focus lens using USM

A novel orthogonal nut-type USM [49], BolyMotion, is produced which is
used an actuator in the mobile-phone auto-focus (AF) module. The exploded
view of the assembly structure of BolyMotion is shown in Fig. 2.2. The threaded
metal nut by which the piezoelectric ceramic plates are attached to it as the stator
and the lens is the rotor. An in-plane traveling wave is stimulated on the stator

when a harmonic signal is applied to the piezoelectric plates. The traveling wave
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drives the lens to rotate, and the threads transform the rotation into a linear
motion. Thereby, an AF function can be achieved.

Meanwhile, according to USM’s excellent features in EMC
(electromagnetic compatibility) compliance, USM can be applied in medical
equipment, such as in MRI (magnetic resonance imaging). MRI is medical
equipment that uses a strong magnetic resonance to visualize the internal body, as
shown in Fig. 2.3. It is difficult to apply a conventional electromagnetic motor

because it requires special treatment to overcome the magnetic interference.

Fig. 2.2: USM structure for the mobile-phone auto-focus (AF)

MRI Scanner Cutaway

- ¥
Gradient
Coils

Fig. 2.3: Magnetic Resonance Imaging (MRI)
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The typical model of USM that we have used in the research is the basic
structure of TWUSM manufactured by Shinsei Corporation as shown in Fig. 2.4.
In the figure, the main components of USM covered by the case, including
bearings, axis, rotor and stator, are shown clearly. The shape variation is
constructed in the elastic body and oscillated by the piezoelectric ceramic in the
stator. The driven source of USM is the friction generated on the surface between
the stator and rotor. The TWUSM realized the rotor rotation through the

travelling wave instead of the standing wave [11, 14].

Fig. 2.4: Cutaway view of typical USM

2.1.1 Working Principle of USM
Figure 2.5 shows the driving principle of TWUSM. In the figure, the bar

shape part above is the rotor, and the wave-shape part below is the stator of the
USM. These two parts contact with each other at the surface between them. The
electrode and the piezoelectric ceramic are set under the stator. When two input
signals with frequency around piezoelectric ceramic’s resonant frequency and
orthogonal mode, such as sin wt and cos wt, are introduced to the piezoelectric
ceramic, a standing wave will be generated. Then, the points in the stator are
driven into elliptical motion as the figure shows. The motion of points causes a

traveling wave propagating in the stator. Meanwhile, because of the pressure
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added at the surface between the stator and the rotor, there is friction generated at

the contact surface. The friction drives the rotor running in the opposite direction.

AXIAL FORCE

ROTATION . o
DIRECTION .

Fig. 2.5: The driving principle of USM

2.1.2  Features of USM

In the future, the USM will be an important actuator in specific
applications because they have excellent features as follows:

1. Compactness and lightweight: because of no coil and magnet, a
micro motor with 1.5 mm in diameter can be realized by USM.

2. High torque: because of the friction driven principle, USM have
high torque without gear mechanism. USM have high holding
torque, which acts as a brake function, even in the power off
condition. Comparing to the conventional electromagnetic motor in
same size (1 cm in diameter), the torque of USM is around 100 times

greater.
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. High precision accuracy: because of no gear mechanism, there is no

backlash in position control of USM. The accuracy of USM can

achieve 0.69 [nm].

. EMC compliance: USM is driven by ultrasonic vibration instead of

electromagnetic  principle. Therefore, there is no-radiated
electromagnetic emission from USM. Also, USM operation cannot
be influenced by external electric or magnetic field.

Quick response: very quick response of less than 1 [msec] rotation
is obtained with the development of a small-sized 17 [mm] diameter

ultrasonic motor.

. No running sound: The ultrasonic level vibration in USM is not in

the ranges audible of human being. There is no sound from gear

mechanism.

Although USM have excellent features, they have several problems as

follows:

. No accurate mathematical model: It is hard to derive the

mathematical model of USM based on physical analysis because of
its nonlinearity (e.g., dead-zone and hysteresis), uncertainty and
complexity of driving principle.

Characteristic change according to condition: Due to temperature,
loading, input frequency and other disturbances; the characteristic of
USM is easily changed during operation. It is a main difficulty in

USM controlling.

. Low speed: USM is a low speed motors. Their control performance

at high speed range is not as good as at low speed range.
Short lifetime: Because of the friction of driving principle, the

abrasion makes lifetime of USM is shorter.
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2.2 PID-PSO Controller Review
2.2.1 PID Controller

A proportional-integral-derivative controller (PID controller) is a generic
control loop feedback mechanism (controller) widely used in industrial control
systems. PID controller calculates an "error" value as the difference between a
measured process variable and a desired set point. The controller attempts to
minimize the error by adjusting the process control inputs [20-22]. It is
considered as the most significant control algorithm in process control. Now
more than 90% control system is still PID controller. PID controller has simple
structure, efficient, effective, easy implantation and quite robust. It was reported
that many control system that use PID controller have shown a satisfactory
performance. The PID controller calculation (algorithm) involves three separate
constant parameters, and is accordingly sometimes called three-term control: the
proportional, the integral and derivative values, denoted P, I, and D. Heuristically,
these values can be interpreted in terms of time: P depends on the present error, /
on the accumulation of past errors, and D is a prediction of future errors, based on
current rate of change. That is why it is simple and easy to be employed.
Meanwhile, it is attractive also because that it works quite well even without
mathematical model of plant. We can apply PID controller on plant without
model, deciding the gains for three manipulations by trial and error, manually
tuning or hand-tuning. Therefore, PID controller is adopted in USM control as an

important controlling tool without requiring model of USM.

Fig. 2.6: The basic structure of PID controller
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Figure 2.6 shows the basic structure of PID controller with feedback
mechanism. Error is the difference between set-point signal and the output as

shown in the following equation:

e(t) =r(t) —y(®) 2.1)
The control input can be expected as:

de(t)
dt

u(t) = Kp [e(t) + Til [e(®)dt + Ty (2.2)

In the equation, Kp is the proportional gain, 7;is the integral time, and 7} is the
derivative time, respectively. Equation 2.2 can be expressed in discrete time form
with time sampling of 7. The proportional term can be rewritten as Kp.e(t). In

continuous form, the integration can be defined as:

Je@®dt = limpo(T5_ e(HAL) (2.3)
In continuous form the limit Az—0 is possible. But in discrete time form, At can
be set as minimum as the sampling time 7. It is impossible for At to approach to
0. Then the integral term can be estimated asTll ﬁ?:(,e(j). Considering the
derivative term by the same way, the derivative in continuous time can be
expressed as:

de(t) . Ae(t)
ar hmAt—>0A_t (2.4)

Then consider Ae(t) = e(k) — e(k — 1), and At — T, the derivative term can be
expressed as TFD [e(k) — e(k — 1)]. The PID controller expressed by discrete time

form can be synthesized as:
u(k) = Kp [e(k) + - 2o () + 22 (k) — e(k — 1) (2.5)

To get the expression of the incremental type PID control, the expression in

previous step can be estimated as:
u(k = 1) = Kp|e(k — 1) + Tllz;‘;ge(j) +2(e(k — 1) — e(k - 2))| (2.6)

Then, the difference between the two steps expressed in Eq. 2.5 and Eq. 2.6 can

be calculated as the following equation.
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u(k) —ulk — 1) = Kp {[e(k) — e(k = 1)] + Tile(k)

+22[e(k) — 2e(k — 1) + e(k — 2)]} (2.7)

According to Eq. 2.7, the other two gains, the integral gain K; and the derivative

gain Kp can be estimated as K; = KP.TLI and Kp = KP.TFD , respectively. The
control input of incremental PID controller can be synthesized as:

u(k) =u(k —1) + Kple(k) — e(k — 1)] + K;e(k)

Kple(k) —2e(k — 1) + e(k — 2)] (2.8)

As we see in Fig. 2.7, it is the PID control scheme for USM. In the block

diagram, Gpm(z'] ) represents the PID controller for the USM plant. In the

scheme, r(k), u(k), and y(k) are the objective input, the control input and the

output in discrete time, respectively. The e(k) is the error between the objective

input and the output as shown in the following equation.

e(k) =r(k) —y(k) (2.9)

rk) e(k) u(k) y(k)

————=0O— Gpp(z) USM

Fig. 2.7: Block diagram of PID control for USM

The control input of the system in discrete time can be synthesized as:
utk) =ulk—1)+ (Kp + K, + Kp)e(k)
—(Kp + 2Kp)e(k — 1) + Kpe(k — 2) (2.10)
In this feedback system, the PID controller can be denoted as following:

Kp(l—Z_l)+KI+KD(1—Z_1)2

1-z—1

Gpp(z™') = 2.11)
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According to general PID theory, the proportional response can be adjusted
by multiplying the error by the proportional gain Kp. The magnitude of the
contribution of the integral gain to the overall control action is determined by the
integral gain K;. And, the derivative gain Kp slows the rate of change of the
controller output and this effect is most noticeable close to controller objective
input.

The most critical step in application of PID controller is tuning process.
Tuning process is the process to determine the parameters of PID controller.
Sometimes, this process is called as optimal tuning because the goal of this
process is to get a best possible performance. The performance of system
absolutely depends on the tuning process. The simple method for tuning PID
controller that is still widely used in industry is trial and error or manually tuning
or hand-tuning. One of the hand-tuning is introduced by Ellis [50] and called the
zone-based tuning. It means that the low and high frequency part of the controller
can be tuned separately, starting with the high frequency part. For PID controller,
this means that first the P and D action are tuned and then 7 action. The procedure
with steps to follow to tune PID controller is given as follows:

1. Set Kp low, while K; =0 and Kp = 0.

2. Apply reference signal at about 10% of the desired bandwidth. Use
large amplitude, but avoid saturation.

3. Raise Kp for approximately 10% overshoot.

4. Raise Kp to eliminate most overshoot.

5. Raise Kj to eliminate steady-state.

Several conventional tuning methods, such as Ziegler-Nichols, Astrom-
Haglun, and Poulin-Pemerlau, are also still used in industry. However, these
methods have some difficulties, such as time-consuming and cannot guarantee to
find the optimal gains. Also, the conventional fixed-gain PID controller cannot
compensate the characteristic changes of plant.

To overcome these problems, self-tuning schemes have been developed.
In the self-tuning schemes, the gains of controller can be adjusted automatically
according to the plant’s behavior during operation or online. By using the self-

tuning schemes, the gain of PID controller will always adapt to the changes of
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plant’s behavior, so that the general performance of system can be optimized.
Figure 2.8 shows the structure of the self-tuning PID controller for USM. There
are two groups of self-tuning schemes. The first group is the traditional methods
that contain complex mathematical calculations, such as steepest descent,
Newton’s methods, Hill climbing, and gradient method. The second group is the
intelligence methods that use algorithm based on the nature-inspired behavior,
such as genetic algorithm (GA), neural network (NN), fuzzy, ant colony
optimization (ACO) [77-78], bacterial foraging optimization (BFO) [79], and

particle swarm optimization (PSO).

Self-tuning
Schemes

k) 4 ek u(k) y(k)
PID USM

- Y

Fig. 2.8: Self-tuning PID controller for USM

2.2.2 Particle Swarm Optimization Review

Particle swarm optimization (PSO) is a new population-based optimization
technique inspired by social behavior of bird flocking or fish schooling in search
of food. PSO was introduced at the first time by Dr. Eberhart and Dr. Kennedy in
1995 [51]. After that, PSO became very popular as powerfully optimization
technique that can be widely used in various fields instead of Genetic Algorithm
(GA), e.g., any east routing communication [52], document clustering [53], robot-
path planning [54], economic dispatch [55] and image processing [56]. The basic
idea of PSO is cooperation and sharing information in birds flocking or fish
schooling for finding a food, as shown in Fig. 2.9. If one of bird or fish found a

potentially region with the food, he will send information of its position to other
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birds or fishes thus the swarm will move towards the targeted region and capture

the food.

Fig. 2.9: Birds flocking and fish schooling

Compare with other optimization techniques, e.g., the first popular
optimization method called Genetic Algorithm (GA), PSO has superior features,
such as simple algorithm, easy implementation, faster convergence and efficient
in time-calculation [53, 58, 69-70]. Basically, there are some similarities between
GA and PSO. Both of them are optimization technique based on population and
stochastic or random process for solving the optimization problems. Each
member of population is a candidate of the solution. The main difference between
GA and PSO is working principle in searching process to improve a candidate
solution. The working principle of GA uses competition and selection, but PSO
uses cooperation and sharing information. Each member of population in GA will
be selected based on the fitness value. Due to this competition, there are members
of the population who are dead and live to continue to the next process. In PSO,
each member of the population will cooperate in the form of sharing information.
One of the members of population with a best fitness value called gbest will send
information of its position to other members and this information will be updated
until the end of process. There is no-death population in PSO. In GA, during
process to improve a candidate solution, evolution operator, i.e., crossover and
mutation, and coding-decoding are used. It means that each candidate solution

should be converted into binary number during searching process, i.e., it is a
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coding mechanism. If the process is completed, a binary number should be
converted again into a real number, it is a decoding mechanism. But, PSO doesn’t
use evolution operator and coding-decoding mechanism. A candidate solution
handled by each particle in PSO is a real number. Thus, PSO is a new
optimization technique with simplicity in process, so the convergence speed is
faster and time-calculation is shorter than GA.

In computer science, particle swarm optimization (PSO) is a
computational method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality (here called value of
fitness function).

PSO optimizes a problem by having/using a population of candidate
solutions, here called particles, and moving these particles around in the search-
space according to simple mathematical formulae over the particle's position and

velocity as shown in the following equations.

vi’,’;'l = w.vg +cp.1. (Pbl-,d - xl-"’é) + c,.15. (gbd - x{"é) (2.12)
gt = xfy + vl (2.13)

where d = 1,2,...n represents the dimension; i = /,2,...§ represents the particle
index; m represents the searching number or iteration; w represents the inertia
weight; ¢; and ¢, are constants, called cognitive and social scaling parameters
respectively (usually, ¢; = ¢2); r; and r, are random numbers drawn from a
uniform distribution; Pb (personal best) represents the local best known position;
gb (global best) represents the best known position among all particles.

Each particle's movement is influenced by its local best known position
(called Pb) and is also guided toward the best known positions among all particles
in the search-space (called gb), which are updated as better positions are found by
other particles. This is expected to move the swarm toward the best solutions and
get convergence. It means that there is a learning process in PSO algorithm. Each
particle will learn from own experience and the experience of other particles in the
group. The particle’s movement in PSO algorithm can be illustrated in Fig. 2.10.

The movement of particles is governed by three parts: (1) the inertial part, w.v;";
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(2) the cognitive part, (Pb; - x;"); (3) the social part, (gb — x;"). The velocity
vector of v;"*! is formed based on three vectors as shown in Eq. (2.12). The first
one is inertia vector, which is the vector from weighting factor w and the velocity
vector v;". The remaining two are vectors for each (Pb; — x;") and (gb - x;"), which
formed from learning factor c¢; as well as ¢;, and also [0, 1] of uniform random
numbers R. From those interactions, velocity vector vi’”” act so that the particle

.. i
moves to new position, x;"*".

c2.12.(gh — x")

Fig. 2.10: Particle’s moving mechanism

The working mechanism of PSO algorithm can be described in four steps as
follows:

1. Deploy a population of candidate solution (or particles) in the searching-
area randomly. Each particle can handle a candidate solution with D-
dimension.

2. Evaluate the fitness value of each particle and set as pbest and gbest.

3. Update the position and velocity of each particle using Eq. 2.12 and Eq.
2.13.

4. Check the termination condition. If the condition is not met, return to No.
2. If the condition is met, the process is complete and the optimal solution

is the particle with gbest.
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The working mechanism of PSO algorithm also can be expressed into

flowchart as shown in Fig. 2.11.

START

Initialize population of candidate solution (particles)
randomly

Evaluate the fitness value of each particle and decide
as pbest and gbest

Update the position and velocity of particles using Eq.
2.12 and Eq. 2.13

Stop criterion

Y

END

Fig. 2.11: Flowchart of PSO algorithm

2.2.3 PID-PSO Controller Performance

In the previous research, PID controller was chose as controller for USM
because of the difficulty in getting the mathematical model of USM. PID
controller is one of the model-free controller that can be designed without using
the mathematical model of plant. Also, PID controller has superior features, such

as simple, easy implementation, efficient and effective. The fact shows that many
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control system in industry that use PID controller have shown a satisfactory
performance. However, adjusting three gains of PID controller for obtaining an
optimal performance is not easy because the characteristic USM is easy changed
during operation due to temperature, input frequency, loading and other
disturbances. To compensate this characteristic changes, self-tuning scheme is
used for PID controller. Due to self-tuning scheme, the gains of PID controller
can be adjusted automatically according to the behavior of USM.

Design of self-tuning PID controller for USM using PSO is shown in Fig.
2.12. The references input position are +45 [deg] or clock wise (CW) direction
and -45 [deg] or counter clock wise (CCW) direction. The output of PSO is
position of particle that handles three PID parameters. Based on this reason, PSO
is set in three dimesions. Because of computer-based controller, we decided to
use 1 [ms] of sampling time. It means that the error signal or other data is taken
every 1 [ms]. To evaluate the fitness value of each particle, we use fitness
function as shown in Eq. (2.14) and Eq. (2.15). Equation (2.14) is in continous
time and Equation (2.15) is in discrete time. Fitness value is calculated based on

the performace index called Integral Squared Error (ISE).

1

1+f0T{e(t)}2dt (2.14)

fitness(t) =

1

fitness(k) = TR

(2.15)

In here, T is the expected calculation-time. In experiment, we used 7' = 10 [ms],
so the fitness value is updated every 10 [ms] or is calculated from the sum of the
10 pieces of data. Also, position, velocity and PID parameters are updated every
10 [ms]. The number of particles used in the research is 5 particles to keep
efficiency in time-calculation.

The USM servo system constructed in this study is shown in Fig. 2.13.
USM, the electromagnetic brake and the encoder are connected on a same axis.
The typical USM for our reseach is USR 60 manufactured by Shinsei Corporation.
Driver circuit is to drive USM in both directions. Electromagnetic brake is to give

loading effect for USM. Encoder is to measure the position of USM. The
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resolution of encoder is 0.0011 [deg]. It means that the encoder can not measure
the position of USM if its position is smaller than 0.0011 [deg]. Measurement
result is sent to Personal Computer (PC) through counter board. In PC, an error
signal is calculated based on the difference between reference input position and
actual position of USM measured by encoder. Then, a control signal is calculated

based on this error signal and sent to driver circuit through IO board.

Fr- T

. i AT
x = [Kp,Ki,Kd]

Fig. 2.12 PSO-based PID Controller

Magnetic

Driver
circuit

10 Board |Counter Board

Personal Computer

Fig. 2.13 USM Servo System

In each experiment, the load 1is added or not is discussed to observe the
changes of the USM’s characteristics. While the voltage of 12 [V] is given, the
force of 0.25 [Nm] could be loaded to the shaft of the USM. The specifications of

USM servo system is shown in Table 2.1.
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Table 2.1 Specifications of USM, Encoder, and Magnetic Brake

Rate rotational speed: 100 [rpm]
Rated torque: 0.5 [N.m]
USM
Maximum torque: 1.0 [N.m]
Holding torque: 1.0 [N.m]
Encoder Resolution: 0.0011 [deg]
Load 0to 0.5 [N.m]

Figure 2.14 shows the flowchart of PSO algorithm for self-tuning PID
controller on USM servo system. Firstly, we set parameters of PSO algorithm,
e.g., in here, number of particles, n = 5; maximum value of inertia weight, wy,,, =
0.8; minimum value of inertia weight, w,,;, = 0.3; cognitive constant, ¢; = 1; social
constant, ¢; = 1; dimension, D = 3; and iteration maximum, m,,,, = 80. Secondly,
PSO will generate an initial velocity and position of particles randomly. Thirdly,
in the first step-discrete time, k = 1 [ms] and set time-calculation, VIM = 10 [ms].

Then, the algorithm calculates the parameters of PID controller as follows:

Ky = Kpo " (1= xi1) (2.15)
K=Ky (1—x;;) (2.16)
Ky =Kgo (1—2x;3) (2.17)

Where K., Kis, Ky, are initial value of PID parameters; x; ;, X;», x;3 are position of
each particle in first, second and third dimension, respectively. Then, the
parameters are sent to driver circuit for driving USM. The error signal is taken
every 1 [ms] for fitness calculation. Fitness of each particle is calculated and
accumulated until 10 [ms]. Fourthly, after 10 [ms] the fitness of particles is
evaluated to determine a new Pb and gb. If the current fitness of particles is better
than its previous value, then pbest = current position of particle. If not, pbest = its
previous position of particle. If the current fitness of particles is better than gbest,
then ghest = current position of particle. If not, gbest = its previous gbest.

Fifthly, PSO updates velocity and position of particles using PSO equations. The
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processes in PSO will be repeated until m,,,, is met. These processes in PSO-PID

controller will be repeated until stop criteria called &, is met.

2.2.4 Shortcoming of PSO

Kanya Tanaka et al. proposed a self-tuning PID controller using PSO
algorithm for USM [28]. In general, the method is a proper controller for USM.
However, the method has disadvantages because of the shortcoming of the
standard type of PSO. The shortcoming of the standard type of PSO are
premature convergence and easy to get stuck or fall into local optima [57, 60].
Premature convergence is the condition where particles converge too early before
finding the global best solution. As shown in Fig.2.15, the black line represents a
normal convergence and the dash line represents a premature convergence.
Some problems may have multiple peak optimum, such as one of global optima
and one or more local optima. Figure 2.16 shows a problem with one of global
optima and one of local optima. For like this problem, the particles easily get
stuck or fall into local optima. Once gbest trapped into local optima, other
particles will follow it and trapped into local optima and cannot jump-out from it.
Due to this shortcoming, the accuracy of USM servo system is not optimal,

especially in loaded condition. The shortcoming may lead to a poor performance.
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Fig. 2.14 Flowchart of PSO-PID controller
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2.2.5 The Causes of Shortcoming

Some studies on PSO indicate that the causes of shortcoming in PSO

algorithm is derived from the internal mechanism of particles movement, as

follows [58-59]:

1.

Unbalance between exploration and exploitation ability. PSO has two
abilities in order to search the best solution,i.e., exploration ability and
explotation ability. Exploration ability or global search ability is the
ability of particles to identify a region with potentially high qualified
solution. Particles with this ability have high speed velocity to search in a
wider area. Exploitation ability or local search ability is the ability of
particles to find a best solution in the limited area. Particles with this
ability have low speed velocity to refined-search in order to get a solution
as accurate as possible. However, it is difficult to find a proper balance
because it influenced by several factors, e.g., model or type and dynamic
characteritic of problem optimization. The proper balance is specific to
each problem. It have s strong relationship with parameters adjustment of
PSO. How to adjust the parameters for proper balance is still unclear and
need more investigation.

Lost diversity and lack information due to fast rate of information flow
between particles. In the PSO, particles are attracted by their
corresponding previous best particles, Pb, and the global best particle, gb.
With the movement of particles, particles are close to pb and gb, and then
(pb — x) and (gb — x) becomes small. According to the updating equation
of velocity, the velocity of each particle becomes small. Once the gb fall
into local optima, all particles will quickly converge to the position of
them. The cognitive part and social part of each particle will be near to to
because of x = pb = gb. As a result, the velocity of each particle tends to
zero, and the updating equation of position is invalid. In this condition,
there is no-information for particles anymore, thus the particles loses

diversity and in ‘lack information’. The particles cannot move anywhere
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or stagnant. Finally, all particles will be stagnate and hardly escape from

local optima.

SSouWI,]

\\
Premature convergence

~
-~
-----—_

Normal convergence

Iteration

Fig. 2.15 Premature convergence

Fig. 2.16 Trapped particle in local optima

2.2.6 Difficulty in Determining Parameters Setting

Compare with other optimization techniques, PSO has a few of parameters

to be adjusted. There are three parameters in PSO, namely inertia weight,

cognitive constant and social constant. It was reported that inertia weight is most
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important parameter because it can control the balance between exploration-
exploitation ability. The performance of PSO absolutely depends on the balance.
Adjusting inertia weight is key role for improving PSO. So, many researchers
focus on how to adjust inertia weight in order to get a best possible performance.
Generally, cognitive constant and social constant is set with a constant number,
i.e., 1.0, 1.5 and 2.0.

The impact of inertia weight is illustrated in Fig. 2.17. Higher inertia
weight will lead to stronger exploration ability. Smaller inertia weight will lead to
stronger exploitation ability. Particles that hold exploration ability have high
speed velocity to search in wider area. Particles that hold exploitation ability have
low speed velocity to capture a best possible solution. Higher inertia weight
during iteration will cause the particles cannot find and capture a best solution.
Particles oscillate around a best solution due to its high speed. PSO with higher
inertia weight has too longer settling time. Smaller inertia weight during iteration
will cause the particles cannot search at wider area and stagnate. The particles

stop before they find a best solution.

Exploitation Exploration

Inertia weight k

<€ >
Small Larger

Fig. 2.17 The impact of inertia weight

Figure 2.18, 2.19 and 2.20 show the performance of PSO set with higher
inertia weight (i.e., w = 0.9), smaller inertia weight (i.e., w = 0.1) and proper
inertia weight (i.e., w = 0.7), respectively. In this case, PSO is used to optimize

the optimization problem called Sphere function: f(x,y) = (x —15)? +
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(y — 20)?, the solution of this function is f,,;, = 0 at (15, 20). The parameters
setting of PSO are: ¢; = 1.0, ¢, = 1.0, particles number, n = 5, iteration maximum,
itermqx = 20. The proper inertia weight for this problem is 0.7 and due to proper
inertia weight, the average error becomes minimal and the value of x and y can
approach to the best solution at [15, 20]. The effect of particles number to proper
balance is shown in Fig. 2.21. The average error is calculated from 100 runs to
compensate the stochastic process. The proper inertia weight forn =5 and n =15
are 0.7 and 0.3, respectively. It clears that the proper balance depends on particles
number. Proper inertia weight is specific to each problem. It means that proper
inertia weight for one problem may not suitable for other problems. Figure 2.22
shows two optimization problems, Sphere function: f;(x,y) = (x — 15)% +
(y —20)? and Rosenbrock function: f,(x,y) = 100(y —x?)? + (x — 1)? ,
solved by PSO and gives difference proper inertia, w; = 0.7 and w; = 0.4. The
solution of the Rosenbrock function is f,;; = 0 at (1, 1). It clears that proper
inertia weight depends on the kind of problem. Fitness of the best particle for
Sphere function in the difference inertia weight is shown in Fig. 2.23. Proper

inertia weight causes minimum of fitness.
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Fig. 2.18 The impact of higher inertia weight
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Particles condition also should be considered in determining inertia

weight. Due to stochastic process, sometimes the particles are too far from the

best solution and applying stronger exploration ability is better. Sometimes, the

particles are close to the best solution and applying stronger exploitation ability is

better. Figure 2.24 and 2.25 show the condition where the particles (marked with

black circle) are too far from the best solution (marked with a black star). In this

condition, higher inertia weight is better. Figure 2.26 shows the condition where

the particles are close to the best solution. In this condition, smaller inertia weight

is better. Figure 2.27 shows the condition where many particles are deployed in

searching area. In this condition, smaller inertia weight is better because particles

evenly dispersed.
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Fig. 2.24 Perticles are too far from the best solution (1)

Fig. 2.25 Perticles are too far from the best solution (2)



Fig. 2.26 Perticles are close to the best solution

Fig. 2.27 Perticles are evenly dispersed
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Due to these reasons, the constant inertia weight is not good. Inertia
weight must be adjusted during iteration. Proper inertia weight means that when
inertia weight is set high, medium or small in order to apply exploration or
exploitation ability according to the particles condition. Proper inertia weight
depends on some factors, such as the type of problems, number of particles,
swarm condition, initial deployment and other unknown factors. Proper inertia
weight for one problem may not suitable for other problems. Moreover, due to
complexity of problems, uncertainty problems, dynamics in problems, it is hard to
derive a mathematical model of problem. According to those difficulties, research
to develop a proper adjusting inertia weight method is being conducted

intensively. It is a new challenge to build a new variant of PSO.

2.2.7 Strategy for Improving PSO

Improving PSO became a new topic in computer science since PSO was
introduced at the first time by Dr. Eberhart and Dr. Kennedy in 1995. Many
researchers focused on how to adjust inertia weight in order to get a proper
balance between exploration-exploitation ability. According to the causes of the
shortcoming of PSO, there are three ways to improve PSO.

The first way is parameters adjustment, especially inertia weight. During
searching process, inertia weight should be adjusted any time. The target of inertia
weight adjustment is to find a proper balance quickly. So, inertia weight is
created as a function of searching process or iteration called time-varying inertia
weight function. Inertia weight can be adjusted as linear increased function, linear
decreased function, nonlinear increased function, nonlinear decreased function,
sigmoid increased function, sigmoid decreased function, random function,
adaptive function, etc. Each function will give a different impact to performance
of PSO. The investigation of inertia weight adjustment is being needed because
the relationship between parameters adjustment and performance of PSO is still
unclear.

The second way is to create a new mechanism in particle’s movement in

order to compensate the lack-information due to fast rate flow in sharing
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information. In PSO algorithm, there are three information determined the next
position of particle, i.e., momentum part, cognitive part and social part. Unlike
GA algorithm, there is no coding-decoding process, mutation, crossover and other
evolution operators in PSO, thus time-process in PSO is too fast. Due to
stochastic process, sometimes cognitive and social part is too early approaching
zero and no information anymore for particle. Consequently, the particles become
stagnant and lost-diversity. New information is needed to overcome those
problems.

The third way is hybrid or combination with others techniques. PSO uses
stochastic approaches to solve the optimization problems. The stochastic
approaches have problem-dependent performance. This dependency usually
results from the parameter settings in each algorithm. The different parameter
settings for a stochastic search algorithm result in high performance variances. In
general, no single parameter setting can be applied to all problems. It may differ
from one problem to another. Therefore, from the above, it can be concluded that
the PSO performance is problem-dependent. The problem-dependent performance
can be addressed through hybrid mechanism. It combines different approaches or

methods to be benefited from the advantages of each approach.
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Chapter 3

New Inertia Weight Approach PSO
based Intelligent Self-tuning PID
Controller for USM

Developing a proper controller for USM is a focus of our research. Based
on the previous research, we have investigated several strategies for improving
PSO to reduce the risk of premature convergence and possibility of being trapped
in local optima. In this section, the used strategy for improving PSO is based on
inertia weight adjustment strategy or new inertia approach, called Nonlinearly

Decreased Inertia Weight (NDW) and Random Inertia Weight (RIW).

3.1 PSO-NDW based Intelligent Self-Tuning PID
3.1.1 Concept of Nonlinearly Decreased Inertia Weight

It was reported that an inertia weight is most important parameter to
control balance between exploration-exploitation ability in PSO. The balance is
key role to improve PSO that can reduce the risk of premature convergence and
easy to get stuck into local optima. However, how to adjust an inertia weight in
getting a proper balance is not easy.

In the previous research, the commonly PSO have been used for self-

tuning PID controller on USM servo system. In here, inertia weight was
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decreased linearly from high value (wy,,,) to small value (w,,;,) during iteration or

seraching process. The equations of the commonly PSO are shown as follows:

vl?:'}i“ =w.vg + cp.1. (Pbl-‘d — x{,’}i) + Cy. 1. (gbd — xl-"'}i) (3.1)

xigtt = xy + vgt (3.2)
m

W = Wpax — (Wmax - Wmin)-m_ (3.3)

max

It means that the particles is set in stronger exploration ability at the beginning of
iteration and then stronger exploitation ability at the end of iteration. This method
is also called PSO with linearly decreased inertia weight or PSO-LDW. PSO-
LDW is commonly used in many applications as optimization technique.

Due to LDW strategy, how long of exploration ability and exploitation
ability is devided in same period during iteration. The proposed NDW
(nonlinearly decresed inertia weight) is to control the period of exploration-
exploitation ability. We proposed NDW strategy to investigate the effect of the
period of these abilities. In the proposed strategy, an inertia weight is nonlinearly
decreased from wy . tO Wy, as follows:

_\x
w(m) = Wiin + Whnax — Winin) {%} (3.4)

where x is a new parameter called nonlinear index number. The value of
nonlinear index number will determine the degree of nonlinear path of decreasing
inertia weight. The high of this new parameter will shorten the length-time of
exploration ability and extend the length-time of exploitation ability. The

influence of nonlinear index number is shown in Fig. 3.1.

3.1.2 Experimental Results

Some experimental results are provided in this Section to verify the

effectiveness of the proposed PSO-NDW-based PID controller for USM. We also
have compared our method with previous methods, i.e., conventional fixed-gain
PID and PSO-LDW based PID (the standard type of PSO) with the same system

condition.
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The reference input r(z) is a rectangular signal. The amplitude is set from
+45 [deg] or clockwise (CW) rotation to -45 [deg] or counter clockwise (CCW)
rotation. The period is 4 [sec]. Two test conditions are provided in the

experimentation, which are the unloaded condition and the loaded condition.
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Fig. 3.1 The impact of nonlinear index number

The loaded condition is the addition of load from electromagnetic brake with 0.25
[Nm] of force. Each method has been performed for 10 trials of CW direction and
10 trials of CCW direction. The parameters of the standard type of PSO and
Enhanced PSO-NDW are set as follows:

1. Particle number, n =5
Cognitive constant, ¢; = 1.0
Social constant, ¢, = 1.0

Maximum value of inertia weight, wy,,, = 0.9

A

Minimum value of inertia weight, wy,;, = 0.4

Firstly, we used the conventional tuning or hand-tuned to determine the
parameters of PID controller. This method is introduced by Ellis [63] and called
the zone-based tuning. We found that K, = 0.3692, K; = 12.175 and K; =
0.000085, for the best performance after many experiments. Then, we started on

USM servo system with 10 trials of CW direction (i.e., +45 deg) and 10 trials of
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CCW direction (i.e., -45 deg) for unloaded condition. After that, we repeat again
for with loaded condition, i.e., 0.25 [Nm].

Figure 3.2 and 3.3 present the position accuracy of USM in histogram for
unloaded and loaded condition. Each bucket of the histogram is set to a width of
0.0011 [deg]. It is a resolution of the encoder. We can say that the position
accuracy of USM using a hand-tuned PID is good and reliable in unloaded
condition, but becomes poor and inaccurate in loaded condition. The gains have
been determined previously only applicable to unloaded condition. If the plant’s
behavior is changed (i.e., due to the loading), it is necessary to re-tune PID and it
is drawback of the fixed-gain PID. The conventional fixed-gain PID cannot
compensate the characteristics changes of USM during operation.

Secondly, we tested a standard type of PSO (or PSO-LDW) for self-tuning
PID controller on USM servo system. Figure 3.4 and 3.5 show the position
accuracy of USM in unloaded and loaded condition. We can see that the accuracy
of USM using PSO-LDW based PID is better than using fixed-gain PID
controller.

Thirdly, we tested the proposed PSO-NDW for self-tuning PID controller
on USM servo system. Figure 3.6 and 3.7 show the position accuracy of USM in
unloaded and loaded condition. We can see that the accuracy of USM using PSO-
NDW based PID is better than using both fixed-gain PID controller and PSO-
LDW based PID.
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Fig. 3.5 Position accuracy of USM using PSO-PID (loaded)
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Fig. 3.8 Position accuracy of USM in both directions (unloaded)

Figure 3.8 and 3.9 show the position accuracy of USM in both directions
with unloaded and loaded condition using three methods, i.e., fixed-gain PID,
PSO-PID and PSO-NDW PID controller. It can be seen that the proposed PSO-
NDW PID can improve the performance of USM servo system. The characteristic
changes of USM during operation due to loading effect can be compensate by the

proposed PSO-NDW PID controller.
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Fig. 3.9 Position accuracy of USM in both directions (loaded)

The impact of nonlinear index number on the proposed PSO-NDW is
shown in Fig. 3.10. We can say that nonlinear index number of 1.5 gives a best
performance, i.e., smallest error. Due to this value, the exploration period is a bit
shorter and the exploitation period is a bit longer. The nonlinear index number is
a new parameters in PSO-NDW that can improve the performance of PSO. The

proper value of this parameter is needed. According to this result, the proper value

of this parameter is 1.5.
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Fig. 3.10 The impact of nonlinear index number
Table 3.1 Comparison of average error and Success Rate
Frequency of Zero-Ess
Average of Ess [deg] (Ess < 0.0011 deg) or Success
Methods
Rate (SR) in 20 trials
Unloaded Loaded Unloaded Loaded
PID 5.78E-4 3.31E-3 14 (70%) 5 (25%)
PSO-LDW PID 5.11E-4 8.94E-4 14 (70%) 12 (60%)
PSO-NDW PID 4.17E-4 4 44E-4 15 (75%) 13(65%)

The comparisson results of average error and frequency of zero-error
between the proposed PSO-NDW and the previous methods is shown in Table 3.1.
Zero-error means that the error is smaller than 0.001 [deg], i.e., the resolution of
encoder. Success Rate (SR) shows the success of method in achieving the zero-
error within all trials. It clears that the proposed PSO-NDW PID can outperform a
fixed-gain PID and PSO-LDW PID. The average of error of PSO-NDW PID is
smallest or 18.4% (unloaded) and 50.35% (loaded) lower than the PSO-LDW PID.
Moreover, the frequency of zero-error of PSO-NDW PID is more often than the
previous methods or SR of PSO-NDW PID is higher than the previous methods.
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Higher of SR shows that the particles have better ability to avoid premature
convergence and escape from the local optima.

Figure 3.11 shows the convergence speed of PSO-NDW and PSO-LDW.
It seen clearly that the particles in PSO-NDW achieve faster convergence than the
standard type of PSO. The PSO-NDW and PSO-LDW achieve convergence in
0.23 [sec] and 0.26 [sec], respectively.

PSO-NDW : 0.23 [S]

Time [s]

Fig. 3.11 Convergence speed of PSO-NDW PID

3.1.3 Summary

The first proposed Enhanced PSO, called PSO-NDW, uses time-varying of
inertia weight, where the inertia weight is linearly decreased from maximum value
to minimum value based on iteration during searching process [71-73].
We could conclude that:

1. According to the higher of SR, the NDW strategy could reduce the risk

of premature convergence and possibility of being trapped in local
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optima because controlling a period of both abilities gives a better
balance than the previous method, i.e., The LDW strategy.

2. Nonlinear index number is a new parameter of NDW to control the
length- time (period) of exploration and exploitation ability or the
degree of nonlinear path of decreasing inertia weight. The parameter
should be set and based on the results the best value for this parameter
is 1.5. It means that a bit shorter of period of exploration ability and a
bit longer of period of exploitation ability is an optimal in controlling
PSO-NDW.

3. PSO-NDW for self-tuning PID on USM gives a better performace than
the previous methods in term of convergence speed and position

accuracy of USM.

3.2 PSO-RIW based Intelligent Self-tuning PID

3.2.1 Concept of Random Inertia Weight

The previous methods, i.e., PSO-LDW and PSO-NDW, use stronger
exploration ability at the beginning and stronger exploitation ability at the end of
iteration. Due to this strategy, there are lack exploitation ability at the beginning
and lack exploration ability at the end of iteration. This is one of disadvantages of
the previous methods. Due to random mechanism in particle’s movement,
sometimes the particles are approaching the best solution at the beginning of
iteration. So, in this situation the exploitation ability is more needed to refined-
search. Also, sometimes the particles have not found the best solution at the end
of iteration. So, in this situation the exploration ability is more needed to search
again in other area. Another disadvantage of the previous methods is that it needs
a proper value for wyay, Wi, and x. Improper values for these parameters may
decrease the performance of PSO. Moreover, for optimization problem with
dynamic environment, the previous methods become less effective because once

the particles accumulate at point in searching area, but the global best solution is
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still uncertain, the particles have difficulty in escaping from the accumulating
point.

To overcome those problems, the inertia weight employing a uniform
random number is introduced to improve the performance of PSO. We called the
second proposed strategy as PSO with random inertia weight or PSO-RIW. In
this method, exploration and exploitation ability can be processed in the ‘same
time’. It means that the both abilities are always balanced during iteration. Inertia

weight is adjusted randomly according to the following equation:
W = Wiin + Whnax — Wmnin) * 7 (3.5)

where r is uniform random number. Figure 3.12 shows the inertia weight

adjustment of PSO-LDW, PSO-NDW and PSO-RIW.

0.6 - [} “‘AA
0.5 - - V'S ¢ PSO-LDW

Inertia Weight
[ |
4
>

03 - A *. A PSO-RIW

0.2 By ¢,
0.1 - A A A ol T T

L 4
04 4 A ...A0’ A B PSO-NDW
ol
[ |

Iteration

Fig. 3.12 Randomly inertia weight adjustment

3.2.2 Experimental Results

To evaluate the effectiveness of the proposed PSO-RIW for self-tuning
PID controller on USM, we tested it and compared with the previous methods,

i.e., fixed-gain PID, PSO-LDW PID, and PSO-NDW PID. The setting parameters
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of each method are shown in Table 3.2. The conditions of experiment is set
similar to the previous conditions, i.e., the reference input is rectangular wave
with +45 [deg] or CW direction and -45 [deg] or CCW direction, the period is 4
[s], unloaded and loaded with 0.25 [Nm] from electromagnetic brake.

Figure 3.13 and 3.14 show the position accuracy of USM controlled by
proposed PSO-RIW PID controller. Compared with the previous methods, i.e.,
Fig. 3.2 - 3.7, it can be seen that the proposed PSO-RIW PID has better accuracy,
where its density around zero is higher than previous methods. In both direction
and conditions, as shown in Fig. 3.15 and 3.16, PSO-RIW PID controller
indicated its effectiveness and its accuracy in order to compensate the
characteristic changes of USM due to loading effect. RIW strategy can improve
the performance of the standard type of PSO by reducing the risk of premature
convergence and fall into local optima.

The comparisson of average error and frequency of zero-error between the
proposed PSO-RIW and the previous methods is shown in Table 3.3. It clears that
the proposed PSO-RIW PID can outperform a fixed-gain PID, PSO-LDW PID,
and PSO-NDW PID.

Table 3.2 Setting parameters of the methods

Fixed-gain PID

PSO-LDW PID

PSO-NDW PID

PSO-RIW PID

K, =0.3692
Ki=12.175
K, =0.000085

(hand-tuned)

n =5 particles
c;=1.0
c=1.0

Wiax = 0.9

Wiin = 0.4

n =5 particles
c;=1.0
=10

Winax = 0.9

Wmin = 04

n =5 particles
c;=1.0
=10

Winax = 0.6

Winin = 0.3

The average of error of PSO-RIW PID is smallest or 63.21% (unloaded)

and 62.98% (loaded) lower than the PSO-LDW PID. Moreover, the frequency of
zero-error of PSO-RIW PID is more often than the previous methods or SR of
PSO-RIW PID is higher than the previous methods. It means that RIW can
increase the ability to avoid premature convergence and escape from the local

optima.
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Fig. 3.15 Position accuracy of USM in both directions (unloaded)

Figure 3.17 shows the convergence speed of PSO-RIW and PSO-LDW. 1t
seen clearly that the particles in PSO-RIW achieve faster convergence than the
standard type of PSO. The PSO-NDW and PSO-LDW achieve convergence in
0.16 [sec] and 0.26 [sec], respectively.
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Table 3.3 Comparison of average error and Success Rate

Frequency of Zero-Ess
Average of Ess [deg] (Ess < 0.0011 deg) or Success
Methods
Rate (SR) in 20 trials

Unloaded Loaded Unloaded Loaded

PID 5.78E-4 3.31E-3 14 (70%) 5 (25%)
PSO-LDW PID 5.11E-4 8.94E-4 14 (70%) 12 (60%)
PSO-NDW PID 4.17E-4 4.44E-4 15 (75%) 13(65%)
PSO-RIW PID 1.883E-4 3.31E-4 17 (85%) 15 (75%)

Time [s]

Time [s]

Fig. 3.17 Convergence speed of PSO-RIW PID
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3.2.3 Summary

The second proposed Enhanced PSO, called PSO-RIW, uses randomly
adjusting of inertia weight, where the inertia weight is a random number in
interval [Wyin, Winay] during searching process [74].
We could conclude that:

1. Random inertia weight strategy can effectively overcome the lack
ability during iteration due to LDW or NDW strategy and help trapped
particles for escaping from local optima. Thus, the ability of particles
to avoid premature convergence and escape from local optima is
increasing.

2. Random inertia weight strategy can increase the aggressiveness of
particles. Particles actively search the best solution, and finally they
can capture the best solution.

3. PSO-RIW for self-tuning PID on USM gives a better performace than
the previous methods in term of position accuracy of USM and

convergence speed.

59



60



Chapter 4
Adaptive PSO based Intelligent Self-
tuning PID Controller for USM

4.1 APSO based Intelligent Self-tuning PID
4.1.1 Concept of Adaptive Inertia Weight

Particles in swarm are always moving during searching process. Thus, the
previous best particle (Pb) and the global best particle (gb) is always changing. It
means that the swarm condition is always changing during searching process. In
the previous methods, i.e., PSO-LDW, PSO-NDW, and PSO-RIW, inertia weight
is adjusted without regard to the condition of swarm. The inertia weight is still
based on iteration or as function of iteration, i.e., linear, nonlinear, and random.
There is no information about the condition of swarm. So, there is a possibility
that the value of the inertia weight is not suitable with the condition of swarm.
This is a weakness of the previous methods.

To overcome those problems, we proposed third strategy, which inertia
weight is adjusted adaptively based on the swarm condition. We called the
proposed method as PSO with adaptive inertia weight (PSO-AIW) or Adaptive
PSO (APSO). The basic idea of APSO is that the gb and Pb of particles always
change during iteration and tend to the similar fitness value if the swarm has
approached the best solution. The values of Pb and gb can be taken from the
swarm by using feedback mechanism and then can be used to calculate the inertia

weight. We need an initial inertia weight whose value is greater than one, e.g., 1.4.
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If the particles are too far from the best solution, the fitness value of Pb is greater
than gb, so the comparison between gb and Pb is smaller than one (gb/pb < 1). In
this condition, inertia weight should be set to larger value. If the particles are too
close to the best solution, the fitness value of Pb is similar to gb, so the
comparison between gb and Pb is close to one (gb/pb = 1). In this condition,
inertia weight should be set to smaller value. Due to this strategy, the balancing
between exploration-exploitation ability can be controlled according to the swarm
condition. The proposed adaptive inertia weight can be shown in following

equation:

w=w, - () (4.1)

where w, is an initial value of inertia weight. The feedback mechanism in APSO
is shown in Fig. 4.1. The proposed APSO can eliminate the difficulty in selecting

of Whaxs Wmin and x.

Adaptive adjustment

Fig. 4.1 Feedback mechanism in APSO

4.1.2 Experimental Results

To evaluate the effectiveness of the proposed APSO for self-tuning PID
controller on USM, we tested it and compared with the previous methods, i.e.,

fixed-gain PID, PSO-LDW PID, PSO-NDW PID, and PSO-RIW PID. The
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setting parameters of each method are shown in Table 4.4. The conditions of
experiment is set similar to the previous conditions, i.e., the reference input is
rectangular wave with +45 [deg] or CW direction and -45 [deg] or CCW
direction, the period is 4 [s], unloaded and loaded with 0.25 [Nm] from
electromagnetic brake.

The position accuracy of USM controlled by APSO-PID is shown in Fig.
4.2 and 4.3. Compared with the previous methods, i.e., Fig. 3.2 - 3.7, it can be
seen that the proposed APSO-PID has better accuracy, where its density around
zero is higher than previous methods. In both direction and conditions, as shown
in Fig. 4.4 and 4.5, APSO-PID controller indicated its effectiveness and its
accuracy in order to compensate the characteristic changes of USM due to loading
effect. The AIW strategy can improve the performance of standard type of PSO
by reducing the risk of premature convergence and fall into local optima.

The comparisson results of average error and frequency of zero-error
between the proposed APSO and the previous methods is shown in Table 4.2. It
clears that the proposed APSO PID can outperform a fixed-gain PID, PSO-LDW
PID, PSO-NDW PID, and PSO-RIW PID.

Table 4.1 Setting parameters of the methods
Fixed-gain | PSO-LDW | PSO-NDW | PSO-RIW APSO

PID PID PID PID PID
K, =0.3692 n=>5 n=>5 n=>5 n=>5
K;=12.175 c;=1.0 c;=1.0 c;=1.0 c;=1.0
K;=0.000085 | c2=1.0 c2=1.0 c2=1.0 c2=1.0

(hand-tuned) Wiax = 0.9 Wiax = 0.9 Wiax = 0.6 w,=1.4

Wiin = 04 Wiin = 0.4 Wiin = 0.3
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Fig. 4.4 Position accuracy of USM in both directions (unloaded)

The average of error of APSO PID is smallest or 67.32% (unloaded) and 72.71%
(loaded) lower than the PSO-LDW PID. Moreover, the frequency of zero-error of
APSO PID is more often than the previous methods or success rate (SR) of APSO
PID is higher than the previous methods. Higher of success rate (SR) shows that
the particles have better ability to avoid premature convergence and escape from

the local optima.
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Fig. 4.5 Position accuracy of USM in both directions (loaded)

Figure 4.6 shows the convergence speed of APSO and PSO-LDW. It seen
clearly that the particles in APSO-RIW are very aggressive and faster to achieve
convergence than the standard type of PSO. The APSO and PSO-LDW achieve
convergence in 0.11 [sec] and 0.26 [sec], respectively. So, the convergence speed

of APSO is more two time faster than PSO-LDW.
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Table 4.2 Comparison of average error and Success Rate

Frequency of Zero-Ess
Average of Ess [deg] (Ess < 0.0011 deg) or Success
Methods
Rate (SR) in 20 trials
Unloaded Loaded Unloaded Loaded
PID 5.78E-4 3.31E-3 14 (70%) 5 (25%)
PSO-LDW PID 5.11E-4 8.94E-4 14 (70%) 12 (60%)
PSO-NDW PID 4.17E-4 4.44E-4 15 (75%) 13(65%)
PSO-RIW PID 1.883E-4 3.31E-4 17 (85%) 15 (75%)
APSO-PID 1.67E-4 2.44E-4 18 (90%) 18 (90%)

PSO-LDW : 0.26 [S]

PSO-LDW

Fithess

Fig. 4.6 Convergence speed of APSO-PID
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4.1.3 Summary

The third proposed Enhanced PSO, called APSO, uses adaptively
adjusting of inertia weight based on the swarm condition [75].
We could conclude that:

1. Adaptive inertia weight strategy uses the swarm condition at any time
to calculate inertia weight. Due to this strategy, a proper inertia weight
can be achieved appropriately and quickly.

2. Adaptive inertia weight strategy shows more simplicity and effective
to improve PSO and eliminate the difficulty in selecting Wyuax, Wimin, and
x as in PSO-LDW,PSO-NDW, and PSO-RIW.

3. A new parameter in APSO is initial inertia weight to give a final value
when the solution is found.

4. APSO for self-tuning PID on USM gives a better performace than the
previous methods in term of position accuracy of USM and

convergence speed.

4.2 APSO-RIW based Intelligent Self-tuning PID
4.2.1 Concept of Hybrid APSO-RIW

Improving PSO to reduce the risk of premature convergence and fall into
local optima is being investigated intensively. Several strategies have been
proposed for improving PSO. However, the research to improve PSO is still

being conducted.

The previous proposed strategy called PSO-RIW has a main benefit, e.g.,
high ability to avoid premature convergence and escape from local optima. And
other previous strategy called APSO has a main benefit, e.g., faster convergence
or quick to achieve a proper balance between exploration-eplotation ability. The
fourth proposed Enhanced PSO is motivated by benefit of the PSO-RIW and
APSO. We called it as hybrid APSO-RIW (Adaptive Particle Swarm
Optimization with Random Inertia Weight). The method is to combine the benefit

of both PSO-RIW and APSO. During searching process, the fitness value of Pb
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and gb is taken from the ouput of PSO and is used to calculate inertia weight. The
RIW strategy is inserted into APSO equation to give higher ability or
aggressiveness for particles. Adjusting of inertia weight in the proposed hybrid

APSO-RIW is shown as folllows:

w = {Wo - P_bl} *Wiin + Winax = Winin) = 73 4.2)

4.2.2 Experimental Results

To evaluate the effectiveness of the proposed Hybrid APSO-RIW for self-
tuning PID controller on USM, we tested it and compared with the previous
methods, i.e., fixed-gain PID, PSO-LDW PID, PSO-NDW PID, PSO-RIW PID
and APSO PID. The setting parameters of each method are shown in Table 4.6.
The conditions of experiment is set similar to the previous conditions, i.e., the
reference input is rectangular wave with +45 [deg] or CW direction and -45 [deg]
or CCW direction, the period is 4 [s], unloaded and loaded with 0.25 [Nm] from
electromagnetic brake.

The position accuracy of USM controlled by APSO-RIW PID is shown in
Fig. 4.7 and 4.8. Compared with the previous methods, i.e., Fig. 3.2 - 3.7, it can
be seen that the proposed APSO-RIW PID has better accuracy, where its density
around zero is higher than previous methods. In both direction and conditions, as
shown in Fig. 4.9 and 4.10, APSO-PID controller indicated its effectiveness and
its accuracy in order to compensate the characteristic changes of USM due to
loading effect. Hybrid APSO-RIW strategy can improve the performance of the
standard type of PSO by reducing the risk of premature convergence and fall into
local optima.

The comparisson of average error and frequency of zero-error between the
proposed APSO and the previous methods is shown in Table 4.4. It clears that the
proposed APSO-RIW PID can outperform a fixed-gain PID, PSO-LDW PID,
PSO-NDW PID, PSO-RIW PID and APSO PID.

69



Table 4.3 Parameters setting

Fixed-gain PSO-LDW PSO-NDW PSO-RIW APSO APSO-RIW
PID PID PID PID PID PID
K, =0.3692 n=>5 n=>5 n=>5 n=>5 n=>5
K;=12.175 c;=10 c;=10 c;=10 c;=1.0 c;=1.0
K,;= c;=1.0 c;=1.0 c;=1.0 c;=1.0 c;=1.0
0.000085 Woaxr = 0.9 Wyax = 0.9 Wiax = 0.6 w,=14 w,=14
(hand-tuned) | w,,;,, =0.4 Whin = 0.4 Whin = 0.3 Winae = 0.6
Wiin = 0.3

The average of error of APSO-RIW PID is smallest or 100% (unloaded)
and 93.18% (loaded) lower than the PSO-LDW PID. Moreover, the frequency of
zero-error of APSO-RIW PID is more often than the previous methods or success
rate (SR) of APSO-RIW PID is higher than the previous methods. Higher of
success rate (SR) shows that the particles have better ability to avoid premature
convergence and escape from the local optima.

Figure 4.28 shows the convergence speed of APSO-RIW and PSO-LDW.
It seen clearly that the particles in APSO-RIW are aggressive and faster to achieve
convergence than the standard type of PSO. The APSO-RIW and PSO-LDW
achieve convergence in 0.15 [sec] and 0.26 [sec], respectively. So, the

convergence speed of APSO is almost two times faster than PSO-LDW.
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Fig. 4.7 Position accuracy of USM using APSO-RIW PID (unloaded)
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Table 4.4 Comparison of average error and Success Rate

Frequency of Zero-Ess
Average of Ess [deg] (Ess < 0.0011 deg) or Success
Methods
Rate (SR) in 20 trials

Unloaded Loaded Unloaded Loaded
PID 5.78E-4 3.31E-3 14 (70%) 5 (25%)
PSO-LDW PID 5.11E-4 8.94E-4 14 (70%) 12 (60%)
PSO-NDW PID 4.17E-4 4.44E-4 15 (75%) 13(65%)
PSO-RIW PID 1.883E-4 3.31E-4 17 (85%) 15 (75%)
APSO-PID 1.67E-4 2.44E-4 18 (90%) 18 (90%)
APSO-RIW PID 0 6.10E-5 20 (100%) 19 (95%)

PSO-LDW @ 0.2

Fig. 4.11 Convergence speed of APSO-RIW PID
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4.2.3 Summary

The fourth Enhanced PSO, called Hybrid APSO-RIW, uses combination
between APSO and PSO-RIW atrategy [76].
We could conclude that:

1. The Hybrid APSO-RIW can combine both benefit of APSO and PSO-
RIW. Inertia weight is adjusted adaptively according to swarm
condition and also use random strategy at the same time. Due to this
strategy, a proper inertia weight can be achieved appropriately and
quickly.

2. Hybrid APSO-RIW strategy holds on simplicity and effective to
improve PSO by increasing the ability of particles for avoiding
premature convergence and escaping from local optima.

3. Hybrid APSO-RIW for self-tuning PID on USM gives a better
performace than the previous methods in term of position accuracy of

USM and convergence speed.

4.3 Hybrid Adaptive Improved PSO Based Intelligent
Self-tuning PID
4.3.1 Concept of Hybrid Adaptive Improved PSO

To more reduce effectively the risk of premature convergence and fall into
local optima requires combination between several strategies to overcome the
causes of the shortcoming of PSO. In the fifth proposed method, we propose a
new strategy to combine three strategies at the same time. The first strategy is
adaptive inertia weight to find a proper inertia weight quickly. Due to proper
inertia weight, the suitable balance between exploration-exploitation can reduce
the shortcoming of PSO. The second strategy is using mutation operator to more
ensure that the trapped particles can escape from local optima and to more
increase the ability of particles to avoid premature convergence. The main idea of
the proposed method is taken from the advantage of mutation operator in GA to

give more diversity of particles for jumping-out from local optima. Mutation in
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GA is flipping a bit of chromosome. Mutation rate are typically quite low (0.1-
1.0 % is a common range), so that at the beginning the effect of mutation is
relatively small and increasing toward the end. Mutation in PSO is operated on
stagnated particles by giving small random variation. We use mutation operator
on global best position of particle with small random variation below 10%.
Therefore the diversity of populations can be maintained and prevent premature
convergence or fall in the local optima. The third strategy is additional part called
socio-cognitive part to create a new particle’s moving mechanism and to
compensate the lack information and fast rate flow in sharing information. The
new factor connects between personal and global best position. The new factor
together with the original factor, i.e., cognitive and social factor, will influence the
current particle to determine the next position of particles, so that the ability to
find the best solution can be increased. =~ We called the proposed method as
Hybrid Adaptive Improved PSO combined with mutation or HAIPSO. Thus, the

equations of the proposed method are changed as follows:

v = woo™ + . 1. {Pb; — x"} + cp.15. {gb — x"} + c5.715.{gb — Pb;}

(4.3)
w=w,— (%) (4.4)
gb* = gb.y 4.5)
y=1+01-7r (4.6)

where gb~ is mutated gb, y is mutation rate ( in here, below 10%), r is random

number, w, is an initial value of inertia weight.

The new mechanism of information sharing in HIPSO can be illustrated in
Fig. 4.12. Now, the next position of particle is the resultant of four vectors. Due
to this new mechanism, fast rate flow of sharing information can be slightly
reduced and additional information will give a better direction for particle to find

a best solution.
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Fig. 4.12 New particle’s movement in HAIPSO

4.3.2 Experimental Results

To evaluate the effectiveness of the proposed HAIPSO for self-tuning PID
controller on USM, we tested it and compared with the previous methods, i.e.,
fixed-gain PID, PSO-LDW PID, PSO-NDW PID, PSO-RIW PID , APSO PID,
and APSO-RIW PID. The setting parameters of each method are shown in Table
4.8. The conditions of experiment is set similar to the previous conditions, i.e.,
the reference input is rectangular wave with +45 [deg] or CW direction and -45
[deg] or CCW direction, the period is 4 [s], unloaded and loaded with 0.25 [Nm]
from electromagnetic brake.

The position accuracy of USM controlled by HAIPSO-PID is shown in
Fig. 4.13 and 4.14. Compared with the previous methods, i.e., Fig. 3.2 — 3.7, it
can be seen that the proposed HAIPSO-PID has better accuracy, where its density
around zero is higher than previous methods. In both direction and conditions, as
shown in Fig. 4.15 and 4.16, HAIPSO based PID controller indicated its

effectiveness and its accuracy in order to compensate the characteristic changes of
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USM due to loading effect. The HAIPSO strategy can improve the performance
of the standard type of PSO by reducing the risk of premature convergence and
fall into local optima.

The comparison of average error and frequency of zero-error between the
proposed HAIPSO and the previous methods is shown in Table 4.6. It clears that
the proposed HAIPSO-PID can outperform a fixed-gain PID, PSO-LDW PID,
PSO-NDW PID, PSO-RIW PID, APSO PID, and APSO-RIW PID. The average
of error of APSO-RIW PID is smallest or O in both conditions. Moreover, the
frequency of zero-error of APSO-RIW PID is more often than the previous
methods or success rate (SR) of APSO-RIW PID is higher than the previous
methods. It means that the error is smaller than the resolution of the encoder, i.e.,
0.0011 [deg]. Or, we can say that the encoder cannot measure the position error
because of its limitation. Higher of success rate (SR) shows that the particles have
better ability to avoid premature convergence and escape from the local optima.

Figure 4.17 shows the convergence speed of HAIPSO and PSO-LDW. It
seen clearly that the particles in HAIPSO are aggressive and faster to achieve
The HAIPSO and PSO-LDW
So, the

convergence than the standard type of PSO.
achieve convergence in 0.16 [sec] and 0.26 [sec], respectively.
convergence speed of Hybrid AIPSO-Mut is one and half times faster than PSO-
LDW.

Table 4.5 Parameters setting

Methods
Fixed-gain | PSO-LDW | PSO-NDW | PSO-RIW APSO- Hybrid
APSO PID

PID PID PID PID RIWPID | APSO-Mut
K, =0.3692 n=>5 n=>5 n=>5 n=>5 n=>5 n=>5
K;=12.175 ;=10 ;=10 ;=10 ;=10 ;=10 ;=10

K,;= c;=1.0 c,=1.0 c,=1.0 c,=1.0 c,=1.0 c,=1.0

0.000085 Wpax = 0.9 Winax = 0.9 Wax = 0.6 w,= 1.4 w,= 1.4 w,= 1.4
(hand-tuned) Wpin = 0.4 Wpin = 0.4 Wpin = 0.3 Wiar = 0.6 Y
Woin = 0.3
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Table 4.6 Comparison of average error and Success Rate

Average of Ess [deg]

Frequency of Zero-Ess

(Ess < 0.0011 deg) or Success

Methods Rate (SR) in 20 trials

Unloaded Loaded Unloaded Loaded

PID 5.78E-4 3.31E-3 14 (70%) 5 (25%)
PSO-LDW PID 5.11E-4 8.94E-4 14 (70%) 12 (60%)
PSO-NDW PID 4.17E-4 4.44E-4 15 (75%) 13(65%)
PSO-RIW PID 1.883E-4 3.31E-4 17 (85%) 15 (75%)
APSO-PID 1.67E-4 2.44E-4 18 (90%) 18 (90%)
APSO-RIW PID 0 6.10E-5 20 (100%) 19 (95%)
HAIPSO- PID 0 0 20 (100%) 20 (100%)
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4.3.3 Summary

The fifth proposed Enhanced PSO, called Hybrid Adaptive Improved PSO

(HAIPSO), uses combination of three strategies at the same time [80].

We could conclude that:

1.

The HAIPSO combined three strategies at the same time shows best
performance for self-tuning PID controller on USM. Adding a new
factor, adaptive inertia weigh and using mutation operator in the
proposed method has proven to be very effective in improving PSO
and eliminating the risk of premature convergence and fall into local
optima.

HAIPSO strategy holds on the properties of simple algorithm with a
few of parameters to be tuned, faster convergence, efficient in time-
calculation and at the same time enhances the capability of particles for
accurately searching a best solution.

A new parameter in HAIPSO are initial inertia weight (w,) and
mutation rate. These parameters should be adjusted properly in order
to get a best performance.

HAIPSO for self-tuning PID on USM gives a better performace than
the previous methods in term of position accuracy, capability to avoid

premature convergence and escape from local optima.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

Tuning process is a real complex optimization problem. The performance
of PID controller absolutely depends on this process. Many conventional tuning
methods are available, but they become more difficult for system with strong
nonlinearity, uncertainty, complexity and disturbances. Intelligent self-tuning
scheme is developed to overcome this problem, e.g., Genetic Algorithm (GA),
Fuzzy, Neural-Netwotk (NN), Particle Swarm Optimization (PSO), etc. Each
method has its advantages and disadvantages. For guaranteed optimal solution,
even thought, it might take a lot of time or work, it is better not to use PSO.
However, for an approximate solution or near optimal and it spend a less time or
work, it better to use PSO. Due to PSO, we will get low computational cost, low
memory requirement, robustness (good performance for a wide class of problems),
and satisfactory accuracy. Also, it spend less time to obtain the results. So, PSO
is more suitable for online or real-time system. Table 5.1 shows a comparison of
optimization technique for self-tuning PID controller.

In the research, we have proposed five strategies to impove the standard
type of PSO and apply them for intelligent self-tuning PID controller on USM
servo system. In the first proposed strategy called PSO-NDW (PSO with
nonlinearly decreased inertia weight), inertaia weight is decreased nonlinearly
from maximum value to minimum value to give stronger exploration at the

beginning and stronger exploitation at the end of iteration.
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Table 5.1 Comparison of optimization technique

Self-tuning scheme for PID control
Parameters
GA Fuzzy NN PSO
Guaranteed
solution Best Medium Best Medium
(Success Rate)
Convergence
Medium Best Worse Best
speed
Time
Worse Medium Worse Best
calculation
Premature
Best Medium Medium Worse
convergence
Simplicity Worse Medium Worse Best
Computational
Medium Medium Highest Lowest
cost
Memory
Medium Medium Highest Lowest
requirement

PSO-NDW requires a new parameter called nonlinear index number to control the
period of exploration and exploitation ability. Inertia weight is a nonlinear
function of iteration or generally called time-varying function or iteration
function. In the second proposed strategy called PSO-RIW (PSO with random
inertia weight), inertia weight is randomly number in interval [WyWypa] tO
compensate the lack ability during searching process and to help trapped particles
for escaping from local optima. Inertia weight is not a time-varying function or
generally called random-function. Inertia weight doesn’t depend on iteration. In
the third proposed strategy called APSO (Adaptive PSO), inertia weight is
adjusted adaptively according to the swarm condition to ensure for finding a

proper balancing between exploration-exploitation ability. Inertia weight is a
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condition-function. In the fourth proposed strategy called APSO-RIW (Adaptive
PSO with random inertia weight), inertia weight is a hybrid-function of
combination between APSO and PSO-RIW. In the fifth proposed strategy called
HAIPSO (Hybrid Adaptive Improved PSO), inertia weight is a hybrid-function
of combination between APSO and mutation function of GA. As shown in Table
5.2, each strategy requires several parameters to be tuned. The performance of
each strategy depends on these parameters. For reasons of simplicity, the strategy
with the fewer parameters is better. The APSO requires only three parameters to
be tuned. Compare with other strategies, APSO is simplest as like the original
PSO founded by Dr. Eberhart and Dr. Kennedy. But, the performance of APSO is
much better.

Improving PSO to reduce the risk of premature convergence and fall into
local optima requires knowledge why they could happen. There are several
causes of shortcoming of PSO, e.g., unbalance between exploration-exploitation
ability, lost diversity and lack information due to fast rate flow and ‘one direction’
in sharing information. It was reported that inertia weight is most important
parameter of PSO to control the balance. However, how to adjust inertia weight
in order to get a proper balance is unclear and more need investigation. The first
to fourth proposed strategy, i.e., PSO-NDW, PSO-RIW, APSO, and APSO-RIW,
used inertia weight adjustment strategy. The fifth proposed strategy, i.e.,
HAIPSO,, used combination of three strategies, i.e., adaptive inertia weight,
mutation operator, and new sharing information. Figure 5.1 and 5.2 show the
effectiveness of each strategy for compensating the characteristic changes of USM
due to the loading effect. Position accuracy of USM and Success Rate (SR) is
getting better on HAIPSO. It means that inertia weight strategy is effective for
improving PSO and more effective when combine with other strategy. Adaptive
inertia weight strategy is to get a proper balance quickly, mutation operator is to
keep diversity of swarm, and new sharing information is to compensate the lack
information during searching process. HAIPSO combined three strategies have
proved effectively in reducing the risk of premature convergence and fall into
local optima. Also, HAIPSO has the best effectiveness for addressing the

characteristic changes of USM.
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Convergence speed of each strategy is shown in Fig.5.3. Convergence
speed of APSO is fastest. It means that due to adaptive inertia weight, the proper
balance can be achieved very quickly, so particles can find the global best solution
in very short time. The swarm condition will be monitored continuously during
iteration to calculate a proper inertia weight. Convergence speed of HAIPSO is
a little slower than APSO because there is a new factor or vector in particle’s

movement affecting the calculation-time.

Table 5.2 Number of parameters

Hybrid
PSO- PSO- PSO-
Methods APSO APSO- HAIPSO
LDW NDW RIW
RIW
Cy Cy Cy C Cy Cy
Parameter Cr Cy Cr Cr Cr C)
Winax Winax Winax Wo Winax Wo
Winin Winin Winin Winin J’
X w,
Number 4 5 4 3 5 4
3.50E-03
3.00E-03 - M unloaded
M loaded
2.50E-03
£ 2.00E-03 -+
I.I.'l
g
< 1.50E-03 -+
1.00E-03 -
5.00E-04 -+ ‘
OOOE+OO I T T - T ‘ T - T — T

PID PSO-LDW PSO-NDW PSO-RIW APSO-PID APSO-RIW  Hybrid
PID PID PID PID  APSO-Mut
PID

Fig. 5.1 Comparison of average error
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5.2 Summary of Proposed Methods

In the research, we developed five variants of Enhanced PSO and applied
it for intelligent self-tuning PID controller on USM servo system. In general, the
proposed control method is better than the previous control methods in term of
accuracy, convergence speed, success rate and capability to overcome the
characteristic changes of USM. Also, the proposed APSO based PID controller is
simpler than the previous PSO-LDW based PID controller. The previous PSO-
LDW has four parameters to be adjusted, but the proposed APSO has only three
parameters to be adjusted. In addition, the proposed control method still keeps
low computational cost, low requirement memory and faster in obtaining a best
solution. These are advantages of the proposed Enhanced PSO based PID
controller.

As shown in Table 5.3, in order to get simplicity, convergence speed and
time-calculation, it is better to use APSO based Intelligent PID controller. Due to
this method, cheaper cost, shorter process time and high profit can be obtained.
However, in order to get accuracy and success rate, it is better to use HAIPSO

based Intelligent PID controller.

5.3 Originality and Contribution

The proposed control method has three originalities. Firstly, the proposed
control method has originality in tools or technique. In the previous control
method, the PID gain was adjusted by the standard type of PSO called PSO-LDW.
In the research, we proposed five variants of Enhanced PSO to determine the PID
gain. The proposed control method is different from the previous method and first
applied for controlling USM. Secondly, the proposed control method has
originality in idea. In HAIPSO, we used combination of three strategies to
overcome several the causes of shortcoming of PSO simultaneously. These
strategies are new additional parameter to create new sharing information;
adaptive inertia weight to accelerate in obtaining a proper balance; and mutation
operator to keep diversity of particles. This strategy is a new idea for improving

PSO. Thirdly, the proposed control method has originality in analysis or
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interpretation. In PSO-NDW, we introduced and discussed about the impact of
using period of exploration-exploitation abilities. In PSO-RIW, we introduced
and discussed about how to overcome the lack-ability in PSO-LDW and PSO-
NDW using random strategy. In APSO, we introduced and discussed about
feedback mechanism to take information of swarm condition and used it to
calculate an inertia weight. In APSO-RIW and HAIPSO, we introduced and
discussed about hybrid strategy for improving PSO.

The main contribution of this study is a new control strategy for USM called
intelligent self-tuning PID controller using Enhanced PSO with better
performance than the previous control method. Also, the research offered new
analysis and interpretation for improving PSO and the Enhanced PSO can be

applied to other areas for solving optimization problem.

Table 5.3 General performance

PSO- PSO- PSO- APSO-
Performance APSO HAIPSO
LDW NDW RIW RIW
Simplicity A [ | A
Convergence speed A l
Time-calculation A l
Accuracy A [ |
Capability to avoid
premature A [ |
convergence
Capability to escape
p y p A l
from local optima

l “BEST”
A “WORST”

5.4 Future Works

In the proposed Enhanced PSO, in order to get a best performance, the

parameters should be adjusted properly and manually. TImproperly parameters
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setting will decrease the performance of PSO. However, properly parameters
setting are not an easy task because they are unique. It means that properly
parameters setting are suitable for one problem or controlled plant, and it may not
suitable for other problems. The properly parameters setting depend on several
factors, e.g., problem to be solved, number of particles, condition of swarm and
environmental changes. Therefore, this is the disadvantage of the proposed
method. In the future, we want to investigate how to determine properly
parameters setting effectively. Also, in the next research, we will develop an
auto-tuning PSO or free-parameter tuning PSO, where the parameters can be

adjusted automatically.
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