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1. General introduction 



1.1. History of feline and ferret coronaviruses 

1.1.1 Feline coronavirus (FCoV) 

 Feline infectious peritonitis (FIP) was first described in 1963 as an important 

disease of cat (Holzworth, 1963). In 1968, virus particles were observed in the lesional 

tissue of experimentally infected cats (Zook et al., 1968) by electro-microscopic study. 

In 1978, Pedersen et al. (1978) reported the close genetic relationship of FIP virus 

(FIPV) with coronavirus (CoV) of dog and pig. In 1984, it was reported that FIPV was 

divided into two serotypes, feline CoV (FCoV)-like virus and canine CoV (CCoV)-like 

virus (Pedersen et al., 1984a). Now, FCoV-like virus is designated as type I FCoV and 

CCoV-like virus is designated as type II FCoV. Some reports indicated that type II 

FCoV emerged by double recombination between type I FCoV and CCoV (Motokawa 

et al., 1996, Herrewegh et al., 1998) 

 FIP is one of the most important diseases in cat, but there was no report on FIP 

it is still unknown the reason for sudden emergence of FIP. 

1.1.2. Ferret coronavirus (FRCoV) 

 In 2000, it was reported that novel coronavirus infected domestic ferret 

(Mustela putorius) in the United States and the virus was a causative agent of epizootic 



catarrhal enteritis (ECE) (Williams et al., 2000). This coronavirus was designated as 

ferret coronavirus (FRCoV). In 2006, FIP-like disease in domestic ferret was first 

reported and the causative agent was also FRCoV (Martinez et al., 2006). Now, FRCoV 

inducing ECE was designed as ferret enteric coronavirus (FRECV) and FRCoV 

inducing FIP-like disease was designated as ferret systemic coronavirus (FRSCV). In 

2010, FRCoV could be genetically divided into two types, I and II, by the difference of 

-terminal of spike gene and FRSCV and FRECV belonged to type I and type II 

FRCoV, respectively (Wise et al., 2010). However, type I FRCoV was found from many 

rectal swabs of healthy ferrets in the Netherland, indicating that almost type I FRCoV 

did not cause severe disease, but only some variants, FRSCV, caused systemic disease 

like FIP (Provacia et al., 2011).  

1.2. Virus properties 

 CoVs are enveloped and have a large single-stranded, positive-sense RNA 

(26- -

protuberant from virion. The size of viral particle is 120-160nm. 

 Both FCoV and FRCoV belong to order Nidovirales, family Coronaviridae, 

subfamily Coronavirinae, genus Alphacoronavirus 1 (International Committee on 



Taxonomy of Viruses (ICTV)). Especially, FCoV belongs to species Alphacoronavirus 1

including CCoV, transmissible gastroenteritis coronavirus (TGEV) and porcine 

respiratory coronavirus (PRCoV). FRCoV also seems to belong to species 

alphacoronavirus-1, but has not been assigned, yet.  

-thirds of the CoV genome consists of two open reading frames 

(ORFs 1a and 1b) that encode a non-structural polyprotein, including RNA-dependent 

-third of the genome consists of ORFs encoding 

structural proteins, S, membrane (M), envelope (E) and nucleocapsid (N), and some 

non-structural proteins (nsp), 3a, 3b, 3c, 7a and 7b.  

1.2.1. S protein 

 S protein is a class I viral fusion protein with a molecular mass of 180-205 

kilodalton (kDa) (Bosch et al., 2003, Olsen, 1993). S protein forms a trimer, projects 

from the surface of virions and plays important roles in entry step, interaction with viral 

receptor that existed on the surface of target cells and acceleration of fusion process 

(Olsen, 1993, de Groot et al., 1989, Weiss and Navas-Martin, 2005). Type II FCoV, 

CCoV and TGEV uses amino peptitase N (APN) as a receptor (Tresnan et al., 1996, 

Delmas et al., 1992, Hohdatsu et al., 1998), but receptor(s) of type I FCoV and FRCoV 



have not been identified. S protein was divided into two domains, S1 and S2. S1 domain 

composes globular and possesses receptor binding domain (RBD). S2 domain composes 

membrane bound stalk and possesses fusion peptide (Olsen 1993, de Groot et al., 1989, 

Weiss and Navas-Martin, 2005, Pedersen, 2014). S protein of CoV showed high 

immunogenicity and induced virus-neutralizing (VN) antibody (Corapi et al., 1992, de 

Groot et al., 1989, Klepfer et al., 1995, Li et al., 2013). Especially, S1 domain tended to 

show high immunogenicity (Kida et al., 1999, Takano et al., 2011, Li et al., 2013). 

Because of the high immunogenicity, S protein was one of the candidates for vaccine 

development (Klepfer et al., 1995, Li et al., 2013).   

1.2.2. Other proteins 

 N protein is the most abundant viral proteins and plays an important role in 

encapsidation and packaging of viral RNA. Since antibody against N protein was 

induced efficiently, N proteins of CoV were used as antigens for serological test.  

 E and M proteins were located on the surface of virion. There were some 

reports that M protein could induce the protective immune response (Fleming et al., 

1989, Vennema et al., 1991) 

-thirds of genome consists of two ORFs, 1a and 1b, that encode 



non-structural polyprotein including RdRp, papain-

exoribonuclease (ExoN) (Perlman and Netland, 2009).  

 FCoV possesses other nsp, 3a, 3b, 3c, 7a and 7b, as accessory proteins. The 

functions of these proteins were still unclear. However, intact 3c protein was thought to 

be essential for replication in intestinal tract of cats (Pedersen et al., 2009). Furthermore, 

there are some reports on relationship between pathogenicity of FCoV and nsp 3c 

and/or 7b (Vennema et al., 1992, 1998, Chang et al., 2010, Pedersen et al., 2009). 

1.3. Epidemiology 

1.3.1. FCoV 

 FCoV infection is worldwide and ubiquitous in domestic cats and wild felids, 

such as African lion, cheater, jaguar and so on (Colby and Low, 1970, Colly, 1973, 

Poelma et al., 1974, Fowler, 1978, Theobald et al., 1978, Juan-Salles et al., 1998., 

Pedersen, 1983, Watt et al., 1993). Some reports indicated that type I FCoV is 

predominant in the field (Hohdatsu et al., 1992, Vennema, 1999, Kummrow et al., 2005). 

Shiba et al. (2007) carried out serosurvey in Japan, showing that 63.3% of cats were 

sero-positive to FCoV and 98% of sero-positive cats possessed antibody to type I FCoV 

and only 2% did to type II FCoV. Cats infected with FCoV shed virus in the feces and 



FCoV spread by fecal-oral routes in cat population (Pedersen et al., 2008). 

  Although FCoV infection is ubiquitous, the occurrence of FIP is rare and 

sporadic. FIP was the most serious cause of death of kittens, because FIP was diagnosed 

in 8.4% of dead kittens (17 of 203 cats) in the United Kingdom (Cave et al. 2002). 

Some risk factors for FIP were identified. One of the factors was multi-cat household 

(Addie et al., 2009). Age is also an important risk factor and 70% of FIP cases occurred 

in cats less than 1 year old (Rohrer et al., 1993, Hartman, 2005). It was reported that 

some breeds, such as Abyssinians, Beggals, Himalayans, Rexes, Ragdolls and Birmians, 

had a high risk to become FIP (Pesteanu-Somogy et al., 2006). 

1.3.2. FRCoV 

 In 2000, the FRCoV was detected from ferrets with ECE in USA (Williams et 

al., 2000) and since then, the existence of FRCoV was reported from animals with two 

types of diseases, ECE and FIP-like disease in USA and Europe (Wise et al., 2006, 

Garner et al., 2008, Martinez et al., 2006, 2008, Graham et al., 2012). On the other hand, 

FRCoV was detected from 63% of rectal swabs of asymptomatic ferrets in the 

Netherland (Provacia et al., 2011).  

 In Japan, there was only one report that the domestic ferret became FIP-like 



disease and pathologically diagnosed (Michimae et al., 2010). However, there was no 

epidemiological information on FRCoV in Japan. 

1.4. Diseases and pathogenicities 

1.4.1. FCoV 

 FCoVs are divided into two biotypes based on the pathogenicity in cats. One is 

feline enteric coronavirus (FECV) and another is FIPV. FECV infection is not severe, 

most of cats infected with FECV are asymptomatic and some kittens occasionally show 

enteritis. On the other hand, FIPV infection causes severe and lethal disease, FIP, in cat.  

 Clinical features of FIP were divided into two forms. One is wet (effusive) 

form and another is dry (non-effusive) form (Montali and Strandberg, 1972). The most 

common form of FIP is wet form (Pedersen, 2009). The cat with wet form of FIP shows 

the exudation in the abdomen and/or pleural cavity and inflammatory condition on 

visceral serosa. The exudation is yellow-tinged and mucinous fluid. Abdominal 

distension is the most common physical finding in wet form of FIP. Pleural effusion 

induces dyspnea to cats. Dry form of FIP was characterized by pyogenic granuloma at 

parenchymatous organs and there is no inflammatory exudation. Kidney and mesenteric 

lymph nodes frequently show the lesion and liver and hepatic lymph nodes do less 



frequently. Involvement at central nervous system (CNS) and eyes are also frequent in 

cats with dry form of FIP and FIP is the most frequent cause of uveitis/chorioretintis in 

cats (Goodhead, 1996, Peiffer et al., 1991). 

 The target cell of FECV is enterocyte in intestine and that of FIPV is 

macrophage and monocyte. Therefore, the acquisition of macrophage tropism was an 

essential step to become FIPV from FECV. However, FECVs may be detected in blood 

(Meli et al., 2004) and this phenomenon make veterinarian difficult to diagnose dry 

form of FIP.  

 The genetic marker of FIPV, genetic basis for the difference in macrophage 

tropism between FECV and FIPV, is still unknown, but some candidates, the mutations 

in S protein, 3c and 7b, were suggested. Licitra et al. (2013) examined a furin cleavage 

site in S protein of 30 samples of FECV and 22 samples of FIPV, showing that all 

FECV had a conserved furin cleavage motif but most FIPV showed one or more 

substitution and that these substitutions modulated cleavage by furin. Chang et al. 

(2012) determined the full genome sequence of eleven strains of FIPV and eleven 

strains of FECV and found two significant amino acid differences in S2 protein between 

FIPV and FECV. Furthermore, it was reported that difference between FECV and FIPV 

might be due to functional mutation in 3c gene, because all FECV possessed intact 3c 



gene but many FIPV did truncated 3c gene by mutation or deletion. Now, it was thought 

that intact 3c is essential for replication in gut (Chang et al., 2010, Pedersen et al., 2009). 

The function of 7b protein is still unknown. Some reports indicated that most of FIPV 

maintained intact 7b gene and FECV possessed truncated or mutated 7b gene (Vennema 

et al., 1992, 1998). However, Lin et al. (2009) reported that three strains of FIPV 

showed deletion in 7b gene. Hence, the relationship between virulence of FCoV and 

intact 7b gene is still unclear. 

 It was thought that cellular immunity was crucial for onset of FIP. The cellular 

immunity also plays an important role in determination of either dry or wet form of FIP. 

If the cellular immunity fails to be developed and the humoral immunity occurs, the cat 

will show wet form of FIP. If the cellular immunity is developed but weak, the cat will 

show dry form of FIP. If the cat develops sufficient level of cellular immunity, the cat 

might not become FIP (Pedersen, 1987, 2009, 2014, Vermeulen et al., 2013).  

1.4.2. FRCoV 

 Ferrets with ECE show general clinical signs of lethargy, anorexia, and 

vomiting in addition to an ECE-specific clinical sign, foul-smelling green diarrhea with 

high levels of mucus. Although the morbidity is very high, the mortality rate is low 



(<5%) (Murray et al., 2010). 

 FRSCV infection induces ferrets to be the disease like dry form of FIP. The 

ferrets with the FIP-like disease show the palpating mass in abdominal cavity by 

pyogenic granuloma at parenchymatous organs and then die. FRSCV was found in 

cytoplasma of macrophage in the lesion (Martinez et al., 2006). 

1.5. Diagnosis and treatment 

 It is difficult for many veterinarians to diagnose FIP, especially dry form, 

because there was no test that can clearly diagnose FIP. Veterinarian should diagnose 

comprehensively using lots of information of cat, historical patient information, 

physical finding and laboratory abnormalities. The cat with FIP showed several 

abnormalities in hematological profiles. A mild to moderate non-responsive anemia that 

is typical finding of chronic disease is recognized. In white blood cells of FIP cats, 

absolute lymphopenia and neutrophilia were commonly observed (Pedersen, 1976, 

Paltrinieri et al., 1998, Sparkes et al., 1991). A common finding of laboratory test is 

elevation of total serum protein that was induced by a rise in gamma globulin (Platrieri 

et al., 2001, Sparkes et al., 1994). Low albumin/globulin ratio (<0.8) is considered to be 

diagnostic for FIP (Addie et al., 2009). Increase of liver enzyme, urea and creatinine 



depend on the degree and site of organ damage. 

 The effusion in abdominal and/or pleural cavity in FIP cats is valuable for 

diagnosis. When the fluid was pulled away using needle tip, a string will often be 

formed because the fluid is mucious. The effusion is yellow-tinged and mucinous fluid. 

-PCR is useful for 

diagnosis of FIP and quantification by real-time RT-PCR shows high level of viral 

RNA.  

 There are many tests for detection of antibody to FCoV, such as indirect 

immunofluorescence assay (IFA), VN test and enzyme-linked immunosorbent assay 

(ELISA) (Barlough et al., 1982, Pedersen, 1976, Pratelli, 2008). Unfortunately, 

existence of antibody to FCoV does not prove to be FIP (Hartmann et al., 2003). 

However, there is no doubt that the cats with very high titer (>1,600) in IFA test are 

likely to be FIP and negative titer means non-FIP (Pedersen, 1976). 

 Because there is no effective treatment for FIP, most cases of FIP are fatal. 

Recently, cyclosporine A has been examined as one of candidates of treatment for FIP 

(Tanaka et al., 2012, 2013). However, the effect in natural case is still unknown. Feline 

interferon omega inhibits FIPV infection in vitro (Mochizuki et al., 1994), but this 



treatment was ineffective in natural case of FIP (Ritz et al., 2007). 

1.6. Prevent and control 

 There is only one vaccine available for FIP. The vaccine was made from 

temperature-sensitive type II FCoV and was inoculated intranasaly (Christianson et al., 

1989, Gerber et al., 1990). However, the efficacy of the vaccine is in doubt (Fehr et al., 

1997). Therefore, there was no efficient vaccine to prevent FIP.  

 Antibody-dependent enhancement of infection (ADE) of FIPV prevents the 

development of efficient vaccine. Briefly, antibody to FIPV induces efficient infection 

to macrophage via Fc receptor (Olsen et al., 1992). Vennema et al. (1990) constructed 

recombinant vaccinia virus expressing S protein and tested vaccine efficacy. After 

challenge of virulent FIPV, vaccinated cats were dead earlier than non-vaccinated cats. 

 Most important way to prevent FIP is decrease the risk factors, such as 

multi-cat household. It was reported that proper management could decrease the 

incidence of FIP in catteries (Pedersen et al., 1995).

1.7. Evolution and emergence of coronavirus 

 Recently, emerging CoV infections, such as severe acute respiratory syndrome 



(SARS)-CoV and Middle-East respiratory syndrome (MERS)-CoV, have been big 

concern of public health. It has been believed that these viruses originated from bats and 

camels zoonosis. During transmission among natural host, viruses evolved by mutation 

and/or recombination. These mutations and recombination changed viral properties, 

such as host range and pathogenicity (Kocherhans et al., 2001, Vijgen et al., 2005, 

Sheahan et al., 2008).  

 There are three reasons for the frequent mutation and recombination of CCoV 

(Bolles et al., 2011). First, RdRp has low fidelity. The mutation rate approaches 

2.0×10-6 mutations per site per round of replication (Eckerle et al., 2010). Second, there 

is a unique RNA replication mechanism using the transcription regulatory sequence 

(TRS) motif and 

unique mechanism induces homologous RNA recombination in CoVs (Pasternak et al., 

2006, Lai et al., 1985). Third, CoV possesses the largest genome (26-32kb) among 

RNA viruses. 

 Since SARS-CoV occurred in 2003, research on CoV accelerated. However, 

experimental animals such as mouse and ferret were used in most studies on CoV 

evolution, but it seems to be not sufficient for analysis of the evolution of CoV because 

they are not natural hosts. Analysis of CoVs evolution should be carried out using their 



natural hosts. In this thesis, we analyzed evolution of CoVs using natural hosts.  

 In Chapter 1, pathogenesis of type I FIPV - 

terminal region of spike gene was analyzed. In Chapter 2, mechanism of emergence of 

pathogenic coronaviruses in cats was analyzed. In Chapter 3, two types of FRCoV in 

Japan were genetically characterized.  



2. CHAPTER 1 
Feline infectious peritonitis virus with a large deletion 

- terminal region of spike gene retains its 
virulence for cats 



2.1 Abstract

In this study, Japanese strain of type I FIPV, C3663, was found to have a large 

deletion of 735 bp within the gene encoding the S protein, with a deduced loss of 245 

amino acids of the N-terminal region of the S protein. This deletion is similar to that 

observed in PRCoV when compared to TGEV, which correlates with reduced virulence. 

By analogy to PRCoV, we expected that the pathogenicity of C3663 may be attenuated 

in cats. However, two of four cats inoculated with C3663 died of FIP, and a third 

C3663-inoculated cat showed FIP lesions at 91 days after challenge. These results 

-terminal region of the S gene is not essential for the development of 

FIP.  



2.2. Introduction 

FIP is a progressive, systemic fatal disease in domestic and wild felids. The 

causative agent of FIP is FCoV belonging to the order Nidovirales, family 

Coronaviridae, subfamily Coronavirinae, genus Alphacoronavirus, species

Alphacoronavirus 1. Other members of this species include CCoV, TGEV and PRCoV. 

FCoVs are classified into two biotypes based on their pathogenicity in cats. One 

is FECV; the second is FIPV. FECV infection is asymptomatic in cats, occasionally 

causing enteritis in kittens, but FIPV infection causes severe and lethal disease in cats. 

However, there is no clear marker to distinguish between FIPVs and FECVs (Pedersen 

et al., 1981; Pedersen, 1987, Kennedy et al., 2001). 

FIPVs and FECVs are antigenically divided into two types (I and II) based on 

their reactivity with monoclonal antibodies (MAbs) raised against the S protein (Fiscus 

and Teramoto, 1987, Hohdatsu et al., 1991b, 1992). This distinction relates to 

differences in the nucleotide sequence of the gene encoding the S protein (Motokawa et 

al., 1996, Herrewegh et al., 1998). There are also some differences in the biological 

characteristics between types I and II. Type II can grow well in vitro, while type I 

exhibits poor growth in cell culture (Pedersen et al., 1984a). As a result, it has been 

difficult to isolate type I FIPVs from cats exhibiting FIP. In Japan, only three strains of 



type I FIPV (C3663, KU-2, and Yayoi) have been isolated (Hayashi et al., 1981, 

Hohdatsu et al., 1991b, Mochizuki et al., 1997). In this study, we describe the genetics 

and pathogenesis of a recent Japanese type I FIPV isolate (C3663).  

2.3. Materials and methods 

2.3.1. Cell 

Felis catus whole fetus (fcwf)-4 cells (Jacobse-Geels and Horzinek, 1983) were 

maintained in 5% CO2 at 37 °C

Invitrogen, CA, USA) containing 10% (v/v) fetal calf serum (FCS; Hyclone 

Laboratories, UT, USA

CA, USA). 

2.3.2. Viruses 

Type I FCoV strains C3663 and Yayoi were propagated in fcwf-4 cells. C3663 

was isolated from a cat with FIP in Kagoshima in 1994 (Mochizuki et al., 1997). Yayoi, 

which has been used as the Japanese prototype strain of type I FCoV, was isolated from 

a cat with FIP in Tokyo, originally by serial passage in the brain of suckling mice with 

subsequent adaptation to fcwf-4 cells (Hayashi et al., 1981). C3663 and Yayoi were 

classified as type I FCoV by using FCoV type-specific MAbs, which were kindly 

provided by Dr. Hohdatsu (Hohdatsu et al., 1991a, b). 

2.3.3. Extraction of RNA 

FCoVs were inoculated to fcwf-4 cells in 35-mm dishes (Sumitomo Bakelite, 



Tokyo, Japan) and then incubated at 37 °C until a cytopathic effect (CPE) was observed. 

RNA was isolated from the infected cells using the RNeasy® Mini kit (Qiagen, Hilden, 

Germany). 

2.3.4. Reverse transcription (RT)-PCR  

cDNAs of C3663 were reverse-transcribed using oligo-dT M4 primer using 

TaKaRa RNA LA PCRTM kit (AMV) Ver 1.1 (Takara, Shiga, Japan). The reactions were 

carried out at 30 °C for 10 min, 42 °C for 30 min, and 70 °C for 15 min, using a Little 

Gene (Toyobo, Osaka, Japan) cycler. PCR amplifications of subgenomic RNA were 

-ACT AGC CTT GTG CTA GAT TT-

one of the following reverse pri -TCA CCA AAA CCT ATA CAC 

AC- -CTT CAT TTT GTT TAG TTC AAA C- - - TAA GCC 

CAT CCT GTA GCA GT- -TAA TAA ATA CAG CGT GGA GGA AAA C-

-GTT TTC CCA GTC ACG AC-

performed using an initial denaturation at 94 °C for 2 min, followed by 40 cycles at 

94 °C for 30 sec, 55 °C for 30 sec, 72 °C for 2 min, and a final extension at 72 °C for 10 

min. To detect subgenomic RNA encoding the S protein among the PCR products 

generated using primer pair 52F and 26218R, semi-nested PCR was carried out with 

primer pair 52F and S- - TGT TGR CAC TTR ATT CTA TT-

is a mixture of A and G) using KOD-plus-ver.2 (Toyobo), with an initial denaturation at 

94 °C for 2 min, followed by 40 cycles at 98 °C for 10 sec, 55 °C for 30 sec, 68 °C for 2 

min. 

cDNAs of the Yayoi genome were generated by reverse transcription of RNA 

from infected cells with random 9-mer primers using TaKaRa RNA LA PCRTM kit 



(AMV) Ver 1.1 (Takara). PCR amplification of sequences from the cDNA was 

p -TAA TGG CAA GCT ACT AAA 

CT- by an initial 

denaturation at 94 °C for 2 min, followed by 40 cycles at 94 °C for 30 sec, 55 °C for 30 

sec, 72 °C for 5 min, and a final extension at 72 °C for 15 min. 

-terminal region of S gene of C3663, we 

designed primers that specifically spanned the region in question and consisted of 

forward primer Yayoi S 46F ( -GAT GCT CCT CAT GGT GTT AC- everse 

primer Yayoi S 1058R -CTC AAA ACA TCT GCC GTG AC-

was performed by an initial denaturation at 94 °C for 2 min, followed by 40 cycles at 

94 °C for 30 sec, 55 °C for 30 sec, 72 °C for 2 min, and a final extension at 72 °C for 15 

min. 

For all PCR reactions, products were electrophoresed on agarose gels, stained 

with ethidium bromide, and visualized under ultraviolet light. 

2.3.5. Cloning and sequencing 

PCR products were cloned using the TOPO-TA cloning kit (Invitrogen) or 

purified using QIAquick® PCR Purification Kit (Qiagen) according to the instructions 

of the manufacturers. Plasmid DNAs containing genes of the C3663 strain were purified 

using the QIAprep® Spin Miniprep kit (Qiagen) for sequencing. Nucleotide sequences 

of the Yayoi S gene were determined directly from the PCR product. Sequencing was 

performed using BigDye® Terminator v3.1 Cycle Sequencing kit (Applied Biosystems, 

VA, USA), and the results were analyzed using ABI PRISMTM 310 Genetic Analyzer 

(Applied Biosystems). The phylogenetic tree was constructed using the deduced amino 



acid sequences of partial S proteins (278 -1467 amino acids) and MEGA5 software 

(Tamura et al., 2011). For this phylogenetic analysis, we incorporated the S protein 

sequences from the following strains, as obtained from the databases: type I FCoV 

strains C1Je (GenBank accession number DQ848678) and NTU2/R/2003 (DQ160294); 

type II FCoV strains 79-1146 (DQ010921) and 79-1683 (X80799); type I CCoV strain 

23/03 (AY307021); type II CCoV strain INSAVC-1 (D13096); TGEV strains virulent 

Purdue (DQ811789) and Miller M6 (DQ811785); and PRCoV strain RM4 (Z24675).  

2.3.6. Animal experiment 

To investigate the pathogenicity of C3663, four specific-pathogen free (SPF) 

cats (male, 6 months old; Liberty Research, NY, USA) were inoculated intra-orally with 

10 ml of a viral solution containing 3.9×106 plaque forming unit (PFU) of C3663 per cat 

(No. 1-4). Clinical signs, body weights, and temperatures were recorded daily. Blood 

was collected every week under anesthesia with ketamine (Daiichi Sankyo, Tokyo, 

Japan). Serum amyloid A (SAA) was measured by Mitsubishi Chemical Medience 

(Tokyo, Japan). Cat sera were stocked at -80 °C until use for VN test and quantification 

of viral RNA using real-time RT-PCR method by canine-lab corporation (Tokyo, Japan). 

All animal experiments were approved by the ethics committee for animal experiments, 

Faculty of Agriculture, Yamaguchi University. 

2.3.7. VN test 

Complement in sera was inactivated by heating at 56 °C for 30 min before VN 

test. VN test was performed by 75% plaque-reduction neutralization test (PRNT75). The 

inactivated sera were diluted with DMEM containing 2% FCS. C3663 was diluted to 



approximately 1.0×103 PFU/ml with DMEM containing 2% FCS, mixed with equal 

volume of diluted sera or DMEM containing 2% FCS as control and incubated at 37 °C 

-4 cell monolayers in 

24-well plates (Sumitomo Bakelite) and adsorbed at 37 °C for 1 hr. After adsorption, 

the mixtures were removed and the infected cells were overlaid with 0.8% (w/v) agarose 

(Seaplaque® GTG agarose; Lonza, Basel, Switzerland) in DMEM containing 10% FCS. 

The infected cells were incubated at 37 °C until CPE was observed, at which point the 

cells were fixed with phosphate-buffered formalin. The fixed cells were stained with 

crystal violet and the number of plaques was counted. VN titers were expressed as the 

highest serum dilution showing 75% or more plaque reduction compared with the 

number of plaques in control wells (Shiba et al., 2007). 

2.4. Results 

2.4.1. Nucleotide sequences of FCoV C3663 

Sequence analysis and alignments for a total of 8,245 bp of C3663 were used to 

identify the following genes: S (3,669 bp; encoding a 1,222-residue protein), ORF 3a 

(213 bp; encoding a 70-residue protein), ORF3b (222 bp; encoding a 73-residue protein), 

ORF3c (714 bp; encoding a 237-residue protein), E (249 bp; encoding a 82-residue 

protein), M (786 bp; encoding a 261-residue protein), N (1,131 bp; encoding a 

376-residue protein), ORF7a (306 bp; encoding a 101-residue protein), and ORF7b (621 

bp; encoding a 206-residue protein). The nucleotide sequence of C3663 was deposited 

to the DNA Data Bank of Japan (DDBJ) as Accession No: AB535528.  

Interestingly, the alignment of the S genes indicated that C3663 has a large 

deletion of 735 bp (capable of encoding 245 -terminus of the S 



gene (Figure 2-1a). To confirm this deletion, RT-PCR was performed on RNA from 

C3663- or Yayoi-infected cells using forward primer Yayoi S 46F and reverse primer 

Yayoi S 1058R which span the corresponding domain of the S gene. PCR products of 

278 bp and 1013 bp were obtained from C3663- and Yayoi-infected cells, respectively 

(Figure 2-1b).  

A phylogenetic tree was constructed for the S proteins from the deduced amino 

acid sequences (residues 278 -1467) using MEGA5 software (Tamura et al., 2011). The 

result showed that C3663 is a type I FCoV (Figure 2-1c). The S protein of C3663 

exhibited 89-93% amino acid identity to those of other type I FCoVs and a much lower 

identity (<50%) to those of type II FCoVs or type II CCoVs. 

2.4.2. Pathogenicity of C3663 in cats 

The pathogenicity of C3663 with the large deletion was investigated by 

infecting SPF cats. Four SPF cats were inoculated intra-orally with C3663 (Nos. 1-4)  

One cat (No. 2) was found dead on post-inoculation day (PID) 21 and a second 

cat (No. 3) was euthanized because of severe clinical signs on PID 37. The two 

remaining cats (Nos. 1 and 4) survived until PID 91 (the end of the observation period), 

at which time both were euthanized. At necropsy, one of the surviving cats (No. 1) 

exhibited FIP lesions but cat No.4 did not show any lesions. All cats showed clinical 

signs after inoculation. Anorexia was observed in three cats (Nos. 2, 3 and 4) and 

vomiting in two cats (Nos. 3 and 4). Lethargy and weight loss were observed in two cats 

(Nos. 2 and 3) (Figure 2-2a). Dyspnea was observed in one cat (No. 2) on PID 20 and 

21. In cat No. 3, jaundice was observed on PID 33-37 and melena on PID 35 and 37. 

Furthermore, the concentration of SAA increased in all cats (Figure 2-2b). Cat Nos. 2, 3 



and 4 showed a rapid increase during the acute phase. Cat No.1 intermittently showed 

increased levels of SAA and, despite a lack of clinical signs, exhibited a high 

concentration of 49

was detected in sera and VN activity to C3663 was observed (data not shown). 

2.4.3. Postmortem examination 

Following postmortem examination no lesions were found in cat No. 4. 

However, cat Nos. 1 and 2 showed pleural effusion and pyogranulomatous lesions in the 

pleural cavities. Pleural effusion and ascites were observed in cat No. 3. Lesions were 

seen in the kidneys, liver, stomach, intestine, pancreas, diaphragm and lung by 

macropathology, and confirmed as being pyogranulomatous by histopathological 

examination. 

2.5. Discussion

-terminus of the S gene. While C3663 has been adapted to propagation in tissue culture 

and the deletion may therefore have occurred in vitro, there is in fact evidence for 

naturally occurring FCoVs with similar deletions. The type I FCoV field variants UU16 

(Accession No. FJ938058) and UU21 (HQ012369) have deletions of 705 and 792 bp, 

-terminal region of their S genes, whereas field variant UU3 

(FJ938061) has a small 126-bp deletion. It therefore appears that C3663-like FCoVs are 

present and maintained under field conditions. 

To examine the pathogenicity of C3663, four SPF cats were intra-orally 

inoculated with C3663. Three of four SPF cats exhibited typical FIP during the 



observation period and two died within one month of inoculation. Adaptation of FIPV 

to propagation in tissue culture often results in a loss of pathogenicity (Pedersen and 

Black, 1983, Pedersen and Floyd, 1985, Christianson et al., 1989, Kiss et al., 2004). 

Conceivably, the deletion in the S gene of C3663 might well have resulted in virus 

attenuation. In fact, a naturally occurring mutant of TGEV, PRCoV suffered a similar 

deletion in the S gene (Wesley et al., 1991) which caused a loss of virulence and a 

change in tissue tropism. PRCoV exhibits reduced sialic acid binding and 

hemagglutination activity (Schultze et al., 1996). It replicates efficiently in the 

respiratory tract, but, different from TGEV, does not replicate in the small intestine (Cox 

et al., 1990). In contrast, we demonstrate that FIPV C3663 is highly virulent. Our 

-terminal region of the FCoV 

S gene are tolerated without loss of pathogenicity. 

In conclusion, we succeeded in efficiently inducing FIP in cats by inoculation 

with tissue culture adapted type I FIPV, C3663, using a natural route of infection (oral 

inoculation). Furthermore, we confirmed that the 5 -terminus of the S gene is not 

essential for the development of FIP. 



2.6 Figure legends 

Figure 2-1. Confirmation of the S gene deletion in Japanese strain of type I FIPV 

C3663. (a) Schema of the S genes of Yayoi and C3663. The box framed by a dotted line 

shows the deletion (735 bp) in the S gene of C3663 compared to Yayoi (AB695067). 

Arrowheads indicate the position and orientation of the primers, Yayoi S 46F and Yayoi 

S 1058R, used to confirm the deletion. (b) Confirmation of the deletion by RT-PCR 

using Yayoi S 46F and Yayoi S 1058R. (c) Phylogenetic tree using amino acid 

sequences of S proteins excluding the distinct N-terminal domains. The tree was 

constructed using MEGA5. Accession numbers of the sequences used are AB695067 

(Yayoi), DQ848678 (C1Je), DQ160294 (NTU2/R/2003), DQ010921 (79-1146), 

X80799 (79-1683), AY307021 (23/03), D13096 (INSAVC-1), DQ811789 

(TGEV-Purdue), DQ811785 (TGEV-Miller M6), and Z24675 (PRCoV-RM4). 

Figure 2-2. (a) Normalized body weight among cats following inoculation with 

FIPV-C3663. Body weights were normalized using the weight on post-inoculation day 

(PID) 0 as 100%. (b) The concentration of SAA in cat sera. The limit of detection of 

SAA is < 2.5 .  



2.7 Figures 





3. CHAPTER 2 

Emergence of pathogenic coronaviruses in cats by 

homologous recombination between feline and canine 

coronaviruses 



3.1. Abstract 

 Type II FCoV emerged via double recombination between type I FCoV and 

type II CCoV. In this study, two type I FCoVs, three type II FCoVs and ten type II 

CCoVs were genetically compared. The results showed that three Japanese type II 

FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous 

recombination between type I FCoV and type II CCoV and their parent viruses were 

-terminal recombination sites 

of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within 

-terminal recombination 

sites were also located at different regions of ORF1. These results indicate that at least 

three Japanese type II FCoVs emerged independently. Sera from a cat experimentally 

infected with type I FCoV was unable to neutralize type II CCoV infection, indicating 

that cats persistently infected with type I FCoV may be superinfected with type II CCoV. 

Our previous study reported that few Japanese cats have antibody against type II FCoV. 

All of these observations suggest that type II FCoV emerged inside the cat body and is 

unable to readily spread among cats, indicating that these recombination events for 

emergence of pathogenic coronaviruses occur frequently.



3.2. Introduction 

CoVs (order Nidovirales, family Coronaviridae, subfamily Coronavirinae) are 

enveloped and have a large single-stranded, positive-sense RNA. Most CoVs cause 

-thirds of the CoV 

genome consists of two ORFs, 1a and 1b, that encode a non-structural polyprotein, 

including RdRp. The other third of the genome consists of ORFs encoding structural 

proteins, S, M, E and N, and some nsp, 3a, 3b, 3c, 7a and 7b (Woo et al., 2010). TRS 

-distal position in each mRNA and play an important role in the RNA 

replication of CoV (Makino et al., 1991, Pasternak et al., 2006).  

CoVs frequently undergo mutation and recombination, and there are three reasons 

for this (Bolles et al., 2011). First, CoV RdRp has low fidelity. Although CoV encodes 

approaches 2.0×10-6 mutations per site per round of replication (Eckerle et al., 2010). 

Second, there is a unique RNA replication mechanism using the TRS motif that is 

recombination in CoVs (Lai et al., 1985, Pasternak et al., 2006). Third, CoV possesses 

the largest genome (26-32kb) among RNA viruses. Furthermore, heterologous 

recombination that Betacoronavirus subgroup A has the hemagglutinin esterase gene 



originated from influenza C virus (Luytjes et al., 1988, Zeng et al., 2008). These 

mutation and/or recombination events change viral properties, host range and 

pathogenicity.  

FCoV is classified into genus Alphacoronavirus, species Alphacoronavirus 1, and 

includes CCoV, TGEV and PRCoV. FCoV is distributed worldwide in cats and mainly 

induces mild intestinal inflammation in kittens (Pedersen et al., 1984b). FCoV inducing 

enteric disease is known as FECV. On the other hand, cats infected with FCoV rarely 

develop the more severe disease, FIP, which is caused by a mutant virus that is referred 

to as FIPV. In addition, FCoVs can be divided into two serotypes, types I and II, based 

on antigenicity (Fiscus and Teramoto. 1987, Hohdatsu et al., 1991b, Shiba et al., 2007). 

These serotypes differ primarily in growth characteristics in cell culture and in receptor 

usage. Type II FCoV is able to use fAPN as its receptor, but type I FCoV cannot 

(Pedersen et al., 1984a, Hohdatsu et al., 1998). Recently, it was revealed that the S 

protein was solely responsible for the differences in types I and II FCoV with regard to 

growth characteristics in cell culture and fAPN usage (Tekes et al., 2010). 

CCoV was first isolated in 1971 from dogs with moderate to severe enteritis in 

Germany (Binn et al., 1974). CCoV is widespread in the dog population and is one of 

the most important canine enteropathogens (Carmichael, 1978, Rimmelzwaan et al., 



1991, Tennant et al., 1993, Bandai et al., 1999, Naylar et al et al., 2004, 

Schulz et al., 2008). CCoVs were also divided into two genotypes; I and II. Before 2000, 

it was thought that CCoV had only one genotype, but strain Elmo/02 with a type I 

FCoV-like S gene was detected in Italy (Pratelli et al., 2003). The Elmo/02 strain 

possessed a novel ORF3 gene that was absent from other Alphacoronavirus 1 between 

the S and ORF3a genes (Lorusso et al., 2008). Finally, this type I FCoV like-CCoV was 

designated type I CCoV and the reference CCoV was designated type II CCoV. 

Surprisingly, 36.9%-76.8% of dogs with diarrhea were co-infected with both types I and 

II CCoV (Pratelli et al., 2004, Decaro et al., 2010a, Soma et al., 2011). Furthermore, 

type II CCoV was divided into two subtypes, IIa and IIb (Decaro et al., 2009). In type 

-terminal region of the S gene was similar to that of TGEV and it was 

thought that type IIb CCoV emerged via recombination between type IIa CCoV and 

TGEV (Decaro et al., 2009). Recently, a type IIa CCoV strain CB/05 with high 

virulence was reported in Europe (Buonavoglia et al., 2006). CB/05-infected pups 

showed clinical signs such as lethargy, vomiting, diarrhea and acute lymphopenia, and 

the viral genome was observed in extraintestinal tissues including brain (Buonavoglia et 

al., 2006, Decaro and Buonavoglia, 2008). Furthermore, immune response induced by 

enteric CCoV did not protect dogs from infection with CB/05 (Decaro et al., 2010b). 



However, there is little genetic information on CCoV in Japan.  

In this study, to clarify the mechanisms of emergence of type II FCoV, three type 

II FCoVs isolated in Japan were genetically and antigenetically compared with ten 

Japanese type II CCoVs and two Japanese type I FCoVs.  

3.3. Materials and methods 

3.3.1. Cells 

fcwf-4 cells (Jacobse-Geels and Holzinek, 1983) were grown in the same condition 

described in CHPTER 1. 

3.3.2. Viruses 

Type I FCoV strains C3663 and Yayoi, type II FCoV strains M91-267, KUK-H/L 

and Tokyo/cat/130627 and type II CCoV strains fc1, fc4, fc7, fc9, fc76, fc100, fc94-039, 

fc97-022, fc00-089 and fc00-016 were analyzed in this study (Table 1). Type I and II 

FCoVs, excluding Tokyo/cat/130627, were characterized by IFA using MAbs that were 

kindly provided by Dr. Hohdatsu (Hohdatsu et al., 1991a, b). Yayoi strain was isolated 

from a cat with a non-effusive form of FIP in Tokyo by serial passage in suckling mouse 

brain, and was then adapted to fcwf-4 cells (Hayashi et al., 1981). C3663 strain was 



isolated from a cat with an effusive form of FIP in Kagoshima in 1994 (Mochizuki et al., 

1997). The pathogenicity of C3663 and Yayoi in cats was characterized in CHAPTER 1 

(Terada et al., 2012). M91-267 strain was isolated from a cat with an effusive form of 

FIP in Miyazaki in 1991 (Mochizuki et al., 1997). Three SPF cats were experimentally 

infected with M91-267, and all of these died from FIP (unpublished data). KUK-H 

strain was isolated from a cat with an effusive form of FIP in Kagoshima in 1987, and 

KUK-H/L that formed large plaques was plaque-purified from the KUK-H strain 

(Mochizuki et al., 1997). KUK-H/L caused lethal FIP in cats (Mochizuki et al., 1997). 

RNA sequences of Tokyo/cat/130627 were obtained from FIP ascites in a cat in Tokyo 

in 2013. The FIPV spread quickly in a cattery, and more than twenty cats developed FIP. 

Type II CCoV strains, fc1, fc4, fc7, fc9, fc76, fc100, fc94-039 and fc97-022, were 

isolated between 1990 and 1997 in Japan (Bandai et al., 1999), and fc00-016 and 

fc00-087 were isolated in 2000 in Japan (Mochizuki et al., 2001). 

3.3.3. RT- PCR 

 Each virus, excluding Tokyo/cat/130627, was inoculated onto a fcwf-4 cell 

monolayer and was incubated until CPEs were observed. RNA was then extracted from 

fcwf-4 cells using an RNeasy® Mini kit (Qiagen) and RT reaction was carried out at 



30°C for 10 min, 42°C for 30 min, 70°C for 15 min and 5°C for 5 min with random 

9-mer oligonucleotide primers or 42°C for 30 min, 70°C for 15 min and 5°C for 5 min 

with oligo dT-adaptor primer using a TaKaRa RNA LA PCRTM kit (AMV) Ver.1.1 

(TaKaRa).  

For amplification of partial S genes of type II CCoVs and type II FCoVs, primers 

-AGC ACT TTT CCT ATT GAT TG- -GTT AGT TTG 

TCT AAT AAT ACC AAC ACC- et al., 2002). For amplification 

-CTA AAG CTG GTG ATT ACT CAA CAG-

-TAA TAA ATA CAG CGT GGA GGA AAA C-

PCR was carried out at 94°C for 2 min, followed by 40 cycles at 94°C for 30 sec, 55°C 

for 30 sec, 72°C for 2 min and final extension at 72°C for 10 min using a TaKaRa RNA 

LA PCRTM kit (AMV) Ver.1.1 (TaKaRa). PCR products were analyzed 

electrophoretically and the amplified products were purified using a QIAquick PCR 

Purification kit (Qiagen) for sequence analysis.  

In order to amplify the subgenomic mRNA of CCoV fc1, PCR was performed 

-ACT AGC CTT GTG CTA GAT TT-

-CCA GTT TTT ATA ACA GCT G- , N- -GCG CAA TAA 

CGT TCA CCA- ) and M13 primer M4 as reverse primers. Primer 52F recognized the 



TRS conserved among Alphacoronaviruses (Terada et al., 2012). The reaction was 

carried out under the same conditions as mentioned above. 

For sequence analysis of ORFs M, N, 7a and 7b of M91-267 and KUK-H/L, we 

carried out TA cloning. RNA was extracted from fcwf-4 cells infected with M91-267 or 

KUK-H/L using an RNeasy® Mini kit (Qiagen). Extracted RNA was reverse-transcribed 

with oligo dT-Adaptor primer using a TaKaRa RNA LA PCRTM kit (AMV) Ver.1.1 

(TaKaRa) as mentioned above. To amplify the region including ORFs M, N, 7a and 7b, 

primers 52F, M13 primer M4 were used for PCR with a TaKaRa RNA LA PCRTM kit 

(AMV) Ver.1.1 (TaKaRa). PCR products were directly cloned into pGEM-T Easy 

(Promega, Ma

were extracted from E. coli strain JM109 using a QIAprep Spin Miniprep Kit (Qiagen). 

Purified plasmid DNAs were applied for sequencing analysis.  

Viral RNA of Tokyo/cat/130627 was extracted from FIP ascites in a cat using a 

QIAamp Viral RNA Mini Kit (Qiagen). For sequence analysis, five fragments of the 

- terminus of ORF 1b and poly A were amplified 

-TTG ATT CAA AGA TTT GAG TAT 

TGG- -CCVSR; CCVSF- -GTG TCA ATT CAG GTA CAG-

-GAG TGC TGA TGC ACA AGT- -N- -GCC ACC ATA CAA 



TGT GAC-  N- - AGT TCA GCA TTG CTG TGC TC- - -CAT CTC 

AAC CTG TGT GTC AT- -MMA AYA AAC ACA CCT GGA 

AG- -oligo dT-Adaptor primer. RT-PCR was carried out using a QIAGEN OneStep 

RT-

carried out at 45°C for 45 min and 95°C for 15 min, followed by 40 cycles at 94°C for 

10 sec, 55°C for 30 sec, 68°C for 3 min, and a final extension at 68°C for 15 min. For 

amplification of partial RdRp genes, primer IN-6 ( - GGT TGG GAC TAT CCT AAG 

TGT GA - ) and IN-7 ( - CCA TCA TCA GAT AGA ATC ATC AT - ) were used. 

This primer pair can amplify nucleic acids from many coronaviruses in the subfamily 

Coronavirinae (Poon et al., 2005). Reactions were carried out at 50°C for 30 min and 

95°C for 15 min, followed by 40 cycles at 94°C for 1 min, 48°C for 1 min, 72°C for 1 

min, and a final extension at 72°C for 10 min. PCR products were analyzed 

electrophoretically and amplified products were purified using a MinElute PCR 

Purification Kit (Qiagen) for sequence analysis. 

3.3.4. Nucleotide sequences 

Sequencing was performed using same methods described in CHAPTER 1. For 

sequence analysis, primers shown in Table S3-1 were used and nucleotide sequences 



were deposited to DDBJ under the accession numbers listed in Table 1. 

3.3.5. Homology search and phylogenetic analysis 

 Homologies among strains were analyzed using GENETYX® Ver.8 

(GENETYX Corporation, Tokyo, Japan) and phylogenetic trees were constructed by the 

neighbor-joining method (Saitou and Nei, 1987) using MEGA5.0 software (Tamura et 

al., 2011) based on nucleotide pairwise distance. For construction of the phylogenetic 

tree, we referred to the following sequences; type II FCoV 79-1146 (Accession no. 

DQ010921), 79-1683 (JN634064), DF-2 (JQ408981) and NTU156/P/2007 (GQ152141), 

type I FCoV C3663 (AB535528), Yayoi (AB695067 for S), UCD1 (AB088222 for S, 

AB086902 for N), Black (EU186072), NTU2/R/2003 (DQ160294), RM (FJ938051), 

UCD11a (FJ917519), UCD5 (FJ917522), UCD12 (FJ917521), UCD13 (FJ917523), 

UCD14 (FJ917524), UU2 (FJ938060), UU16 (FJ938058), UU18 (HQ012368), UU20 

(HQ392471), UU21 (HQ012369), UU23 (GU553362), type II CCoV 1-71 (JQ404409), 

v1 (AY390342 for S, AY390345 for N), K378 (KC175340), NTU336/F/2008 

(GQ477367), 5821 (AB017789 for S), TGEV Purdue (DQ811789), and PRCoV ISU-1 

(DQ811787). Analysis of similarity in the 

was carried out using Simplot version 3.5.1 (Lole et al., 1999). 



3.3.6. Sera from cats 

 Sera collected from two SPF cats experimentally inoculated with FIPVs were 

used. One cat was inoculated intra-orally with type I FCoV C3663 (3.9×106 PFU/cat) 

and showed an effusion form of FIP in CHAPTER 1 (Terada et al., 2012). Another cat 

was inoculated intraperitoneally with type II FCoV M91-267 (1.0×106 PFU/cat) and 

also showed an effusive form of FIP (unpublished data). When clinical symptoms were 

severe, cats were euthanized under anesthesia. These sera were obtained in our previous 

experiments carried out under approval by the ethics committee for animal experiments, 

Faculty of Agriculture, Yamaguchi University. 

3.3.7. VN test 

 VN test was performed the same as described in CHAPTER 1.  

3.4. Results 

3.4.1. -region among type II CCoVs, and type I and II FCoVs

-region of the genomes, excluding the poly A, of 

type II CCoV fc1 (8,959b) and type II FCoVs, M91-267 (8,889b), KUK-H/L (8,930b) 



and Tokyo/cat/130627 (8,831b), were determined (DDBJ Accession No. AB781790 for 

fc1, AB781788 for M91-267, AB781789 for KUK-H/L and AB907624 for 

Tokyo/cat/130627) (Table 3-

Tokyo/cat/130627 lacked ORF3b. In addition, type II FCoVs, M91-267 and 

Tokyo/cat/130627 possessed a truncated ORF 3c (Figure 3-1). When compared with 

KUK-H/L, M91-267 had a 35-nucleotide deletion in the ORF 3c gene, resulting in a 

truncated ORF 3c. In comparison with C3663, Tokyo/cat/130627 showed a 

25-nucleotide deletion in the ORF 3c gene, resulting in truncated ORF 3c gene. 

Deduced amino acid sequences for ORFs S, 3a, 3b, 3c, E, M, N, 7a and 7b in type II 

FCoVs were compared with those of type I FCoV C3663 and type II CCoV fc1 (Table 

S3-2, S3-3). Both M91-267 and KUK-H/L showed low identities with type I FCoV 

C3663 in ORFs S, 3a, 3b, 3c and E and high identities in ORFs N, 7a and 7b (Table 

S3-2). In contrast, the two strains showed high identities with type II CCoV fc1 in ORFs 

S, 3a, 3b, 3c and E and low identities in ORFs N, 7a and 7b (Table S3-3). In ORF M, 

the identities among type I FCoV, type II FCoV and CCoV were neither high nor low 

(Table S3-2, S3-3). Interestingly, comparison between Tokyo/cat/130627 and type I 

FCoV showed low identities in ORF S and high identities in ORFs 3a, 3c, E, M, N, 7a 

and 7b, while comparison with type II CCoV fc1 showed high identity only in ORF S 



and low identities in ORF 3a, 3c, E, M, N, 7a and 7b (Table S3-2, S3-3). 

3.4.2.Comparison of partial RdRp genes among type II CCoVs and type I and II 

FCoVs

Nucleotide sequences of partial RdRp gene in ORF1b (394b) of 15 Japanese 

CoVs were determined and deduced amino acid sequences were compared (Tables S3-2, 

S3-3, S3-4 and Figure 3-2A). In comparison with type I FCoVs, C3663, KUK-H/L and 

Tokyo/cat/130627 showed higher identity in RdRp than M91-267 (Table S3-2). On the 

other hand, the sequence of RdRp of M91-267 was more similar to that of type II CCoV 

fc1 than type I FCoV C3663 (Table S3-3). All CCoV strains possessed high homology 

with fc1 strain and M91-267, but showed low homology with KUK-H/L and 

Tokyo/cat/130627 (Table S3-4).  

Phylogenetic analysis using partial RdRp genes showed that Japanese type II 

strains could be divided into two different groups; feline CoV and canine CoV (Figure 

3-2A). KUK-H/L and Tokyo/cat/130627 belonged to feline CoV group and M91-267 

belonged to canine CoV group. The other foreign type II FCoVs belonged to the type II 

CCoV group.   



3.4.3. Comparison of partial S genes among type II CCoVs and type I and II 

FCoVs

Nucleotide sequences of partial S genes (692b) of 15 Japanese CoVs were 

determined and deduced amino acid sequences were compared (Table S3-5 and Figure 

3-2B). In comparison with type I FCoV C3663, all type II FCoVs showed low identity. 

All CCoV strains possessed high homology with fc1 strain and type II FCoVs, but 

showed low homology with type I FCoV C3663 (Table S3-5).  

Phylogenetic analysis using partial S genes showed that all type II FCoVs were 

more similar to type II CCoV than type I FCoV (Figure 3-2B). Furthermore, Japanese 

type II FCoVs were more similar to Japanese type II CCoV than type II FCoVs and type 

II CCoVs from other countries. In addition, Japanese FCoVs belonged to different 

subgroups; KUK-H/L belongs to a cluster with fc1. M91-267 belongs to the other 

cluster with fc76 and fc94-039. Tokyo/cat/130627 belongs to the cluster with Taiwanese 

strain NTU156/P/2007 (Figure 3-2B). 

3.4.4. Comparison of N genes among type II CCoVs and type I and II FCoVs

Nucleotide sequences of N genes (1149b) of 15 Japanese CoVs were 

determined and deduced amino acid sequences were compared (Tables S3-2, S3-3, S3-6 



and Figure 3-2C). In comparison with type I FCoV C3663, all type II FCoVs showed 

higher identity than type II CCoV fc1 (Table S3-2). All CCoV strains possessed high 

homology with fc1 strain, but showed low homology with types I and II FCoV (Table 

S3-6).  

Phylogenetic analysis using N genes showed that FCoV strains and type II 

CCoV strains were genetically divided into different groups. In the feline CoV group, 

Japanese type II FCoVs M91-267, KUK-H/L and Tokyo/cat/130627 belonged to 

different clusters (Figure 3-2C). KUK-H/L was similar to Yayoi, M91-267 was similar 

to C3663, and Tokyo/cat/130627 was similar to Taiwanese strain NTU156/P/2007 

(Figure 3-2C). Japanese CCoVs formed one cluster with Taiwanese strain 

NTU336/F/2008.  

3.4.5. Recombination sites of type II FCoVs 

Simplot analysis showed that the similarity of Tokyo/cat/130627 to CCoV fc1 

-terminal region of the S gene, and those of M91-267 and KUK-H/L 

changed within the M gene (Figure 3-3).  

The M genes were compared among types I and II FCoV and type II CCoV 

(Figure 3- -terminal region of the M genes of 



M91-267 and KUK-H/L was similar to that o -terminal region was 

similar to type I FCoV C3663 (Figure 3-4A). The M gene of Tokyo/cat/130627 was 

similar to type I FCoV C3663. Furthermore, the nucleotide sequences indicated that the 

recombination sites of these two viruses, M91-267 and KUK-H/L, were different. 

Among these CoVs, two conserved regions were located at 133-177 and 325-366 in the 

M gene. KUK-H/L was similar to type II CCoV upstream of the first conserved region 

(region 133-177), but was similar to type I FCoV downstream of the region. On the 

other hand, M91-267 was similar to type II CCoV upstream of the second conserved 

region (region 325-366), and was similar to type I FCoV downstream of the region.   

The alignment data using type I FCoV C3663, type II FCoV M91-267, 

KUK-H/L and Tokyo/cat/130627, and type II CCoV fc1 showed that the recombination 

-terminal of the S gene. Among these FCoVs and 

CCoVs, region 4183-4202 of the S gene was completely conserved (Figure 3-4B). 

Upstream of the conserved region, Tokyo/cat/130627 was more similar to type II CCoV 

fc1 than type I FCoV C3663, and downstream of the conserved region, 

Tokyo/cat/130627 was more similar to type I FCoV C3663 (Figure 3-4B). 



3.4.6. Cross-neutralization activity to CCoV by sera collected from cats infected 

with FCoV 

In order to examine whether cats with VN antibody against type I FCoV can be 

infected with type II CCoV, cross-neutralizing activity of sera from cats experimentally 

infected with FCoVs was examined (Table 3-1). Cat serum against type I FCoV C3663 

was able to neutralize infection of type I FCoV strains C3663 and Yayoi (1:6400 and 

1:2000, respectively), but not those of type II CCoV and type II FCoV (less than 1:10) 

(Table 3-1). On the other hand, cat serum against type II FCoV M91-267 was able to 

neutralize infection of type II FCoV (1:6400-1:25600), CCoV (1:200-1:9051) and type I 

FCoV (1:80-1:160) (Table 3-1).  

3.5. Discussion

Type II FCoV emerged as a result of recombination events between type I FCoV 

and type II CCoV (Motokawa et al., 1996, Herrewegh et al., 1998). Recently, one 

additional full genome sequence of type II FCoV NTU156/P/2007 was determined, and 

this facilitated understanding of the mechanisms responsible for emergence of type II 

FCoV (Lin et al., 2013). The prevalence of type II FCoV in the cat population is lower 

than that of type I, but the reasons for this remain uncertain (Shiba et al., 2007, 



Vennema, 1999, Addie et al., 2003, Benetka et al., 2004, Kummrow et al., 2005, 

Hohdatsu et al., 1992). In this study, numerous FCoV and CCoV isolates from Japan 

were genetically characterized, and the emergence of type II was discussed. 

Our phylogenetic and sequence analysis clearly indicated that type II FCoVs 

emerged by different recombination events between type I FCoV and type II CCoV. In 

addition, other type II FCoVs isolated from the USA (79-1683 and 79-1146) and 

Chinese Taipei (NTU156/P/2007) also showed different origins (Herrewegh et al., 1998, 

Lin et al., 2013). These results indicated that type II FCoV independently emerged in 

different cats and did not spread very easily. Our previous study also showed that many 

cats possess VN antibody to type I FCoV, but only a few cats in Japan possess VN 

antibody to type II FCoV (Shiba et al., 2007), supporting the notion that type II FCoV 

does not readily spread among the cat population. The reasons why type II FCoV is 

unable to spread among the cat population are unclear.  

Two of three stains of Japanese type II FCoV, M91-267 and Tokyo/cat/130627, 

possessed the truncated ORF 3c gene (Figure 3-1). An intact 3c gene is apparently 

essential for efficient replication of FCoV in the intestinal tract, resulting in the 

secretion of FCoV from feces and transmission of FCoV among cat population 

(Pedersen, 2009, Pedersen et al., 2012). On the other hand, many FIPV possessed 



truncated 3c gene and cats with FIP did not excrete virus in feces (Chang et al., 2010, 

Vennema et al., 1998 Pedersen et al., 2009). Furthermore, one outbreak of type II FIPV 

with intact ORF 3c gene occurred in Taiwan. In early stage of the outbreak, the type II 

FIPV possessed intact 3c gene, but lost it in the late stage (Wang et al., 2013). These 

results indicated that type II FCoVs might not be excreted in feces and spread in cat 

population, because most of them lost intact 3c gene. 

- -termini 

of the FCoV genome, but not CCoV. These regions may be essential for growth of 

FCoV in cats and double recombination may - and 

-termini of FCoV. Type II FCoVs possessed two types of RdRp elements derived from 

type I FCoV or type II CCoV (Figure 3-2A), suggesting both types of RdRp were able 

to function during replication and transcription in cat body. Furthermore, it was thought 

that the region upstream of RdRp might be essential for FCoV infection to cats. In 

addition, it has been reported that N protein is important for viral particle production 

(Masters, 2006), and the N gene is conserved among FCoVs. Therefore, the N protein of 

FCoV, but not CCoV, may be essential for replication of FCoV in cats. Interestingly, 

simplot analysis showed four other candidate recombination sites, one in the 3c gene, 

two in the N gene and one in the 7a gene, which showed high identity between CCoV 



and type I FCoV (Figure 3-3). If the M or N genes of type I FCoV are not necessary for 

growth of FCoV in cats, other recombinant type II FCoVs using these possible 

recombination sites must occur. Further analysis of type II FCoV is necessary to clarify 

the recombination events of CoV in cats.  

 Four full genome sequences of type II FCoVs (79-1146, 79-1683, DF-2 and 

NTU156/P/2007) are deposited in GenBank. We also reported one-third of the full 

genome of three type II FCoV strains (M91-267, KUK-H/L and Tokyo/cat/130627) and 

one type II CCoV fc1. Six of seven type II FCoV strains emerged by recombination 

events at the E or M gene. However, the recombination event of Tokyo/cat/130627 

-terminal of the S gene. The nucleotide sequences indicated that 

M91-267, KUK-H/L and Tokyo/cat/130627 originated from type I FCoV strains similar 

to C3663, Yayoi and NTU2/R/2003, respectively, and that the central region, including 

the S gene, was acquired from type II CCoV strains similar to fc94-039, fc1 and 

fc00-089, respectively. In addition, the recombination sites were clearly different 

(Figure 3-3 and 3-4A, B). These results indicated that the recombination events between 

type I FCoV and type II CCoV occurred independently. In addition, original viruses of 

foreign type II FCoVs, 79-1146, 79-1683 and NTU156/P/2007 differed from those of 

these three Japanese type II FCoVs, indicating that the recombination events occurred 



among cat populations all over the world.   

 Sera from cats experimentally inoculated with type I FCoV C3663 could not 

neutralize type II CCoV infection (Table 3-1), suggesting that the cat infected with type 

I FCoV could not prevent type II FCoV infection. On the other hand, the cat infected 

with type II FCoV could neutralize type I FCoV infection (Table 3-1). In addition, many 

sera from type II FCoV-infected cats in the outbreak could cross-neutralize type I FCoV 

infection, and those from type I FCoV-infected cats in the field could not 

cross-neutralize type II FCoV infection (our unpublished data). These results suggested 

that the cross-reactivity to type I FCoV in type II FCoV-infected cats might be induced 

by other viral protein except for S protein. Further analysis will be required to clarify 

the cross VN activity in type II FCoV-infected cats.  

cats (Tresnan et al., 1996, McArdle et al., 1990) and type I FCoV-infected cats did not 

possess VN antibody against type II CCoV infection (Table 3-1), indicating that cats 

infected with type I FCoV could be superinfected with type II CCoV from dogs. Our 

hypothesis on the mechanism of emergence of type II FCoV is shown in Figure 3-5. 

Cats infected with type I FCoV were unable to produce VN antibody against type II 

CCoV. Hence, cats had the possibility of superinfection with type II CCoV. The 



recombination event between type I FCoV and type II CCoV occurred inside the cat 

body, leading to emergence of type II FCoV.    

CoVs, such as SARS-CoV, tend to change their host range by mutation and/or 

recombination (Graham and Baric, 2010). Homologous recombination is a significant 

factor for change of host range. Therefore, investigations into homologous 

recombination of CoVs may help to clarify the mechanisms responsible for changes in 

host range. 



3.6 Figure legends 

Figure 3-1. Schema of feline and canine coronaviruses.  

(A) Schema of type II CCoV. Each ORF is indicated by squares. Arrowheads indicate 

location of primers for amplification of partial RdRp, partial S and full N genes. (B) 

Schema of type II CCoV fc1, type II FCoV M91-267, KUK-H/L and Tokyo/cat/130627, 

and type I FCoV C3663 and Yayoi. Blue boxes indicate ORFs originating from type II 

CCoV. Red boxes indicate ORFs originating from type I FCoV. 

Figure 3-2. The phylogenetic trees using partial RdRp(A), partial S (B) and N (C) 

genes. 

Type I FCoVs, type II FCoVs and type II CCoVs are shown in red, green and blue, 

respectively. Swine CoV (TGEV and PRCoV), FRCoV and human CoV (HCoV) are 

shown in black. GenBank accession numbers are shown in parentheses. 

Figure 3-3. Simplot analysis of canine and feline coronaviruses. 

type I FCoV Black, and type II FCoVs KUK-H/L, M91-267 and Tokyo/cat/130627. 

Horizontal axis refers to nucleotide position of fc1. Upper region of the plot map shows 



ORF structure in type II CCoV fc1 and corresponds to nucleotide positions in the plot 

map. A similarity of 1.0 indicates 100% identity with the nucleotide sequence. 

Parameters for calculation were as follows: window size, 200 bp; and step size, 40 bp.

Figure 3-4 -terminal of S genes in canine and feline 

coronaviruses.

(A) Alignment of M genes of CCoV and FCoV strains. Two regions in squares are 

conserved regions among type II CCoV fc1, type II FCoVs M91-267, KUK-H/L and 

Tokyo/cat/130627 and type I FCoV C3663. (B) -terminal of S genes of 

CCoV and FCoV strains. Square indicates conserved region. Nucleotide sequences 

originating from type II CCoV and type I FCoV are shown in blue and red, respectively. 

Dots indicate the same sequences with type II CCoV fc1. 

Figure 3- 5. Hypothesis of emergence of type II FCoV.

Some cats persistently infected with type I FCoV are superinfected with type II CCoV 

which is excreted from dogs. Inside the cat body, type II FCoV emerges by homologous 

recombination and induces severe clinical disease, FIP. Diseased cats do not spread type 

II FCoV.  



Figure 3-1. Schema of feline and canine coronaviruses

3.7 Figures and table 
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Figure 3- -terminal of S genes in canine and feline 
coronaviruses. 





Table 3-1. Canine and feline coronaviruses analyzed in this study: nucleotide 
sequence acquisition numbers and serum cross-neutralizing activity 

Virus  Strain  
Accession No. VN titers  

RdRp S - poly A Partial S N Type I a Type II b

Type 
II 
CCoV  

fc1  AB781791  AB781790 AB781790 AB781790  <1:10  1:400  

fc4  AB907625 AB781807 AB781797  <1:10  1:4525  

fc7  AB907626 AB781808 AB781798  <1:10  1:1600  

fc9  AB907627 AB781809 AB781799  <1:10  1:1600  

fc76  AB907628 AB781810 AB781800  <1:10  1:9051  

fc100  AB907629 AB781811 AB781801  <1:10  1:1131  

fc97-022  AB907631 AB781812 AB781802  <1:10  1:2263  

fc94-039  AB907630 AB781813 AB781803  <1:10  1:2263  

fc00-016  AB907632 AB781814 AB781804  <1:10  1:1600  

fc00-089  AB907633 AB781815 AB781805  <1:10  1:200  

Type 
II  
FCoV  

M91-267  AB781792  AB781788  AB781788 AB781788 <1:10  1:25600  

KUK-H/L  AB781793  AB781789  AB781789 AB781789 <1:10  1:6400  

Tokyo/cat/130627 AB907634 AB907624 AB907624  AB907624  N.D. N.D. 

Type I 
FCoV  

C3663  AB781794  AB535528c AB535528c AB535528c 1:6400 1:80  

Yayoi  AB781795  AB695067c AB781806  1:2000 1:160  

N.D.: Not done 
a Serum was collected from the cat that was inoculated intraorally with type I FCoV 
C3663 (Terada et al., 2012). 
b Serum was collected from the cat that was inoculated intraperitoneally with type II 
FCoV M91-267 (unpublished data). 
c (Terada et al., 2012)



3. 8. Supplementary tables 

Table S3-1. Primers used in this study 
Primer Gene Sequence (5' to 3') Positiona

1bF ORF1b TTGATTCAAAGATTTGAGTATTGG 1-24 
1bR S AGGCACAATGTAAGCACAATCATGG 379-375 

1bFF1 ORF1b AACGTGCCATGATTGTGC 349-366 
1bF2F S GTGGTTATTACCCTACAGAG 526-545 
1bF2R S CTCTGTAGGGTAATAACCAC 526-545 
1bFF2 S GCTCAAGTACTGCCACAT 1006-1023 
1bFR2 S CATATGCAGCACTGTGTG 1044-1027 
CCVSF S AGCACTTTTCCTATTGATTG 1686-1705 
CCVSR S GTTAGTTTGTCTAATAATACCAACACC 2483-2457 

CCVScenF S TAAGTAACATCACACTACC 2026-2044 
CCVScenR S CCAGTTTTTATAACAGCTG 2194-2176 

CCVScenRR2 S AACAGTAACGCGGTCCAT 1572-1555 
CCVScenRF2 S TACAGTGAGCGAGTCAAG 1499-1516 
CCVScenRF3 S GCATACATTAGTGGCCGT 930-947 
CCVScenRR3 S CAGTACTTGAGCGAGAGT 1017-1000 
CCVScenRF4 S GCTCATACCACATTGCTTCG 391-410 
CCVScenRR4 S CGACGTACTCGAAGCAAT 419-402 
CCVScenRF5 S AACATGGCACAAGAGTGCTG 1019-1038 
CCVScenRR5 S CAGGTTGTAAGACTGACCAC 959-940 

SF2 S TCTTGGTATGAAGCGTAGTGG 1979-1999 
SR2 S TACCAATAGCTTGATTGAAAGC 3591-3570 
SR3 S GCAGTTAGGTGGCTTAAAGC 3727-3708 

S2cenF S CTATTCTGTGACACCATGTG 2564-2583 
S2cenR S GCGCTTGCTCAATAGTTTGA 3039-3020 

S2cenFF1 S CATCTGTTGAGGCGTTCA 3115-3132 
S2cenFR1 S CTAGCCAAGAACCACCTA 3195-3178 
S2cenFF2 S GAGTGCTGATGCACAAGT 3797-3814 
S2cenFR2 S TCAGCCTGTCAACTTGTG 3825-3808 
S2cenFF3 S CTGGACTGTACCTGAATTG 4343-4361 
S2cenFR3 S GTGTCAATTCAGGTACAG 4365-4348 
S2cenFF4 3a GACACACTTCTTGAGGCT 4919-4936 
S2cenFR4 3a TGGAGAGACCAAGCTTAG 4970-4953 
S2cenFR5 S AGTCTACAACACGTCTTCTAC 4689-4669 

NF M CTAAAGCTGGTGATTACTCAACAG 6847-6870 
NR 7a TAATAAATACAGCGTGGAGGAAAAC 8119-8095 

NcenF N AGAGGAAGGCAACAATCCAA 7464-7483 
NcenR N CCTGCAGTTCTCTTCCAGGT 7660-7641 

N-R N CACCATCCTTTGCAACCCAG 7293-7274 
N-R-2 N CAGATCTAGGCTGAGAACCA 7440-7421 

N1 N MMAAYAAACACACCTGGAAG 7630-7649 
N4 N CATCTCAACCTGTGTGTCAT 8063-8044 

N-RF1 M TGGCCTTACCATCGATCA 6719-6736 
N-RR1 M CGATGGTTCTACTAGGTG 6780-6763 
N-RR2 M GCGCAATAACGTTCACCA 6196-6179 

N-RR2-2 E GCTTCGTCGGGATTATATGC 6111-6092 
N-RF2 M AGCGTGTGCAATTGCATG 6155-6172 

N-RF2-2 E CTTCTTCTGGCTCCTGTTGA 5932-5951 
N-RR3 Between 3c and E GCCACCATACAATGTGAC 5637-5620 
N-RF3 Between 3c and E GAGAAGTTCTCACAGCTC 5595-5612 
N-RF4 3c AGTTCAGCATTGCTGTGCTC 5319-5338 
N-FF 7a CTGACAGTAGTCTGCGTGTA 8222-8241 
N-F2F 7b GCATCTAGAGTGTGCTCACA 8881-8900 
NR-R 7b ACTCTCACACTCAACACGAG 8605-8586 
3-R  GTGTATCACTATCAAAAGGAATA 9315-9293 
52F TRS ACTAGCCTTGTGCTAGATTT  

a: Position is shown based on the fc1 sequence. 



Table S.3-2 Comparison of ORF identities between C3663 and other coronaviruses  

Identity with type I FCoV C3663 (%) (amino acids) 

RdRp S 3a 3b 3c E M N 7a 7b 

fc1 95.4 48.4 69.0 59.7 71.5 76.8 83.4 74.9 81.2 65.9 

M91-267 94.7 48.7 69.0 56.7 63.6 76.8 90.0 92.8 95.1 91.3 

KUK-H/L 98.5 48.6 69.0 59.7 79.1 78.0 89.6 89.9 96.0 92.2 

Tokyo/cat/130627 98.5 49.2 90.0 91.1 93.9 92.4 91.8 95.1 87.9 

Bold numbers indicate that the identity is over 85% 



Table S3-3. Comparison of ORF identities between fc1 and other coronaviruses  

Identity with type II CCoV fc1 (%) (amino acids) 

RdRp S 3a 3b 3c E M N 7a 7b 

C3663 95.4 48.4 69.0 59.7 71.5 76.8 83.4 74.9 81.2 65.9 

M91-267 99.2 97.5 100 98.6 97.7 100 90.1 76.4 81.2 58.8 

KUK-H/L 94.7 96.5 95.8 98.6 96.2 97.6 89.7 74.6 82.2 59.7 

Tokyo/cat/130627 94.7 94.6 68.6 74.6 78.0 83.5 76.4 82.2 59.3 

Bold numbers indicate that the identity is over 85% 



Table S3-4. Amino acid sequence identities of partial RdRp among type II CCoV and 
types I and II FCoV 

 fc1 C3663 M91-267 KUK-H/L Tokyo/cat/130627 

fc4 100.0% 95.4% 99.2% 94.7% 94.7% 

fc7 100.0% 95.4% 99.2% 94.7% 94.7% 

fc9 100.0% 95.4% 99.2% 94.7% 94.7% 

fc76 100.0% 95.4% 99.2% 94.7% 94.7% 

fc100 100.0% 95.4% 99.2% 94.7% 94.7% 

fc97-022 99.2% 96.2% 98.5% 95.4% 95.4% 

fc94-039 100.0% 95.4% 99.2% 94.7% 94.7% 

fc00-016 100.0% 95.4% 99.2% 94.7% 94.7% 

fc00-089 100.0% 95.4% 99.2% 94.7% 94.7% 

Bold numbers indicate that the identity is over 95%. 



Table S3-5. Amino acid sequence identities of partial S protein among type II CCoV and 
types I and II FCoV 

 fc1 C3663 M91-267 KUK-H/L Tokyo/cat/130627 

fc4 96.1% 29.3% 97.0% 96.5% 94.8% 

fc7 95.7% 29.3% 96.5% 96.1% 94.3% 

fc9 93.9% 30.1% 95.2% 94.3% 93.0% 

fc76 98.3% 27.8% 96.1% 98.7% 95.7% 

fc100 95.2% 29.3% 96.1% 95.7% 93.9% 

fc97-022 97.4% 29.3% 95.2% 97.8% 97.0% 

fc94-039 98.3% 27.8% 97.0% 98.7% 95.7% 

fc00-016 97.4% 28.8% 95.2% 97.8% 96.5% 

fc00-089 97.8% 28.9% 95.7% 98.2% 97.4% 

Bold numbers indicate that the identity is over 90%. 



Table S3-6. Amino acid sequence identities of N protein among type II CCoV and types 
I and II FCoV 
 fc1 C3663 M91-267 KUK-H/L Tokyo/cat/130627 

fc4 98.2% 75.9% 77.5% 75.4% 77.2% 

fc7 98.2% 75.9% 77.5% 75.4% 77.2% 

fc9 97.9% 75.4% 77.0% 75.4% 77.0% 

fc76 97.9% 75.9% 77.5% 75.7% 77.5% 

fc100 97.6% 75.7% 77.2% 75.4% 77.2% 

fc97-022 96.9% 75.4% 76.7% 74.6% 76.4% 

fc94-039 97.6% 74.6% 75.9% 74.6% 76.2% 

fc00-016 96.9% 75.1% 76.4% 74.6% 76.4% 

fc00-089 96.6% 74.6% 75.9% 74.1% 75.9% 

Bold numbers indicate that the identity is over 90%. 



4. CHAPTER 3 

Genetic Characterization of Coronaviruses from 

Domestic Ferrets, Japan 



4.1. Abstract 

 We detected FRCoVs in 44 (55.7%) of 79 pet ferrets tested in Japan and 

classified the viruses into two genotypes on the basis of genotype-specific PCR. Our 

results show that two FRCoVs that cause FIP like disease and ECE are enzootic among 

ferrets in Japan. 

4.2. Introduction 

 An ECE was first recognized in domestic ferrets (Mustelo putorius furo) in the 

United States in 2000 (Williams et al., 2000). The causative agent of ECE was 

demonstrated to be a novel FRCoV belonging to the genus Alphacoronavirus (Williams 

et al., 2000, Wise et al., 2006). Ferrets with ECE showed general clinical signs of 

lethargy, anorexia, and vomiting and had foul-smelling, green mucous laden diarrhea. A 

systemic infection of ferrets closely resembling FIP was subsequently reported among 

ferrets in the United States and Europe. The causative agent was also shown to be an 

Alphacoronavirus, which was named FRSCV (Garner et al., 2008, Martínez et al., 

2006). This virus was found to be genetically distinct from those associated with ECE 

and from two viruses assigned to different genotypes, I and II: genotype I, which 

included the agent of FIP-like disease, and genotype II, which included the causative 



agent of ECE (Wise et al., 2010). Other cases of ECE and ferret infectious peritonitis 

have since been described in the United States and in Europe (Wise et al., 2006, Garner 

et al., 2008, Martínez et al., 2006, 2008, Graham et al., 2012). One case of 

pathology-confirmed FIP-like disease has been described among domestic ferrets in 

Japan (Michimae et al., 2010). The goal of this study was to determine the prevalence of 

CoV among domestic ferrets seen by veterinarians in various parts of Japan. 

4.3. Materials and methods 

4.3.1. Samples 

 Fecal samples were collected during August 2012 July 2013 from 79 ferrets 

from 10 animal hospitals scattered across 5 prefectures in Japan. Oral swab specimens 

from 14 of 79 ferrets were also collected. Most of the ferrets were brought to 

veterinarians for clinical signs such as diarrhea, abdominal masses, and 

hypergammaglobulinemia; some had signs unrelated to CoV infection or were 

asymptomatic (Table 4-1).  

4.3.2. RT- PCR 

 RNA was extracted from fecal and oral swab samples by using the QIAamp 

Viral RNA Mini Kit (QIAGEN), and RT-PCR was performed by using the QIAGEN 



OneStep RT-PCR Kit (QIAGEN) accord

amplification of RdRp gene in the ORF 1b region, CoV consensus primers IN-6 and 

IN-7 were used as described in CHAPTER 2. 

  On the basis of additional sequence data from RT-PCR products using IN-6 and 

IN-7, a new primer pair was designed: forward FRCoV RdRp- -GTT GGT TGC 

TGC ACA CAT AG- - -GGA GAA GTG CTT ACG 

CAA ATA- -PCR was carried out by using the QIAGEN OneStep RT-PCR Kit 

(QIAGEN) and reactions were carried out at 50°C for 30 min and 95°C for 15 min, 

followed by 40 cycles at 94°C for 30 sec, 60°C for 30 sec, 72°C for 30 sec, and a final 

extension at 72°C for 7 min.

 To differentiate between two genotypes in the positive samples from our testing, 

RT-PCR that amplified the partial S gene was carried out by using two pairs of 

genotype- -CTG GTG TTT GTG CAA CAT CTA 

C- -TCT ATT TGC ACA AAA TCA GAC A- I, 

-GGC ATT TGT TTT GAT AAC GTT G-

-CTA TTA ATT CGC ACG AAA TCT GC- II (Wise et al., 2010). 

Reactions were carried out at 50°C for 30 min and 95°C for 15 min, followed by 40 

cycles at 94°C for 30 sec, 53°C for 30 sec, 72°C for 30 sec, and a final extension at 



72°C for 7 min.

 RT-PCR products were analyzed electrophoretically and amplified products 

were purified using a MinElute PCR Purification Kit (Qiagen) for sequence analysis. 

4.3.3. Nucleotide sequences 

 Sequencing was performed using same methods described in CHAPTER 1. 

4.3.4. Homology search and phylogenetic analysis 

 Homologies among strains were analyzed using GENETYX® Ver.8 

(GENETYX Corporation) and phylogenetic trees were constructed by the 

neighbor-joining method (Saitou and Nei, 1987) using MEGA5.0 software (Tamura et 

al., 2011) based on nucleotide pairwise distance. For construction of the phylogenetic 

tree, we referred to the following sequences;, FRSCV MSU-S (GU459055), FRSCV 

MSU-1 (GU338456), FRSCV WADL (GU459056), FRECV MSU1 (DQ340561), 

FRECV 1202 (GU459057), FRECV MSU-2 (GU338457) FRCoV 4E98 (JF260914), 

FRCoV 511c (JF260913), mink coronavirus WD1127 (accession no. HM245925), 

WD1133 (HM245926), type I FCoV Black (EU186072), type II FCoV 79-1683 

(JN634064), 79-1146 (DQ010921), type II CCoV NTU336/F/2008 (GQ477367), 1-71 

(KC175339), TGEV virulent Purdue (DQ811789) , PRCoV ISU-1 (DQ811787),  

HCoV 229E VR-740 (NC_002645), NL63 Amsterdam1 (AY567487). 



4.4. Results 

 Of 79 samples, 33 (41.8%) were positive for CoVs by RT-PCR using a primer 

pair, IN-6 and IN-7 (Table 2). Nucleotide sequences were determined for the amplified 

fragments and used to construct a phylogenetic tree (Figure 4-1). The CoVs detected in 

this study belonged to the genus Alphacoronavirus but formed a separate species from 

those of other species. The identities with FCoV, TGEV, PRCoV and mink coronavirus 

were 73.5% 75.9%, 73.5% 76.1%, 73.8% 76.1%, and 80.2% 84.0%, respectively.  

 Next, we attempt to construct the sensitive RT-PCR method for detection of 

FRCoV and designed a new primer pairs, FRCoV RdRp-F1 and FRCoV RdRp-R1. 

Results for RT-PCR using this new primer set showed that 44 (55.7%) of 79 samples 

were positive for FRCoV, which was a higher number than that obtained by using the 

published CoV consensus primers (55.7% vs. 41.8%) (Table 4-2). Two samples that had 

positive results by consensus primers had negative results by the new primers: sample 

22 had many mutations in the primer binding site (Figure 4-1), whereas sample 40 had 

few mutations. 

 To differentiate between two genotypes in the positive samples from our testing, 

partial sequences of S gene were amplified. Among these ferrets, 30 (38.0%) were 



infected with genotype I and 17 (21.5%) with genotype II; 8 (10.1%) ferrets were 

infected with both genotypes of FRCoVs (Figure 4-2). Samples 27 and 28 were from 

ferrets that lived in the same house and harbored the same FRCoV but that were born on 

different farms, indicating that horizontal transmission had occurred. The nucleotide 

sequences of the amplified genes confirmed that these CoVs also fell into genotypes I 

and II (Figure 4-2). There was no relationship between the genotypes of FRCoV and the 

type of disease (Table 4-1). 

 To further investigate virus transmission routes, oral swab specimens were 

collected from 14 of the 79 ferrets and examined by RT-PCR using primers FRCoV 

RdRp-F1 and FRCoV RdRp-R1. Results of RT-PCR showed that 5 (35.7%) of 14 

specimens were positive. 

4.5. Discussion 

 We established a sensitive RT-PCR method using a new primer pair to detect 

CoV sequences (Table 4-2). Furthermore, we determined the partial nucleotide 

sequences of the S gene of 23 strains and found they were clearly divided into two 

genotypes, I and II (Figure 4-2). These results indicated that both genotypes of FRCoV 

have been spreading within the ferret population in Japan for some time. The reported 



FRCoVs associated with FIP-like disease, designated as genotype I by Wise et al. 

(2010), all fell within genotype I phylogenetically, whereas all published ECE-causing 

strains fell within genotype II. This finding leads to a possible conclusion that FIP-like 

disease causing strains (i.e., FRSCVs) are variants of what has been designated 

genotype I FRCoVs. Because we found no relationship between the two genotypes of 

FRCoV and the type of disease (Table 4-1), we cannot determine whether FIP-like and 

ECE-like FRCoVs circulate independently as distinct entities or evolve, like FCoVs, 

from more ubiquitous and less pathogenic enzootic strains. Nonetheless, the addition of 

these 23 new isolates to the phylogenetic tree of FRCoVs tends to support the latter 

conclusion. Without extensive animal passage studies, virus isolation, and CoV-free 

ferrets, this theory may be difficult to confirm. However, additional evidence tends to 

link virulent pathotypes of FRCoVs to specific mutational events. Nucleotide sequences 

of the 3c-like protein genes of FRSCV, MSU-1 (DDBJ/EMBL-Bank/GenBank 

accession no. GU338456), MSU-S (GU459059), and WADL (GU459058), showed that 

2, MSU-1 and WADL, possessed a truncated 3c-like protein gene (Wise et al., 2010), 

similar to that described for FIP viruses of cats (Pedersen et al., 2009, Chang et al., 

2010, Pedersen, 2009). FIP-causing viruses of cats also contain a second mutation in the 

S gene (Chang et al., 2012), which was not investigated in our study. The existence of 



two major genotypes of Japanese FRCoV is also reminiscent of the serotype I and II 

FCoV. Without FRCoVs that can be grown in cell culture, however, such serologic 

differentiation will be difficult. 

 We also showed that 35.7% (5 of 14) of ferrets secreted FRCoVs in oral 

cavities, providing a route leading to infection of susceptible animals. CoVs are known 

to cause both respiratory and intestinal diseases in various animal species; therefore, 

FRCoVs should be investigated in respiratory disease. 



4.6. Figure legends 

Figure 4-1. Phylogenetic tree constructed on the basis of the nucleotide sequences of 

the partial RdRp encoding regions of FRCoVs isolated in Japan (shown in boldface; 

sample numbers are indicated) compared with other CoVs. The tree was constructed by 

the neighbor-joining method in MEGA5.0 software (Tamura et al., 2011); bootstrap 

values of >90 are shown. DDBJ accession numbers for the nucleotide sequences are 

shown in parentheses. HCoVs 229E and NL63, which belong to the Alphacoronavirus

genus, were used as the outgroup. 

Figure 4-2. Phylogenetic tree based on the nucleotide sequences of partial S genes of 

FRCoVs isolated in Japan (shown in boldface; sample numbers are indicated) compared 

with other CoVs. The tree was constructed by the neighbor-joining method in 

MEGA5.0 software (Tamura et al., 2011); bootstrap values of >90 are shown. Asterisks 

indicate samples from ferrets infected with FRCoVs of both genotypes I and II. DDBJ 

accession numbers for the nucleotide sequences are shown in parentheses.  



4.7. Figures and tables 

Figure 4-1 Phylogenetic tree constructed on the basis of the nucleotide sequences of the 

partial RdRp 



Figure 4-2 Phylogenetic tree based on the nucleotide sequences of partial S genes 



Table 4-1. Detection of FRCoV from ferrets with clinical signs, Japan 

Sample type 

No. (%) samples 

Diarrhea, n = 34 

Hypergamma- 

globulinemia, n = 6 

Abdominal mass, 

n = 14 

Nonrelated signs/ 

asymptomatic, n = 33 

All FRCoV-  25 (73.5) 5 (83.3) 7 (50.0) 17 (51.5) 

Genoype I  17 (50.0) 2 (33.3) 4 (28.6) 10 (30.3) 

Genoype II samples§ 7 (20.6) 1 (16.7) 4 (28.6) 7 (21.2) 

*FRCov, ferret coronavirus; RT-PCR, reverse transcription PCR. 

-PCR was carried out by using FRCoV-specific primers. 

-PCR was carried out by using type I FRCoV-specific primers (Wise et al., 2010). 

§RT-PCR was carried out by using type II FRCoV-specific primers (Wise et al., 2010).

Table 4-2. Detection of FRCoV in ferret fecal samples by RT-PCR using coronavirus 
consensus and FRCoV-specific primers, Japan 

Coronavirus consensus primers 

FRCoV-specific primers 

Total no. (%)  No. positive samples No. negative samples 

No. positive samples 31 2 33 (41.8) 

No. negative samples 13 33 46 (58.2) 

Total no. (%) 44 (55.7) 35 (44.3) 79 

*FRCov, ferret coronavirus; RT-PCR, reverse transcription PCR. 



5. General conclusion 

 The purpose of this thesis was to clarify the mechanism of CoV evolution. 

Author determined the nucleotide sequences of many strains of type I and II FCoV, type 

II CCoV and FRCoV, compared them and discussed on pathogenesis of natural mutant 

with a large deletion in S gene, the mechanism of emergence of type II FIPV and 

pathogenesis of two types of FRCoV. 

 In CHAPTER 1, the nucleotide sequences of type I FCoV C3663 and Yayoi 

were determined. In comparison with Yayoi, C3663 possessed 735nt deletion in 

-terminus of S gene. Similar deletion was found not only in FCoV but also in PRCoV, 

suggesting that the frequency of the occurrence of the deletion in CoV must be high. 

Animal experiment using SPF cats showed that C3663 possessed high virulence to cats, 

indicating that this large deletion in S gene is not necessary for the pathogenesis of 

FIPV. 

 In CHAPTER 2, three strains of Japanese type II FCoV were genetically 

compared with two strains of Japanese type I FCoV and ten strains of Japanese type II 

CCoV. The results showed that all three type II FCoV emerged by homologous 

recombination and possessed different recombination sites in one another. Furthermore, 

it was clarified that parent viruses, type I FCoV and type II CCoV, were also different 



among these type II FCoVs. These results clearly indicated that type II FCoV emerged 

independently. In addition, the results of VN tests showed the cats persistently infected 

with type I FCoV could not neutralized type II CCoV infection. These results suggested 

that type II FCoV emerged inside the cat body by homologous recombination 

independently and is unable to readily spread among cats. 

 In CHAPTER 3, a sensitive RT-PCR method for detection of FRCoV was 

constructed. The results of gene detection showed that more than 50% of ferrets in 

Japan were infected with FRCoV. Furthermore, it was also showed that both genotypes 

of FRCoV have been spreading within the ferret population in Japan. In addition, there 

is no significant relation between FRCoV infection and clinical disease.  
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