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1 Introduction
Wigner-Yanase skew information
1 . 2
(i) = 3Tr [ [ H)’]
= TrlpH? - Trlp"*Hp/*H]

was defined in [11]. This quantity can be considered as a kind of the degree for non-
commutativity between a quantum state p and an ohservable H. Here we denote the
commutator by [X,Y] = XY — Y X. This quantity was generalized by Dyson

f P-‘Y(H)

STrlGle", Bl )
Tr(pH?* - Tr{p*Hp' " *H),a € [0,1]

which is known as the Wigner-Yanase-Dyson skew information. Recently it is shown
that these skew informations are connected to special choices of quantum Fisher
information in [3]. The family of all quantum Fisher informations is parametrized
by a certain class of operator monotone functions F,, which were justified in [9].
The Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information
are given by the following operator monotone functions

2

fwyp(ﬂ:) = a(l - a) (x“ w(::)—(_xfzz — 1), @ e (0, 1),

respectively. In particular the operator monotonicity of the function fwyp was
proved in [10]. On the other hand the uncertainty relation related to Wigner-Yanase
skew information was given by Luo [8] and the uncertainty relation related to Wigner-
Yanase-Dyson skew information was given by Yanagi [12], respectively. Also these
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uncertainty relations were generalized to the uncertainty relations related to quan-
tum Fisher informations by using (generalized) metric adjusted skew information or
correlation measure in [13, 14, 15]. In this paper we don’t assume that observables are
hermitian. Then we give the corresponding uncertainty relations by using generalized
quasi-metric adjusted skew informations and generalized quasi-adjusted correlation
measures. In particular we show how is the corresponding variance represented.

2 Operator Monotone Functions

Let M, (C)(resp. M, ..(C)) be the set of all n x n complex matrices (resp. alln xn
self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product (A, B) =
Tr(A*B). Let M, 4(C) be the set of strictly positive elements of M,,(C) and M, . 1(C)
be the set of stricly positive density matrices, that is My, 4 1(C) = {p € M (C)[Trp =
1, p > 0}. If it is not otherwise specified, from now on we shall treat the case of faith-
ful states, that is p > 0.

A function f : (0,400} — R is said operator monotone if, for any n € N, and
A,B € M, such that 0 < A < B, the inequalities 0 < F(A) < f(B) hold. An
operator monotone function is said symmetric if f(z) = zf(z™!) and normalized if
f)=1
Definition 2.1 F,, is the class of functions f : (0, +00) — (0, +0c0) such that

(1) f(1) =1,
(2) tf(71) = f(2),

(3) f is operator monotone.

Example 2.1 Ezamples of elements of F,, are given by the following list

frip(z) = 2 fWY($)=(ﬁ+l) ) fmcm(w)=m_1

z+1’ 2 logz’
_z+1 _ (z—1)2
Remark 2.1 Any f € F,, satisfies
2z z+1
< < —_ .
:z:+1”f($)_ 2 » @20

For f € F,p define f(0) = lim,p f(z). We introduce the sets of regular and
non-regular functions

Fop =1f € Fopl£(0) # 0}, Fo{f € Fopl £(0) = 0}
and notice that trivially J, = F7, U Fp.



Definition 2.2 Let g, f € F;, satisfy

(@—1)
f(z)

glz) >k (2.1)

for some k > 0. We define
(z—-1)
f(z)

3 Generalized Quasi-Metric Adusted Skew Infor-
mation and Correlation Measure

Ag(x} =g{z)—k € Fop

In Kubo-Ando theory of matrix means one associates a mean to each operator mono-
tone function f € 7, by the formula

mf(A, B) — A1/2f(A—1,’EBA—1/2)A1/2’

where A, B € M, +(C). Using the notion of matrix means one may define the class
of monotone metrics (also said quantum Fisher informtions) by the following formula

(4, B)ps =Tr(A" - my(L,, R,)"'(B)),

where A, B € M,(C), L,(A) = pA, R,(A) = Ap.
Now we define generalized quasi-metric adjusted skew information and correlation
measure for non-hermitian matrices M, (C).

Definition 3.1 For A,B € M,{C) and p € M, 4+.1(C), we define the following
guantities:

|Corr{#D|(A, B) = K(ilp, Al ilp, By, 1P)(A) = |Corri?P|(4, A),

|CJI(A, B) = Tr{A*my(L,, R))B, ICI|(A) =IC]I(A, A),

w18) = V(s + o AN cai) - e,

The quantity |I7|(A) and |Corr$"|(A, B) are said generalized quasi-metric ad-
justed skew information and generalized quasi-metric adjusted correlation measure,
respectively.

Then we have the following proposition.

Proposition 3.1 For A;B € M,(C) and p € M, .1(C), we have the following
relations, where we put Ay = A — Tr[pAll and By = B —Tr[pB).
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f
1) 11991(4) = 11991 40) = [C)(Ao) — |C5*|(Ao),

(2) [7901(4) = |C31(Ao) + [C2|(Ao),

@) [0E014) = 1 1(4) - 17201 (A).
(4) [Corr? (A, B) = |Corri?”|(Ag, Bo)-
Theorem 3.1 For f € F,, it holds
|19 D|(A) | I9D|(B) > [|Corr@D|(A, B)P,
where A, B € M,(C) and p € M, 1(C).

Proof of Theorem 3.1. We define for X,Y € M,(C)
|Corr$DI(X,Y) = k(ilp, X),ilp, Y1) -
Since

|Corr@D|(X,Y) = KTr((ilp, X])'mys(L,, Ry)ilp, Y1)

KTr((i(Ly — Rp)X)*mys(Ly, Ry) (L, — R,)Y)
= Tr(X*mg(L,, R,)Y) — Tr(X*mAg(L,,, R,)Y),

it is easy to show that IC'orr,(,g’f )|(X ,Y) is an inner product in M,(C). Then we can
get the result by using Schwarz inequality. O

Theorem 3.2 For f € F,, if
9(z) + Al(2) 2 £f(2) (3.1)
for some £ > 0, then it holds
USD1(4) - [USDN(B) 2 ke|Tr(p[4, B])P, (3:2)
where A, B € M,(C) and p € M, +1(C).
In order to prove Theorem 3.2, we need the following lemmas
Lemma 3.1 If (2.1) and (3.1) are satisfied, then we have the following inequality:

mg(xa y)2 - mAg(CE, y)2 > kf(:c - y)2



Proof of Lemma 3.1: By (2.1) and (3.1), we have
-y
ms(z,y)

mg(l‘y y) + mA!f (.’IJ, y) 2 emf (‘7"1 y)v (34)
Therefore by (3.3), (3.4)

mys(@,y) =my(z,y) — k (3.3)

mg(a:, y)2 - mAg(x’ y)2

= {mg(w, y) —mp (2, y)} {mg(x’ v) +mag(@, y)}
&~y

ms(z,y)
= kl(z —y)*

A%

tmg(z,y)

O

Lemma 3.2 Let {|¢1),|d2), -+, |®n)} be a basis of eigenvectors of p, corresponding
to the eigenvalues {1, A2, -+, A }. We put aji = (¢;|Ao|dk), bjx = (b;]Bo|dx), where
Ao = A—TrlpA|l and By = B — Tr[pB|I for A,B € M,(C) and p € M, 1(C).
Then we have

IEDIA) = 3" my(hg, A)lagel = D may (g, M)l
gk gk

= 2) {(mg()‘j7 M) = m/;g()\ﬁ /\k)} lael?,

i<k

|JeN)(4) = ng(,\j,,\k)lajklz—{-ZmAg(/\j,/\kNG«jklz

5k Jk
> 23 {mels, )+ mag O, M) } ol
i<k

2

2
U@H|(4)? = <Z my(,\j,/\k)lajklz) - (ZmAg(/\j’/\kﬂajkP)
ik gk

and
|Corr{#D)|(A, B)

= Z mg(/\j, /\k)mbjk - Z ULINA (/\j» /\k)mbjk
gk gk

= 3 (s M) = mpg sy M) @i + D (Mg (Ao As) = g (Ves Ay) ) T

<k i<k
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We are now in a position to prove Theorem 3.2.
Proof of Theorem 3.2: At first we prove (3.3). Since

Tr(plA, B]) =Y (A — M) ajubus,
ik

ITr(p[A, BY)] < 1A — Arllasellbes].
ik

Then by Lemma 3.1, we have
ke\Tr(p[A, B))?

< {Z VLA — /\kllajk”bkjl}
ik

< {Z (mg(Aj, M) = mpr (N, /\k)2)1/2 Iaijbij}
7k

< {Z (mg(Aj, Ae) = mps (A, /\k)) Iajklz} {Z (mg(/\j, Ak) 4+ mag (X5, ,\k)) |bkj|2}
ik K

= |ID|(A)T#D|(B).
By the similar way, we also have

|1D|(B)|J@|(A) = ke|Tr(p[A, B)*.

Hence we have the desired inequality (3.2). O
4 Examples
Example 4.1 When
_z+! _ (z—1)° _fo ,_
g(ﬂ?)— 2 ) f(a:)—a(l a)(flf“'—l)(l‘l—a—l)’ k= 2 ’ 6—27
and A, B € M,,(C), we give the following:
(z—1)?

A;(:z:) =g(z) -k = %(x“ + 217 > 0.

f(z)
9(@) + Af(z) - £f(z)

1 63 2(1—« 9
e DEme @ T DETY = 1) — de(l o)z — 1)} 2 0




Then
1991(4) = 199 (4o
1 1 . 1 o a1 o A% 1
= §Tr[pA0AE] + §T7"[pA0AO] - §T'r[p Agp' T AG] - §T7’[p Ajp' % Ag).

In particular for o =1/2,
1 | . .
[1691(4) = |19](Ao) = 5TrlpAoAz) + 5TrlpAs Aol — Trlp* Aop' 2 45
Then the corresponding variance is given by

IVAI(4) = 2Trlo(l Aol + |45

Example 4.2 When

+1\? —1)2
o= (Y52 g0 =at -y
and A, B € M,(C), we assume k = f(0)/8 and £ = 3/2, then we have the following.

. (x—1)2_ 1+\/5 2_}_ a l-a __
8@ = o) -EL = (B2} - fee -y

1
= o+ VI)? + (222 4 z(0-9/2)2) > 0.

@) + A](2) ~ £1(2)
= 24(e) - 5(&* ~ D~ 1) - 51(0)
> Zg(a) - 5@~ )~ 1)

— %(.,Eaﬂ —I-.’I)(l_a)/2)2 Z 0.

Example 4.3 When

o0 = (T Esvsn, sw= (B
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and A, B € M,(C), we give the following: Let

sy Iy
F(z,r) = (I-;x ) .

Since F(z,r) is concave inr € [1/2,1] (see [15]),

3 1 1 1
> 2 bt 2.

Then 5 1
2F(z,r) > 2F(x, Z) > F(z,1) + F(z, 5),
That is e R .
9 1+z _[(VE-1 59 vz +1 ‘
2 2 2
Then since v ,
1+2\"" V-1

a0-(577) - (55)

we have

g(@) + D (z) = 2f(2).

Example 4.4 When

2
_ (1+v=Y’ fQ_1 ,_
CRIC SRS SoF L
we giwve the following. Since F(z,r) is concave in r € [1/2,3/4] (see [15]),
5 1 1 1 3
N> Y+ = 2y,

Then

2F(z,r) > 2F(z, ) > Flz, 3) + Flz, )

1, 1fz+1  (vz+1\°
> bl -
2 F(m,2)+2{ 5 +( 5 )}
_ 3 (yE+1 2+1x+1
2 2 2 2
_ 3
2

(5 {5+ (5
-1

2
-2 (5 (5




Thus we have
g(z) + Af(z) 2 2f(z).
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