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ABSTRACT 

Pathological Study on the Possible Translocation Pathways of the Exposed 

Nanoparticles at the Air Blood Barrier under the Inflammatory Condition Induced by 

Asian Sand Dust and at the Maternal Fetal Barrier during Pregnancy in Mice 

Kasem Rattanapinyopituk 

 Nanotechnology is developing rapidly and is involved in a wide range of application. 

Therefore, the exposure to nanoparticles and their potential toxicity are of great concern. The 

potential hazard of nanoparticles is better to examine whether nanoparticles may access to the 

systemic circulation and reach the systemic organs, especially in the specific health 

conditions, e.g. during pulmonary injury induced by ambient air pollutions or during 

pregnancy. In the first chapter of the thesis, the possible translocation mechanisms of the 

intratracheally instilled gold nanoparticles at the air blood barrier after the induction of acute 

pulmonary injury by Asian sand dust were investigated using Asian sand dust and gold 

nanoparticles. Lungs from mice treated with Asian sand particles and gold nanoparticles 

showed an acute focal inflammation with an increased expression of proinflammatory 

cytokines (IL-6 and TNF- ) and oxidative stress markers (Cu/Zn SOD and iNOS) in alveolar 

macrophages, type I alveolar epithelial cells and endothelial cells at the alveolar walls. 

Electron microscopy revealed a destruction of the alveolar walls with an increased number of 

endocytic vesicles in the cytoplasm of both type I epithelial cells and endothelial cells; gold 

nanoparticles were demonstrated in these endocytic vesicles. These findings suggest that 

translocation of the exposed nanoparticles may be enhanced in the lung tissues with acute 

inflammatory changes.  
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 Fetuses are known to be susceptible to various exogenous substances, including 

nanoparticles. As the risk of exposure to nanoparticles in pregnancy increases, there are 

growing concerns about the effects of nanoparticles on pregnant woman and the possibility 

that nanoparticles can translocate through the placenta and cause toxicity to the fetus. In the 

second chapter, the possible translocation pathway of gold nanoparticles across the maternal

fetal barrier as well as the toxicity of intravenously administered gold nanoparticles to the 

placenta and fetus was examined. Pregnant ICR mice were intravenously administered with 

20- and 50-nm gold nanoparticles on the 16th and 17th days of gestation. There was no sign of 

toxic damage to the placentas as well as maternal and fetal organs of the mice treated with 

20- and 50-nm gold nanoparticles. ICP-MS analysis demonstrated significant amounts of 

gold deposited in the maternal livers and placentas but no detectable level of gold in the fetal 

organs. However, electron microscopy demonstrated an increase of endocytic vesicles in the 

cytoplasm of syncytiotrophoblasts and fetal endothelial cells in the maternal fetal barrier of 

mice treated with gold nanoparticles. Clathrin immunohistochemistry and immunoblotting 

showed increased immunoreactivity of clathrin protein in the placental tissues of mice treated 

with 20- and 50-nm gold nanoparticles, and its immunopositivity was observed in 

syncytiotrophoblasts and fetal endothelial cells. In contrast, caveolin-1 immunopositivity was 

observed exclusively in the fetal endothelium. These findings suggest that intravenous 

administration of gold nanoparticles may upregulate clathrin- and cavelin-mediated 

endocytosis at the maternal fetal barrier in mouse placenta. 

 This thesis obtained following two conclusions. 

1. The translocation of the exposed nanoparticles may occur by injury of lung tissues 

due to acute inflammatory changes. 

2. The intravenous administered gold nanoparticles may upregulate clathrin- and 

cavelin-mediated endocytosis at the maternal fetal barrier. Clathrin- and caveolin-1 
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mediated endocytosis may be one of translocation pathway of nanopartilces at the 

maternal fetal barrier in mouse placenta.

The information from the studies may be useful in assessing the risk of nanoparticle 

exposures, especially in the specific health conditions. 
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GENERAL INTRODUCTION AND BACKGROUND 

1. Nanoparticles 

Nanoparticles had already been introduced into a daily life of people after the rapid 

development of nanotechnology. Nanoparticles had been used in various purposes such as 

biomedical applications, commercial products (e.g. foods, cosmetics, electronic devices), and 

industrial processes (De Jong et al. 2008; Lasagna-Reeves et al. 2010; Sadauskas et al. 

2009a). While nanotechnology has made a remarkable development, the unexpected effects 

of nanoparticles are also growing concerned on the environment, health and society. 

Therefore, the impacts from intentional and accidental exposure are recognized as critical 

issues, which should be investigated and addressed to the public health (Figure 1) (Myojo et 

al. 2010; Ramachandran, 2011; Warheit et al. 2008; WHO 2003). Although several evidences 

from recent studies suggested that nanoparticles may have the effects on health, however, the 

information about cause-effect relationships remains unclear (Elsaesser and Howard 2012; 

Saunders 2009; Semmler-Behnke et al. 2008; Vega-Villa et al. 2008).  

2. Characteristics of nanoparticles

Nanoparticles or ultrafine particles or PM0.1 are defined as single particles with at least 

one dimension measuring 100 nm or less (De Jong et al. 2008; Yang et al. 2008). The 

dominant characteristic of nanoparticles is very small size that is different from those of fine 

(PM2.5, particles larger than 0.1 m and smaller than 2.5 m) or coarse particles (PM10, 

particles larger than 2.5 m and smaller than 10 m) (Ramachandran 2011; WHO, 2005; 

Yang et al. 2008). The smaller sized nanoparticles can exhibit unique physical and chemical 

properties of the particles such as large surface area per unit mass and unstable chemical 

bonds on surface of the particles. These properties of nanoparticles increase the reactivity on 



2 

the biological molecules that may cause greater toxicity after exposure (Ramachandran 2011; 

Saunders 2009). Therefore, the particles size and surface area of nanoparticles are crucial 

characteristics from toxicological aspect. Moreover, the particle surface chemistry, 

biodegradability, number, shape, and solubility are also significant factors in assessment of 

harmful biological effects (Yang et al. 2008). In addition, nanoparticles released into the 

environment interact with natural organic and inorganic substances often modified the 

surface properties of the nanoparticles, which can result the changes in nanoparticle 

properties (Elsaesser and Howard 2012). 

3. Routes of exposure to nanoparticles 

In general, it has been demonstrated that respiratory tract, skin and gastrointestinal tract 

are the significant routes of exposure of nanoparticles (Figure 2) (Elsaesser and Howard 

2012; Vega-Villa et al. 2008). 

3.1 Respiratory route 

The lungs considered the most likely entry route through inhalation. Inhalation is 

important exposure route for the ambient air-borne nanoparticles. Nanoparticles can be 

deposited in all parts of the respiratory tract including the airways and the alveoli, however, 

smaller particles reach the distal part, whereas the larger particles may be eliminated by 

phagocytotic process in the upper respiratory tract (Furuyama et al. 2009; Saunders 2009).  

3.2 Dermal route 

Dermal exposure is also hypothesized to be the most common exposure route that can 

occur during the intentional purposes from the application of cosmetics, topical creams, and 

other drug treatments (Vega-Villa et al. 2008). The penetration of nanoparticles is depended 

on the characteristics of each nanoparticles, including surface coatings and geometric shapes 

of the particles (Ramachandran 2011).  
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3.3 Gastrointestinal route 

Gastrointestinal tract exposure to nanoparticles occurred via the direct ingestion of 

nanoparticles (e.g. food additives, drugs, water, food packaging) (Elsaesser and Howard 

2012) or after mucociliary clearance of nanoparticles from the airways (Vega-Villa et al. 

2008). Gastrointestinal or oral route is an important route of exposure of nanoparticle-

containing drugs. Nanoparticles are efficiently absorbed through the mucosal tissue of the 

digestive tract and enter into blood and lymphatic circulation (Ramachandran 2011). 

3.4 Other route 

Intravenous route is a useful route for the studies on the biodistribution and toxicology in 

the experimental models. Intravenous injection of nanoparticles demonstrated the distribution 

passage and direct effects of nanopaticles to the systemic organs in vivo (Austin et al. 2011; 

Balasubramaniun et al. 2010; De Jong et al. 2008; Lasagna-Reeves et al. 2010; Sadauskas et 

al. 2007; Saduaskas et al., 2009a; Semmler-Behnke et al. 2008; Takahashi and Matsuoka 

1981; Yamashita et al. 2011). Intravenous route is also important for several medical 

treatment or diagnosis using nanoscale materials (Austin et al. 2011; Saunders 2009). 

4. Translocation of nanoparticles to the systemic circulation and their distribution 

For pathological and toxicological studies, the potential hazard nanoparticles are better 

to examine wheter nanoparticles may access to the systemic circulation and reach the 

systemic organs (Elsaesser and Howard 2012; Sadauskas et al. 2009a). The major concern is 

involved in the biological barriers such as the air blood barrier, the blood brain barrier, or 

the maternal fetal (placental) barrier (Elasesser and Howard, 2012; Saunders, 2009).

The translocation and biodistribution of nanoparticles demonstrated the quite different 

pattern depending on the administered route (Semmler-Behnke et al. 2008). The translocation 

of inhaled nanoparticles into the systemic circulation to reach other systemic organs can be 
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occurred in the air blood barrier (Naota et al. 2013; Sadauska et al. 2009b; Saunders 2009; 

Yu et al. 2007), but not a low concentration (Elsaesser and Howard 2012; Semmler-Behnke 

et al. 2008). Experimentally, nanoparticles can be uptake in alveolar epithelial cells by 

endocytosis after inhalation exposure and can be detected in the livers of mice after 

intratracheal instillation (Sadauskas et al. 2009b; Yu et al. 2007). In addition, phagocytosis by 

alveolar macrophages may be responsible for translocation of nanoparticles through the blood 

circulation (Furuyama et al. 2009; Yang et al. 2008). 

Recent studies demonstrated that nanoparticles could be found in the various tissues 

including liver, lung, spleen, kidneys, brain, heart, skin, uterus, placentas, embryos, fetuses, 

including urine and feces after intravenous administration (Austin et al. 2011; 

Balasubramanian et al. 2010; Lasagna-Reeves et al. 2010; Semmler-Behnke et al. 2008; 

Yamashita et al. 2011). 

5. Nanoparticle Toxicity 

Nanoparticles are showing toxicities both in vivo and in vitro studies and link to the 

occurrence of several diseases (Figure 2). The parameters for nanoparticles toxicological 

studies are concentrations, characteristics of particles, and time of exposures (Elsaesser and 

Howard, 2012). In vivo studies described the adverse effects after exposure to several 

nanoparticles. Subcutaneous injection of titanium dioxide nanoparticles (TiO2, 25 70 nm in 

size) induced genital and cranial nerve damage in mice (Chu et al. 2010). Silica dioxide 

nanoparticles (nSiO2, 70 nm in size) and TiO2 nanoparticles (35 nm in size) caused the 

pregnancy complications such as induction of placental structural abnormalities, small fetuses 

and increased fetal resorption rates after intravenous administration in mice (Yamashita et al. 

2011). The intranasal instillation of TiO2 nanoparticles induced acute pulmonary 

inflammation in pregnant mice and increased asthma susceptibility in pups (Fedulov et al. 



5 

2008). In addition, the intraperitoneal injection of C60 fullurenes caused death and induced 

abnormalities of mouse embryos (Tsuchiya et al. 1996). In vitro cytotoxicity of nanoparticles 

has been carried out in various cell lines. For example, the previous studies suggested that 

CoCr nanoparticles (29.5 nm in size) induced DNA damage of human trophoblast 

choriocarcinoma cell line and layer of BeWo b30 cells (Bhaba et al. 2009). TiO2

nanoparticles (25 70 nm in size) was shown to inhibit the proliferation of mouse testis 

Leydig cell line TM3 (Komatsu et al. 2008). The studies in mouse germ line stem cells 

(spermatogonia stem cell line C18-4) also demonstrated that silver nanoparticles (15 nm in 

size), aluminium nanoparticles (30 nm in size) and MoO3 nanoparticles (30 nm in size) 

induced necrosis and apoptosis of cell lines (Bradich-Stolle et al. 2005). 

The possible mechanisms on the nanoparticles toxicity can be either chemical or physical 

mechanisms. Chemical mechanism includes the production of reactive oxygen species (ROS), 

induction of oxidative damage, releasing of toxic ions, and disturbance of cell functions 

(Elasesser and Howard 2012). Physical mechanism includes the impairment of cell 

membrane structures, cell membrane activities, transport processes and protein activities of 

the cells (Chen and von Mikecz 2005). Moreover, nanoparticles are capable to interact 

directly with DNA, which can cause DNA damage and potentially induce genotoxicity 

(Bhabra et al. 2009; Mehrabi and Wilson 2007).  

6. Exposure to nanoparticles during specific conditions 

6.1  Co-exposure of nanaoparticles and ambient particulate matter (PM) 

Ambient particulate matter (PM) consisting of mainly airborne particulate matter 

represents the term used for a complex mixture of organic and inorganic substance. Several 

ambient PMs originate from nature such as volcanoes, dust storms, grassland fires and from 

human activities such as the combustion of fuels in vehicles, power plants and various 
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industrial processes (Bell and Davis 2001; European commission 1997). The composition of 

PMs depends on their sources. PM can be classified into the primary particles, particles are 

which released directly into the environment from the source of generation, and the 

secondary particles, particles that are formed in the atmosphere through gas-to-particle 

conversion (European Commission 1997). In addition, PM can be classified by their physical 

sizes, e.g. ultrafine particles (PM0.1), fine particles (PM2.5), and coarse particles (PM10) 

(WHO 2003).

Over the past two decades, numerous epidemiological studies have shown that the 

exposure to ambient particulate matter (PM) increases the risk of death and health problems 

in both developed and developing countries (Li et al. 2008; Nemmar et al. 2010; WHO 2005). 

World Health Organization (WHO) also indicated the relation between ambient PM exposure 

and the hospitalization for the various diseases, such as, chronic cardiopulmonary diseases, 

asthma and atherosclerosis (WHO 2003). 

6.1.a Asian sand dust  

Asian sand dust is one of ambient airborne PM. Asian sand dust originates from the 

Gobi desert and Loess plateau of China and Mongolia (Kim et al. 2010; Park et al. 2010). 

During the winter and spring seasons, dust storms spread and transport dust particles to far-

reaching areas such as China, Mongolia (Park et al. 2010), South Korea (Chung and Yoon 

1996; Kim et al. 2010), Taiwan (Chen et al. 2004; Chang et al. 2010), Japan (Mori et al. 

2003; Maki et al. 2010), the United States and Canada (Husar et al. 2001; Tratt et al. 2001; 

Zdanowicz et al. 2006). Asian sand dust commonly consists of rock-forming minerals, e.g. 

quartz and feldspar, and clay forming minerals, e.g. mica, kaolinite and chlorite (Nishikawa 

et al. 2000). Recently, frequency and intensity of Asian sand dust phenomena have been 

increasing because of global climate change (Hiyoshi et al. 2005; Ichinose et al. 2005; Naota 
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et al. 2010). For those reasons, the concern about Asian sand dust phenomenon and its effect 

also increased. 

6.1.b Health effect related to Asian sand dust exposure

Epidemiologic studies have shown that Asian dust affects human health in several 

regions (Figure 3). A concomitant increase in respiratory and cardiovascular problems has 

been reported in Taiwan (Yang et al. 2005), China (Meng and Lu 2007), and Korea (Hong et 

al. 2010). In experimental animal models, exposure to Asian sand particles induced an acute 

neutrophilic inflammation in bronchi and alveoli (Ichinose et al. 2005; Naota et al. 2010) and 

exacerbated allergic alveolitis with goblet cell proliferation in the airways (Hiyoshi et al. 

2005). Intratracheal instillation of Asian sand particles also induced inflammatory cell 

proliferation and increased the level of bronchoalveolar lavage fluid (BALF) chemokines and 

inflammatory cytokines (Ichinose et al. 2005; Naota et al. 2010). Exposure to Asian sand dust 

results in acute pulmonary injury (Ichinose et al. 2005; Naota et al. 2010), and it may enhance 

the translocation of nanoparticles into the systemic circulation across the damaged air blood 

barrier, thereby exacerbating systemic toxicity (Figure 4) (Saunders 2009). There are, 

however, no reports of the effects of exposure to nanoparticles in an injured pulmonary 

condition . 

6.2  Exposure during pregnancy 

Humans are known to be sensitive to toxic materials during pregnancy, especially fetuses 

in the pre-natal stages (Kulvietis et al. 2011; Yamashita et al. 2011). Several reports indicated 

an increased perinatal mortality, pre-term birth and birth defects correlated with particulate 

matter exposure during pregnancy (Buerki-Thurnherr et al. 2012; Ema et al. 2010). As 

metioned above, the risk of exposure to nanoparticles in pregnancy increases, the placental

transfer of nanoparticles has become of great concern in assessing the safety of nanoparticles 

in pregnancy for the associated risk of growth and developmental defects in the fetuses 
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(Buerki-Thurnherr et al. 2012; Cartwright et al. 2012; Saunders 2009; Yamashita et al. 2011). 

In mammals, the potential fetal toxicity depends on the translocation of particles from the 

maternal circulation, which is mainly determined by the maternal fetal barrier (Kulvietis et al. 

2011). The placenta is the organ that connects the maternal and fetal circulation. Oxygen and 

nutrient exchanges between the mother and fetus occur in the maternal fetal barrier at the 

labyrinthine zone of the placenta (Bureki-Thurnherr et al. 2012; Furukawa et al. 2011; Khan 

et al. 2011; Takata et al. 1997). In addition, toxic substances can also transfer across the 

maternal fetal barrier. Accordingly, placenta is a critical site for fetal intoxication (Ema et al. 

2010; Keelan 2011; Saunders 2009). The murine placenta like the human placenta is that the 

maternal and fetal circulations are separated by the endothelium and trophoblasts (Furukawa 

et al. 2011; Kirby and Bradbury 1965; Khan et al 2011). Although there are some differences 

such as the number of trophoblast layers between maternal and fetal circulations. However, 

the placentas of human and murine have strong similarities (Cox et al. 2009). Therefore, 

murine placental model is commonly used for many researches (Keelan 2011; Yamashita et 

al 2011).  

Several mechanisms are already known for the placental exchange of endogenous 

substances including passive diffusion, facilitated diffusion, putative transtrophoblast channel, 

and active transport (Buerki-Thurnherr et al. 2012; Kulvietis et al 2011). Macropinocytosis, 

classical clathrin-dependent, non-classical clathrin-independent (caveolae-dependent) or 

clathrin- and caveolae-independent endocytosis are further proposed as subtypes of 

endocytosis (Conner and Schmid 2003; Le Roy and Wrana 2005; McMahon and Boucrot 

2011; Myllynen et al. 2008). Clathrin, a major protein of clathrin-coated endocytic vesicles, 

and caveolin-1, a major protein of the caveolae structure (Mohanty et al. 2010), are expressed 

in trophoblasts and endothelial cells of the rodent placenta during physiological condition 
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(Figure 5). However, information about the translocation of nanoparticles in the placental 

tissue during nanoparticle exposure remains unclear.   

For these reasons, the present thesis interested in the possible translocation pathway of 

nanoparticles in the specific conditions, including the pathological condition of lungs induced 

by Asian sand dust and the maternal fetal transfer of nanoparticles during pregnancy. 
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Figure 1. Schematic diagram shows the applications of nanotechnology and the risk of the 

exposure of nanoparticles to people and environment. 
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Figure 2. Schematic diagram shows the routes of exposure to nanoparticles and the toxicity 

of nanoparticles. Several systemic diseases link to the exposure to nanoparticles.
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Figure 3. Schematic diagram shows the relationship between Asian sand dust event and the 

potential adverse health effects. Frequency and intensity of Asian sand dust phenomena have 

been increasing because of the global climate changes. The exposure of Asian sand dust 

induces pulmonary inflammation, exacerbates allergy and asthma, and increases 

cardiovascular mortality and hospitality. 
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Figure 4. Schematic diagram shows a hypothesis for the risk of the co-exposure of Asian 

sand dust and nanoparticles. Asian sand dust induces severe acute lung inflammation with a 

significant injury of the structure of the air blood barrier. The damage may increase the 

translocation of the co-exposed nanoparticles into the systemic circulation across the injured 

air blood barrier. 
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Figure 5. Schematic diagram shows clathrin- and caveolin-mediated endocytosis at the 

maternal fetal barrier in rodent placenta in the physiological condition. I = 

syncytiotrophoblast layer I, II = syncytiotrophoblast layer II, III = syncytiotrophoblast layer 

III, BL = basal lamina, FE = fetal endothelial cell. 
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OBJECTIVE AND STRUCTURE OF THE THESIS 

 The overall objective of this thesis was to determine the possible translocation 

pathway and the pathological changes after exposure to nanoparticles in the specific 

conditions including the pathological condition induced by Asian sand dust in lung and the 

possible translocation pathway and toxicity of nanoparticles in placenta and fetus during 

pregnancy in mice. 

In chapter 1: The specific objective was to investigate a possible translocation pathway of 

intratracheally instilled gold nanoparticles after induction of acute pulmonary 

injury by Asian sand dust 

In chapter 2: The specific objective was to investigate the possible translocation pathway of 

gold nanoparticles across the maternal fetal barrier as well as the toxicity of 

intravenously administered gold nanoparticles to the placenta and fetus, 

including clathrin- and caveolin-mediated endocytosis.

Figure. Structure of the thesis 
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CHAPTER 1 

Ultrastructural Changes in the Air Blood Barrier in Mice after Intratracheal 

Instillations of Asian Sand Dust and Gold Nanoparticles 
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ABSTRACT 

 The purpose of this study was to investigate a possible translocation pathway of 

intratracheally instilled gold nanoparticles after the induction of acute pulmonary injury by 

Asian sand dust. ICR mice were intratracheally instilled with 800 g Asian sand particles 

(CJ-2 particles) 24 hr before instillation of 50-nm gold nanoparticles. Lungs from mice 

treated with Asian sand particles and gold nanoparticles showed an acute focal inflammation 

with an increased expression of proinflammatory cytokines (IL-6 and TNF- ) and oxidative 

stress markers (Cu/Zn SOD and iNOS) in alveolar macrophages, type I alveolar epithelial 

cells, and endothelial cells at the alveolar walls. Electron microscopy revealed a destruction 

of the alveolar walls with an increased number of endocytic vesicles in the cytoplasm of both 

type I epithelial cells and endothelial cells; gold nanoparticles were demonstrated in these 

endocytic vesicles. These findings suggest that translocation of the exposed nanoparticles 

may be enhanced in the lung tissues with acute inflammatory changes. 
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INTRODUCTION 

 Asian sand dust originates from the Gobi desert and Loess plateau of China and 

Mongolia (Kim et al. 2010; Park et al. 2010). During the winter and spring seasons, dust 

storms spread and transport dust particles to far-reaching areas such as China, Mongolia 

(Park et al. 2010), South Korea (Chung and Yoon 1996; Kim et al. 2010), Taiwan (Chen et al. 

2004; Chang et al. 2010), Japan (Mori et al. 2003; Maki et al. 2010), the United States, and 

Canada (Husar et al. 2001; Tratt et al. 2001; Zdanowicz et al. 2006). Epidemiologic studies 

have shown that Asian dust affects human health in several regions. A concomitant increase 

in respiratory and cardiovascular problems has been reported in Taiwan (Yang et al. 2005), 

China (Meng and Lu 2007), and Korea (Hong et al. 2010). In experimental animal models, 

exposure to Asian sand particles induces an acute neutrophilic inflammation in bronchiole 

and alveoli (Ichinose et al. 2005; Naota et al. 2010) and exacerbates allergic alveolitis with 

goblet cell proliferation in the airways (Hiyoshi et al. 2005). Intratracheal instillation of Asian 

sand particles also induces inflammatory cell proliferation and increases the level of 

bronchoalveolar lavage fluid (BALF) chemokines and inflammatory cytokines (Ichinose et al. 

2005; Naota et al. 2010). In a normal environment, ambient air is a mixture of various types 

of materials (Inoue et al. 2007; Laks et al. 2008). On a daily basis, people are exposed to 

many kinds of substances, either on purpose or accidentally. Nanotechnology is developing 

rapidly and is involved in a wide range of applications. Therefore, the exposure to nanoscale 

materials and their potential toxicity are of great concern. Gold nanoparticles are well-known 

nanomaterials with multipurpose usages (Balasubramanian et al. 2010; De Jong et al. 2008; 

Sadauskas et al. 2009a). A number of studies have demonstrated that the translocation of gold 

nanoparticles into the systemic circulation is extremely low after intratracheal instillation and 

inhalation in physiological conditions (Lipka et al. 2010; Sadauskas et al. 2009a; Semmler-
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Behnke et al. 2008; Takenaka et al. 2006; Yu et al. 2007). Seasonal or daily exposure to 

endemic or epidemic pollutants such as Asian sand dust results in acute pulmonary injury 

(Ichinose et al. 2005; Naota et al. 2010), and it may enhance the translocation of 

nanoparticles into the systemic circulation across the damaged air blood barrier, thereby 

exacerbating systemic toxicity. Several reports have described the effects and the 

translocation process of gold nanoparticles after intratracheal instillation in healthy mice 

(Furuyama et al. 2009; Sadauskas et al. 2009a). There are, however, no reports of the effects 

of exposure to gold nanoparticles in an injured pulmonary condition. The purpose of this 

study was to investigate the possible translocation pathway of 50-nm gold nanoparticles in 

the pulmonary pathological condition induced by Asian sand dust in mice. 
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MATERIALS AND METHODS 

Animals 

Fifty-five male ICR mice (7 weeks old, 33 36 g) were obtained from CLEA Japan Inc. 

(Tokyo, Japan). Commercial diet CE-2 (CLEA Japan Inc.) and tap water were given ad 

libitum throughout the experiment. Mice were housed at approximately 25°C, in 55 70% 

relative humidity, and in a 12-hr light/dark cycle. All animal experiments were conducted 

according to the Tottori University guidelines for animal welfare.  

Particle preparation 

Preparation and morphology of Asian sand particles 

 Simulated Asian mineral dust (CJ-2 particles) collected from Tengger Desert, China, 

was purchased from General Sciences Cooperation (Tokyo, Japan). The primary mineral 

component was composed of 28.0% Si, 5.9% Al, 5.3% Ca, and 3.0% Fe (according to the 

manufacturer s data sheet). A morphological examination of the CJ-2 particles was 

performed with a scanning electron microscope (SEM Model X-650, Hitachi, Tokyo, Japan). 

The particles were pleomorphic and had rough surfaces (Figure 1A).  

Preparation and morphology of gold nanoparticles 

A 0.01% 50-nm colloidal gold solution (mean diameter, 49.3 nm; BB International, 

Cardiff, UK) was concentrated into a 0.1% solution by centrifugation. After centrifugation, 

the sediment pellets were suspended in normal saline solution. A morphological examination 
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of the colloidal gold suspension under transmission electron microscopy (TEM-100CX, 

Japan Electron Optical Laboratory, Tokyo, Japan) showed electron-dense, spherical, uniform, 

and individual or slightly agglomerated particles (Figure 1B). 

Experimental protocol 

ICR mice were divided into 2 treated groups and 1 control group. All mice were 

anesthetized by intraperitoneal administration of sodium pentobarbital (5 mg/100 g body 

weight) before particle treatment. All mice were intratracheally instilled with 0.05 ml of 

solution, followed by 0.15 ml of air, with a small cannula. The suspensions were agitated 

immediately before instillation.

Mice were first intratracheally instilled with 800 g CJ-2 particles (CJ-2 particles and 

gold nanoparticles treated group, n = 20) or normal saline (gold nanoparticles treated group, n

= 20). After 24 hr, mice were instilled a second time with a 0.1% 50-nm colloidal gold 

solution. The control mice (n = 15) were instilled with 0.05 ml of saline solution on both 

occasions (Figure 2). 

Lungs and other organ samples 

Eight mice from each of the treated groups and 6 mice from the control group were 

sacrificed by exsanguination under deep anesthesia induced by an intraperitoneal injection of 

sodium pentobarbital. At 5 min after the second instillation, the lungs were collected for 

histopathology, immunohistochemistry, autometallography (AMG), and transmission 

electron microscopy. Four mice from the treated groups and 3 mice from the control group 

were used for BALF collection.  
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At 1 hr after the second instillation, mice from the treated groups (n = 8 per group) 

and the control group (n = 6) were sacrificed, and various organs (lungs, liver, kidneys, 

spleen, heart and brain) were collected for histopathologic, autometallographic examinations, 

and inductively coupled plasma mass spectroscopy (ICP-MS).  

Histopathology 

Lungs were fixed by infusion and immersion in 10% neutral-buffered formalin. Other 

tissues (liver, kidney, spleen, heart, and brain) were fixed by immersion in 10% neutral-

buffered formalin. Formalin-fixed tissues were processed using routine pathological methods 

and embedded in paraffin blocks. Tissue sections (3- m-thick) were cut for hematoxylin and 

eosin staining, immunohistochemistry, and AMG. A lung score was determined by scoring 

the degree of bronchiolar and alveolar inflammation (Table 1, modified from Naota et al. 

2010). The histopathological examination was performed by 2 pathologists in a blind manner.  

Immunohistochemistry 

 Paraffin-embedded thin sections of the lungs of mice from the treated groups (n = 8) 

and the control group (n = 6) were used for immunohistochemical detection of laminin, 

interleukin (IL)-6, tumor necrosis factor (TNF)- , dimeric copper- and zinc-containing 

superoxide dismutase (Cu/Zn SOD), and inducible nitric oxide synthase (iNOS). For antigen 

retrieval, the sections were treated with proteinase K (Dako, Denmark) for 30 min (for 

laminin detection) or placed in citrate buffer (pH 5.4) and microwaved (for the detection of 

IL-6, TNF- , Cu/Zn SOD, and iNOS). Endogenous peroxidase activity was quenched with 

3% H2O2 at room temperature for 30 min. The slides were then blocked with 10% normal 
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goat serum (laminin, TNF- , and iNOS) or 10% bovine serum albumin (IL-6) for 5 min in a 

microwave. Next, sections were incubated with primary antibodies at 4°C overnight (anti-

laminin: Dako, Denmark, 1:1,000 dilution; anti-IL-6: Santa Cruz Biotechnology, Santa Cruz, 

CA, 1:200 dilution; TNF-  Monosan, Uden, the Netherlands, 1:15 dilution; anti-Cu/Zn SOD: 

Stressgen Bioreagents, Victoria, Canada, 1:200 dilution; and anti-iNOS: BD Transduction 

Laboratories, Lexington, KY, 1:125 dilution) or an equivalent amount of phosphate-buffered 

saline as a negative control. Lung sections from mice intratracheally instilled with CJ-2 

particles were used as positive control for immunohistochemistry (Naota et al. 2010). A 

labeled streptavidin biotin kit (Dako, Denmark) was used to detect immunoreaction 

complexes in the avidin biotin complex assay. Positive immunoreactions appeared as brown 

staining with 3,3 -diaminobenzidine tetrahydrochloride (DAB). Sections were counterstained 

with hematoxylin and observed by light microscopy. IL-6- and TNF-

counted in 4 randomly selected lesions at ×100 magnification. 

Autometallography 

 Paraffin sections of lungs, livers, kidneys, spleen, heart and brain tissues were used 

for the AMG analysis (Danscher 1984; Danscher and Stoltenberg 2006). The sections were 

developed in a physical developer consisting of 50% gum arabic, 50% citrate buffer, 5.6% 

hydroquinone, and 17% silver nitrate. The reaction was conducted in a water bath at 26°C for 

1 hr in the dark. The excessive silver residue was removed with a 5% sodium thiosulfate 

solution for 10 min. Next, sections were counterstained with hematoxylin. The invisible gold 

nanoparticles deposited in the tissue were visualized by a surrounding shell of small black 

silver grains.  
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Electron microscopy 

Four mice from each group were sacrificed 5 min after the second instillation. Half of 

the longitudinal sections from each lobe of the lung were cut into cubes measuring 1 2 mm3. 

Next, tissues were fixed in glutaraldehyde for 3 hr at 4°C, rinsed in 0.1 M phosphate buffer 

(pH 7.4), post-fixed with 1% osmium tetroxide for 1 hr, dehydrated in alcohol, and embedded 

in epoxy resin. The areas of interest were selected for electron microscopic examination from 

1% toluidine-stained semi-thin (1- m-thick) sections and subsequently cut into ultra-thin (70-

nm-thick) sections (Naota et al. 2010). After staining with uranyl acetate and lead citrate, 

ultra-thin sections were examined by TEM-100CX electron microscope.  

BALF analysis 

The BALF collected from the lungs after the second intratracheal instillation was used 

for the cellular analysis. Briefly, 37°C normal saline was used as the lavage fluid. Each 0.12-

ml volume of lavage fluid was gently aspirated and harvested from the lungs via a tracheal 

cannula after euthanasia. Three lavage fluids were combined, cooled down to 4°C, and then 

centrifuged at 3,000 rpm for 10 min. Cell pellets were used for determining the total cell 

number, cell viability, and differential cell count. A total of 200 cells were counted by light 

microscopy (Naota et al. 2010). 

Inductively coupled plasma mass spectroscopy (ICP-MS) 

Tissue gold concentration was analyzed according to the method of Sonavane et al. 

(2008). 0.1 g of tissues (lung, liver, kidney, spleen, heart, and brain) from mice of the treated 
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groups (n = 4) and control group (n = 3) were digested with 2 ml of aqua regia. After 

digestion, the inorganic residues were dissolved in 5 ml of 0.05 N HCl, ultrasonicated for 20 

min, and the samples were analyzed by inductively coupled plasma mass spectroscopy (ICP-

MS) (HP 4500, Agilent Technologies). The detection and quantification limits for gold were 

0.5 ng/ml and 1 ng/ml, respectively.   

Statistical analysis 

All data were expressed as the mean ± standard error (S.E.). Statistical significance 

was determined by a Student s t-test for two-group comparisons. For all comparisons, P 

values less than 5% (P < 0.05) were considered statistically significant. 
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RESULTS 

Histopathology  

 The control mice showed no pathological changes in lung tissues. Lungs from mice 

instilled with gold nanoparticles alone showed a mild thickening of the alveolar walls with 

increased activated macrophages and mild alveolitis (Figure 3A), but the average lung score 

was not significantly different from the lung score of the control mice (Table 2). Lungs from 

mice instilled with CJ-2 particles and gold nanoparticles demonstrated a multifocal 

deposition of CJ-2 particles in the bronchiolar and alveolar spaces (Figure 3B). The alveolar 

walls were thickened by an infiltration of neutrophils and alveolar macrophages (Figure 3B). 

Degenerative changes of the alveolar walls were occasionally observed, predominantly in 

areas adjacent to the CJ-2 particles (Figure 3C). Lungs from mice treated with CJ-2 particles 

and gold nanoparticles showed the highest average lung score with statistical significance 

(Table 2).  

 No pathological lesions were found in the other organs from the mice treated with 

gold nanoparticles alone, the mice treated with CJ-2 particles and gold nanoparticles and 

control mice. 

Electron microscopy 

The lungs collected from mice intratracheally instilled with gold nanoparticles alone 

and from mice instilled with CJ-2 particles and gold nanoparticles demonstrated an increase 

in the number of endocytic vesicles in the cytoplasm of type I alveolar epithelial cells and 

endothelial cells (Figures 4B D) compared to the control (Figure 4A). A ruffling of the 



28 

surface of type I epithelial cells was also observed in lungs of the mice instilled with gold 

nanoparticles alone (Figure 4C). Lungs from the mice instilled with CJ-2 particles and gold 

nanoparticles showed a swelling of type I alveolar epithelial cells (Figure 4D). Degeneration 

and detachment of the type I epithelial cell with edematous swelling were occasionally 

observed (Figure 5). Gold nanoparticles were seen attached to the surface of type I alveolar 

epithelial cells (Figures 6A and 6B) and were found in the endocytic vesicles (Figure 6B) in 

the cytoplasm of type I epithelial cells from mice instilled with gold nanoparticles alone and 

from the mice instilled with CJ-2 particles and gold nanoparticles. 

Immunohistochemistry 

 Laminin immunohistochemistry revealed 2 continuous layers of strong positivity in 

the basement membrane of the alveolar walls in the control mice. This finding was similar the 

changes of lungs from the mice instilled with gold nanoparticles alone (Figure 7A). Lungs 

from mice instilled with CJ-2 particles and gold nanoparticles showed markedly 

discontinuous and unclear basement membranes particularly at the areas adjacent to the foci 

of infiltrated inflammatory cells (Figure 7B).  

 IL-6 and TNF-  expression was detected in the cytoplasm of alveolar macrophages, 

with a weak expression found in type I and II alveolar epithelial cells (Figure 8 and Figure 9). 

The number of both IL-6  and TNF- positive alveolar macrophages in the lungs from the 

mice instilled with CJ-2 particles and gold nanoparticles was significantly greater than that 

from the mice instilled with gold nanoparticles alone (Table 3). The control mice showed less 

positive immunolabeling compared to the treated groups (Figure 8A and Figure 9A).  

 Cu/Zn SOD immunohistochemistry showed a positive expression in alveolar 

macrophages and a weak expression in neutrophils and type I and II alveolar epithelial cells 
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(Figure 10). The intensity of the immunolabeling was the highest in the mice instilled with 

CJ-2 particles and gold nanoparticles (Figure 10C). Lungs from the mice instilled with gold 

nanoparticles alone demonstrated less immunopositivity in alveolar macrophages and type I 

alveolar epithelial cells (Figure 10B). iNOS immunohistochemistry showed an intense in 

positive expression in alveolar macrophages, and type I and type II alveolar epithelial cells in 

the mice instilled with CJ-2 particles and gold nanoparticles (Figure 11C). Lungs from the 

mice instilled with gold nanoparticles alone showed less immunopositivity (Figure 11B). 

Control lungs showed the least immunolabeling for Cu/Zn SOD and iNOS (Figure 10A and 

Figure 11A). 

BALF analysis 

The number of alveolar macrophages significantly increased in the BALF collected 

from lungs of the mice instilled with gold nanoparticles and the mice instilled with CJ-2 

particles and gold nanoparticles compared to the control, whereas the neutrophil number 

significantly increased only in the BALF from the mice instilled with CJ-2 particles and gold 

nanoparticles (Table 4). The cell viability of treated groups was not significantly different 

from that of the control (Table 4). 

Autometallography 

Silver-enhanced gold nanoparticles were detected in the lungs of the mice instilled 

with gold nanoparticles and mice instilled with CJ-2 particles and gold nanoparticles. At 5 

min after the instillation of gold nanoparticles, the particles were observed in alveolar 

macrophages and occasionally on the surface of the alveolar lumens (Figure 12A and Figure 
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12B). Gold nanoparticles were not detected by the AMG method in other organs from any of 

the treated groups. 

ICP-MS 

Gold content was detected only in the lungs from the mice instilled with gold 

nanoparticles alone and mice instilled with CJ-2 particles and gold nanoparticles.  
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DISCUSSION 

 Seasonal Asian sand dust (Kosa) causes serious environmental and public health 

problems in many countries (Meng and Lu 2007; Hong et al. 2010; Yang et al. 2005). Asian 

sand particles can cause a respiratory tract inflammation in mice after intratracheal instillation 

(Hiyoshi et al. 2005; Ichinose at al. 2005; Naota et al. 2010). The exposure to nanoparticles 

during pulmonary inflammation is a concern because nanoparticles may easily translocate 

into the systemic circulation and induce adverse effects (Nemmar et al. 2010; Sadauskas et al. 

2009a; Saunders 2009). This study aimed to investigate a possible translocation pathway of 

intratracheally instilled gold nanoparticles in acute pulmonary injury induced by Asian sand 

dust in mice. 

 In the present study, an instillation of Asian sand particles and gold nanoparticles 

induced severe acute inflammatory changes in lung tissue. Instilled lungs showed a 

multifocal infiltration of neutrophils and macrophages with a destruction of the alveolar walls. 

In contrast, mice treated with gold nanoparticles alone showed only a mild thickening of 

alveolar walls with an increase in the number of activated macrophages. Laminin 

immunohistochemistry was performed to demonstrate the injurious changes in the alveolar 

walls. Lungs from mice treated with Asian sand particles and gold nanoparticles showed a 

discontinuous and light immunolabeling of laminin in the alveolar walls. Laminin is an 

important component of the alveolar wall, supporting its cellular attachments and its stability 

(Aumailley and Smyth 1998; Naota et al. 2010). Therefore, laminin immunolabeling has been 

used as an indicator of alveolar wall destruction (Kaewamatawong et al. 2005; Naota et al. 

2010). Ultrastructural findings of lungs from the mice treated with Asian sand particles and 

gold nanoparticles also showed severe injury to the alveolar wall structure. Detachment and 

degeneration of type I epithelial cells, alveolar interstitial edema were observed in contrast to 
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lungs from the mice treated with gold nanoparticles alone. These findings suggest that Asian 

sand particles may have severe toxic effects on the structure of the air blood barrier. An 

intense expression of proinflammatory cytokines, including IL-6 and TNF-  and oxidative 

stress markers, including Cu/Zn SOD and iNOS, was found in alveolar macrophages, type I 

and II alveolar epithelial cells, and endothelial cells at the alveolar walls of lungs from the 

mice instilled with Asian sand particles and gold nanoparticles. In the present study, 

histological and BALF analysis demonstrated markedly increased numbers of neutrophils in 

lungs instilled with Asian sand and gold nanoparticles. Expression of IL-6 and TNF-

observed in the lung lesions in this study may be responsible for the inflammatory changes 

dominated by neutrophils (Cho et al. 2007; Hiyoshi et al. 2005; Ichinose et al. 2005). 

Ultrafine silica particles are known to induce production and release of numerous 

proinflammatory cytokines, such as IL-1 , IL-6, and TNF- , which regulate the pulmonary 

inflammatory process by further release of chemoattractant proteins capable for migration of 

neutrophils (Cho et al. 2007; Hiyoshi et al. 2005; Ichinose et al. 2005; Naota et al. 2010). 

From the results, the release of proinflammatory cytokines and the generation of oxidative 

stress may be involved in the pulmonary destruction induced by Asian sand particles 

(Hamilton et al. 2008; Ichinose et al. 2005; Meng and Zhang 2006; Naota et al. 2010).   

 An increased number of endocytic vesicles containing gold nanoparticles was found 

in the alveolar epithelial cells and in the endothelial cells following inhalation and 

intratracheal instillation of various sizes of gold nanoparticles in rodents (Furuyama et al. 

2009; Takenaka et al. 2006). Endocytosis was shown to play an important role in the 

internalization of many ultrafine particles, including titanium dioxide nanoparticles (Singh et 

al. 2007), carbon black nanoparticles (Hussain et al. 2009; Shimada et al. 2006; Inoue et al. 

2009), and gold nanoparticles (Shukla et al. 2005). In this study, electron microscopy 

demonstrated a ruffling of the surface of type I epithelial cells and an increase in the number 
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of endocytic vesicles in both type I alveolar epithelial cells and endothelial cells at the 

alveolar wall of both lungs from the mice treated with gold nanoparticles alone and lungs 

from the mice treated with Asian sand particles and gold nanoparticles. At 5 min after the 

instillation of gold nanoparticles, attachment of the particles to the surface of alveolar 

epithelial cells and the presence of the particles inside the endocytic vesicles were observed. 

These findings suggest that translocation of the exposed nanoparticles may be enhanced in 

the lung tissues with acute inflammatory changes (Inoue et al. 2009; Saduaskas et al. 2009a; 

Saunders 2009). In addition, by AMG analysis, gold nanoparticles were also found in alveolar 

macrophages and on the surface of the alveolar lumen in both lungs from the mice treated 

with gold nanoparticles alone and lungs from the mice treated with Asian sand particles and 

gold nanoparticles. Positive AMG findings were dominant in alveolar macrophages, 

suggesting that alveolar macrophages may take up and eliminate nanoparticles from the 

alveoli through a phagocytic process (Furuyama et al. 2009; Saunders 2009; Takenaka et al. 

2006; Yang et al. 2008).  

 No gross or histopathological lesions were observed in the systemic organs from the 

mice treated with Asian sand particles and gold nanoparticles or the mice treated with gold 

nanoparticles alone. An AMG and gold content analysis by ICP-MS also showed no signs of 

translocation of gold nanoparticles into other organs except the lungs, suggesting that very 

low amounts of gold nanoparticles may translocate into the systemic circulation (Sadauskas 

et al. 2009a; Sadauskas et al. 2009b; Semmler-Behnke et al. 2008; Yu et al. 2007) and that 

the sensitivity for the detection of gold nanoparticles will be limited to investigate  due to the 

small numbers of gold nanoparticles in the systemic organs (Bettmer et al. 2009; Danscher 

and Stoltenberg 2006). In addition, the time of tissue sampling following treatment might be 

one of the factors influencing the results in this study. Previous reports have demonstrated 

gold nanoparticles in the lungs, as well as in systemic organs at 2 hr after inhalation in mice 
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(Yu et al. 2007), while samples in the present study were collected only 1 hr after instillation 

of gold nanoparticles.  

 In conclusion, Asian sand dust induced severe acute lung inflammation with a 

significant degeneration of the structure of the air blood barrier. The damage may increase 

the risk of translocation of the co-exposed nanoparticles into the systemic circulation. 
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FIGURES AND FIGURE LEGENDS 
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Figure 1. Morphological findings of particles. (A) CJ-2 particles show pleomorphism with 

rough surfaces under scanning electron microscopy. Bar = 10 m. (B) Transmission electron 

micrograph of 50-nm gold nanoparticles shows electron-dense, spherical, and uniform 

appearance. Bar = 100 nm. 
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Figure 2. Schematic diagram shows the materials and methods of the experiment. Seven-

week-old male ICR mice were divided into 2 treatment groups and 1 control group. Mice 

were first intratracheally instilled with 800 g CJ-2 particles (CJ-2 particles and gold 

nanoparticles treated group) or normal saline (gold nanoparticles treated group). After 24 hr, 

mice were instilled a second time with a 0.1% 50-nm colloidal gold solution. The control 

mice were instilled with 0.05 ml of saline solution on both occasions. At 5 min after the 

second instillation, the lungs were collected for histopathology, immunohistochemistry, 

autometallography (AMG), and transmission electron microscopy. Four mice from the treated 

groups and 3 mice from the control group were used for BALF collection. At 1 hr after the 

second instillation, various organs (lungs, liver, kidneys, spleen, heart, and brain) were 

collected for histopathologic, autometallographic examinations, and inductively coupled 

plasma-mass spectroscopy (ICP-MS). ABB = air blood barrier
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Figure 3. Lung lesions of  the mice following intratracheal instillation of particles. Lung 

from the mice instilled with 50-nm gold nanoparticles alone shows mild thickening of 

alveolar walls with increase in the number of activated macrophages (arrowheads) (A). Bar = 

50 m. Lung from the mice  of CJ-2 particles and 50-nm gold 

nanoparticles shows focal infiltration of neutrophils (white solid arrows) and activated 

macrophages (arrowheads) around CJ-2 particles (arrows) (B). Bar = 20 m. Degeneration of 

alveolar walls (arrows) with increase in the number of activated macrophages (arrowheads) in 

lung from the mice instilled with CJ-2 particles and 50-nm gold nanoparticles (C). Bar = 50 

m. 
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Table 1. Lung lesion scoring and criteria*

Score Histopathological lesion 
0 
1 
2 

3 

4 

No inflammatory changes 
Alveolar edema and/or hemorrhage (±), mild bronchiolitis, and alveolitis 
Alveolar edema and/or hemorrhage (±), moderate localized bronchiolitis, 
and  alveolitis (at high magnification) 
Alveolar edema, and/or hemorrhage (±), moderate multiple foci of 
bronchiolitis, and alveolitis (at low magnification) 
Alveolar edema, and/or hemorrhage (+), severe diffuse bronchiolitis and 
alveolitis 

* Modified from Naota et al. (2010).
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Table 2. Lung lesion score

Group Average score 

Control (n = 6) 

50-nm gold nanoparticles (n = 8) 

CJ-2 + 50-nm gold nanoparticles (n = 8) 

0 

0.5 

2.5* 

*Significantly different from control group, P < 0.05.
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Figure 4. Transmission electron micrographs of lungs. The control lung shows thin alveolar 

wall with presence of endocytic vesicle (an arrowhead) in the cytoplasm of type I alveolar 

epithelial cell (A). Bar = 0.25 m. Lung from the mice instilled with 50-nm gold 

nanopartilces alone shows increase in the number of endocytic vesicles (arrowheads) in the 

cytoplasm of type I alveolar epithelial cell and endothelial cell (arrowheads) (B). Bar = 0.5 

m. A ruffling of the surface of type I epithelial cell (arrows) and increase in the number of 

endocytic vesicles in the cytoplasm of type I epithelial cell and endothelial cell (arrowheads) 

in lung from the mice instilled with gold nanopartilces alone (C). Bar = 0.25 m. Lung from 

the mice instilled with CJ-2 particles and gold nanoparticles shows swelling of type I alveolar 

epithelial cell (an arrow) with increase in the number of endocytic vesicles in the cytoplasm 

of type I epithelial cell and endothelial cell (arrowheads) (D). Bar = 0.5 m. AL = alveolar 

lumen, AEC = alveolar epithelial cell, BM = basement membrane, ET = endothelial cell, CL 

= capillary lumen. 
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Figure 5. Transmission electron microscopic image of lung from the mice instilled with CJ-2 

particles and 50-nm gold nanoparticles. Type I alveolar epithelial cell shows degenerative 

change (black arrows) with detachment of degenerated type I epithelial cell (white solid 

arrows) associated with interstitial edema (asterisks). Endothelial cells show increase in the 

number of endocytic vesicles in the cytoplasm (arrowheads). Bar = 0.5 m. AL = alveolar 

lumen, AEC = alveolar epithelial cell, ET = endothelial cell, BM = basement membrane, CL 

= capillary lumen. 
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Figure 6. Transmission electron microscopic image of lung from the mice instilled with 50-

nm gold nanoparticles alone. Attachment of gold nanoparticles to the surface of type I 

epithelial cell (arrows) (A). Bar = 0.5 m. Presence of gold nanoparticles inside the endocytic 

vesicles in the cytoplasm of type I epithelial cell (arrowheads) and attachment of gold 

nanoparticles to the surface of type I epithelial cell (arrows) (B). Bar = 0.25 m. AL = 

alveolar lumen, AEC = alveolar epithelial cell, BM= basement membrane, ET = endothelial 

cell, CL = capillary lumen 
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Figure 7. Laminin immunohistochemistry shows intense continuous positivity in the 

basement membrane of the alveolar wall (arrowheads) of lung from the mice instilled with 

50-nm gold nanoparticles alone (A) and weaker discontinuous positivity (arrowheads) in lung 

from the mice instilled with CJ-2 particles and gold nanoparticles (B). Counterstained with 

hematoxylin. Bars = 50 m. 
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Figure 8. IL-6 immunohistochemistry shows mild positivity in alveolar macrophages (black 

arrowheads) with a weak expression in type I alveolar epithelial cells (white arrowheads) in 

lung from the control mice (A). Lung from the mice instilled with 50-nm gold nanoparticles 

alone shows more intense positivity in alveolar macrophages (black arrowheads) and type I 

alveolar epithelial cells (white arrowheads) (B). Lungs from the mice instilled with CJ-2 

particles and gold nanoparticles show the most intense positivity in alveolar macrophages 

(black arrowheads) and type I alveolar epithelial cells (white arrowheads) (C). Counterstained 

with hematoxylin. Bars 
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Figure 9. TNF- immunohistochemistry shows mild positivity in alveolar macrophages 

(black arrowhead) with a weak expression in type I alveolar epithelial cells (white 

arrowheads) in lung from the control mice (A). Lung from the mice instilled with 50-nm gold 

nanoparticles alone shows more intense positivity in alveolar macrophages (black 

arrowheads), type I alveolar epithelial cells (white arrowheads) and endothelial cells (arrows) 

(B). Lungs from the mice instilled with CJ-2 particles and gold nanoparticles show the most 

intense positivity in alveolar macrophages (black arrowheads) and type I alveolar epithelial 

cells (white arrowheads) (C). Counterstained with hematoxylin. Bars = 50 
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Figure 10. Cu/Zn SOD immunohistochemistry shows mild positivity in lungs from the 

control mice (A) and the mice instilled with 50-nm gold nanoparticles alone (B). Lungs from 

the mice instilled with CJ-2 particles and gold nanoparticles show more intense positivity (C). 

Cu/Zn SOD immunopositivity is observed in alveolar macrophages (black arrowheads) and 

type I epithelial cells (white arrowheads) and endothelial cells (arrows) (A, B and C). 

Counterstained with hematoxylin. Bars 
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Figure 11. Inducible NOS (iNOS) immunohistochemistry shows mild positivity in type I 

alveolar epithelial cells (white arrowheads) and occasional weak positivity in macrophages 

(black arrowheads) in lung of the control mice (A) and the mice instilled with 50-nm gold 

nanoparticles alone (B). Intense iNOS immunopositivity is shown in alveolar macrophages 

(black arrowheads) in the inflammatory lesion in lung from the mice instilled with CJ-2 

particles and gold nanoparticles (C). Counterstained with hematoxylin. Bars 



49 

Table 3. Number of inflammatory cells with positive immunolabeling

Group TNF-  IL-6 

Control (n = 6) 

50-nm gold nanoparticles (n = 8) 

CJ-2 + 50-nm gold nanoparticles (n = 8) 

45.0 ± 7.39 

108.1 ± 12.32* 

154.0 ± 8.10*,a 

33.8 ± 5.27 

74.9 ± 4.16* 

126.5 ± 11.13*,a 

Number of cell per 94,850 m2 of 4- m-thick paraffin section, mean ± standard error 
*Significantly different from control group, P < 0.05. 
aSignificantly different from 50-nm gold nanoparticles instillation alone group, P < 0.05. 
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Table 4. Bronchoalveolar lavage fluid analytical parameters 

Group Neutrophils 
(×103) 

Macrophage  
(×103) 

Cell viability 
(%) 

Control (n = 3) 

50-nm gold nanoparticles (n = 4) 

CJ-2 + 50-nm gold nanoparticles (n = 4) 

5.6 ± 4.8 

3.3 ± 0.7 

255.5 ± 4.4*,a

57.4 ± 25.0 

118.9 ± 30.0* 

161.3 ± 14.5*,a 

   84.1 ± 2.4 

   89.7 ± 0.7 

   89.7 ± 3.2 

Values are the mean ± standard error. 
*Significantly different from control group, P < 0.05. 
aSignificantly different from 50-nm gold nanoparticles instillation alone group, P < 0.05. 
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Figure 12. Silver-enhanced autometallography shows presence of gold nanoparticles in 

alveolar macrophages (arrows) and the surface of the alveolar lumen (black arrowheads) in 

lung from the mice instilled with 50-nm gold nanoparticles alone (A) and lung instilled with 

CJ-2 particles and gold nanoparticles (B). Counterstained with hematoxylin. Bars = 10 m. 
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CHAPTER 2 

Demonstration of the Clathrin- and Caveolin-Mediated Endocytosis at the Maternal

Fetal Barrier in Mouse Placenta after Intravenous Administration of Gold 

Nanoparticles 



53 

ABSTRACT 

 Exposure to nanoparticles during pregnancy is a public concern, because it has been 

reported that nanoparticles may pass from the mother to the fetus across the placenta, 

resulting in death of fetus. The purpose of this study was to determine the possible 

translocation pathway of gold nanoparticles across the maternal fetal barrier as well as the 

toxicity of intravenously administered gold nanoparticles to the placenta and fetus. Pregnant 

ICR mice were intravenously injected with 0.01% of 20- and 50-nm gold nanoparticle 

solutions on the 16th and 17th days of gestation. There was no sign of toxic damage to the 

placentas, and maternal and fetal organs of the mice treated with 20- and 50-nm gold 

nanoparticles. ICP-MS analysis demonstrated significant amounts of gold deposition in the 

maternal livers and placentas, but no detectable level of gold in the fetal organs. However, 

electron microscopy demonstrated an increase of endocytic vesicles in the cytoplasm of 

syncytiotrophoblasts and fetal capillary endothelial cells in the maternal fetal barrier of mice 

treated with gold nanoparticles. Clathrin immunohistochemistry and immunoblotting showed 

increased immunoreactivity of clathrin protein in the placental tissues of mice treated with 

20- and 50-nm gold nanoparticles. Clathrin immunopositivity was observed in 

syncytiotrophoblasts and fetal endothelial cells. In contrast, caveolin-1 immunopositivity was 

observed exclusively in the fetal endothelium. These findings suggested that intravenous 

administration of gold nanoparticles might upregulate clathrin- and caveolin-mediated 

endocytosis at the maternal fetal barrier in mouse placenta. 
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INTRODUCTION 

 The development of nanotechnology has resulted in rapid expansion of the use of 

nanoparticles in various categories, e.g., food, cosmetic, electronic, medical and 

pharmaceutical industries (Kulvietis et al. 2011; Saduaskas et al. 2009b; Saunders 2009; Sung 

et al. 2001; Yamashita et al. 2011; Yang et al. 2008). Because nanoparticles have properties, 

such as an extremely small size (less than 100 nm in diameter), high surface area per mass 

ratio, and high potential chemical activities, an adverse health effects from the daily 

application of nanoparticles have been seriously considered (Cartwright et al. 2012; Elsaesser 

and Howard 2012; Ema et al. 2010; Myllynen et al. 2008; Saunders 2009; Shukla et al. 2005). 

The fetus is known to be susceptible to various toxic substances (Austin et al. 2011; Kulvietis 

et al. 2011; Yamashita et al. 2011). Therefore, there is high concern regarding exposure to 

exogenous substances, including nanosized materials for pregnant women (Keelan 2011; 

Saunders 2009; Yamashita et al. 2011). 

 The placenta is the organ that connects the maternal and fetal circulation. Oxygen and 

nutrient exchanges between the mother and fetus occur in the maternal fetal barrier at the 

labyrinthine zone of the placenta (Buerki-Thurnherr et al. 2012; Furukawa et al. 2011; Khan 

et al. 2011; Kirby and Bradbury 1965; Takata et al. 1997). In addition, toxic substances can 

be also transferred across the maternal fetal barrier. Therefore, the placenta is a critical site 

for fetal intoxication (Ema et al. 1010; Keelan 2011; Saunders 2009). Placental structure 

differs among animals. Humans and rodents have the same type of placenta, hemochorial 

type. There are, however, there are some differences in the placental structures between 

humans and rodents (Keelan 2011; Yamashita et al. 2011). Human maternal fetal barrier 

consists of one trophoblastic layer (syncytiotrophoblast layer) on the maternal side with 

underlying discontinuous cytotrophoblastic layer, basement membrane and fetal endothelial 
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cells on the fetal side. In contrast, mouse maternal fetal barrier has three trophoblastic layers 

on the maternal side that connect each layer with tight gap junction with underlying fetal 

endothelial cells on the fetal side (Khan et al. 2011; Kirby and Bradbury 1965; Kulvietis et al. 

2011; Saunders 2009). Despite such anatomical differences, rodent placentas are regarded as 

advantage of the ethical reason and similarities in placental functions like humans, and have 

been used in every stage of pregnancy (Keelan 2011; Mohanty et al. 2010; Yamashita et al. 

2011).  

 The mechanisms of placental exchange for several endogenous substances include 

passive and facilitated diffusion, via transtrophoblastic channels, and active transport (e.g. via 

endocytosis) (Buerki-Thurnherr et al. 2012; Kulvietis et al. 2011; Saunders 2009). 

Endocytosis may be an important mechanism for certain types of nanoparticle translocation 

across the maternal fetal barrier (Buerki-Thurnherr et al. 2012; Kulvietis et al. 2011; 

Saunders 2009). Macropinocytosis and classical clathrin-dependent, non-classical clathrin-

independent (caveolae-dependent) or clathrin- and caveolae-independent endocytosis are 

further proposed as subtypes of endocytosis (Conner and Schmid 2003; Le Roy and Wrana 

2005; McMahon and Boucrot 2011; Myllynen et al. 2008). Clathrin, a major protein of 

clathrin-coated endocytic vesicles, and caveolin-1, a major protein of the caveolae structure 

(Mohanty et al. 2010), are expressed in trophoblasts and endothelial cells of the human 

placenta in physiological condition. However, information about the expression of clathrin 

and caveolin-1 in the placental tissue during nanoparticle exposure remains unclear. 

Therefore, the present study aimed to examine the clathrin- and caveolin-mediated 

endocytosis after intravenous administration of gold nanoparticles in mouse placenta. 
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MATERIALS AND METHODS 

Animals 

 Sixteen pregnant ICR mice at gestation day 16 (GD16) (15 17 weeks old, 55 75 g) 

were obtained from CLEA Japan Inc. (Tokyo, Japan). Commercial diet CE-2 (CLEA Japan 

Inc.) and tap water were given ad libitum throughout the experiment. The mice were housed 

at approximately 25°C and 55 70% relative humidity under a 12-hr light/dark cycle. The 

experiments were approved by the Institutional Animal Care and Use Committee, and all 

procedures were conducted according to the Tottori University guidlines for animal welfare.  

Particles  

Morphology of gold nanoparticles 

 The experiment employed 20- and 50-nm colloidal gold solutions (mean diameters of 

International, Cardiff, UK). The morphology of the gold nanoparticles was examined by 

transmission electron microscopy (TEM-100CX; Japan Electron Optical Laboratory, Tokyo, 

Japan). The 20-nm and 50-nm colloidal gold solutions contained electron-dense, spherical, 

uniform, and individual or slightly agglomerated particles (Figure 1). 

Experimental protocol 

 At GD16, pregnant ICR mice were intravenously injected with 0.5 ml of saline 

solution (control, n = 4), 20-nm, or 50-nm colloidal gold solutions through the tail vein (n = 6 
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per treatment). At 24 hr after the first injection, the pregnant mice (GD17) were intravenously 

injected with the same solutions as the previous injections. At 24 hr after the second injection, 

the pregnant mice (GD18) were sacrificed by performing exsanguination under deep 

anesthesia induced by the intraperitoneal injection of sodium pentobarbital. Then, tissue 

samples were collected (Figure 2). 

Sampling for maternal organs, plancentas and fetal organs 

Maternal livers, placentas, and fetal livers were collected from the pregnant mice and 

fetuses after gross examination. The samples were used for histopathological, 

immunohistochemical, autometallography (AMG) and transmission electron microscopic 

examinations.  

Inductively coupled plasma-mass spectroscopy (ICP-MS) 

Maternal livers, placentas, and fetal livers (0.1 g of each tissue; n = 2 from the control 

or n = 3 from mice that were injected with gold nanoparticles) were digested with 2 ml of 

aqua regia. After digestion the inorganic residues were dissolved in 5 ml of 0.05 N HCl and 

ultrasonicated for 20 min, and the samples were then analyzed by performing inductively 

coupled plasma-mass spectroscopy (ICP-MS) (HP 4500; Agilent Technologies, Santa Clara, 

CA, U.S.A.). Detection and quantification limits for gold were 0.5 ng/ml and 1 ng/ml, 

respectively (Sonavane et al. 2008).  

Histopathology 
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 Maternal livers, placentas and fetal livers were fixed in 10% neutral-buffered formalin. 

The formalin-fixed tissues were processed using routine pathological methods and embedded 

in paraffin blocks. Paraffin-embedded thin sections (4- -thick) were applied for 

hematoxylin and eosin staining, immunohistochemistry and AMG. Histopathological 

examination was performed by 2 pathologists in a blind manner under a light microscope.  

Autometallography (AMG) 

 Paraffin-embedded thin sections of placenta, maternal liver, and fetal liver were used 

for AMG staining (Danscher 1984; Danscher and Stoltenberg 2006). The sections were 

treated with a physical developer consisting of 50% gum arabic, 50% citrate buffer, 5.6% 

hydroquinone, and 17% silver nitrate. The reaction was conducted in a water bath at 26°C for 

1 hr in the dark. Excessive silver residue was removed with a 5% sodium thiosulfate solution 

for 10 min. Next, the sections were counterstained with hematoxylin. A positive result was 

demonstrated as small black silver grains inside the cells of interest.  

Immunohistochemistry 

  Paraffin-embedded sections of the placentas were used for the immunohistochemical 

detection of clathrin, caveolin, interleukin (IL)-6, tumor necrosis factor (TNF)-

copper- and zinc-containing superoxide dismutase (Cu/Zn SOD), inducible nitric oxide 

synthase (iNOS) and caspase-3. For antigen retrieval, the sections were treated with citrate 

buffer (pH 5.4) and then microwaved. Endogenous peroxidase activity was quenched with 

3% H2O2 at room temperature for 30 min. The slides were then blocked with 10% normal 

goat serum or 10% bovine serum albumin (for the detection of IL-6) for 5 min in a 
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microwave. Next, the sections were incubated with primary antibodies at 4°C overnight (anti-

clathrin heavy chain: Abcam, Cambridge, MA, U.S.A. 1:7,000 dilution; anti-caveolin-1: 

Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A. 1:1,500 dilution; anti-IL-6: Santa Cruz 

Biotechnology 1:200 dilution; TNF- the Netherlands, 1:15 dilution; anti-

Cu/Zn SOD: Stressgen Bioreagents, Victoria, Canada, 1:200 dilution; anti-iNOS: BD 

Transduction Laboratories, Lexington, KY, U.S.A. 1:125 dilution; and anti-caspase-3: 

Promega, Madison, WI, U.S.A 1:250) or an equivalent amount of phosphate-buffered saline 

as a negative control. A labeled streptavidin biotin kit (Dako, Glostrup, Denmark) was used 

to detect immunoreaction complexes in the avidin biotin complex assay. Positive 

immunoreactions appeared as brown staining with -diaminobenzidine tetrahydrochloride 

(DAB). The sections were counterstained with hematoxylin and observed by light 

microscopy in 4 randomly selected lesions at ×100 magnification. Positive immunolabeling 

areas were analyzed in 5 randomly selected areas from each mouse by Image-Pro Plus 6.1 

software (MediaCybernetics, Inc., Silver Spring, MD, U.S.A.). 

Double immunofluorescence 

 The sections were placed in citrated buffer solution (pH = 5.4), microwaved and then 

treated with proteinase K for 15 min for antigen retrieval. Next, the sections were incubated 

with normal goat serum for 5 min in a microwave. After incubation with normal goat serum, 

the sections were applied to the primary antibodies against clathrin (1:500 dilution) or 

caveolin-1 (1:350 dilution) overnight at 4°C and then incubated with Alexa Fluor 488-

conjugated secondary antibody (1:200 dilution) for 1 hr at room temperature. Then, the 

sections were reacted with primary antibody against cytokeratin (Dako, 1:100 dilution) 

overnight at 4°C and then incubated with Alexa Fluor 555-conjugated secondary antibody 
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(1:300 dilution) for 30 min at room temperature. Thereafter, the sections were mounted in 

plain 80% Tris-buffered glycerol. Analyses were performed with a confocal imaging system 

(AX-70, Olympus Laboratory, Tokyo, Japan).  

Electron microscopy 

 Half of the longitudinal sections from the placenta were cut into cubes measuring 1 2 

mm3. Next, tissues were fixed in glutaraldehyde for 3 hr at 4°C, rinsed in 0.1 M phosphate 

buffer (pH 7.4), postfixed with 1% osmium tetroxide for 1 hr, dehydrated in alcohol and 

embedded in epoxy resin. The areas of interest were selected for electron microscopy 

examination from 1% toluidine-stained semi-thin (1- -thick) sections and subsequently cut 

into ultra-thin (70-nm-thick) sections. After staining with uranyl acetate and lead citrate, 

ultra-thin sections were examined using a transmission electron microscope (TEM-100CX; 

Japan Electron Optical Laboratory, Tokyo, Japan). 

Western blot analysis 

 Approximately 100 mg of placental tissue (n = 4 per mouse) was harvested and 

processed in lysis buffer (Roche, Basel, Switzerland) to extract protein. Tissue lysates were 

clarified by centrifugation at 14,000 rpm for 10 min, and the protein content of the 

supernatant was determined. Lysate supernatants were diluted 1:1 with 2× electrophoresis 

sample buffer (1× sample buffer = 125 mM Tris HCl, pH 6.8, 2% sodium dodecyl sulfate 

[SDS], 5% glycerol, 0.003% bromophenol -mercaptoethanol) and aliquots 

gel. The gels were electroblotted onto a polyvinylidene difluoride membrane (BioRad, 
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Hertfordshire, U.K.), and the membrane was probed with the primary antibodies, rabbit anti-

clathrin heavy chain (1:1,000 dilution) or rabbit anti-caveolin-1 (1:1,000 dilution). After 

overnight incubation at 4°C, the membrane was washed and probed with the secondary 

antibody, which was an anti-rabbit horse radish-peroxidase-conjugated IgG. After incubation 

for 1 hr, the membrane was washed by washing buffer. The immunoblot procedure was 

performed using the chemiluminescence detection reagent (LuminataTM Forte Western HRP 

Substrate, Millipore, Billerica, MA, U.S.A.) according to the manu

bands on the clarified blots were measured with an image analysis system (Image-Pro Plus 

6.1, MediaCybernetics, Inc., Silver Spring, MD, U.S.A.), and the digital numbers obtained 

were integrated density values of the intensity of each band.  

In situ apoptosis detection (TUNEL assay) 

 Paraffin-embedded thin sections of placenta were treated with proteinase K at room 

temperature. Then, the sections were inactivated for endogenous peroxidase by applying 3% 

H2O2 for 5 min. After washing, the labeling reaction mixture (consisting of TdT enzyme and 

labeling safe buffer, in situ apoptosis detection kit: Takara Bio Inc., Otsu, Japan) was applied 

to the sections, and they were incubated in a 37°C humidified chamber for 70 min. Then, the 

sections were treated with Anti-FITC HRP conjugate (Takara Bio Inc.) and incubated at 37°C 

for 30 min. After coloring with DAB, the sections were counterstained with 3% methyl green 

and observed under a light microscope.  

Statistical analysis 

All of the data were expressed as the mean ± standard error (S.E.). Statistical 

significance was determined by performing the Mann- - t-test 
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for 2-group comparisons. For all comparisons, P values less than 5% (P < 0.05) were 

considered statistically significant. 
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RESULTS 

ICP MS 

 Gold was detected in the maternal livers and placentas from mice injected with 20- 

and 50-nm gold nanoparticles (Table 1). The level of gold in both maternal livers and 

placentas from the mice injected with 20-nm gold nanoparticles was significantly higher than 

the level of gold from the mice injected with 50-nm gold nanoparticles. Gold was not 

detected in maternal livers and placentas from the control mice and fetal livers from the 

control mice and the mice injected with 20- and 50-nm gold nanoparticles. 

Histopathology 

 Placental tissues from the mice injected with 20- and 50-nm gold nanoparticles did 

not show any significant pathological changes at the maternal fetal barrier in the labyrinthine 

zone of the placentas compared to the control mice (Figure 3). Only mild swelling of the 

cytoplasm of syncytiotrophoblastic cells and fetal endothelial cells in the maternal fetal 

barrier from the mice injected with gold nanoparticles were occasionally observed (Figures 

3B and 3C).  

 No pathological lesions were found in other maternal and fetal organs from the 

control mice and the mice injected with 20- and 50-nm gold nanoparticles. 

Autometallography 
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 Silver-enhanced gold nanoparticles were detected in Kupffer cells in the maternal 

livers of mice injected with 20- and 50-nm gold nanoparticles (Figures 4B and 4C). Gold 

nanoparticles were not detected by the AMG method in the placentas, maternal livers, and 

fetal livers from the control mice and placentas and fetal livers from the mice injected with 

20- and 50-nm gold nanoparticles (Figure 4). 

Immunohistochemistry 

 Clathrin immunohistochemistry demonstrated positive reaction in 

syncytiotrophoblastic cells and fetal endothelial cells (Figure 5). Weak positivity was 

observed in syncytiotrophoblastic cells and fetal endothelial cells at the maternal fetal barrier 

from the control mice (Figure 5A) compared to the mice injected with gold nanoparticles 

(Figures 5B and 5C). The image analysis of clathrin immunopositivity showed higher 

intensity in the placental tissues from the mice injected with gold nanoparticles. No 

significant differences were observed between clathrin immunoreactivity in the placental 

tissues from the mice injected with 20- and 50-nm gold nanoparticles and that seen by image 

analysis (Table 2). 

 Caveolin-1 immunoreactivity was detected exclusively in the cytoplasm of fetal 

endothelial cells at the site of maternal fetal barrier in the labyrinthine zone of the placentas 

(Figure 6). The positivity of caveolin-1 immunolabeling was lesser in the placental tissues 

from the control mice (Figure 6A) compared to the mice injected with gold nanoparticles 

(Figures 6B and 6C). The image analysis of caveolin-1 immunolabeling showed higher 

intensity in the placental tissues from the mice injected with gold nanoparticles. No 

significant differences were observed between caveolin-1 immunoreactivity in the placental 



65 

tissues from the mice injected with 20- and 50-nm gold nanoparticles and that seen by image 

analysis (Table 2).  

 There were occasional positive findings in IL-6, TNF-  and iNOS 

immunolabeling in the cytoplasm of syncytiotrophoblasts and fetal endothelial cells in the 

maternal fetal barrier. No difference in the intensity and distribution of IL-6, TNF-

SOD and iNOS immunolabeling between the control mice and the mice injected with 20- and 

50-nm gold nanoparticles was observed. No positivity in caspase-3 immunolabeling was 

detected in the maternal fetal barrier from the control mice and the mice injected with 20- 

and 50-nm gold nanoparticles. 

Double immunofluorescence 

 Positive clathrin immunoreactivity was demonstrated in the syncytiotrophoblast layer 

and fetal vascular endothelium (Figure 7A). The co-localization of clathrin and cytokeratin 

was observed in the syncytiotrophoblast layer (Figure 7C). In contrast, caveolin-1 

immunoreactivity revealed strong immunoreactivity exclusively in fetal capillary endothelial 

cells (Figure 8A). The co-localization of caveolin-1 and cytokeratin was not observed in the 

labyrinthine zone of the placentas (Figure 8C). 

Electron microscopy 

 The maternal fetal barrier in the labyrinthine zone of the placentas from the control 

mice consisted of 3 layers of syncytiotrophoblastic cells (syncytiotrophoblast layers I, II, and 

III) with underlying fetal capillary endothelial cells. Electron microscopy demonstrated no 

signs of cell/tissue damage in the placenta from the mice treated with gold nanoparticles.
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Numerous microplicae and infolding with a few vesicle-like structures were observed in the 

cytoplasm of syncytiotrophoblast layers II and III in the maternal fetal barrier from the 

control mice (Figure 9A). Moderate enlargement with an increase in the number of vesicle-

like structures were observed in the cytoplasm of syncytiotrophoblast layers II and III in the 

maternal fetal barrier from the mice injected with 20- and 50-nm gold nanoparticles (Figures 

9B, 9C and Figure 10). An increase in the number of vesicle-like structures was also shown 

in the capillary endothelial cells in the maternal fetal barrier from the mice injected with 20- 

and 50-nm gold nanoparticles compared to the control mice (Figure 9C and Figure 10). 

Western blot analysis 

 Immunoblotting of tissue lysates from placentas of the mice injected with 20- and 50-

nm gold nanoparticle solutions demonstrated a 171-kDa band of clathrin protein. The positive 

band from the control mice was less intense compared to positive bands from the mice 

injected with gold nanoparticles (Figure 11A). The integrated density values of the intensity 

of bands of tissue lysates from the mice injected with gold nanoparticles were significantly 

greater than that of the control mice (Table 3). 

 A 22-kDa band representing caveolin-1 was observed in the placental tissue lysates. 

The positive bands showed no difference in intensity in the placental lysates from the control 

mice and the mice injected with gold nanoparticles (Figure 11B). The integrated density 

values of the intensity of bands of the tissue lysates were not significantly different among all 

groups (Table 3). 

In situ apoptosis detection (TUNEL assay) 
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The TUNEL assay showed negative results in the labyrinthine zone of the placentas 

of the control, 20- and 50-nm gold nanoparticle injected mice (data not shown). 
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DISCUSSION 

 At present, the risk of exposure to nanosized materials in pregnancy is increasing. On 

the other hand, there are only a few studies on the translocation pathway of nanoparticles 

across the maternal fetal barrier (placental barrier) (Cartwright et al. 2012; Elsaesser and 

Howard 2012; Kulvietis et al. 2011). The present study aims to determine the possible 

translocation mechanism of gold nanoparticles across the maternal fetal barrier of mice. 

ICP-MS analysis demonstrated a significant amount of gold deposited in the maternal 

livers and placentas but no detectable level of gold in the fetal organs. Although AMG 

staining also showed the dominant accumulation of gold nanoparticles in Kupffer cells in the 

livers of the pregnant mice, no AMG positive findings were observed in the fetuses after 

intravenous administration. The liver is a major organ for the elimination of circulating 

nanoparticles (Sadauskas et al. 2009a). A previous study also reported that gold nanoparticles 

are primarily phagocytized by Kupffer cells and that almost of the administered nanoparticles 

present in the liver after intravenous administration in rodents (Balasubramaniun et al. 2010; 

Sadauskas et al. 2007; Sadauskas et al. 2009a; Semmler-Behnke et al. 2008).   

 No pathological changes were observed in the placentas, maternal organs, and fetal 

organs from mice treated with 20-nm and 50-nm gold nanoparticle solutions, suggesting that 

gold nanoparticles would not be harmful to pregnant mice and their placentas at the doses 

that we used. Previous in vitro and in vivo studies also reported that various sizes and doses 

of gold nanoparticles showed no obvious toxicity in mice and rats (Lasagna-Reeves et al. 

2010; Sadauskas et al. 2009b; Semmler-Behnke et al. 2008). 

 Previous studies on the translocation pathway of nanoparticles across the fetal

maternal barrier of the human placenta suggest that endocytosis plays an important role in the 

transportation of nanoparticles (Keelan 2011; Kulvietis et al 2011; Saunders 2009; Wick et al. 
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2010). In the present study on the mouse placenta, an increase in the number of endocytic 

vesicles was also observed in the cytoplasm of the syncytiotrophoblasts and fetal endothelial 

cells by electron microscopy, suggesting that endocytosis might be upregulated in the 

maternal fetal barrier after administration of gold nanoparticle solutions. Endocytosis plays 

an important role for the transport of nutrients or biomolecules, such as albumin, folic acid, 

hormones, etc. at the placenta in the physiological condition (Lambot et al. 2006; Pelkmans 

and Helenius 2002). 

 Clathrin-mediated endocytosis was previously described in the cytoplasm of 

syncytiotrophoblasts of the mouse placenta (Lambot et al. 2006). Clathrin-mediated 

endocytosis is involved in the recycling of albumin in the term placenta, neurotransmitter 

transport, and the internalization of several antigens (Lambot et al. 2006; McMahon and 

Boucrot 2011; Mousavi et al. 2004). In this study, clathrin immunohistochemistry showed an 

increase of intense positivity in the endocytic vesicles of both syncytiotrophoblasts and fetal 

endothelial cells. The localization of clathrin expression was confirmed by performing double 

immunofluorescence by using antibodies to clathrin and cytokeratin. Clathrin was also 

demonstrated in the syncytiotrophoblasts and fetal capillary endothelium. Immunoblot 

analysis showed an increase in clathrin protein expression in the placental tissues from mice 

treated with gold nanoparticles. These results suggested that gold nanoparticle administration 

upregulates clathrin expression in the placenta and that clathrin-mediated endocytosis might 

be one of the pathways of gold nanoparticle translocation in the maternal fetal barrier. 

 Caveolae-mediated endocytosis is also considered to be one of the pathways for the 

translocation of nanoparticles in the air blood barrier (Naota et al. 2013). Caveolin-1 protein 

plays a role in the regulation of caveolar invagination and the formation of caveolae, which is 

one form of the endocytic vesicle (Linton et al. 2003; Nabi and Le 2003; Pelkmans and 

Helenius 2002; Rothberg et al. 1992). In murine placental tissues, the localization of 
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caveolin-1 has been demonstrated in the vasculatures, especially in the fetal vascular 

endothelium (Bryne et al. 2007; Lyden et al. 2002; Mohanty et al. 2010). In this study, 

increased intensity of caveolin-1 immunohistochemistry was observed exclusively in the fetal 

endothelium after the administration of gold nanoparticle solutions. In contrast, 

immunoblotting showed no difference in the amount of caveolin-1 expression between the 

control mice and the mice treated with gold nanoparticles, suggesting the possible re-

assembly of caveolin-1 protein from the cytosol to the caveolae structure.

 In this study with the experimental design, applied techniques including electron 

microscopy failed to detect signs of actual translocation of the exposed particles as well as 

signs of their toxicity. However, an increase of endocytic vesicles in the cytoplasm of 

syncytiotrophoblasts and fetal endothelial cells in the maternal fetal barrier of mice treated 

with gold nanoparticles was demonstrated. A further study with prolonged duration, different 

kinds of nanoparticles and sensitive techniques for the detection of nanoparticles are required 

to ascertain whether exposed nanoparticles may have a chance to be translocated through the 

maternal fetal barrier by both clathrin-mediated and caveolae-mediated endocytosis 

demonstrated in this study. 
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FIGURES AND FIGURE LEGENDS 
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Figure 1. Electron micrographs of 20-nm (A) and 50-nm (B) gold nanoparticles show 

electron-dense, spherical, uniform, and individual or slightly agglomerated appearance. Bar = 

100 nm. 
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Figure 2. Schematic diagram shows the materials and methods of the experiment. At the 16th

day of gestation (GD16), pregnant ICR mice were intravenously injected with 0.5 ml of 

saline solution, 20-nm, or 50-nm gold nanoparticles (NPs) through the tail vein. At 24 hr after 

the first injection, the pregnant mice (GD17) were intravenously injected with the same 

solutions as the previous injections. At 24 hr after the second injection, the pregnant mice 

(GD18) were sacrificed. Tissue samples were collected for the pathological examination and 

the investigation of the translocation pathway of gold nanoparticles at the maternal fetal 

barrier. 
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Table 1. Gold contents in the tissues measured by ICP-MS. 

Group  

  Maternal liver Placenta Fetal liver 

Control 

20-nm gold NPs 

50-nm gold NPs 

(n = 2) 

(n = 3) 

(n = 3) 

0.2 ± 0.07

640.3 ± 171.80a

99.2 ± 2.75b 

ND 

1.3 ± 0.61

1.0 ± 0.78

ND 

ND 

ND 

Values are the mean ± standard error. 
aSignificantly different between the control and 20 nm gold NPs injected mice, P < 0.05.  
bSignificantly different between 20-nm gold NPs injected mice and 50-nm gold NPs injected 
mice, P < 0.05. 
NPs = nanoparticles 
ND = Not detected. 
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Figure 3. Maternal fetal barrier in the labyrinthine zone of the placentas from the control 

mice (A) and from the mice injected with 20-nm (B) and 50-nm gold nanoparticles (C). No 

severe histopathological lesions are observed. Mild swelling of the cytoplasm (asterisks) of 

syncytiotrophoblastic cells (T) and endothelial cells (arrows) are observed at the maternal

fetal barrier from the mice injected with 20- and 50-
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Figure 4. Autometallographic-enhanced gold nanoparticles in maternal livers (A C), 

placentas (D F), and fetal livers (G I) of the control mice (A, D, and G), the mice 

intravenously injected with 20-nm gold nanoparticles (B, E, and H) and 50-nm gold 

nanoparticles (C, F, and I). Gold nanoparticles are demonstrated exclusively in the maternal 

livers from mice injected with 20- and 50-nm gold nanoparticles. The deposition of gold 

nanoparticles are shown in Kupffer cells (arrowheads) (B and C). Autometallography shows 

negative staining in all tissues from the control mice (A, D, and G), placentas (E and F) and 

fetal livers (H and I) from the mice injected with 20- and 50-nm gold nanoparticles. A C; bar 

I; b
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Figure 5. Clathrin immunohistochemistry showing intense positivity in the cytoplasm of 

trophoblastic cells (arrows) and capillary endothelial cells (white arrowheads) in the 

maternal fetal barrier in the labyrinthine zone of placentas from the mice injected with 20-

nm (B) and 50-nm (C) gold nanoparticles. Weak positivity is shown in the cytoplasm of 

trophoblastic cells (arrows) and fetal endothelial cells (white arrowheads) in the maternal

fetal barrier from the control mouse (A). Counterstaine



78 

Figure 6. Caveolin-1 immunohistochemistry showing immunopositivity in the cytoplasm of 

fetal capillary endothelial cells at the maternal fetal barrier in the labyrinthine zone of the 

placentas (white arrowheads) from the mice injected with 20-nm (B) and 50-nm (C) gold 

nanoparticles. Weak positivity is shown in the cytoplasm of fetal endothelial cells in the 

maternal fetal barrier from the control mouse (A). Counterstained with hematoxylin. Bars = 
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Table 2. Positive immunolabeling area in the labyrinthine zone of placentas. 

Group % Positive areaa

 Anti-caveolin-1 Anti-clathrin 

Control 

20-nm gold NPs 

50-nm gold NPs 

0.28 ± 0.179 

3.57 ± 0.718b 

2.57 ± 0.926b 

2.73 ± 0.430 

12.04 ± 1.495b 

9.10 ± 1.618b 

Values are the mean ± standard error. 
aPositive area (%) of 94,850 m2 of 4- m-thick paraffin sections.
bSignificantly different from the control group, P < 0.05. 
NPs = nanoparticles 
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Figure 7. Double immunofluorescence of clathrin and cytokeratin proteins in the labyrinthine 

zone of mice placenta. Double immunolabeling by antibodies against clathrin as shown by 

Alexa 488 (green) (A) and cytokeratin as shown by Alexa 555 (red) (B). Merged image with 

the 2 fluorophores (C). The syncytiotrophoblast layer (white arrows) and fetal vascular wall 

are strongly labeled with clathrin (white arrowheads) (A). The syncytiotrophoblast layer is 

exclusively labeled with cytokeratin (white arrows) (B). Co-expression of clathrin and 

cytokeratin (yellowish) is shown in the syncytiotrophoblast layer (white arrows) (C). Bars = 
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Figure 8. Double immunofluorescence of caveolin-1 and cytokeratin proteins in the 

labyrinthine zone of mice placenta. Double immunolabeling by antibodies against caveolin-1 

as shown by Alexa 488 (green) (A) and cytokeratin as shown by Alexa 555 (red) (B). Merged 

image with the 2 fluorophores (C). The fetal vascular wall is exclusively labeled with 

caveolin-1 (white arrows) (A). The syncytiotrophoblast layer is labeled with cytokeratin 

(white asterisks) (B). Co-expression of caveolin-1 and cytokeratin is not shown in the 
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Figure 9. Transmission electron micrographs of maternal fetal barrier in the labyrinthine 

zone of the placentas. The placenta from a control mouse consists of 3 syncytiotrophoblast 

layers with underlying fetal endothelial cells. Numerous microplicae and infolding with a few 

of vesicle-like structures (arrowheads) are shown in the cytoplasm of syncytiotrophoblast 

layers II and III in the maternal fetal barrier from a control mouse (A). Enlargement of the 

cytoplasm of syncytiotrophoblast layer I, II, III and fetal endothelial cells with an increase in 

the number of vesicle-like structures (arrowheads) is shown in the maternal fetal barrier from 

the mice injected with 20-nm (B) and 50-

maternal blood sinus, I = syncytiotrophoblast layer I, II = syncytiotrophoblast layer II, III = 

syncytiotrophoblast layer III, FE = fetal endothelial cell, FC = fetal capillary. 
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Figure 10. Transmission electron micrograph of the maternal fetal barrier in the labyrinthine 

zone of the placenta from the mouse injected with 20-nm gold nanoparticles demonstrating 

an increase in the number of vesicle-like structures (arrowheads) in the cytoplasm of 

syncytiotrophoblast layers I, II, III, and fetal endothelial cells. 

syncytiotrophoblast layer I, II = syncytiotrophoblast layer II, III = syncytiotrophoblast layer 

III, FE = fetal endothelial cell, FC = fetal capillary. 



84 

Figure 11. Western blotting demonstrates clathrin and caveolin-1 protein expression in the 

placental tissues from the pregnant mice. The intensity of clathrin protein band (171 kDa) of 

placental tissue lysates from the control mice is less than the bands of tissue lysates from the 

mice injected with 20- and 50-nm gold nanoparticles (A). The intensity of caveolin-1 protein 

bands is not different between the control mice and the mice treated with 20- and 50-nm gold 

nanoparticles (B). 
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Table 3. Integrated density values of the immunoblot band intensity using the image analysis 
system 

Protein  Density of  immunoblot band intensity  
(optical density unit) 

  Control 
(n = 3) 

20-nm gold NPs 
(n = 3) 

50-nm gold NPs 
(n = 3) 

Clathrin 

Caveolin-1 

 0.20 ± 0.062 

1.46 ± 0.167

1.05 ± 0.029a

1.36 ± 0.224 

1.06 ± 0.010a

1.55 ± 0.095 

Values are the mean ± standard error. 
aSignificantly different from the control group, P < 0.05. 
NPs = nanoparticles 
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GENERAL DISCUSSION AND CONCLUSIONS

 In the first chapter, the study aimed to demonstrate the precise translocation pathway 

of the intratracheally instilled nanoparticles during acute pulmonary inflammation caused by 

Asian sand dust. The exposure to nanoparticles during pulmonary inflammation is a concern 

because nanoparticles may easily translocate into the systemic circulation and induce adverse 

effects (Nemmar et al. 2010; Sadauskas et al. 2009a; Saunders 2009). The intratracheal 

instillation of gold nanoparticles following the instillation of Asian sand dust was carried out 

for examination of the translocation pathway of gold nanoparticles after pulmonary injury 

induced by Asian Sand dust particles. Histopathological and ultrastructural findings of lungs 

from mice treated with Asian sand particles and gold nanoparticles showed severe injury to 

the alveolar wall structure in contrast to lungs from mice treated with gold nanoparticles 

alone. These findings suggest that Asian sand particles may have severe toxic effects on the 

structure of the air blood barrier (Hiyoshi et al. 2005; Ichinose et al. 2005; Naota et al. 2010). 

An intense expression of proinflammatory cytokines and oxidative stress markers was found 

in alveolar macrophages, type I and II alveolar epithelial cells, and endothelial cells at the 

alveolar walls of lungs from mice instilled with Asian sand particles and gold nanoparticles. 

It suggested that the release of proinflammatory cytokines and the generation of oxidative 

stress may be involved in the pulmonary destruction induced by Asian sand particles (Figure 

1) (Hamilton et al. 2008; Ichinose et al. 2005; Meng and Zhang 2006; Naota et al. 2010). 

Electron microscopy also demonstrated a ruffling of the surface of type I epithelial cells and 

an increase in the number of endocytic vesicles in both type I alveolar epithelial cells and 

endothelial cells at the alveolar wall of both lungs from mice instilled with gold nanoparticles 

alone and lungs from mice instilled with Asian sand dust and gold nanoparticles. In addition, 

an increased number of endocytic vesicles containing gold nanoparticles was also found in 
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the alveolar epithelial cells and the endothelial cells. Endocytosis was shown to play an 

important role in the internalization of many nanoparticles, including gold nanoparticles 

(Figure 2) (Shukla et al. 2005). These findings suggest that the translocation by the 

endocytotic process of the exposed nanoparticles may be enhanced in the lung tissues with 

acute inflammatory changes (Figure 3).  

 In the second chapter, the aim of the study was to determine the possible translocation 

mechanism of gold nanoparticles across the maternal fetal (placental) barrier of mice. The 

intravenous administrations of 20- and 50-nm gold nanoparticles to pregnant mice were 

conducted for examination of the translocation pathway at the maternal fetal barrier. The 

present study on the mouse placentas demonstrated an increase in the number of endocytic 

vesicles in the cytoplasm of syncytiotrophoblasts and fetal endothelial cells by electron 

microscopy, suggesting that endocytosis was upregulated in the maternal fetal barrier after 

injection of gold nanoparticles. Endocytotic processes may play an important role for the 

translocation of nanoparticles at the maternal fetal barrier (Figure 4). Clathrin 

immunohistochemistry showed an increase of intense positivity in the endocytic vesicles of 

both syncytiotrophoblasts and fetal endothelial cells, while caveolin-1 immunohistochemistry 

was observed exclusively in the fetal endothelium after the administration of gold 

nanoparticles. Double immunofluorescence revealed the presence of clathrin and caveolin-1 

in the maternal fetal barrier after intravenous injection with gold nanoparticles. Clathrin was 

demonstrated in the syncytiotrophoblasts and fetal capillary endothelium. In contrast, 

caveolin-1 was demonstrated in the vasculatures, especially in the fetal capillary endothelium. 

Clathrin-mediated endocytosis was previously described in the cytoplasm of 

syncytiotrophoblasts of the mouse placenta (Lambot et al. 2006). Clathrin-mediated 

endocytosis is involved in the recycling of albumin in the term placenta, neurotransmitter 

transport, and the internalization of several viruses (Lambot et al. 2006; McMahon and 
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Boucrot 2011; Mousavi et al. 2004). Immunoblot analysis showed an increase in clathrin 

protein expression in the placental tissues from mice administered with gold nanoparticles, 

suggesting that gold nanoparticle administration upregulated clathrin expression in the 

placenta and clathrin-mediated endocytosis may be one of the endocytotic pathways of the 

translocation of nanoparticles in the maternal fetal barrier. Apart from clathrin-mediated 

endocytosis, caveolae-mediated endocytosis is considered to be another pathway for the 

translocation of nanoparticles in the biological barrier (Naota et al. 2013). Caveolin-1 protein 

may play a role in the regulation of caveolar invagination and the formation of caveolae, 

which is one form of the endocytic vesicle (Linton et al. 2003; Nabi and Le 2003; Pelkmans 

and Helenius 2002; Rothberg et al. 1992). However, immunoblotting showed no difference in 

the amount of caveolin-1 expression between the control mice and the mice administered 

with gold nanoparticles, suggesting the possible re-assembly of caveolin-1 protein from the 

cytosol to the caveolae structure after the exposure to nanoparticles. 

 In summary, the studies of two chapters showed detailed about possible translocation 

pathway of nanoparticles in specific health conditions (Figure 5). The studies focused on the 

biological barriers, including air blood barrier in lung and maternal fetal barrier in placenta. 

The evaluation of the potential adverse health effect responses resulting from exposure to 

nanoparticles is particularly important, especially for susceptible subpopulations, e.g. 

unhealthy people, pregnant women, and their fetuses. The study on the translocation pathway 

of nanoparticles in the biological barriers may be critical to assess the risks of the uses of 

nanoparticle-containing products. Moreover, the results may be useful in predicting the 

biodistribution and toxicity of nanoparticles in the subpopulation comparing with the healthy 

people.  

 In conclusion, the translocation of nanoparticles during specific conditions was 

demonstrated in the present studies (Figure 5). However, the current studies failed to detect 
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the signs of nanoparticle toxicity in the systemic organs. Further study with prolonged 

duration, different kinds of nanoparticles and sensitive techniques for the detection of 

nanoparticles is required to ascertain whether exposed nanoparticles may have a chance to 

cause serious toxicity in the subpopulation. 
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Figure 1. Schematic diagram shows the possible mechanisms of the air blood barrier injury 

induced by Asian sand dust. Direct physical and chemical injuries by the Asian sand particles, 

the release of proinflammatory cytokines and the generation of oxidative stress by activated 

alveolar macrophages, and the migration of neutrophils may be involved in the air blood 

barrier destruction induced by Asian sand dust. AEC = alveolar epithelial cell, BM = 

basement membrane, ET = endothelial cell, ROS = reactive oxygen species, RNS = reactive 

nitrogen species. 
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Figure 2. Schematic diagram shows the possible translocation pathway of gold nanoparticles 

in the air blood barrier by endocytosis in the physiological condition. AEC = alveolar 

epithelial cell, BM = basement membrane, ET = endothelial cell. 
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Figure 3. Schematic diagram shows the possible translocation pathway of gold nanoparticles 

across the destructive air blood barrier induced by Asian sand particles. AEC = alveolar 

epithelial cell, BM = basement membrane, ET = endothelial cell. 
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Figure 4. The schematic diagram shows the possible translocation pathway of gold 

nanoparticles at the maternal fetal barrier in the labyrinthine zone of placenta. Clathrin-

mediated endocytosis is demonstrated in the syncytiotrophoblasts and fetal vascular 

endothelium. In contrast, caveolae-mediated endocytosis is observed exclusively in the fetal 

endothelium. I = syncytiotrophoblast layer I, II = syncytiotrophoblast layer II, III = 

syncytiotrophoblast layer III, BL = basal lamina, FE = fetal endothelial cell. 
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Figure 5. Schematic diagram shows the possible risk of the co-exposure of ambient 

pollutions and nanoparticles in the subpopulations, including unhealthy people, pregnant 

women, and their fetuses. The exposed nanoparticles may be increased translocation across 

the physiological barrier injuries induced by the ambient pollution, e.g. air blood barrier 

injury induced by Asian sand dust. In addition, nanoparticles may be capable to transfer 

across the maternal fetal barrier by endocytosis during pregnant period. 
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