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GENERAL INTRODUCTION

Newcastle disease virus

Avian paramyxovirus (APMYV) is classified in the genus Avulavirus, of the
subfamily Paramyxovirinae, family Paramyxoviridae, of the Order Mononegavirales.
APMYV is comprise of twelve antigenically distinct serotypes (APMV-1 to APMV-12)
capable of infecting most avian species [3, 11, 73, 103]. Among these, APMV-1 [also
known as the Newcastle disease virus (NDV)], is identified as the most devastating
and economically important serotype. It is the causative agent of Newcastle disease
(ND), a highly contagious and fatal viral infection affecting poultry and most species

of birds worldwide [3-6].

Newcastle disease

ND may be manifested as a velogenic viscerotropic (VVND), velogenic
neurotropic (VNND), mesogenic, lentogenic or an asymptomatic enteric disease [2,
4-6, 51-55, 82, 107]. Chickens infected with VVND usually show signs of acute
hemorrhagic gastrointestinal infection characterized by weakness, greenish diarrhea,
facial edema, muscular tremors and death. Infection with VNND usually results to
respiratory distress followed by neurologic disorders characterized by ataxia,
incoordination and torticollis. When chickens are infected with mesogenic strains of
NDY, the infection may lead to development of non-fatal respiratory disease. In layers
and breeders, mesogenic ND may also result to drop in egg production with low
mortalities. When chickens are infected with lentogenic NDV strains, mild respiratory
and gastrointestinal signs are usually observed. In the absence of respiratory signs and

when virus replication is limited to the gastrointestinal tract, ND maybe manifested as



an asymptomatic enteric infection [3-6]. Depending on several factors such as host
species, host immune status and age, environmental stress, coinfection with other
organisms, viral dose and route of exposure, clinical signs of ND may appear from 2

to 15 days after infection [3-6].

Molecular Epidemiology of NDV

Since the emergence of ND in 1926, at least four panzootics of NDV had
been reported [3, 114]. The first panzootic spread very slowly and took almost over 20
years to spread to become a true panzootic [7]. It was reported to be caused by NDVs
from genotypes I, III and IV [66]. Genotype II NDVs during the first panzootic were
characterized by varying degree of virulence from lentogenic, mesogenic to velogenic
and were consists mainly of North American isolates. Genotypes Il and IV NDVs
represent the early ND viruses which emerged from the Far East and Europe [1, 66,
76, 91]. In the 1960’s, the second ND panzootic occurred. It spread rapidly from the
Middle East reaching all continents and most countries by 1973 [2]. It has been
suggested that this rapid spread was due to enormous trade and importation of captive
caged birds as a result of technological advances in air transportation and
commercialization and globalization of poultry production [2]. NDV strains isolated
during the second pandemic were reported to belong to genotypes V, Vla and VIII
[114]. Around 1970’s, the third ND panzootic was reported. This was caused by the
neurotropic form of NDV, which was suspected to have originated from the Middle
East. It spread rapidly across Europe and into other continents through infected
pigeons. NDV strains involved in the third panzootic were identified to belong to
genotypes VIb, VIc and VId [114]. Recently, severe ND outbreaks in Indonesia and

Taiwan in 1980°s and South Africa, Middle East, Northern and Eastern Europe and



China in 1990’s were reported [42, 61-63, 65, 114]. Phylogenetic analyses revealed
that these outbreaks were caused by genotype VII NDVs. This genotype is currently
the prevalent genotype circulating in Asia, Africa and Europe and at present
constitutes the ongoing fourth ND panzootic [4, 42, 61-63, 65, 114]. Other genotypes
of NDV have also been reported. Genotype IX has been reported in some regions in
China whereas the novel genotype X has been recently described in Taiwan [106] and

XI in Madagascar [66].

NDYV Outbreaks in Japan

Since commercial vaccines became routinely available in the late 1960’s, only
a few sporadic ND outbreaks were observed in Japan. As a result, most Japanese
NDVs were isolated mostly from unvaccinated backyard flocks, pet birds and wild
migratory birds [68, 69]. It has been observed that NDVs from these hosts are
genetically diverse and that these outbreaks may have been due to multiple etiologies
[68, 69]. Recently, several cases of sporadic ND in vaccinated commercial poultry in
Japan have been observed [79]. Several authors from other parts of the world have
also reported the occurrence of velogenic ND in apparently healthy vaccinated
chicken flocks [12, 50, 75, 85, 108].

At present, very limited data are available regarding the molecular
epidemiology of NDV outbreaks especially in vaccinated commercial poultry farms in
Japan. Molecular analyses at the subgenotype level and exhaustive investigation on
the relationships of Japanese NDVs to other isolates from around the world are also
lacking. The possible involvement of genomic factors in cases of breakthrough
infection by NDV in vaccinated chickens has also never been thoroughly investigated.

Because of these limitations, this study was therefore conducted.



Aim of the Thesis

This thesis was conducted to investigate the molecular epidemiology of NDV
in Japan and to explore the possible roles of genomic factors on the dynamics of
breakthrough infection of NDV in vaccinated commercial layer flocks.

Nine Japanese field strains of velogenic NDVs isolated from vaccinated
commercial flocks from different prefectures from 1969 to 2002 were characterized.
The epidemiological relationships of these isolates with other NDVs from different
regions of the world were analyzed. Inferences on the possible origins, transmission
mechanisms and dynamics of spread of these viruses were performed.

A case of atypical infection of velogenic ND in vaccinated commercial layer
flock was reported. The clinical, serological and production profile of breakthrough
infection of velogenic ND in vaccinated chickens were described.

The complete genome sequence of three velogenic NDV strains isolated from
vaccinated commercial layer flocks in the span of three decades in Japan were
determined. The complete sequence data of these strains were analyzed to investigate
the possible role of genomic factors in the infection dynamics of NDV in vaccinated
chickens.

A seven-year surveillance of NDV and other APMVs from overwintering
migratory waterfowls in Japan were conducted. It has been demonstrated that wild
birds were potentially capable of transmitting and spreading precursors of velogenic
viral strains to domestic poultry [3, 27, 95]. In this chapter, several NDVs and

APMVs were isolated, analyzed and compared to other field isolates from Japan.



CHAPTER 1
Molecular epidemiology of Newcastle disease virus isolates from

vaccinated commercial poultry farms in non-epidemic areas of Japan

Introduction

Newcastle Disease (ND) is a highly contagious and economically devastating
disease of poultry. It is caused by the Newcastle disease virus (NDV) [also known as
avian paramyxovirus type-1 (APMV-1)] of the genus Avulavirus of the family
Paramyxoviridae. NDV infects a wide range of domestic and wild bird species
worldwide. Among animal viruses, it is one of the biggest contributors of economic
losses to the world’s economy [4-5].

NDV is an enveloped, non-segmented, single-stranded, negative-sense RNA
virus with a helical morphology. Its genome has six open reading frames (ORF) in the
order of 3’-NP-P-M-F-HN-L-5’. These genes encode for the following proteins:
nucleoprotein (NP), phosphoprotein (P), matrix protein (M), fusion protein (F),
hemagglutinin-neuraminidase (HN) and the RNA dependent RNA polymerase (L)
respectively. During P-gene transcription, two additional non-structural proteins, the
V and the W proteins, are also generated through RNA editing [99]. Based on
genomic size and the nucleotide sequences of the F and L genes, NDV strains can be
categorized as class I or class II [4-5]. Class I NDVs, which have a genomic size of
15,198 nucleotides [64], are occasionally isolated from wild aquatic birds and
domestic poultry and are mostly avirulent to chickens. Class I NDVs comprise the
majority of virulent NDV strains and some avirulent NDV strains [4-5]. Class 1I
NDVs are further subdivided into 11 genotypes (I-XI) [4, 14, 42, 63, 65, 66, 106].

Early sublineages of Class II NDVs that occurred before the 1960s (genotypes I to IV)



have a genomic size of 15,186 nucleotides, whereas late Class II NDV sublineages
(genotypes VI to XI) have a genomic size of 15,192 nucleotides. Class II NDVs under
genotype VI and VII are further subdivided into eight (a-h) subgenotypes [4, 14, 42,
63, 65, 66, 106]. Aldous et al. [1] proposed the creation of lineages and sublineages in
classifying NDVs to make it possible to rapidly type future virus isolates on the basis
of their nucleotide sequence and make inferences about their origins. They proposed
that NDVs could be divided into six broadly distinct groups (lineages 1 to 6), where
lineages 3 and 4 were further subdivided into four sublineages (a to d) and lineage 5
was further subdivided into 5 sublineages (a to e). Genotypes I and II correspond to
lineage 1 and 2, while genotype III corresponds to sublineage 3a; genotype IV to
sublineage 3b; genotype V to sublineage 3c; genotype VIII to sublineage 3d; genotype
Vla and Vle to sublineage 4a; genotypes VIb, VIc and VId to sublineages 4b, 4c and
4d; genotypes Vlla, VIIb, VIIc and VIId to sublineages 5a, 5b, 5¢ and 5d; 5e to
previously characterized genotype VII NDVs from Taiwan and a quarantine isolate in
UK that formed a separate cluster from other lineage 5 NDVs; and lineage 6
represents a new NDV genogroup. Recently a novel lineage, provisionally named
lineage 7 was reported in West and Central Africa [14].

Different NDV strains vary greatly in pathogenicity [3, 47, 51-55, 74, 107].
NDYV isolates can be broadly grouped into five pathotypes on the basis of clinical
signs in infected chickens. ND may manifest as viscerotropic velogenic, neurotropic
velogenic, mesogenic, lentogenic and asymptomatic enteric [2, 4-6, 51-55, 82, 107].
Other factors, such as host species, host immune status and age, environmental stress,
coinfection with other organisms, viral dose and route of exposure, may also influence

the severity of the disease [3-4].



In Japan, ND was first reported during the first panzootic in the 1930s. This
panzootic was caused by a genotype III NDV. After this time, large ND outbreaks
were reported to occur until commercial vaccines became available in the late 1960s
[68, 69]. Since then, sporadic outbreaks, mostly in small unvaccinated backyard
flocks and pet birds, have been reported [68, 69]. In spite of vaccination, few
sporadic outbreaks in vaccinated commercial poultry have also been observed [79].

At present, limited molecular epidemiological data are available regarding the
causes of ND outbreaks in vaccinated poultry farms. Knowing the molecular
characteristics of NDV strains affecting commercial poultry in spite of vaccination
might give important insights on the possible origins and genetic nature of these
viruses which may help in formulating more effective ND prevention and control
strategies. In addition, no studies have been performed yet investigating the
classification of Japanese NDVs at the subgenotype level and if recombination events
occur in Japanese NDVs. Knowing the subgenotype classification of NDVs and
occurrence of recombination events are essential since these may provide a more
direct understanding on the epidemiological relationship of Japanese NDVs with other
strains from different parts of the world, which may help further elucidate the
mechanisms of global and transcontinental dynamics of transmission and spread of
this disease. Therefore in the present study, field strains of NDVs with different
geographical and temporal distribution patterns that were isolated from vaccinated
commercial poultry flocks in non-epidemic areas of Japan were analyzed. Sequence
data were extensively compared with 180 NDV strains from different parts of the

world from different time periods.



Materials and Methods
NDYV strains

Nine NDV strains isolated from commercial poultry farms with different
spatial (Osaka, Ibaraki, Chiba, Fukushima and Miyagi Prefectures) and temporal
distribution patterns (1969, 1987, 1999-2002) were used to investigate the molecular
epidemiological relationships of ND outbreaks in vaccinated commercial poultry
flocks in Japan. These strains were isolated by one to two passages of pooled infected
tissues in 10-day-old embryonated specific pathogen-free (SPF) chicken eggs.
Infective allantoic fluids were harvested and kept in lyophilized form or in serum
tubes and stored at -80°C until further use. All isolates used in this study were

provided by Poultry Products Quality Control Co. Ltd. (Fukushima, Japan).

Farm history and clinical profile

Records of management and farm history were obtained to characterize the
clinical profile of nine suspected NDV strains (Table 1).

The oldest strain was from Osaka Prefecture in 1969 (JP/Osaka/2440/69). This
isolate was recovered from six dead layer birds that were submitted to the Osaka
Veterinary Municipal Office for diagnosis. The flock was vaccinated with the live B1
vaccine in drinking water at 5-7 days of age and killed ND vaccine (Sato strain) in
aluminum adjuvant at 25 days. The affected flock was around 80 days of age when the
disease occurred. Mortality was reported to be around 60-70% but no data were given
regarding observed clinical signs and production performance.

The second strain was from a layer farm in Ibaraki Prefecture isolated in 1987
(JP/Ibaraki/SM87/87). Total population of affected farm was 33,360 birds in 12

open-type houses of 2,780 birds each. The disease was reported in one of the houses.



The flock was vaccinated with the live B1 spray at 10days of age, killed Ishii/B1 in
aluminum adjuvant at 45 days, live B1 spray again at 60 days and killed Ishii/B1 in
aluminum adjuvant again at 120 days. The disease occurred two months after the last
vaccination at 180days of age. The disease was characterized by gasping and 25%
drop in egg production. Mortality was less than three percent.

The third strain was from Ibaraki Prefecture in 1999 that was isolated from
dead spent hens sent for diagnosis (JP/Ibaraki/SG106/99). The isolate was from an
unknown farm raising spent hens for liquid egg production. No detailed farm
information was obtained. Chickens submitted for diagnosis were approximately more
than 700 days old. Necropsy findings were proventriculitis, hemorrhagic lesions in
duodenum and petechiae in lymphocytic tissues.

The fourth strain was from a replacement pullet farm in Chiba Prefecture
isolated in 2001 (JP/Chiba/BY103/01). The disease occurred in a flock of 21,000
birds. The flock was vaccinated with the live B1 strain in drinking water at 4 and 10
days of age, live B1 spray at 28 days and killed Ishii strain in aluminum adjuvant at
45 and 90 days of age. It was reported that the killed vaccines were injected by hired
professional vaccination staff that travel from farm to farms. Six days after last
vaccination, the disease occurred characterized by gasping, nervous symptoms, leg
weakness, twisting of neck and greenish diarrhea. Mortality was around 10%.

The fifth strain was from a layer farm in Ibaraki prefecture isolated in 2002
(JP/Chiba/BY7/02). The affected farm had a population of 125,000 birds (five houses
of 25,000 birds) and affected flock was around 25,000 birds (one house). The flock
was vaccinated with the live B1 strain in drinking water at 10 days of age, live Bl
spray at 24 days, killed Ishii strain in aluminum adjuvant at 45 days, live B1 spray

again at 60 days and killed Ishii strain in aluminum adjuvant again at 95 days. The



disease occurred at 110 days of age characterized by gasping and infectious bronchitis
(IB)-like respiratory signs and 20% drop in egg production without significant
mortalities. Necropsy findings were necrotic ovarian follicles and necrotic catarrhal
inflammation of the intestines.

The sixth strain was from a layer farm located in Ibaraki prefecture in 2002
(JP/Ibaraki/IS5/02). The affected farm had a population of approximately 200,000
birds and the affected flock was around 41,000 birds. The flock was vaccinated with
the live B1 spray at 10 and 28 days old, killed Ishii strain in aluminum adjuvant at 45
days, live B1 spray again at 60 days and killed Ishii strain in aluminum adjuvant again
at 90 days. The disease occurred at 336 days of age characterized by mild respiratory
signs such as gasping, seven percent decrease in egg production with no marked
mortalities.

The seventh strain was recovered from dead birds from a replacement pullet
farm in Ibaraki prefecture in 2002 (JP/Ibaraki/[S2/02) that were submitted for
diagnosis. Total farm population was around 10,000 birds. The flock was vaccinated
with the live B1 spray at 10 days of age. The disease occurred four days after
vaccination characterized by severe depression.

The eight strain was isolated from a layer farm in Fukushima prefecture
(JP/Fukushima/NYF-3/02). The farm had a population of around 120,000 birds and
affected flock was approximately 16,000 layers. The flock was vaccinated with the
live B1 spray at 10 and 28 days of age, killed Ishii strain in aluminum adjuvant at 45
days, live B1 spray again at 60 days and killed Ishii strain in aluminum adjuvant again
at 90 days. The disease occurred around 532 days of age characterized by mild
gasping, increase in soft shelled eggs and eight percent decrease in egg production.

Mortalities were minimal and within production standards.

10



The ninth strain was isolated from a layer farm in Miyagi prefecture in 2002
(JP/Miyagi/AGT/02). The flock was vaccinated with the live B1 in drinking water at
10 days of age, live B1 spray at 24 days, killed Ishii strain in oil adjuvant at 45 days,
live B1 spray again at 60 days and killed Ishii strain in oil adjuvant again at 95 days.
It was informed that the flock was kept in multiple age houses (six different flocks in
one house). Disease occurred at 250 days of age characterized by gasping, greenish
white diarrhea and 70% decrease in egg production. No marked mortalities were

observed.

Biological and pathotypical characterizations
Biological and pathotypical characterization of isolates were performed using
mean death time (MDT) in 10-days-old embryonated SPF chicken eggs and
intracerebral pathogenicity index (ICPI) in 1-day old chicks according to the protocols
described previously [82]. Confirmation of pathotypes was performed by nucleotide

sequence analysis of the FO proteolytic cleavage site (residues 112-117).

Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Nested RT-PCR was performed to confirm the identities of suspected NDV
strains. In brief, isolates were propagated once in 10-day-old embryonated SPF eggs.
Viral RNA from infected allantoic fluids was extracted directly by using a QIAamp®
Viral RNA Mini Kit (Qiagen, West Sussex, UK). Viral RNA was transcribed to cDNA
by using random hexamers and Primescript® Reverse Transcriptase (Takara Bio-Inc,
Shiga, Japan). cDNA was amplified by PCR as described previously [68-69]. A
two-step nested PCR was performed to amplify the region comprising the 3’ end of

the M-gene and the 5° end of the F-gene using KOD dash® (Toyobo, Osaka, Japan),

11



S5uM of external and internal primers as described by Mase et al. [68-69] (Table 5).
Thermocycling conditions for the first and second PCR steps were as follows:
prewarming at 94°C for 2 min (1 cycle), denaturation at 94°C for 30 sec, annealing at
50°C for 30 sec and extension at 72°C for 1 min. Amplification steps were performed

for 35 cycles. The final extension was performed at 72°C for 30 sec (1 cycle).

Nucleotide sequence analysis

Confirmed NDYV strains were subjected to additional RT-PCR amplification to
characterize the open reading frame of the F-gene sequences (4504-6295 nt of whole
NDV genome), 3-prime end of the NP-gene sequences (16-783 nt of whole NDV
genome) and 5-prime end of the L-gene sequences (13995-14719 nt of whole NDV
genome). In brief, RI-PCR was performed by using SapphireAmp® Fast PCR
Master Mix (Takara Bio), 5SuM of forward and reverse primers (Table 5) and cDNAs
that were transcribed previously. Thermocycling conditions consisted of initial
denaturation at 95°C for 2 min followed by 35 cycles of 98°C for 10 sec
(denaturation), 55°C for 10sec (annealing), 72°C for 10sec (extensions) and final
extension at 72°C for 2min. PCR products were analyzed by electrophoresis with
1.2% agarose gel and purified by using QIAquick® Gel Extraction Kit (Qiagen,
Valencia, CA). The nucleotide sequences of PCR products were determined by Big
Dye terminator cycle-sequencing kit version 3.1 (Applied Biosystems Inc., Foster
City, CA) and an ABI Prism 3130 Genetic Analyzer (Applied Biosystems). DNA

products were sequenced from both directions.

12



Phylogenetic studies
Sequence assembly and editing were performed using CodonCode Aligner®
(version 3.7.1, CodonCode Corporation, MA) and ClustalX® (version 2.1, Conway
Institute UCD Dublin, Ireland). Deduced amino acid sequences were determined

using Bioedit® software package version 7.1.3.0 [40]. Confirmation of identity and

homology were performed using BLAST http://www.ncbi.nlm.nih.gov.

To determine the molecular epidemiological relationships of field strains, 180
NDV strains isolated from different regions of the world at different time periods
were obtained from GenBank. These reference strains were representatives of all the
different NDV genotypes and subgenotypes. Phylogenetic and molecular evolutionary
analyses were conducted using MEGA version 4 [101]. Phylogenetic trees of the
variable region of the F-gene sequences (47-421 nt), complete coding region of the
F-gene sequences (1-1662 nt), coding region of the 3-prime end of NP-gene
sequences (1-622 nt) and coding region of the 5-prime end of L-gene sequences
(5629-6333 nt) were constructed by the neighbor-joining method with the maximum

composite likelihood substitution model at 1000 bootstrap replicates.

Determination of recombination events, evolutionary distances and selection profile
Intragenic recombination events in the NDV nucleotide sequences were
determined using RDP v3.44 program [67]. Seven different algorithms integrated in
the program namely RDP, GeneConv, Bootscan, MaxChi, Chimaera, SiScan and 3Seq
were applied to detect any putative recombination breakpoints and to estimate the
occurrence of any recombination events within all the analyzed genes. Sequences with
recombination events identified by at least two detection methods (p < 0.01) were

considered as true recombinants. Intragenic recombination events within the F-gene

13



were also determined by comparing the tree topology of phylogenetic analyses using
the variable region (47-421 nt) and complete coding region (1-1662 nt) of the F-gene.
Intergenic recombination events were determined by comparison of topologies of the
generated F, NP and L-gene phylogenetic trees.

Evolutionary distances were calculated using MEGA version 4 using the
Maximum Composite Likelihood method. Codon positions included were the
Ist+2nd+3rd+noncoding. All positions containing gaps and missing data were
eliminated from the dataset (complete deletion option). Estimates of s.e. were
obtained by a bootstrap procedure of 1000 replicates. Analysis of evolutionary

selection profile was performed using Datamonkey http://www.datamonkey.org/

following the Fixed- Effect Likelihood (FEL) method [Hasegawa, Kishino and Yano

(HKY) model, p-value less than 0.05] [31, 86].

Results
Biological and pathotypical characterizations
All suspected NDV isolates yielded a 766-bp product in the nested PCR
amplification step. This confirmed that all isolates belong to Avian Paramyxovirus
type-1 viruses. All strains exhibited mean death time (MDT) of 48 to 56 hours in
embryonated chicken eggs. Intracerebral pathogenicity index (ICPI) values ranged
from 1.7 to 1.9 (Table 1). Nucleotide sequence analyses of the variable region of the
F-gene (47-421 nt) showed that all isolates had multiple basic amino acids at its FO
proteolytic cleavage site (residues 112-117). Predicted amino acid sequence of the FO

H6RHT) at the

cleavage site was ''"RRQKR'"® at the F2 protein and phenylalanine (
N-terminus of the F1 protein for all strains. These results indicated that all isolates

were velogenic.
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Genetic and phylogenetic characterizations

A total of 1662 nucleotides encoding for 553 amino acid residues were
identified in the complete coding region of the F-gene of all field strains. Six potential
N-glycosylation sites (Asn-X-Ser/Thr where X is any amino acid except proline or
aspartic acid) located at positions 85 to 87, 191 to 193, 366 to 368, 447 to 449, 471 to
473 and 541 to 543 were recognized. Twelve cysteine residues located at positions 25,
76, 199, 338, 347, 362, 370, 394, 399, 401, 424 and 523 were identified. Comparison
of glycosylation sites and cysteine residues showed no changes in the amino acid
sequence in all field strains, which may indicate that these sites were highly
conserved.

Analysis of seven neutralizing epitopes located at positions 72, 74, 75, 78,79,
157 to 171 and 343 of the F-protein showed a K to R amino acid substitution at
position 78 in seven of the nine strains (Table 2). These strains were
JP/Ibaraki/SG106/99, JP/Ibaraki/IS5/02, JP/Chiba/BY103/01, JP/Ibaraki/IS2/02,
JP/Miyagi/AGT/02, JP/Chiba/BY7/02 and JP/Fukushima/NYF-3/02. Furthermore,
analysis of amino acid substitutions showed 13 point mutations in the variable region
of the F-gene of the Japanese field strains (Table 2). Genotypic and
subgenotypic-specific amino acid substitutions were also observed, which were
consistent with the proposed theory of NDV evolution as reported previously [114].

Phylogenetic analyses of nine field strains and 180 NDV strains from
GenBank were performed by using contiguous nucleotide sequences of the F-gene,
NP-gene and L-gene. Reference strains from GenBank were selected as
representatives of nine of the 11 ND genotypes (genotypes I to XI) representing

isolates from different regions of the world (Figures 1-3).
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Field NDV strains were observed to belong to two distinct genotypic groups
(genotype VI and VII) using phylogenetic analysis of the complete coding sequence
of the F-gene. Early isolates such as JP/Osaka/2440/69 and JP/Ibaraki/SM87/87 were
genotype VI, while field strains isolated from 1999 onwards were from genotype VII
(Figures 1 and 4). Phylogenetic analysis using the 3-prime portion of NP-gene and
5-prime portion of L-gene yielded the same tree topology and phylogenetic groupings
(Figures 2-3). Phylogenetic analyses at the subgenotype level using the variable
region of the F-gene sequences revealed that JP/Osaka/2440/69 belongs to
subgenotype Vla, JP/Ibaraki/SM87/87 to subgenotype VId and all the recent field
isolates to subgenotype VIId (Figures 5 and 6).

F-gene nucleotide sequence of JP/Osaka/2440/69 was found to be closely
related (98.5-99.2% nucleotide sequence identity) to isolates from the Middle East.
The F-gene sequence of JP/Ibaraki/SM87/87 was closely related (96.3-100.0%) with
isolates from Japan and China. All the other VIId isolates were highly similar
(97.2-100.0%) to isolates from Japan, China and Taiwan and interestingly to a goose
isolate from China (98.4-98.6%) (Table 3).

No intragenic nor intergenic recombination events (Unique events = O;
Recombination signals = 0) were observed involving the field isolates using all the
described methods. Analysis of the over-all mean evolutionary distance among the
Japanese field isolates showed rates of 3.9x107 [standard error (s.e) 0.01], 3.1x10™
(s.e. 0.01) and 2.0x10 (s.e. 0.01) base substitution per site in the full F-gene, partial
NP-gene and partial L-genes, respectively. In contrast, over-all mean evolutionary
distance among the recent field strains (1999-2002) were 1.0x102 (s.e. 0.001) base
substitution per site for the F and NP-genes and zero base substitution for the L-gene.

In addition, 25 sites in the F-gene of all field strains were observed to be under

16



negative selection (p-value < 0.05) (Table 4).

Discussion

ND remains a serious threat to commercial poultry even though intensive
vaccination programs are being applied. In Japan, occasional outbreaks have been
reported in commercial poultry mostly due to improper vaccination,
immunosuppression due to infectious and non-infectious causes, and challenge by
more velogenic viruses [79]. However, limited data are available regarding the
genomic characteristics of NDVs occurring in vaccinated commercial poultry flocks.
Knowing the genetic characteristics of wild strains of NDV affecting vaccinated
poultry might give important insights on the possible origins, transmission
mechanisms and infection routes of these viruses. Molecular and phylogenetic studies
like this are important since these might lead to better understanding on how to
prevent, control and manage future ND cases.

Molecular characterization of NDV strains mostly considered the F-gene with
particular emphasis given on the variable region (47-421 nt) because it codes for a
number of functionally important structures such as signal peptide [amino acid (aa)
1-31], cleavage activation sequence (aa 112-116), portion of the fusion inducing
hydrophobic region (aa 117-142) and it is characterized by both variable and
conserved regions [70, 105]. Nucleotide sequence of the F-gene fragment (nt 47-420)
is regarded as standard criterion for genotyping [88]. A molecular basis of
pathogenicity has also been well established through sequence analysis of F-protein
cleavage site. It was reported that the motiff ''’R/K-R-Q-K/R-R"¢ at the C-terminus
of the F2 protein and F (phenylalanine) at the N-terminus of the F1 protein (residue

117) are major determinants of viral virulence [3-4, 36, 69, 78, 83, 114]. A huge



database of sequence data especially on F-gene sequences of NDVs isolated
throughout the world has also been published and available for sequence comparison
and phylogenetic studies [49].

Records of management and farm history showed that NDV strains used in
this study originated from farms with diverse geographical, temporal and disease
profiles. It is noteworthy to emphasize that these farms were thoroughly vaccinated
against NDV but they were still infected with the disease. Moreover, deduced amino
acid sequence of cleavage site of the F-gene of all field isolates revealed the motif
"R-R-Q-K-R-F'" indicating that all strains were velogenic. This was further
confirmed by MDT and ICPI tests. These indicate that in spite of the regular use of
inactivated and live vaccines, velogenic ND may still occur in vaccinated flocks.
However, some affected birds showed only mild respiratory symptoms without
significant mortalities and severe pathological lesions. In some flocks, only mild to
moderate decrease in egg production was observed.

Seven major epitopes have been identified involving the fusion inhibition and
neutralization of F-protein [80, 105, 115]. Individual amino acids at 72, 74, 75, 78,79
and 343 and a stretch of amino acids from residues 157-171 were identified to be
critical for both structures and functions of the F-gene. In this study, nucleotide
substitution in one of the fusion inhibition and neutralizing epitope (p.K78R) was
identified in all of the seven VIId strains. 13 point mutations were also identified in
the variable region of the F-gene. Comparison with sequence data from reference
strains (n= 180) showed that among these mutations, p.K4I were conserved only in
NDV strains originating from Japan while p.L21P, p.I52V, p.K78R and p.R101K were
conserved in strains originating from the Far East Asia (Japan, China and Taiwan).

These substitutions maybe used as crude molecular markers of geographic origins of
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NDVs.

Analysis of genotypic and subgenotypic substitutions in the hypervariable
region of the F-gene showed findings that were in conformity with the proposed
theory of NDV genetic evolution [114]. It was proposed that subgenotype VIa from
the second pandemic probably evolved to VIc by production of a crucial p.S107T
substitution and VId by production of p.S93T substitution; VIIb evolved from VIb via
a Vll-specific p.V1211 substitution; VIIb evolved to become VIla and VIlc through
p.K101R substitution; and VIIc evolved to become VIId by the production of
additional p.I52V and p.F314Y substitution [114].

A point mutation in the F-gene resulted to neutralizing epitope variant.
However whether this mutation was part of adaptive mechanism of NDVs to evade
the immune response to be able to infect vaccinated chickens is not clear or whether
this mutation was actually the effect of selective immune pressure exerted on ND viral
particles as a consequence of vaccination is also unknown. To understand how wild
NDVs infect vaccinated chickens, this identified mutation may be useful for future
site-directed mutagenesis studies.

Phylogenetic analyses on the field strains using the variable region of the
F-gene (47-421 nt) revealed that JP/Osaka/2440/69 belongs to genotype Vla (Figure
5). As reported previously [2], genotype VIa was responsible for the second ND
panzootic that started in the Middle East during the 1960s and then spread to most
countries around the world as a result of enormous trade and importation of captive
caged birds and technological advances in air transportation. Interestingly, this isolate
shared 100% sequence identity with JP/Narashino/68, which was isolated from a
Japanese Blue Magpie. It is interesting to note that nucleotide sequence identity of

Irag/AG-68 was 98.5% similar while strains Kuwait/256/68, Lebanon/70 and
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Israel/70 were 98.7-99.2% similar with these Japanese strains. It is possible that
JP/Narashino/68 was a foreign strain that was introduced to Japan from wild birds.
JP/Narashino/68 and/or its progenitor might have been then spread to domestic
chickens in Japan, leading to the isolation of JP/Osaka/2440/69 (100% similar) (Table
2).

Phylogenetic analyses on JP/SM87/87 showed that this strain belongs to VId
ND viruses (Figure 5). VId viruses together with VIb and VIc were responsible for
the third panzootic, which were reported to be spread by pigeons. This strain shared
100% sequence identity with JP/Tochigi/85 and JP/Ibaraki/85, which may indicate
that JP/SM87/87 was a product of the ongoing outbreak.

The seven remaining field isolates belong to genotype VIId (Figure 6).
Genotype VII is the most predominant NDV genotype that is responsible for most
outbreaks in East Asian countries including Taiwan, Korea and China since the 1980s,
constituting the fourth pandemic [4, 42, 61-63, 65, 114]. Also in Japan, the isolation
of genotype VII viruses was reported previously [68-69]. Therefore, this genotype has
been the most predominant NDV in recent outbreaks in Japan.

The earliest VIId viruses on record infected chickens from South Korea in
1995 (Figure 6). These strains include Kr-279/95, Kr-146/95 and Kr-077/95. On the
other hand, the earliest VIId NDVs that were reported from Japan were JP/Tokyo/96
from chickens and JP/Ibaraki-ph/97 from a pheasant (99.0% similar to one another),
which might indicate that the two strains were part of an ongoing outbreak.
Remarkably, JP/Tokyo/96 shared 99.0% sequence identity with GX-1/97, which was
isolated from a chicken flock in Western China, FJ-2/99 from a fowl from China and
GD/1/98/Go from a goose from China (Table 2). Remarkably, GD/1/98/Go was

98.4-98.6% similar with JP/Ibaraki/SG106/99 and all the other VIId field strains in
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this study. These findings may indicate that wild birds have played a role in the
circulation of VIId viruses across the Far East Asian countries (Korea, Japan and
China). A comparison of homologies with contemporary isolates also showed that
JP/Ibaraki/SG106/99 and all the other VIId field strains were highly similar
(99-100%) with JP/Ibaraki/00. Interestingly, a p.K78R amino acid substitution in the
F-protein of this strain was also reported previously [69]. Moreover, it was shown that
chickens that were challenged with JP/Ibaraki/00 survived a cross-protection test after
vaccination with B1 strain, however it was noted that vaccination did not prevent
infection and excretion of the virus [69]. This result was partially correlated with the
clinical profile of the infected flocks seen in this study. Although the infected flocks
survived the infection in this study, problems with production performance were
observed.

Comparison among the recent Japanese field strains showed that these strains
have high F-gene homologies (99.7-100%), which may indicate that these strains may
have been epidemiologically related. Computation of the over-all mean evolutionary
distance of the F-gene of these recent strains showed a substitution rate of 1.0x107
(s.e. 0.001) base substitution per site in the span of 3 years (1999-2002). In contrast,
over-all F-gene mean evolutionary distance in all field strains (1969-2002) was
3.9x107 (s.e. 0.010) base substitution per site. Interestingly, the partial NP gene
showed an almost same substitution rate (1.0x10~ and 3.1x107) while partial L-gene
had the lowest rate of substitution (zero and 2.0x10'2). However, because of
incomplete sequence data in NP and L-genes, direct comparison among these
substitution rates is not feasible in this study. In other studies, it was reported that
among the NDV proteins, the F and P-protein have the highest rate of change

(0.78-1.98x10™ and 0.78-2.32x107 substitution/site/year, respectively) while L and
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NP-proteins have the lowest rate of change (0.59-1.44x10” and 0.45-1.50x107
substitution/site/year, respectively) [23, 76]. In addition, analysis of evolutionary
selection profiles of the Japanese field strains revealed 25 sites in the F-gene sequence
that were under negative selection (p-value < 0.05) (Table 4). No positive selection
sites were identified. This is in agreement with the findings of other authors that
over-all NDV proteins are under strong purifying and negative selection pressures [23,
76].

Phylogenetic analyses using the nucleotide sequences of NP gene, L-gene,
complete F-gene coding sequence and variable region of the F-gene resulted to almost
similar tree topologies. Surprisingly phylogenetic analysis using NP gene resulted to a
clearer differentiation among field strains. These may indicate that NP and L-genes
may be alternative methods to characterize NDVs given that like the F-gene, these
genes are also involved in the dynamics of viral virulence, play important functional
roles in the NDV replication cycle and are also characterized by regions with high
conservation necessary to identify homologies among strains but also characterized by
regions with high variations necessary to identify specific variations between strains.
Phylogenetic analysis of NP and L-genes in conjunction with the F-gene may also
help detect possible natural or artificial recombination events.

This investigation showed that all field isolates from vaccinated commercial
poultry were part of much bigger outbreaks affecting not only provinces or regions
but even entire continents. To determine how commercial farms are being infected
with NDV, the epidemiology of NDV in the whole of Japan and parts of Far East Asia
was analyzed. This study showed that Japanese poultry was affected by at least four
panzootics and that outbreaks were mostly characterized by co-circulation of

genetically distinct virus lineages that were consistent with the predominant virus
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genotype circulating in a particular time period. Moreover, no distinct transition was
observed from each panzootics. Aside from involvement of local strains, ND
outbreaks in Japan were mostly due to virus transmission from infected wild birds
either by international bird trade or migration patterns. It is possible that these strains
were then introduced to the affected farms through direct or indirect contact with
these wild birds or through the movement of farm workers, fomites and contaminated
equipments.

A point mutation in one of the neutralizing epitopes of the F-protein resulting
to occurrence of neutralizing epitope variants was also identified. This identified
mutation may be useful for future site-directed mutagenesis to understand the

dynamics of NDV infection in vaccinated chickens.
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Table 4. Nucleotide positions in the F-gene sequence of the Japanese field strains that
were under negative selection”

Nucleotide  dS° dN° dN/dS Normalized dN-dS p-value
position

29 70.9 0.0 0.0 -599.4 0.01
80 104 0.0 0.0 -88.1 0.04
94 64.8 0.0 0.0 -547.6 0.01
102 324 0.0 0.0 -273.7 0.01
106 175.4 0.0 0.0 -1482.8 0.04
109 31.2 0.0 0.0 -263.8 0.03
139 10.5 0.0 0.0 -88.1 0.03
151 196.7 0.0 0.0 -1662.4 0.02
164 10.2 0.0 0.0 -85.9 0.03
173 104 0.0 0.0 -88.1 0.04
198 17.6 0.0 0.0 -148.7 0.03
229 334 0.0 0.0 -282.5 0.03
230 58.2 0.0 0.0 -491.6 0.02
278 104 0.0 0.0 -88.1 0.04
294 17.6 0.0 0.0 -148.7 0.03
295 36.7 0.0 0.0 -310.1 0.03
354 334 0.0 0.0 -282.5 0.03
378 86.0 0.0 0.0 -726.7 0.00
405 31.2 0.0 0.0 -263.8 0.03
416 31.2 0.0 0.0 -263.8 0.02
428 215.0 0.0 0.0 -1816.5 0.02
470 58.2 0.0 0.0 -491.7 0.01
474 324 0.0 0.0 -273.7 0.01
583 19.8 0.0 0.0 -167.5 0.04
510 33.7 0.0 0.0 -284.4 0.02

“dN < dS negative selection, dN > dS positive selection, dN = dS neutral; ° number of
synonymous substitutions per synonymous site; “ number of non-synonymous substitutions per
non-synonymous site;
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Figure 1. Phylogenetic tree of the complete coding region of F-gene sequences

(1-1662 Ilt). The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap consensus tree

inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed [34]. Branches corresponding to
partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale,
with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary
distances were computed using the Maximum Composite Likelihood [102] method and are in the units of the number of base
substitutions per site. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option).

Strains used in this study are marked with @.
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Figure 2. Phylogenetic tree of the 3-prime end of NP-gene sequences (1-622 nt).

The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000
replicates is taken to represent the evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions
reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances
were computed using the Maximum Composite Likelihood [102] method and are in the units of the number of base substitutions
per site. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option). Strains used

in this study are marked with @.
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Figure 3. Phylogenetic tree of the 5-prime end of L-gene sequences (5629-6333 nt).

The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000
replicates is taken to represent the evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions
reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances
were computed using the Maximum Composite Likelihood [102] method and are in the units of the number of base substitutions

per site. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option). Strains used

in this study are marked with @.
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Figure 4. Phylogenetic tree of the variable region of the F-gene sequences (47-421nt).

The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000
replicates is taken to represent the evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions
reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances
were computed using the Maximum Composite Likelihood [102] method and are in the units of the number of base substitutions
per site. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option). Strains used

in this study are marked with @.
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Figure 5. Straight phylogenetic tree of variable region of the F-gene sequences

(47-421 nt) of genotype VINDV.

The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000

replicates is taken to represent the evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions

reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa

clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch

lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances

were computed using the Maximum Composite Likelihood [102] method and are in the units of the number of base substitutions

per site. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option). Strains used

in this study are marked with @. Letters inside the parenthesis indicate the sublineage grouping [1].
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Figure 6. Straight phylogenetic tree of variable region of the F-gene sequences

(47-421 nt) of genotype VII NDV.

The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000
replicates is taken to represent the evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions
reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances
were computed using the Maximum Composite Likelihood [102] method and are in the units of the number of base substitutions
per site. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option). Strains used

in this study are marked with @. Letters inside the parenthesis indicate the sublineage grouping [1].
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CHAPTER IT

Atypical velogenic Newcastle disease in a commercial layer flock

Introduction

Avian infectious bronchitis (IB) is a highly contagious viral disease of poultry
which affects the respiratory and urogenital tract of chickens. It is caused by avian
infectious bronchitis virus (IBV), a member of the family Coronaviridae. The disease
is characterized by respiratory signs such as rales, coughing and sneezing. In layers
and breeders, IB infection may cause decreased egg production or soft shelled,
uneven eggs and eggs with poor internal quality [15].

Newecastle disease (ND) is a serious and economically devastating poultry
disease. It is caused by Newcastle disease virus (NDV) which belongs to the genus
Avulavirus in the family Paramyxoviridae. Different NDV strains characteristically
show great variation in their pathogenicity [3, 47, 51-55, 74, 107]. NDV isolates can
be broadly grouped into five pathotypes known as viscerotropic velogenic,
neurotropic velogenic, mesogenic, lentogenic and asymptomatic enteric, based on the
clinical signs seen in infected chickens [2, 4-6, 51-55, 82, 107]. Several studies have
reported that the fusion (F) -gene of NDV is the main genetic virulence determinant
and the best predictor of NDV pathotype [5, 36, 78, 83, 100, 114].

In the field, poultry clinicians normally rely on production performance,
clinical signs, pathological lesions and serological profiles to make a diagnosis.
Although poultry clinicians are well-trained in recognizing “textbook” cases and
disease profiles under controlled experimental conditions, management and
environmental factors such as vaccination, nutrition, housing, climate, weather
patterns and other related factors may distort the clinical profile of a disease making

diagnosis difficult and error prone. Hence, data on actual field cases is important to
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guide poultry clinicians in their understanding of disease profiles in actual
commercial poultry operations. Case studies, such as the one reported here, are
valuable in identifying hidden disease risk factors in the field.

In this study, a commercial layer flock in Japan in 2002 which was initially
thought to be infected with IBV based on clinical signs, virus isolation and serological
analysis was, using molecular techniques, later diagnosed as an atypical infection with
velogenic NDV. This is the first report which documents the possible existence of

atypical velogenic ND in poultry operations in Japan.

Materials and Methods
Farm history

The affected commercial layer farm was located in Fukushima prefecture in
2002. It had a population of approximately 120,000 chickens divided into seven
flocks housed in conventional open-sided layer facilities. The farm employed standard
management and rearing procedures throughout its operations. Routine vaccination
were performed against Marek's disease, infectious bursal disease, fowl pox, IB, ND,
infectious coryza, infectious laryngotracheitis and egg drop syndrome. Vaccination
against ND was performed using live B1 spray at 10 and 28 days of age, the killed
Ishii strain in aluminum adjuvant at 45 days, live B1 spray at 60 days and the killed
Ishii strain in aluminum adjuvant again at 90 days of age. Vaccination against IB was
performed by spray with the live IBV H120 strain at 10 days of age, spray with live
IBV ON strain at 28 days, killed IBV Beaudette/42 strain at 45 and 90 days and the

live IB H120 strain again at 105 days.
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Egg production performance
Production performance was recorded as follows: Egg production for each
poultry house was recorded every day. All eggs were weighed and the number of

downgraded eggs and mortality were also recorded daily.

Serological tests

Serial blood collection for serological profiling of antibodies against IBV and
NDV was performed routinely. Twelve blood samples were randomly collected per
flock once a month from 30 days of age until culling. Haemagglutination inhibition
(HI) tests for NDV were performed as described by Salk [90]. Serum samples
showing HI titres > 3 (log, titres) were defined as positive. Agar gel precipitation
(AGP) tests were performed on slides using 1% Noble agar (Difco, USA) gel
containing 8.5 % NaCl (Nacalai Tesque, Inc., Kyoto, Japan) as described by Beard

[10] to check for IBV titres and to cross-check for NDV HI titres.

Virus isolation

For attempted virus isolation, a 20% suspension of trachea, spleen and kidney
(pooled) from five sick birds was made in buffered saline solution with antibiotics
(penicillin 100 IU/ml; streptomycin 0.1 mg/ml), and centrifuged at 2,000 g for 20 min.
Organs were pooled separately per bird. Then, 0.1 ml of the supernatant was
inoculated into the allantoic cavity of five 12-day-old embryonated specific pathogen
free (SPF) eggs. Eggs dead within 24 hours were discarded. Allantoic fluid from the
inoculated eggs was harvested after 48 hours incubation, diluted two-fold and
reinoculated into five 12-day-old embryonated SPF eggs (" passage) as described

previously [81]. Inoculated eggs were examined for IBV after 5-7days by checking
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for dwarfing and curling of the embryos. Isolated viruses were kept in -80C until

further use.

Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Isolates were propagated once in 10-day-old embryonated SPF eggs. Viral
RNA from infected allantoic fluid was extracted directly by using a QIAamp® Viral
RNA Mini Kit (Qiagen, West Sussex, UK). Viral RNA was transcribed to cDNA by
using random hexamers and Primescript® Reverse Transcriptase (Takara Bio-Inc,
Shiga, Japan).

For molecular diagnosis of IBV, cDNA samples were used to amplify a 440bp
partial sequence of the RNA dependent RNA polymerase (RdRp) gene (14127 -
14566 nt of whole genome of IBV H120 strain) by two-step nested PCR using KOD
dash® (Toyobo, Osaka, Japan) and 5SuM of external and internal primers [24] (Table
2) according to manufacturer's instructions. Thermocycling conditions were as
follows: prewarming at 94°C for 2 min (1 cycle), denaturation at 94°C for 30 sec,
annealing at 50°C for 30 sec and extension at 72°C for 1 min. Amplification steps
were performed for 35 cycles with final extension at 72°C for 30 sec (1 cycle). The
PCR product was used for direct nucleotide sequencing.

For molecular diagnosis of NDV, a two-step nested PCR was performed to
amplify the region comprising the 3’ end of the M gene and the 5’ end of the F-gene
[68-69] using KOD dash® (Toyobo), 5uM of external and internal primers (Table 2)
and cDNAs that were transcribed previously. Thermocycling conditions were similar
to those previously described. A 921-bp primary product and a 766-bp secondary
product were obtained in NDV positive samples. Any confirmed NDV strains were

subjected to additional RT-PCR amplification to characterize the open reading frame
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of the F-gene sequence (4504-6295 nt of whole NDV genome) using Sapphire Amp®
Fast PCR Master Mix (Takara Bio), SuM of forward and reverse primers (Table 2)
and cDNAs that were transcribed previously. The thermocycling conditions consisted
of initial denaturation at 95°C for 2 min followed by 35 cycles of 98°C for 10 sec
(denaturation), 55°C for 10sec (annealing), 72°C for 10sec (extensions) and final

extension at 72°C for 2min.

Nucleotide sequence analysis and phylogenetic studies

PCR products were analyzed by electrophoresis with 1.2% agarose gel and
purified by using QIAquick® Gel Extraction Kit (Qiagen, Valencia, CA). Nucleotide
sequences of PCR products were determined using Big Dye terminator
cycle-sequencing kit version 3.1 (Applied Biosystems Inc., Foster City, CA) and an
ABI Prism 3130 Genetic Analyzer (Applied Biosystems). DNA products were
sequenced in both directions.

Sequence assembly and editing were performed using CodonCode Aligner®
(version 3.7.1, CodonCode Corporation, MA) and ClustalX® (version 2.1, Conway
Institute UCD Dublin, Ireland). Deduced amino acid sequences were determined
using the Bioedit® software package version 7.1.3.0 [40]. Confirmation of identity
and homology were performed using BLAST http://www.ncbi.nlm.nih.gov.
Phylogenetic analyses were conducted using MEGA version 4 [101]. Phylogenetic
trees of the complete coding region (1-1662 nt) and variable region (47-421 nt) of
the NDV F-gene sequence and partial sequence of the coding region of the RNA
dependent RNA polymerase (14127 - 14566 nt of whole genome of H120 strain) of
IBV were constructed by the neighbor-joining method with the maximum composite

likelihood substitution model at 1000 bootstrap replicates.
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Biological characterization of NDV
Pathotypical and biological characterization of confirmed NDV isolate was
performed using mean death time (MDT) in 10-day-old embryonated SPF chicken
eggs and the intracerebral pathogenicity index (ICPI) in 1-day old chicks as described
previously [82]. Confirmation of pathotypes was performed by analysis of the

deduced amino acid sequence of the FO proteolytic cleavage site (residues 112-117).

Results and Discussion
During the investigation period, one flock consisting of approximately 16,000
layers was affected with the disease. The flock was initially performing well (Figure
1) achieving peak production of 95% at 26 weeks of age and with over 90% egg
production from 24 to 50 weeks of age. From 56 to 64 weeks, a gradual decline (8%)
in egg production (from 84 to 76%) and an increase (2.5%) in soft shelled eggs (from
7.5 to 10%) was observed. Mortality was minimal and within normal industry

standards. A three-fold increase in IB-AGP positive results was noted at 61 weeks of

age (Figure 2). Based on clinical signs, virus isolation and AGP tests, the flock was
diagnosed as infected with IB. The flock was force molted at 65 weeks and
production was restarted. Good performance was noted in the second cycle (Figure 1)
but similar production problems recurred at 75 weeks. Slight gasping was observed in
some birds and a second wave of a gradual decrease of 8% in egg production (from
83 to 75% in four weeks) was noted. Serological tests showed a three-fold increase in
IB AGP test positive sera (Figure 2) and a two-fold increase in the reciprocal log2
NDYV HI titres at 78 weeks (Figure 3). Two viruses were isolated at 75 weeks and both

caused dwarfing in 12-day old chicken embryos after inoculation via the
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chorioallantoic cavity. Based on these clinical findings, the case was initially
diagnosed as IB.

Ten years after this case was first observed, the virus isolates were
repropagated in 10 day old embryonated eggs to confirm their identity by molecular
diagnostics and to make new stocks for storage after long periods of time at -80 °C.
One of the isolated strains was confirmed to be IBV by yielding a 440 bp PCR
product. Phylogenetic analysis using the RdRp gene showed that this isolate formed a
separate clade distinct from vaccine and vaccine-variant viruses, which may indicate
that the isolate could be a wild IBV strain. Nucleotide sequence identity showed that
this isolate was closely related to CU570 (99%), an IBV isolated from chickens in the
US and ck/CH/LJL/111054 (99%), an isolate from a chicken in China. Surprisingly,
the second virus isolate yielded a 766-bp product in the nested PCR for the NDV
F-gene. Nucleotide sequence analyses of the complete coding region of the F-gene
(1-1662 nt) was performed which showed multiple basic amino acids at the FO
proteolytic cleavage site (residues 112-117). The predicted amino acid sequence of the

FO cleavage site was "2RRQKR''® at the F2 protein and phenylalanine ("'°p'

) at the
N-terminus of the F1 protein. The isolate exhibited MDT of 48 hours in embryonated
chicken eggs while the ICPI value was 1.8. These results indicated that the NDV
isolate was velogenic. Phylogenetic analysis showed that this NDV isolate belongs to
genotype VIId (Figure 4 and 5) and was closely related (99% nucleotide sequence
identity) to local strains from Japan and 98% similar to some chicken NDV strains
from China and Taiwan and to a goose isolate from China.

This study demonstrated that in some cases, velogenic ND might appear as

non-velogenic, especially in Japanese commercial farms where stringent poultry

husbandry practices are in place. During this period, similar cases were observed in
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two other farms located in Ibaraki and Chiba prefectures that had mild respiratory
problems. These farms were diagnosed as infected with IB, but velogenic NDVs were
isolated (data available upon request). It may be hypothesized that in the presence of
high antibody titres but non-uniform flock immunity (Figure 2), these NDV strains
might have been slowly proliferating in susceptible individuals instead of following
the typical, deadly pathophysiological course. The presence of other infections or
stressful husbandry factors, such as molting could have then activated the disease, but
good management procedures might have prevented its progression to a full blown
velogenic ND, resulting instead in an atypical infection. Cases such as these may
constitute a potential threat to commercial poultry since this disease may go unnoticed
and be left uncontrolled. Hence poultry clinicians are well-advised to be watchful for
atypical velogenic ND, especially in vaccinated commercial chicken flocks, since it is
possible that they may harbour hidden NDV infection. Therefore, strict vaccination

and monitoring procedures must always be undertaken.
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Table 1. Nucleotide sequence similarity of the present NDV isolate
to other isolates of the same genotype

Strain name Sequence homology (%) with
JP/Fukushima/NYF-3/02"
JP/Tbaraki/00 99.7
JP/Ibaraki-16/01 99.7
JP/Gunma/01 99.7
JP/Ibaraki-254/01 99.5
JP/Ibaraki-266/01 99.5
FJ-2/99 98.4
GD/1/98/Go 98.4
JP/Tokyo/96 98.1
JP/Ibaraki-ph/97 98.1
TW/98-1 97.9
TW/98-2 97.9
TW/98-4 97.9
GX-3/98 97.9
XJ-2/97 97.7
JP/Kanagawa/99 97.3
GS-2/98 97.1
SHX-2/99 97.1

*The complete coding region of the F-gene sequence (1-1662 nt) of
the present isolate was compared with that of each other isolate of

genotype VIId.
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Table 2. Primers used in this study

Primer name

Primer sequence

IBV-RdRp-F1
IBV-RdRp-R1
IBV-RdRp-F2
IBV-RdRp-R2

NDV-Mgene-F1

NDV-Fgene-R1
NDV-Fgene-F2
NDV-Fgene-R2
NDV-For4359
NDV-Rev4788
NDV-For4988
NDV-Rev5261
NDV-For5461
NDV-Rev5731
NDV-For5918
NDV-Rev6204
NDV-For6369
NDV-Rev6598

5°-GGKTGGGAYTAYCCKAARTG-3"
5-TGYTGTSWRCARAAYTCRTG-3
5°-GGTTGGGACTATCCTAAGTGTGA-3"
5°-CCATCATCAGATAGAATCATCAT-3"
5-TTCTCTAGCAGTGGGACAGC-3"
5’-CATCTTCCCAACTGCCACTG-3’
5’-TGGAGCCAAACCCGCACCTGCGG-3’
5’-GGAGGATGTTGGCAGCATT-3’
5’-CCATTGCTAAATACAATCCTTTCA-3’
5’-GGGGCTTTYGCACACGCCTC-3’
5’-AATGCCGCCAACATCCTCCG-3’
5’-GTGCCTGGATAGTCAGCTGAG-3’
5’-GACYTTATCTGTAAGYACAACC-3’
5’-CAATTGGCAATAACTGAGCC-3’
5’-GTGACAGGCAAYCTTGATATATC-3’
5’-CTTGTAGTGGCTCTCATCTG-3’
5’-AGGCYTCACAACATCYGTTC-3’
5’>-TYGATATGCCTRCGAGRTCG-3’
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Figure 1. Production performance of the layer chicken flock investigated in this study.
Egg production rate (A), Average egg weight (@), Livability rate (), Incidence of
down-graded eggs (H). IBV and NDV were isolated at 60 and 75 weeks of age
respectively. A gradual decrease in egg production without marked mortality was

observed thereafter. An increase in soft shelled eggs was also noted.
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Figure 2. Serial AGP-positive sera from the layer chicken flock. A three-fold increase
in IB and ND AGP test positive sera was noted at 61 weeks and 78 weeks

respectively.
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Figure 3. Serial reciprocal log, NDV HI titres in this layer chicken flock. An

approximately two-fold increase in HI titre was noted at 78 weeks.
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Figure 4. Phylogenetic analysis of the present NDV isolate using the nucleotide

sequence of the complete coding region of the F-gene (1-1662 nt) sequence. The strain

isolated in this study is marked with @. The bootstrap consensus tree inferred from 1000 replicates [34] is taken to represent the
evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are
collapsed. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates)
are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary

distances used to infer the phylogenetic tree.
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Figure S. Phylogenetic analysis of the present NDV isolate using the nucleotide
sequence of the variable region of the F-gene (47-421 nt). The strain isolated in this

study is marked with @. The bootstrap consensus tree inferred from 1000 replicates [34] is taken to represent the

evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates
are collapsed. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (1000
replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the

evolutionary distances used to infer the phylogenetic tree.
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CHAPTER 111
Characterization of complete genome sequence of genotype VI and VII velogenic

Newcastle disease virus from Japan

Introduction

Newcastle disease virus (NDV) is an enveloped, non-segmented single
stranded, negative-sense RNA virus belonging to the genus Avulavirus of the
subfamily Paramyxovirinae, family Paramyxoviridae. It is the causative agent of the
highly contagious and economically important Newcastle disease (ND) [4].

Depending on its class and genotype, NDV has 15,186, 15,192 or 15,198
nucleotides comprising of six genes in the order of 3’-NP-P-M-F-HN-L-5" [4, 66].
These genes encode for at least eight proteins, the nucleoprotein (NP), phosphoprotein
(P), matrix (M) protein, fusion (F) protein, hemagglutinin-neuraminidase (HN)
protein, RNA dependent RNA polymerase (L) and two additional non-structural
proteins, V and W, which are generated through RNA editing of the P-gene. Flanking
these genes are extracistronic regions called leader and trailer sequence located at the
3-prime and S-prime end of the NDV genome respectively. These sequences are
involved in the replication, transcription and packaging of the genomic and
antigenomic RNAs [112]. At the beginning and end of each genes are conserved
transcriptional control sequences known as gene start (GS)
(3°-UGCCCAUCU/CU-5") and gene-end (GE) (3°-AAU/CUUUUUU-5%), which
functions as transcriptional promoter and terminator [43]. Located between the
boundaries of each gene are non-coding segments called intergenic sequences (IGS)

that may be 1- 47 nucleotides in length [20, 21, 59].
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Through numerous investigations of NDV subsequent to emergence and
identification of ND in Java, Indonesia and Newcastle-upon-Tyne in England, NDVs
have been grouped into two classes (Class I and II) and into several genotypes and
sub-genotypes [4]. Based on phylogenetic analysis of the hypervariable region of the
F-gene sequence, Class II NDVs comprising the majority of virulent and some
avirulent NDV strains, have been classified into at least eleven genotypes (I-XI) with
genotypes I, II, VI and VII being further subdivided into subgenotypes Ia and Ib, II
and ITa, VIa to VIh and VIIa to VIIh [14, 42, 63, 65, 106]. A similar classification
system by Aldous et al [1] classified NDVs into seven lineages and several
sublineages. Recently, a unified classification system using the complete coding
sequence of the F-gene was proposed in which, class II NDVs were classified into at
least 15 genotypes [ten from previously established genotypes (I — IX and XI) and
five new genotypes (X, XII - XV)] with several sub-genotypes] [32].

Previous studies have reported that NDV strains from Japan could be
classified into six genotypes (genotypes I-1II, VI, VII-VIIl) based on phylogenetic
analyses of the hypervariable region of the F-gene [68-69]. NDVs affecting poultry
flocks from 1960 up to the mid-1980’s and pigeons and wild birds from mid-1980’s to
late 2000 belong to genotype VI while from 1985 up to the present, the predominant
genotype affecting the domestic poultry flocks and wild birds in Japan were from
genotype VII. These two genotypes can therefore be considered as the most recent
NDV strains circulating in Japan [68-69]. Genotype VII is also the most predominant
genotype responsible for most outbreaks in East Asian countries including Taiwan,
Korea and China [4, 61, 106, 114] since the 1980’s.

Previous to the current study, whole genome sequencing of wild strains of

NDVs has not been performed in Japan. Molecular characterization of NDVs
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especially from recent outbreaks in vaccinated commercial poultry flocks is essential,
as it may provide important insights on the genomic properties of NDVs involved in
cases of breakthrough infections. In the present study, complete genome sequences of
three NDVs isolated from vaccinated commercial layer flocks were determined,
analyzed and compared to different field and vaccine NDV strains from various parts
of the world. This is the first study to characterize the complete genome sequences of

NDYV strains isolated in Japan.

Materials and Methods
Virus

Three NDV strains isolated from three vaccinated commercial layer farms in
Japan were used in this study. The oldest strain was isolated from three dead layer
birds from Osaka Prefecture in 1969 [APMV1/chicken/JP/Osaka/2440/1969
(2440/69) (Accession number AB853926)]. The second strain was isolated from a
layer flock with a mild respiratory disease without significant mortalities in Ibaraki
Prefecture in 1987 [APMV1/chicken/JP/Ibaraki/SM87/1987 (SM87/87) (Accession
number AB853928)]. The third strain was isolated from dead spent layer hens from
Ibaraki Prefecture in 1999 [APMV1/chicken/JP/Ibaraki/SG106/1999 (SG106/99)
(Accession number AB853927)]. The complete history and clinical profile of these
cases were reported in chapter I. Isolates in this study were provided by Poultry

Products Quality Control Co. Ltd. (Fukushima, Japan).
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Whole genome sequencing

NDV isolates were propagated through a single passage in 10-day-old
embryonated SPF eggs. Viral RNA from infected allantoic fluids was extracted using
QIAamp® Viral RNA Mini Kit (Qiagen, West Sussex, UK). Viral RNA was
transcribed to cDNA by using random hexamers and Primescript® Reverse
Transcriptase (Takara Bio-Inc, Shiga, Japan). PCR was performed using
SapphireAmp® Fast PCR Master Mix (Takara Bio-Inc, Shiga, Japan), with the
following thermocycling conditions; initial denaturation at 95°C for 2 min followed
by 35 cycles of 98°C for 10 sec (denaturation), 55°C for 10sec (annealing), 72°C for
10-20sec (extensions) and final extension at 72°C for 2min. PCR products were
analyzed by electrophoresis with 1.2% agarose gel and purified by using QIAquick®
Gel Extraction Kit (Qiagen, Valencia, CA). Nucleotide sequences of PCR products
were determined by Big Dye terminator cycle-sequencing kit version 3.1 (Applied
Biosystems Inc., Foster City, CA) and an ABI Prism 3130 Genetic Analyzer (Applied
Biosystems). DNA products were bidirectionally sequenced. The cDNAs of 3’ and
5’-terminal end of viral RNA were amplified according to the rapid amplification of
cDNA ends (RACE) method as described by Li et al. [60] and used for the
determination of nucleotide sequences. Nucleotide sequence information on the
partial NP-gene (nucleotide positions at 15-622), complete coding region of F-gene
(4,550-6,211) and partial L-gene (14,015-14,719) were reported previously. Primer

sequences used for nucleotide sequencing are available upon request.
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Sequence analyses and phylogenetic studies

Sequence assembly and editing were performed using CodonCode Aligner®
(version 3.7.1, CodonCode Corporation, MA) and ClustalX® (version 2.1, Conway
Institute UCD Dublin, Ireland). Confirmations of identity were performed using
BLAST http://www.ncbi.nlm.nih.gov. Nucleotide and deduced amino acid sequences
for all reference strains were obtained from GenBank. The consensus deduced amino
acid sequence of 100 velogenic, mesogenic and lentogenic NDVs representing the
different NDV genotypes and subgenotypes was determined and compared with that
of field isolates using Bioedit® software package version 7.1.3.0 [40]. Phylogenetic
and molecular evolutionary analyses were conducted according to the unified NDV
classification system [32] using MEGA version 4 [101] using the neighbor-joining
method with the maximum composite likelihood substitution model at 1000 bootstrap

replicates.

Determination of recombination events
Intragenic and intergenic recombination events in the complete genome and
full-sequence of all genes of the Japanese field strains were determined using RDP
v3.44 program [67]. Seven different algorithms integrated in the program namely
RDP, GeneConv, Bootscan, MaxChi, Chimaera, SiScan and 3Seq (window size = 20,
highest acceptable p-value = 0.05; Bonferonni correction) were applied to detect any
putative recombination breakpoints and to estimate the occurrence of any

recombination events in the Japanese field strains.
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Virus Neutralization Test

Monolayer of primary chick embryo fibroblast tissue culture (CEF) was
prepared using 10-day-old chick embryos as reported previously [56]. Three
anti-NDV serum, commercial reference antisera again Ishii strain (Kaketsuken,
Kumamoto, Japan), anti-B1 antisera from a 40-days-old layer chicken vaccinated with
commercial B1 strain (Kyoritsu Seiyaku, Tokyo, Japan) at 10 days of age by drinking
water and 28 days of age by spray, field NDV antisera from a commercial layer flock
vaccinated with live B1 at 10 and 28 days of age by spray (Kyoritsu Seiyaku, Tokyo,
Japan) and killed Ishii strain in aluminum adjuvant (Kyoto Biken Laboratories Inc,
Kyoto, Japan) at 45 and 105 days of age and negative antiserum from a 12-weeks-old
specific pathogen-free (SPF) chicken were used. The hemagglutination-inhibition
(HI) titers of these antisera were determined as reported previously prior to use [82].
Virus neutralization test was performed using a slight modification of a previously
described method [110]. In brief, heat inactivated and two-fold diluted serum was
mixed with equal amounts of 100TCID50/50ul of field NDVs and commercial live
B1 strain (Nisseiken Co., Ltd., Tokyo, Japan). The virus-serum suspensions were
gently mixed and incubated for 1h at 37°C at 5% CO,. 100uL of the virus-serum
suspension were subsequently inoculated to CEF monolayer 96 wells plates. After 1h
at 37°C incubation, the inoculum was removed and 200ul. of Eagle’s Minimum
Essential Medium (Nissui Pharmaceutical Co. Ltd., Tokyo, Japan) were added. The
plates were incubated for 4 days at 37°C at 5% CO, and observed daily for cytopathic
effects (CPE). The virus neutralization titer was computed as the reciprocal log, of the

highest dilution of the serum showing a 50% endpoint of neutralization [8§9].
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Results
General genomic characteristics
All three Japanese strains analyzed had genome lengths of 15,192 nucleotides
organized in the order of 3’-NP-P/V/W-M-F-HN-L-5" (Table 1). Insertions of six
nucleotides (‘**TCCCAA'® for 2440/69; '**CCCCAA'®’ for SM87/87; and
18 PCCCAC!™ for SG106/99, indicated by antigenome sense) at the 5-prime end of
the non-coding region of the NP gene were observed, in contrast to NDV strains
belonging to early genotypes (genotypes I-1V). G+C contents were 46.2% for 2440/69
and SM87/87 and 46.5% for SG106/99. The protein-coding capacity of the genome of

all Japanese field strains was 90.5%.

Characteristic of the non-coding regions

All of the Japanese strains had leader and trailer sequences composed of 55
and 114 nucleotides, respectively. Except for the GS of the L-gene (ACGGGTAGGA),
the GS of the NP, P, M, F and HN were identical [ACGGGTAGAA (indicated by
antigenome sense)] in all strains. The GE of the NP genes (TTAGAAAAAAA) was
also identical; however, the GE of M and L-genes (TTAGAAAAAA) and P, F and
HN genes (TTAAGAAAAAA) were slightly different. Variations in the length of the
IGS of the N-P, P-M and M-F IGS (1 nucleotide) F-HN (31 nucleotides) and HN-L
IGS (47 nucleotides) were observed. Analyses of the 3-prime and 5-prime
untranslated regions (UTR) showed that the 5°-UTRs were always longer than

3’-UTRs and that the lengths of the 5’-UTRs may vary among NDYV strains (Table 1).
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Gene identities and characteristics of the I and HN proteins

Analyses of the coding sequence of each gene in comparison with widely-used
vaccine and closely-related NDV strains showed that among all the genes, the NP and
L-genes were the most conserved with sequence identities that ranged from
85.1-99.0% (nucleotide) and 91.2-99.6% (amino acid) in all strains (Table 2). In
contrast, the P-gene was the most variable with sequence identities that ranged from
81.7-99.0% (nucleotide) and 79.2-98.7% (amino acid), depending on the strain.
Analysis of sequence identities using available complete genome sequences from the
GenBank showed that 2440/69, SM87/87 and SG106/99 were most closely related to
US(CA)/1083(Fontana)/72 (96.7%), ZhJ-3/97 (97.8%) and to Guangxi/14/02 (97.4%),
respectively. In contrast, comparison of the complete genome with vaccine strains
showed that the Japanese strains only had 83.5 to 85.5% sequence identities with B1
and La Sota strains.

Analysis of the functional domains of the F-gene sequence of the Japanese
strains showed that the deduced amino acid sequences were mostly similar with the
consensus amino acid sequences derived from a total of 100 velogenic, mesogenic
and lentogenic NDV strains; except that the F protein of 2440/69, SM87/87 and
SG106/99 had 1 (at the transmembrane domain), 5 (3 at the signal peptide and 1 each
at the fusion peptide and transmembrane domain) and 5 (4 at the signal peptide and 1
at the transmembrane domain) substitutions, respectively. Analysis of the three heptad
repeat regions (HR) showed a total of 6 substitutions in HRa (143-185 amino acids),
HRb (268-299 amino acids) and HRc (471-500 amino acids) in the Japanese field
strains (2 in HRc of 2440/69; 1 in HRc of SM87/87; 1 each in HRa, HRb and HRc of

SG106/69) (Table 3).
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Strains in this study had HN protein of 571 amino acids, which is a
characteristic feature of virulent NDVs. The transmembrane domain of the HN
protein from 2440/69 and SG106/99 had 1 and 3 amino acid substitutions, in
comparison with the consensus amino acid sequences. Cysteine residue and potential
N-glycolysation sites were almost completely conserved except for the loss of
N-glycolysation site at amino acid 538 in SM&87/87 (Table 5). Ten amino acids
constituting the sialic acid binding site [29] were completely conserved (Table 5).
Analysis of the ten neutralizing epitopes in the HN protein [18, 45, 46] identified a
total of two amino acid substitutions in 2440/69 and three amino acid substitutions in

SM87/87 and SG106/99 (Table 4).

Phylogenetic analysis

Phylogenetic analysis using the complete genome sequences revealed that the
Japanese NDV strains belong to two distinct genotypes (genotype VI and VII).
2440/69 and SM8&7/87 were from genotype VI, while SG106/99 belongs to genotype
VII (Figure 1). Phylogenetic analysis using the complete coding sequences of NP, P,
M, F, HN and L genes yielded the same phylogenetic groupings (Figures 2-7).
Subgenotype analyses using the unified NDV classification system recently proposed
by Diel et al. [32] showed that 2440/69 and SM87/87 belong to subgenotype VIc and
SG106/99 to subgenotype VIle (Figure 8). Analysis of recombination in the field
isolates using all the described methods in the RDP v3.44 program showed no

recombination events (p <0.05).
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Virus neutralization test

Virus neutralization test showed that field NDV strains were completely
neutralized at virus neutralization titers (VNT) of at least 4.5 to 6.5 log, depending on
the antisera that were used. In contrast B1 strain was completely neutralized at VNT
of 6.3 to 6.5 log, units. Regardless of the antisera, a one unit difference in the log,
VNTs of B1 and 2440/69 were observed as compared to SM/87 and SG106/99. At this
VNT, the corresponding reciprocal log, HI titer of the reference and field antisera
were 1 to 2 HI units. VNT results and the initial HI titers of the different antisera were

presented in Table 6.

Discussion

The complete genome sequences of the three NDV strains isolated from three
vaccinated commercial poultry farms in the span of three decades (1969 to 1999)
were determined, compared and analyzed. These isolates belong to recent NDV
genotypes affecting pets, wild birds and commercial poultry flocks in Japan [68, 69].
To the authors’ knowledge, this is the first report characterizing the whole genome
sequences of field NDV strains isolated from vaccinated chickens in Japan.
Characterization of NDV field isolates from Japan may ultimately prove useful in the
prevention, control and management of future ND cases in vaccinated poultry flocks.

The complete genome of the three Japanese strains were comprised of 15,192
nucleotides that constitute six genes, a leader and trailer sequence, twelve UTRs and
five IGS. Overall, these general genomic characteristics were consistent with
previously characterized class II NDVs, except for those belonging to early genotypes
(genotype I to IV), which lack the six nucleotides insertion at nucleotides 1648-1653

of the NP gene (Table 1). Recently, recombination events in the NDV genome have
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been reported [19, 23, 41, 76, 87, 113, 116, 117]. In chapter I, no recombination was
also observed in 2440/69, SM87/87 and SG106/99 based on the nucleotide sequences
of the partial NP- and L-gene and complete coding region of F-gene. By phylogenetic
analysis based on complete genome and full-length coding region of each genes (NP,
P, M, F, HN and L genes), 2440/69 and SM87/87 fell into the genotype VI and
SG106/99 fell into the genotype VII, thus confirming that no recombination had
occurred in these viruses. In addition, analysis of complete genome of Japanese
isolates by RDP3.44 software did not detect any recombination events.

As reported previously, the F-gene of Japanese isolates had high levels
nucleotide sequence identity with contemporary isolates, 2440/69 had 97.3-100%
identities with NDV isolates from the Middle East, Japan and Russia; SM87/87 had
98.7-100% identities with Chinese and Japanese isolates; SG106/99 had 97.8-100%
identities with isolates from Taiwan, China and Japan. In comparison between the
complete genome sequence of Japanese isolates and NDVs from Genbank, 2440/69,
SM87/87 and SG106/99 had the highest sequence identities with
chicken/US(CA)/1083(Fontana)/72 (96.7%), ZhJ-3/97 (97.8%) and to Guangxi/14/02
(97.4%), respectively (Table 2). These close similarities were also observed by
phylogenetic analysis (Figures 1-8). However, relatively low nucleotide identities in
the complete genome as compared to the F-gene were observed. It could be due to the
small number of complete sequences registered in the database. To resolve these
differences, further accumulation of complete nucleotide sequence analysis of NDV,
particularly from old isolates, is recommended. It is also possible that the relatively
low nucleotide identities in the complete genome sequences may be due to the low
nucleotide identities in the other region(s) (e.g. non-coding regions, P and/or

HN-genes). Over-all, these data confirmed that commercial poultry farms in Japan
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were affected with velogenic ND during the second, third and fourth panzootic, which
were characterized by co-circulation of genetically distinct virus lineages predominant
in that particular time period (1969-1999) due to involvement of infected wild birds as
described previously.

According to the recently proposed unified classification system of NDVs [32],
2440/69 and SM87/87 and SG106/99 belonged to subgenotype VIc and Vlle (Figure
2). By phylogenetic analyses using the hypervariable region (47-421 nucleotides) of
F-gene, 2440/69, SM87/87 and SG106/99 were classified into subgenotype VIa, VId
and VIId. These disagreements in the classification of the Japanese field strains in this
study and in chapter I may be explained by differences in input criteria of the different
classification systems. In the conventional system [28, 65, 92], about 400 nucleotides
of 5’-end region of F-gene were used; on the other hand, in the unified genotyping
system [32], the full-length F-gene sequence (1,662 nucleotides) was needed. The
eight and ten subgenotypes of genotypes VI and VII in the conventional system were
also reclassified into four and five subgenotypes, respectively. As a consequence,
several strains (e.g. Kuwait256, Lebanon70 and Iraq AG86), which were previously
classified into subgenotype VIa together with 2440/69 by the conventional
genotyping system, could not be classified in the unified genotyping system because
of the unavailability of full-length F-gene sequence. Thus, to identify a more accurate
genetic grouping, more accumulation of nucleotide sequences data, particularly for
early NDV isolates, are needed.

Cases of velogenic ND in vaccinated chicken flocks have been reported all
over the world [12, 50, 75, 85, 108]. However, the possible involvement of genomic
factors in cases of breakthrough infection by NDV in vaccinated chickens has never

been thoroughly investigated. The HN and F-proteins are essential transmembrane
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glycoproteins that form spike-like protrusions on the outer surface of virion, making
them susceptible to mutations due to immune pressures. To understand the genetic
properties of NDVs affecting poultry flocks in spite of vaccination, the deduced
amino acid sequences of these genes with special emphasis on the functional domains
and neutralizing epitopes were investigated. Comparison of the deduced amino acid
identities of F and HN proteins of Japanese isolates with vaccine strains commonly
used in Japan showed that the Japanese strains had 85.5-93.1% sequence identities
with the vaccine strains (Table 2). Samuel et al. [91] also observed similar cases with
low level amino acid sequence identities for the F and HN proteins between field
velogenic strains isolated from vaccinated chickens in Western Africa and vaccine
strain La Sota.

Comparison of amino acid sequences of the functional domains of the F and
HN proteins between three Japanese field isolates and 100 velogenic, mesogenic and
lentogenic NDVs identified several substitutions (Table 3 and 5). In the F protein of
the three Japanese isolates, 7, 1, 6 and 3 amino acid substitutions were found in the
signal peptide, fusion peptide, heptad repeat region and transmembrane domain,
respectively. Amino acid substitutions at the fusion peptide and HR region of F
protein were reported to affect the fusion activity of NDV [67, 93]. Gravel et al. [39]
reported that the replacement of transmembrane domain of NDV to that of Sendai
virus and measles virus abolish the fusion activity of the F protein. In the case of HN
protein, the Japanese isolates had 4 amino acid substitutions and a loss of a potential
N-glycosylation site (at amino acid 538). Mutations in the transmembrane domain and
loss of the N-glycosylation of HN protein were reported to affect virus attachment,
neuraminidase and fusion promotion activities [70-72]. Several amino acid

substitutions in the neutralizing epitopes of the F and HN proteins [18, 45, 46, 80, 105,
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115] of the Japanese isolates were also identified (K78R in the F protein, N263K,
E347K, E347G and 1514V of HN protein) (Table 4). Amino acid substitution(s) in
these neutralizing epitopes were previously reported to result to neutralizing escape
variants [18, 20-22, 44, 88, 96]

To investigate the effects of the observed mutations on antigenicity and their
possible role in the mechanism of breakthrough infection of NDV in vitro, virus
neutralization test was performed using commercial reference and NDV antisera from
the field. It was observed that the field NDV strains were completely neutralized at
VNTs of at least 4.5 to 6.5 logy units. These VNTs corresponds to reciprocal log, HI
titers of approximately less than 3 units. Based on these results, poor flock immunity
due to vaccination failure or partial and non-uniform immunization maybe the major
factors involved in the mechanism of breakthrough infection of the Japanese field
strains. However, a one unit difference in the log, VNTs of SM87/87 and SG106/99
were observed as compared to B1 and 2440/69, regardless of the antiserum that was
used. Comparison of the neutralizing epitopes of these strains revealed the presence of
mutation at the linear epitope of the HN-gene (E347K or E347G) of SM87/87 and
SG106/99 (Table 4). Although these differences in VNT may be inconclusive at this
point due to small sample size, these results were consistent with observed differences
in the antigenicity of field NDVs from vaccinated flocks possessing an E347K
mutation in the HN protein as reported previously [20, 22, 44]. It was observed that
residue 347 of the HN protein may be a critical determinant for formation of antigenic
epitope and may be involved in antigenic selection during virus shedding of NDV in
vaccinated flocks [20, 22, 44]. Although in vitro results demonstrated that poor
immunization may be the most plausible reason in the breakthrough infection of the

field strains, in vivo and cross-protection experiments using field chickens are
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recommended to further elucidate the effects of these mutations not only in the
presence or absence of clinical signs but most especially on the production
performance of the infected flocks.

In summary, this study described the whole genome characteristics of three
strains of NDV belonging to recent genotypes affecting vaccinated commercial
poultry flocks in Japan. Several unique mutations were identified in the neutralizing
epitopes and functional domains of the field strains. Data obtained from this study
may be a useful reference in characterizing future NDV outbreaks in vaccinated
chickens. The complete genome sequences of these strains may be use as a genetic
map for future studies regarding vaccine designs, reverse genetics systems,
recombinant gene technologies and development of molecular diagnostic tools to

characterize and prevent future ND outbreaks in vaccinated poultry flocks.
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Figure 1. Phylogenetic analysis of NDV field strains from Japan based on the

complete genome sequence (1-15,192 nucleotides). The evolutionary history was inferred using the

Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary
history of the taxa analyzed [34]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are
collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates)
are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum Composite
Likelihood method and are in the units of the number of base substitutions per site. All positions containing gaps and missing

data were eliminated from the dataset. Strains used in this study were marked with @.
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Figure 2. Phylogenetic analysis of NDV field strains from Japan based on the

complete coding sequence of the NP-gene (1-1470 nucleotides). The evolutionary history was

inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the
evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions reproduced in less than 50% bootstrap
replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum
Composite Likelihood method and are in the units of the number of base substitutions per site. All positions containing gaps and

missing data were eliminated from the dataset. Strains used in this study were marked with @.
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Figure 3. Phylogenetic analysis of NDV field strains from Japan based on the

complete coding sequence of the P-gene (1-1188 nucleotides). The evolutionary history was

inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the
evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions reproduced in less than 50% bootstrap
replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum
Composite Likelihood method and are in the units of the number of base substitutions per site. All positions containing gaps and

missing data were eliminated from the dataset. Strains used in this study were marked with @.
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Figure 4. Phylogenetic analysis of NDV field strains from Japan based on the

complete coding sequence of the M-gene (1-1095 nucleotides). The evolutionary history was

inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the
evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions reproduced in less than 50% bootstrap
replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum
Composite Likelihood method and are in the units of the number of base substitutions per site. All positions containing gaps and

missing data were eliminated from the dataset. Strains used in this study were marked with @.
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Figure 5. Phylogenetic analysis of NDV field strains from Japan based on the

Complete Coding sequence of the F-gene (1-1662 nucleotides). The evolutionary history was

inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the
evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions reproduced in less than 50% bootstrap
replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum
Composite Likelihood method and are in the units of the number of base substitutions per site. All positions containing gaps and

missing data were eliminated from the dataset. Strains used in this study were marked with @.
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Figure 6. Phylogenetic analysis of NDV field strains from Japan based

complete coding sequence of the HN-gene (1-1716 nucleotides). The evolutionary history was

inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the
evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions reproduced in less than 50% bootstrap
replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum

Composite Likelihood method and are in the units of the number of base substitutions per site. All positions containing gaps and

missing data were eliminated from the dataset. Strains used in this study were marked with @.
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Figure 7. Phylogenetic analysis of NDV field strains from Japan based on the

complete coding sequence of the L-gene (1-6615 nucleotides). The evolutionary history was

inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the
evolutionary history of the taxa analyzed [34]. Branches corresponding to partitions reproduced in less than 50% bootstrap
replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum
Composite Likelihood method and are in the units of the number of base substitutions per site. All positions containing gaps and

missing data were eliminated from the dataset. Strains used in this study were marked with @.
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Figure 8. Phylogenetic analysis based on the complete coding sequence of the F-gene
(1 — 1662 nt) of genotype VI and VII NDV strains following the unified NDV

classification system [32] The evolutionary history was inferred using the Neighbor-Joining method. The bootstrap

consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed [34]. Branches
corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in
which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is
drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree.
The evolutionary distances were computed using the Maximum Composite Likelihood method and are in the units of the number

of base substitutions per site. All positions containing gaps and missing data were eliminated from the dataset. Strains used in



CHAPTER IV
Surveillance of avian paramyxovirus from migratory waterfowl

in the San-in Region of western Japan from 2006 to 2012

Introduction

Avian paramyxoviruses (APMVs), which belong to the genus Avulavirus in
the family Paramyxoviridae, comprise nine antigenically distinct serotypes (APM V-1
to 9) [3]. Recently, new serotypes of APMVs, APMV-10, 11 and 12 were proposed
respectively [11, 73, 103]. Although APMV-1, which is synonymous with Newcastle
disease virus (NDV), is highly pathogenic in poultry, the other APMV serotypes are
also known to cause respiratory and reproductive diseases in chickens [109]. All
APMYV serotypes, except APMV-5, circulate widely in wild bird populations [33, 35,
97]. Howeyver, the information on the distribution of APMVs in wild birds is limited,
especially in Japan.

Wild birds, particularly waterfowl, are known reservoirs of APMV-1, 4, 6, 8
and 9 [3], and are considered to be important carriers of APMVs. The potential for
disease transmission is considered to be particularly high because many waterfowl,
such as geese, swans, and ducks, overwinter in Japan after migrating from Alaska, the
Russian Far East, eastern Siberia, eastern Mongolia and northeastern China [84].

While very little is known about the molecular and biological characteristics
and pathogenicity of APMV serotypes 2-9, extensive research has been conducted on
APMV-1, or NDV. NDVs have been divided into three major pathotypes on the
basis of pathogenicity; lentogenic (low virulence), mesogenic (moderate virulence)
and velogenic (high virulence) [3]. Furthermore, recent phylogenetic analyses have

separated NDVs into two distinct sister clades, classes I and II, each of which contain
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several genotypes [3, 13]. The majority of viruses that have been reported to be
velogenic in domestic poultry have been grouped in class II, while lentogenic strains
are dominant in class I [30, 58].

We previously experimentally demonstrated that a non-pathogenic NDV
isolate from wild waterfowl became highly pathogenic after several passages in
chickens [95]. The findings of that study demonstrated that wild birds were
potentially capable of transmitting and spreading precursors of velogenic viral strains
to domestic poultry. Consequently, continuous surveillance of APMYV, including NDV,
in wild birds is important for providing information on the viruses in the field, as well
as emerging velogenic viruses.

In this study, we conducted a survey for APMV in populations of
overwintering migratory waterfowl from 2006 to 2012 in the San-in region of western
Japan where 16 APMYV strains were previously isolated. Consequently, we examined
the pathogenic and phylogenetic relationships among the collected APMV isolates

and compared them with other isolates in the field.

Materials and Methods
Samples
A total of 1,967 fresh fecal samples were collected from tundra swan
(Cygnus columbianus), mallard (Anas platyrhynchos), white-fronted goose (Anser
albifrons frontalis), common teal (Anas crecca), Eurasian wigeon (Anas penelope),
spot-billed duck (Anas poecilorhyncha), gadwall (Anas strepera), and unidentified
duck spp. (Anas spp.) during winter (from November to March) of 2006 to 2012.
Samples were collected at eight different sites, Lake Koyama, Pond Nikko, Lake Togo,

Tenjin River, Hino River, Ito Coast, Yonago Waterbirds Sanctuary, and rice fields in
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the suburbs of Yasugi city, in the San-in region (Tottori and Shimane prefectures) of
western Japan. The fecal samples were collected individually, placed in screw-cap

tubes, and stored at -80°C until analysis.

Virus isolation

Virus isolation was performed using a previously described method with a
slight modification [94]. Each collected fecal sample was suspended at a
concentration of approximately 20% in phosphate-buffered saline (pH 7.2) containing
penicillin at 10,000 units/ml and streptomycin at 10 mg/ml. The suspension was
centrifuged at 1,000xg for 10 min.  Aliquots of 200 ul of supernatant were then used
to inoculate into the allantoic cavities of two 9- to 11-day-old embryonated chicken
eggs, which were then incubated at 37°C for 3 days unless the embryo died. The
inoculated eggs were then chilled to 4°C and the allantoic fluid of each egg was tested

for hemagglutination activity.

Serotyping

All hemagglutinating agents were identified in a hemagglutination inhibition

(HI) test using reference antisera against APMV strains:
APMV-1/goose/Alaska/415/91, APMV-2/Chicken/California/Yucaipa/56,
APMV-3/turkey/Wisconsin/68, APMV-4/duck/ Mississippi/320/75,

APMV-6/duck/Hong Kong/18/199/77, and APMV7/dove/Tennessee/4/75 [57].
Samples that tested positive for at least one of these antisera were identified as APMV.

The methods used in the HI test followed established procedures [94].
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Sequencing and BLAST search

Viral RNA was isolated from infected allantoic fluid by using QIAamp Viral
RNA Mini Kit (Qiagen, CA). The F genes coding full-length ORFs were amplified
using PrimeScriptTM Reverse Transcriptase (TaKaRa, Shiga, Japan) for RT and KOD
Dash polymerase (Toyobo, Osaka, Japan) for PCR.  After extraction from an agarose
gel using a QIAquick Gel Extraction Kit (Qiagen), viral cDNA fragments were
sequenced using a BigDye Terminator v3.1 Sequencing Kit (Applied Biosystems,
CA) on a 3130x] Genetic Analyzer (Applied Biosystems). The F gene-specific
primer sequences and conditions employed for RT, PCR and sequencing are available
upon request. The DNA sequence data were edited and aligned using BioEdit
software (ver. 7.0.8.0) [104] before being subjected to BLAST search analysis using

the NCBI database.

Pathogenicity test
To assess the virulence of each APMYV isolate, the mean death time (MDT in
hours) of chick embryos at the minimum lethal dose and the intracerebral

pathogenicity index (ICPI) in 1-day-old chicks were measured [9].

Phylogenetic analysis
Phylogenetic analyses of F gene segments were performed using ClustalX
implemented in the MEGA 4 software package [101]. The phylogenetic tree was
estimated using the Kimura two-parameter nucleotide model, and the robustness of
the clusters obtained by the neighbor joining algorithm were assessed using 1,000

bootstrap replicates.
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Results

In the winters of 2006 to 2012, a total of 1,967 fecal samples were collected
from tundra swan (n=263), mallard (n=683), white-fronted goose (n=61), common
teal (n=60), Eurasian wigeon (n=188), spot-billed duck (n=92), gadwall (n=2) and
unidentified duck spp. (n=618) in the San-in region of western Japan (Table 1).

A total of 64 hemagglutinating agents were isolated and assayed in the HI
tests using anti-APMYV reference strain antisera. Of these, 15 samples tested positive
for at least one of the antisera were identified as APMV (Table 2). Some minor
cross-reactions between two different serotypes of APMVs were found as reported
previously [4]. Consequently 3 isolates were identified as NDV, and 12 isolates were
AMPV-4, based on the highest titers in HI tests (Table 2 and 3). Another isolate
(Tundra swan/Shimane/91-94/2007), which did not react to any APMV antisera
(serotypes 1-4, 6, and 7), was identified as APMV-8 by fusion (F) -gene sequencing
and BLAST analysis (the highest homology was with
APMV-8/goose/Delaware/1053/76; 98%).

Furthermore, a BLAST search for other APMYV isolates corroborated the
serological findings. Briefly, 12 APMV-4 isolates showed the highest homology
with APMV-4/KR/YJ/2006 (more than 96%). Duck/Tottori/N12/2006 showed the
highest homology with NDV/Pennsylvania/3167/2009 (99%), and
Duck/Tottori/453/2009 and Duck/Tottori/481/2009 showed the highest homology
with NDV/duck/China/08-046/2008 (98%). Consequently, a total of 16 APMV
strains (tundra swan (n=1), mallard (n=2), common teal (n=1), Eurasian wigeon (n=3),
spot-billed duck (n=5), unidentified duck spp. (n=4)) were isolated. The overall rate

of APMYV isolation was 0.8% (Table 1).
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Virulence of virus isolates was assessed by pathogenicity tests with chicken
embryos and chicks (Table 4). The MDT of the 6 representative isolates was more
than 168 hr, which is typical for avirulent viruses. The ICPI of these samples ranged
from 0.00 to 0.16, which is also within the expected values for avirulent viruses.
The amino acid sequence at the cleavage site of the F protein was deduced from the
nucleotide sequence of the corresponding gene. Two of the 3 NDV isolates,
Duck/Tottori/453/2009 and Duck/Tottori/481/2009, possess ''“ERQER-LV''®, with
the remaining isolate Duck/Tottori/N12/2006 possessing "2GKQGR-LI'"® at the
fusion cleavage site; these characteristics were all typical of avirulent viruses [26].

A phylogenetic tree was constructed based on the partial sequences of the F
genes together with those from Genbank (Figs. 1 and 2). The NDV isolates in the
present study were divided into the two sister clades, Duck/Tottori/453/2009 and
Duck/Tottori/481/2009, which belonged to the class I genotype c (Fig. 1), and the
remaining isolate, Duck/Tottori/N12/2006, was included in the class II genotype I
(Fig. 2).

To investigate the relationship between the NDV isolates from wild birds and
field isolates from poultry farms in Japan, a phylogenetic tree was constructed (Fig. 3).
The result showed that three NDV isolates in the present study were clearly
distinguishable from any of the NDV isolates that had caused NDV outbreaks in

Japan in recent years.
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Discussion

In the present study, a total of 16 APMVs were isolated from wild birds
(Table 3). Of these isolates, APMV-4 strains were isolated at different sites in the
San-in region in Japan relatively frequently during the study period. Conversely,
APMV-8, which was isolated in 2007, was considerably rare, even at a global scale
[25, 111]. Stanislawek et al. [98] isolated NDV and APMV-4 from wild ducks in
New Zealand in 1997. In the United States, Goekjian er al. [35] reported that NDV,
APMV-4, and APMV-6 were isolated from migratory waterfowl from 2004 to 2006.
In this study, we found different serotypes of APMVs in wild bird species that had
migrated into the San-in region, western Japan.

In the present surveillance study, the overall isolation rate of APMV was
0.8%, which is slightly lower than our previous survey in the same region in
1997-2000 (1.4%, 5 isolates/359 fecal samples) [94]. Another study in Japan
reported that 11 NDV strains (prevalence rate: 0.46%) were isolated from 2,381 fecal
samples of northern pintail from 2006 to 2008 in the Tohoku region in northeastern
Japan [48]. The findings of these studies also support the notion that migratory
waterfowl play an important role in the maintenance of APM Vs in nature [3].

In cases where APMV-4 was isolated from waterfowl, the birds rarely
exhibited clinical signs of viral infection [3, 25, 37, 97]. However, in chickens
experimentally infected with APMV-4, all of the birds manifested symptoms of
microscopic lesions in the trachea, lung, gut, and pancreas [109].  Viral replication in
chickens was also confirmed by isolation of the virus in embryonated eggs. It is
therefore possible that the non-pathogenic APMV-4 that is maintained in populations
of wild waterfowl has the potential to become pathogenic after transmission to, and

circulation within, domestic chicken populations.
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Our previous report showed that a lentogenic NDV isolate from wild
waterfowl become velogenic after repeated passage in chickens, causing 100%
mortality in the infected birds [95]. The results suggested that circulation of
lentogenic NDV isolates in poultry farm can result in viruses becoming velogenic.
In the present study, an NDV class II strain, Duck/Tottori/N12/2006, was isolated in
the field. Previous studies have shown that the majority of velogenic viruses in
domestic poultry belong to class II [30]. Therefore, although the pathogenicity tests
conducted in this study showed that the isolate was lentogenic, it could be a possible
precursor virus in a future Newcastle disease outbreak in Japan.

Two outbreaks of Newcastle disease on poultry farms in Ireland in 1990 [8]
were caused by velogenic isolates that were very similar, both antigenically and
genetically, to avirulent viruses isolated from feral waterfowl [27]. Moreover,
genetic analysis of viruses isolated during outbreaks in 1998 to 2000 in Australia were
also very similar to viruses isolated from birds in the wild [38]. Therefore, to
investigate the genetic affiliation among the field isolates in Japan, phylogenetic
analyses were conducted. The results revealed that there was no genetic relationship
between the isolates obtained from wild birds and isolates from domestic poultry in
Japan. Especially, class II NDV isolate, Duck/Tottori/N12/2006, was most closely
related to the old isolate, NDV/chicken/Japan/Ishii/1962 (Fig. 3) indicating that the
isolate is not a direct ancestor for the recent outbreaks in Japan. However, the
pathogenic potential of the isolate to domestic poultry cannot be ignored. It is
therefore necessary to continue surveillance of avian paramyxoviruses in wild
waterfowl. Continued surveillance over multiple years will allow us to increase our

understanding of the role of wild birds in the dissemination of APM Vs in the field.
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Figure 1. Phylogenetic tree of F gene sequences from NDV isolates (class I). The

phylogenetic tree was generated using the neighbor-joining algorithm with 1000 bootstrap replicates in MEGA (4.0.2).
Analysis was based on nucleotides 47-420 (372 bp) of the F gene. NDV isolates collected in this study were underlined.

Letters a, b, and c represent each sub-group and “u” indicates “unidentified”.
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Figure 2. Phylogenetic tree of F gene sequences from NDV isolates (class II). The

phylogenetic tree was generated using the neighbor-joining algorithm with 1000 bootstrap replicates in MEGA (4.0.2).

Analysis was based on nucleotides 47-420 (372 bp) of the F gene.

Roman numerals I - XV indicate each genotype.
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Figure 3. Phylogenetic tree of F gene sequences from recent NDV isolates (class II)

in J apan. The phylogenetic tree was generated using the neighbor-joining algorithm with 1000 bootstrap replicates in

MEGA (4.0.2). Analysis was based on nucleotides 47-420 (372 bp) of the I gene. NDV isolates collected in this study were

underlined.
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GENERAL DISCUSSION

ND is a major veterinary concern because of its economically devastating
effects on the poultry industry. The global economic impact of ND is enormous. It has
been recognized as one of the biggest contributor of economic losses to the global
economy than any other animal viruses [3-4]. Epidemiological surveillance and
investigations are therefore important to prevent outbreaks and economic losses due
to this pathogen.

ND has become endemic in most countries. NDV has been reported to infect
241 species of birds representing 27 of the 50 orders of avian species [3]. In Japan, it
was reported that NDV isolates are of multiple origins and that Japanese NDV strains
could be classified into six genotypes (genotypes I-III, VI, VII-VIII) [68-69].
However, molecular epidemiological data on the subgenotype classification and
relationships of Japanese NDV strains to other strains from different parts of the
world are lacking. Studies on the causes of ND outbreaks in vaccinated poultry farms
in Japan are also limited. A molecular epidemiological study was therefore conducted
using nine strains of NDVs isolated from vaccinated poultry flocks from different
prefectures in Japan. The investigation showed that over-all, four ND panzootics
occurred in Japan and that those outbreaks were characterized by co-circulation of
genetically distinct virus lineages due to virus transmission from infected wild birds
either by international bird trade or migration patterns. Comparison with other isolates
from different parts of the world demonstrated that all the field isolates from
vaccinated poultry were part of much bigger outbreaks extending into provinces,

regions and in some cases, continents.
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Vaccination has been the standard method of prevention against ND. The use
of live lentogenic strains alone or in combination with killed velogenic strains has
been the core of ND vaccination programs in Japan and in other parts of the world
[68]. However, recently, cases of velogenic ND in vaccinated poultry farms in Japan
and in other parts of the world have been reported. Isolation of velogenic ND in
apparently healthy flocks has also been observed [12, 50, 75, 77, 85, 108]. To guide
poultry clinicians in their understanding of disease profiles in actual commercial
poultry operations and to identify hidden NDV disease risk factors in the field, an
example of these cases has been described. Despite extensive vaccination, an atypical
case of velogenic ND in vaccinated layer flock was reported. However, compared to
“textbook” cases, only mild respiratory disease with mild to moderate decrease in egg
production similar to IB infection was observed. Chapter II demonstrated that
atypical velogenic ND may exist and may become potential threats to commercial
poultry in Japan.

Occasional fatal NDV outbreaks in vaccinated commercial poultry flocks
have been reported. These cases were mostly attributed to improper vaccination,
immunosuppression due to infectious and non-infectious causes and flocks that were
challenged with more velogenic viruses [79]. Several studies have demonstrated that
although vaccination may minimize the pathologic effects of NDVs in vaccinated
chickens, viral infection, replication and shedding may still occur [12, 50, 75, 77, 85,
107]. However, at present very limited studies are available regarding the possible
roles of genomic factors in these cases. To determine the possible influence of the
genetic make-up of NDV in cases of breakthrough infection, the complete genome
sequences of three strains of NDV isolated from vaccinated poultry flocks in the span

of three decades in Japan were analyzed. It was demonstrated that NDV strains
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infecting vaccinated chicken flocks possess several important amino acid substitutions
at the neutralizing epitopes and functional domains of the F and HN proteins. These
amino acid substitutions could have altered the function of NDV proteins and
diminish the humoral immunity of the host, which then increased the viral growth
properties leading to breakthrough infections.

It has been known that wild waterfowl and other aquatic birds are carriers
and reservoirs of NDVs. It was previously shown that a non-pathogenic NDV strain
from wild waterfowl can become highly pathogenic after several passages in chickens
[95]. That result indicated that wild birds may transmit and spread precursors of
velogenic viral strains to domestic poultry. Chapter 1 and chapter 3 also demonstrated
that wild birds played an important role in the transmission and dynamics of spread of
NDVs not only in Japan but in the Far East region. Because of the important role that
wild birds play in the circulation of NDV, a seven-year surveillance of NDVs from
wild waterfow]l in the San-in region was conducted. A total of 16 avian
paramyxoviruses consisting of three lentogenic Newcastle disease viruses (NDVs), 12
APMV-4, and one APMV-8 were isolated. The results showed that NDV and
APMV-4 are relatively widely distributed among wild waterfowl that migrate to
Japan from northern regions. It is therefore necessary that continuous surveillance of
APMYV in wild waterfowl must be conducted regularly due to the pathogenic potential
of these isolates in domestic poultry.

This study was able to elucidate the molecular epidemiology of NDV isolates
from vaccinated commercial poultry farms in Japan, as well as their transmission
mechanisms, clinical and production profile, molecular characteristics and infection
dynamics. Consequently, a seven-year surveillance of NDVs from wild waterfowl

was conducted, in which several NDV and APMYV strains were isolated. This study

96



may be use as useful reference in characterizing future NDV outbreaks in vaccinated
poultry flocks and as a genetic map for future investigations regarding vaccine
designs, reverse genetics systems and development of molecular diagnostic tools to

prevent future ND outbreaks in vaccinated chickens.
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