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Abstract 

Individuals with low intelligence ability such as insects, fishes, and birds can collect together 
as swarms, schools and flocks and show complex behavior patterns. Imitating these behaviors, 
meta-heuristics methods, so-

well known. The former is useful to find the approximate solution of nonlinear functions and the 

- to explore 
unknown environments, to diagnose large scale systems, to simulate social problems, to realize 
artificial lives and so on. Agents, i.e. individuals in MASs, are autonomous entities with abilities 
of state recognition, decision making, active learning, etc.  

However, individuals designed in the conventional swarm intelligence are generally with 
simple structures and low intelligent functions, lacks of abilities of higher animals such as 
unknown information classification, adaptive behavior acquisition.  

Meanwhile, artificial neural networks (ANNs), fuzzy inference systems (FISs) and the fusion 
systems of them called neuro-fuzzy systems have been widely used in the adaptive/intelligent 
control of autonomous robots. Additionally, reinforcement learning (RL) provides kinds of 
powerful machine learning algorithms which make robots more autonomously.  

However, because multiple autonomous mobile robots act to affect each other, the transition 
of states become to non-Markov decision processes, so the conventional RL is hard to deal with 
them (MASs). Recent approaches usually use graph topology method (Jababaie et. al 2003) or 
nonlinear dynamics models (Moreau 2005) hiring complex mathematical formulae sensitive to 
disturbance. 

In this paper, a novel reinforcement learning system with self-organizing neuro-fuzzy 
network is proposed. As an internal model of autonomous agents, the proposed system aims to 
tackle the problems exist in conventional swarm intelligence and swarm control of autonomous 

-o
which structure, such as membership functions, fuzzy rules, and the connections between them, 
is generated by the input data automatically. The output of SOFNN are connected to a state 
value function V, an action value function A or a state-action value function Q. Agents classify 
the input pattern as a certain state by FN and decide an adaptive action using a stochastic policy 
effected by value functions A or Q. The learning to acquire adaptive behavior is realized by 
adopting 3 kinds of classic reinforcement learning (RL) algorithms: Actor-Critic learning (Barto 



et. al 1983; Sutton 1988), Q learning (Watkins 1989) and Sarsa learning (Rummery & Niranjan 
1994; Sutton 1996). Using a rule of birds flocks BOID, i.e., individuals keep suitable distance 
between each other, they are able to explore the unknown environment, to find the appropriate 
solution more efficiently, and to acquire adaptive behaviors after training process during their 
exploration.  

In detail, the 3 kinds of reinforcement learning systems with SOFNN proposed in the paper 
are as follows: 

Model 1: An Actor-Critic type reinforcement learning system with neuro-fuzzy network 

Model 2: A Q-Learning type reinforcement learning system with neuro-fuzzy networks 

Model 3: A Sarsa-Learning type reinforcement learning system with neuro-fuzzy networks 

Model 1 (FAC) is an online processing system which uses a state-value function (Critic) and 
a action-value function (Actor) both connected to the output of Fuzzy Net with adjustable 

lled in RL). The input space (states) and output space (actions) of the system may 
be discrete or continuous. Furthermore, agents (intelligent individuals) defined by FAC are able 
to explore unknown environments, not only in the case of observable Markov decision process 
(MDP) such as the input are global coordinates information, but also partial Markov decision 
process (POMDP) such as local observable environment. 

Model 2 (FQ) uses Q-Learning algorithm which stresses the exploitation of learning history. 
It is a policy-off RL system and the advantage of this model is its fast approach to the optimal 
solution, whereas the learning convergence is affected by the input of states in POMDP 
environment. 

Model 3 (FS) has the same structure with the FQ but uses Sarsa Learning algorithm instead of 
Q-learning algorithm. FS is a policy-on RL system, current state and the next state are observed 

loration comparing with FQ. 
When the rewards which are evaluation to the qualification of distance between multiple 

encouraged with positive rewards, yields the collective behaviors of agents and higher learning 
performance comparing w
goal-directed exploration problems showed the effectiveness of the proposed systems. And the 
contribution of this paper may be applied to multiple autonomous robots control which is useful 
in the fields of space / deep sea exploration, and other tasks in the extreme environments.
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