博 士 論 文

対称急拉大流路を通過する層流はく離流れの数値的研究

Numerical Study on Laminar Separated Flow through a Symmetric Sudden Expansion Channel

平成26年3月

櫻 井 元 康

博 士 論 文

対称急拡大流路を通過する層流はく離流れの数値的研究

櫻 井 元 康

山口大学大学院理工学研究科

要 旨

流れのはく離は構造物や輸送機器周りの流れ，生物体内の血流などの幅広い分野および広範囲のスケールにおいて見られる基本的な現象であり流体力学の基礎として重要である。 また，はく離を伴ら流れは速度分布や壁面せん断応力などを変化させ，エネルギー損失や物質の拡散•混合などに大きな影響を与える。したがって，その流れの制御は各種機器の性能向上や省エネルギーに関連し工学的に極めて重要である。典型的なはく離•再付着流 れとして，これまで多くの後ろ向きステップ流における実験および数値計算結果が報告さ れているが，はく離せん断層は強い逆圧力勾配の影響により極めて複雑であるため，流れ に与える影響因子について一致した見解には至っていない。また，後ろ向きステップ形状 を流路の上下壁に設置した対称急拡大流路内の流れは非対称流れを形成することが報告さ れているが，分岐レイノルズ数 Rec と流れの代表スケールおよび流路幾何パラメータとの関係などは不明である。一方，現実の流れは三次元流であることが多いが，三次元のはく離と再付着は二次元の場合とは全く異なる様相を示すため，二次元流の結果からその流れ を予測することは困難となる。三次元流路であるダクト内後ろ向きステップ流れでは，側壁近傍を通過する流体粒子はその出発位置のわずかな変更が軌跡を大きく変えること，あ るいは一部の流体粒子はステップ上流から循環渦内へ流入し渦内で螺旋運動しながら流出 する挙動を示すことが報告されている。このような運動は二次元急拡大および軸対称急拡大流路内流れでは見られず，三次元流を特徴付ける重要な運動形態であると考えられる。 したがって，三次元流に存在する $d w / d y$ や $d v / d z$ などの縦渦に関連する速度勾配が流れの変形や非線形性に及ぼす影響を調査することは重要である。
そこで本研究では，急拡大を伴う二次元および三次元流路内の層流はく離流れを調査し，拡大部下流に形成される循環渦領域の構造，非対称流れおよび非定常流れ—の分岐，流れ の制御の可能性について明らかにすることを目的とする。第一段階として二次元急拡大流路内の流れを差分法（流れ関数一渦度法）により解き，流路拡大比 $\alpha=1.4 \sim 4.0$ ，レイノル ズ数 $R e=20 \sim 1600$ の範囲の定常流を系統的に調査した。流れパターンと圧力勾配との関係および分岐レイノルズ数を調査し，はく離渦長と各パラメータとの間の相似性について検討した。また，流路の局所的幾何形状変化として上下のステップ位置をずらすことによ り拡大部下流の流れ方向および横断面方向圧力勾配を変化させ，はく離循環渦長さの制御 の可能性を調查した。第二段階として正方形急拡大流路を通過する三次元層流の流れを

OpenFOAM の有限体積法を用いて解き，拡大比（面積比）4，Re＝20～1900 の範囲の定常流および非定常流を調査した。流れパターン，拡大部下流に形成される循環渦領域の広が り，流れ場の平均速度と圧力および渦度から流れ構造を調査した。また，流体粒子のラグ ランジュ的な挙動の調査から三次元渦の挙動や形状を明らかにすることを試みた。さらに，非定常流へ移行するレイノルズ数，速度および変動速度から見た流れ構造パターン，およ び導入撹乱が流れに与える影響を調査した。

これらの調査結果を基にして検討を行った結果，以下の結論が得られた。

二次元急桩大流路における主な結論

（1）はく離渦長さおよびステップ高さを用いて規格化したはく離流線の形状は，下壁側で はレイノルズ数および上下ステップずれ間隔によらず一致しており相似性が見られる。
（2）対称流れから非対称流れへの分岐レイノルズ数 Rec は流路拡大比 α によって異なり， $\alpha=1.4$ から 3 の間で大きく減少するが，$\alpha=3$ から 4 へと増加するに伴い Rec の値は緩 やかに減少する。
（3）対称流路におけるレイノルズ数に対するはく離渦長の変化は，それぞれの拡大比 α に おける分岐レイノルズ数 Rec とRecにおけるはく離渦長さとで規格化すると，α によ らず相似性を示す。これより，いかなる α についてもはく離渦長の予測が可能となる。

正方形急桩大流路における主な結論

（1）拡大部下流の循環渦領域で螺旋運動をする挙動および循環渦への流入流出構造が見ら れる。螺旋渦の内側の領域にはリング状の三次元渦構造が存在している。
（2）流れ場には対称断面である二つの対角断面，水平•垂直断面および壁面で挟まれた領域に，それぞれ規則的な八つの構造が存在している。
（3）流れ構造はレイノルズ数で三分類できる。Re 1900 の領域は定常対称流のみが存在し， $900<R e \leqq 1300$ の領域は不安定な定常対称流と有限振幅流れのどちらかの構造が表れ， $R e>1300$ の領域は有限振幅流れのみが安定して存在する。
（4）レイノルズ数を増加させることにより，有限振幅流れの崩壊開始位置，RMS 値が最大値をとる位置および崩壊終了位置を上流側へ移動させることが可能となるため，再付着点距離の制御が可能となる。

Doctor Thesis

Numerical Study on Laminar Separated Flow through a Symmetric Sudden Expansion Channel

by Motoyasu SAKURAI
Graduate School of Science and Engineering, Yamaguchi University

Abstract

The flow separation occurred in the wide variety of flow field in engineering, agriculture and medical sciences etc. is one of fundamental research subjects of fluid mechanics. The separated flow has significant influence on physical properties such as velocity, pressure, shear stress and energy dissipation, consequently, enhances ability of mixing and diffusion. For engineering application, control of the flow separation would be occasionally required for higher efficiency and lower energy loss. The great many of numerical and experimental studies have been made of the backward facing step flow. The quite complex behaviors subjected by the strong averse pressure gradient have been preventing our consensus on the effect of each properties and boundary conditions. Recently, it is recognized as the pitch fork bifurcation that asymmetric flow emerges in symmetric two-dimensional sudden expansion channel at the higher Reynolds numbers. Control or management of the flow definitely needs well-defined knowledge how to determine critical Reynolds number as a function of the pressure gradient that we easily modify with geometrical shape of the wall. In practical flow in a duct, most of the flow is substantially of three-dimensional. Behaviors of the three-dimensional flow are unable to be predicted with any knowledge obtained from observations in two-dimensional flows. Some Lagrangian observations on the backward facing step flow in three-dimensional duct report that small displacement of the released position of a particle yields crucial difference of the following trajectory and the particles entrained in the recirculation zone are moved along helical shape path then discharged. The helical shape path in three-dimensional expansion is recognized as an essential motion that never takes place in two-dimensional and axisymmetric expansion flows. It suggests that the velocity gradients such as $d w / d y$ and $d v / d z$ have large influence on the production and the non-linear evolution of the streamwise vorticity.

The present work is designed to clarify the flow structure and the bifurcation problem of asymmetric and unsteady flow, and to control the flow in the expansion channel. Firstly, the laminar separated flows in a two-dimensional sudden-expansion channel were calculated using the finite difference method for the range of channel expansion ratio $\alpha=1.4-4.0$ and Reynolds number $R e=20-1600$ in steady flow regime. The effect of expansion ratio and Reynolds number on the behavior of the flow pattern was investigated in detail. The critical Reynolds number for the
asymmetric flow, similarity of reattachment length and relation between pressure gradient and reattachment length will be summarized with relevant parameters. Secondly, three-dimensional numerical approach were applied to a laminar flow through a square channel with a sudden expansion of area ratio 4:1 in the range of Reynolds numbers $\operatorname{Re}=20$ to 1900 in steady and unsteady regime by using Open Source CFD Toolbox (OpenFOAM). The flow structure produced behind the sudden expansion was investigated in streamline, velocity profiles, pressure distribution and vorticity distribution, and the three-dimensional vortex shape and structure will be described quantitatively with the aid of Lagrangian observation method. The transient critical Reynolds numbers to the unsteady flow can be defined and typical flow patterns are illustrated from mean and fluctuation velocity distributions. Introducing infinitesimal artificial disturbance was examined to describe non-linear phenomenon how the disturbance evolves in downstream and interacts with streamwise vorticity.

Concluding remarks will be summarized as follows for two-dimensional and threedimensional channels.

Results of two-dimensional flow

(1) On the shorter reattachment length side, there is a similarity for the recirculation vortex shape to be normalized by the step height and reattachment length.
(2) The critical Reynolds number Rec for asymmetric flow decreases rapidly from expansion ratio α. $=1.4$ to α. $=3$, and Rec decreases gradually form $\alpha=3$ to $\alpha .=4$.
(3) Variation of reattachment length X_{R} depends on channel expansion ratio α. Variation of normalized recirculation length $X_{R} / X_{R c}$ with increasing the normalized Reynolds number $\operatorname{Re} / \operatorname{Rec}$ is independent of α. There is a similarity for distribution of recirculation length independent of channel expansion α.

Results of three-dimensional flow
(1) The fluid particles entered into the recirculation zone behind the sudden expansion from upstream diagonal corner, and moves toward span-wise direction with helical motions. There is a helical type vortex in the recirculation zone and a ring type vortex is formed in the helical type vortex.
(2) The overall regular flow structure is in octagonal consisting of the eight regions that is $1 / 8$ part of the flow field surrounded by two diagonal plane, vertical plane, horizontal plane and peripheral wall. The whole flow field behind the sudden expansion can be classified into three different regions for Reynolds number variation.
(3) The steady flow region is in the range of $R e \leq 900$, the unstable steady flow or unsteady disordered motion flow appear in the range of $900<R e \leq 1,300$, and the unsteady disordered motion flow is stable in the range of $1,300<R e \leq 1,900$.
(4) As the Reynolds number is increased, disordered motion area moves toward upstream direction and the maximum RMS value increases. So that, the vortex structure in the recirculation zone is disturbed by the high speed flow and the reattachment points are moved toward upstream direction.

目 次

第1章 緒 論 －•• 1
1． 1 本研究の背景 1
1． 2 従来の研究と概観 7
1．2．1後ろ向きステップ 7
1．2．2 はく離再付着と三次元渦構造 9
1． 3 本研究の目的 11
1． 4 本研究の意義 14
1． 5 本論文の構成 15
1． 6 主要記号 16
第2章 計算モデルおよび方法 19
2． 1 二次元急拡大流路 19
2．1． 1 計算モデルおよび境界条件 19
2．1． 2 計算手法 20
2． 2 正方形急拡大流路 －•• 22
2．2． 1 計算モデルおよび境界条件 22
2．2． 2 計算手法 23
第3章 二次元対称急拡大流路を通過する層流はく離流れ 30
（拡大比と流れパターン）
3． 1 緒言 －•• 30
3． 2 計算手法の概要および計算モデル 30
3． 3 結果および考察 －•• 30
3．3． 1 流れパターン －． 30
3．3． 2 力学量特性 －•• 32
3． 4 結言 35
第4章 二次元急拡大流路を通過する層流はく離流れ 43
（はく離渦形状の相似性）
4． 1 緒言 43
4．2 計算手法の概要および計算モデル －•• 44
4． 3 結果および考察 44
4．3． 1 流れパターンとはく離循環渦 －•• 44
4．3． 2 壁面渦度分布 46
4．3．3 壁面における圧力勾配分布 48
4．3． 4 等圧力分布 49
4．3．5 再付着点距離 49
4． 4 結言 51
第5章 二次元急拡大流路を通過する層流はく離流れ 61
（はく離渦長さの相似性および制御）
5． 1 緒言 61
5． 2 計算手法の概要および計算モデル 62
5．3 結果および考察 62
5．3． 1 流れパターン 62
5．3． 2 力学量 67
5． 4 結言 68
第6章 正方形急拡大流路を通過する層流はく離流れ 77
（循環渦領域の渦構造）
6． 1 緒言 －•• 77
6． 2 計算モデルと CFD 解析の概要 78
6． 3 結果および考察 －•• 78
6．3． 1 流れパターン 78
6．3． 2 はく離渦長さ －•• 80
6．3． 3 三次元的な流れの構造 81
6． 4 結言 84
第7章 正方形急拡大流路を通過する層流はく離流れ 90
（有限振幅を伴う流れの特徴）
7． 1 緒言 －•• 90
7． 2 CFD 解析の概要および計算モデル －•• 90
7． 3 結果および考察 －• 91
7．3． 1 レイノルズ数の変化に伴う流れ構造の変化 － 91
7．3． 2 有限振幅流れの特徴 －• 94
7．3．3 撹乱の影響 96
7． 4 結言 99
第8章 結 論 109
謝 辞 113
文 献 115

第1章 緒 論

1． 1 本研究の背景

流れのはく離は構造物や輸送機器周りの流れ，生物体内の血流などの幅広い分野および広範囲のスケールにおいて見られる基本的な現象であり，流体力学 の基礎として重要である。乱流および層流のいずれもはく離した流れが下流の壁面で再付着する場合には循環渦領域が形成され，それに伴い速度分布や壁面 せん断応力などの力学量が大きく変化する。このことは流れ場のエネルギー損失や物質の拡散•混合などに大きな影響を与えることを意味する。したがって はく離を伴う流れの制御は各種機器の性能やその向上に関連して極めて重要で ある．

輸送機器では，周囲の流れと物体の間で生じる摩擦抗力や圧力抗力がエネル ギーの損失をもたらすため，流れの制御が省エネルギーの観点において重要で ある。例えば自動車では，車体後部に形成される循環渦領域が抵抗増大の主な要因となるため，車体表面形状の工夫により車体後方のはく離流れを制御する ${ }^{(1-1)}$ ．車体背後の循環渦領域の圧力回復を早めることで圧力損失の低減が実現さ れ，燃費向上を図ることが可能となる。

管路内の流れは物質の拡散•混合および輸送の観点から重要である，トンネ ル内では，ジェットファンなどによりトンネル内に空気の流れを形成し，有害物質を外部に輸送し新鮮な空気を内部に流入させる。トンネル内にはく離循環渦領域が形成されると，そこに一酸化炭素などの有害物質の滞留や煤じんの滞積などの問題が生じるため，トンネルの長さおよび形状などの諸条件を考慮し て流れを制御することが重要となる ${ }^{(1-2)}$ 。

生体に関連する流れは低レイノルズ数であることが多いため層流の制御が必

要とされる。生体組織工学の分野においては，細胞と生体適合性•融合性のあ る人工物を体外で結合させ，人工臓器や人工組織を製作する試みが行われてい る．人工物表面に微細な足場（scaffold）を多数設けることで層流はく離流れお よび循環渦領域を形成し，付着細胞と酸素を輸送しながら同時に付着細胞をは く離領域に保持する ${ }^{(1-3)}$ 。他にも血管内に形成された狭窄周りの層流はく離•再付着流れ ${ }^{(1-4)}$ ，血液成分等の輸送メカニズム ${ }^{(1-5)}$ など流体力学的に重要な低レイノ ルズ数領域の問題が存在する。また層流の制御は流量測定においても重要であ り，層流式流量計の計測管内の速度分布の制御 ${ }^{(1-6)}$ は装置の性能向上につながる。 このように極めて広い分野において流れの制御は必要とされており，特にレ イノルズ数の低い流れである層流においては，装置の小型化や医工学の発展に伴い重要視されている。しかしながら，低レイノルズ数領域の流れにおいても， レイノルズ数に依存して非対称流れや非定常流れが生じる ${ }^{(1-7)-(1-9)}$ などの非線形性に起因する予測困難な現象が生じる。そのため，層流領域における非線形効果に関する調査が必要となる。

（はく離•再付着流れ）

流れが拡大する領域の壁面近傍では，逆圧力勾配の影響を受けて境界層はく離が生じやすくなる ${ }^{(1-10)}$ 。流れのはく離に伴い形成された二次元平板上での循環渦領域は，はく離点と再付着点がはく離流線で繋がり，平板とはく離流線とで囲まれた領域に循環渦領域が形成される。はく離流線付近にはせん断層が形成 されるが，ここでの速度分布は変曲点を持つため，流れは不安定となりやすい特徴を持つ（非粘性不安定）。また再付着点直後の平板上では局所的にせん断応力の強い領域が生じ，熱伝達促進 ${ }^{(1-11)}$ につながる一方，流体力学的には損失の増加 ${ }^{(1-12)}$ をもたらす。

はく離•再付着流れの調査は，はく離位置が固定されステップ下流に循環渦領域が形成される二次元後ろ向きステップ流れにおいて多くなされてきた （1－13）－（1－37）．このように単純化された流路形状を持つ流れでさえステップ背後に形成される循環渦領域は，レイノルズ数，ステップ上流の速度分布およびステッ プ高さなどの影響を受け複雑であることが知られている ${ }^{(1-27)(1-32)}$ 。またステップ背後において，逆流領域が生じることや再付着点近傍で速度がゼロに近づくこ とが問題となり，速度計測を精度良く行うことは極めて困難となる ${ }^{(1-15)}$ 。したが って，可視化や数値計算も合わせた調査がこれまで行われてきた。Bradshaw ら ${ }^{(1-14)}$ は，ステップ上流の境界層厚さとステップ背後の逆圧力勾配の関係から，は く離渦長さに与える影響を 3 分類しており，逆圧力勾配が重要な要因であるこ とを指摘している。現在では計測技術および数値計算技術の発達に伴い二次元定常流および時間平均的流の流れパターンはほぼ明らかとなり，これらの再付着点長さは数値計算や計測におけるベンチマークとしても利用されている．

しかしながら現実における流れは三次元であり，三次元のはく離と再付着は二次元の場合とは全く異なる様相を示すため二次元流の結果からその流れを予測することは困難となる ${ }^{(1-38)-(1-40)}$ 。例えば三次元のはく離•再付着流れでは，は く離点から出発した流線は必ずしも再付着点に到達しないなどの特徴を持つ．三次元と二次元の流れが異なる性質を示すのは，三次元流に存在する $d w / d y$ や $d v / d z$ などの縦渦に関連する速度勾配が流れの変形，さらには渦度を通じて非線形性の影響が及ぶためであり，したがって三次元流においては三次元流に対す る計算または計測による調査が必要不可欠となる ${ }^{(1-38)}$ 。また，はく離および循環渦領域は逆圧力勾配だけでなくレイノルズ数や速度勾配など諸因子の影響を受 ける ${ }^{(1-14)}$ 。これら諸因子は流路幾何形状の違い，例えば流路拡大比（面積比）${ }^{(1-41)}$ ，

いても循環渦領域の流れは複合的な影響を受ける。したがって，はく離•再付着流れの構造を明らかにするためには，逆圧力勾配の影響のみでなく，レイノ ルズ数，流路拡大比を加え，流れの三次元性の出現に注意しながら諸因子の流 れに与える影響を調査する必要がある。

（流れの分岐）

後ろ向きステップ流のステップ背後に形成される循環渦の長さは，低レイノ ルズ数領域ではレイノルズ数の増加に伴いほぼ直線的に増加するが，あるレイ ノルズ数を越えると逆に減少する ${ }^{(1-15)}$ 。これはせん断層の不安定性が原因となり，流れ場が定常流から非定常流へ移行（ホップ分岐）したことが原因である。こ のように層流領域の流れにおいてもレイノルズ数の増加に伴い異なる流れの状態に移行することが報告されており，特に流路幾何形状が対称性を持つような場合は定常非対称流れへの移行（ピッチフォーク分岐）が報告されている ${ }^{(1-7)(1-8)}$ 。例えば二次元の対称急拡大流路内の流れ ${ }^{(1-44)-(1-60)}$ は，低レイノルズ数領域では レイノルズ数の増加に伴い二つのはく離渦長さは直線的に増加する。しかし， あるレイノルズ数を越えると片方の渦長さが短く，反対側の渦長さは長くなる ため，流れは非対称流となる。 さらにレイノルズ数が高くなると非定常流れへ と移行する．二次元急拡大•急縮小流路の場合は，レイノルズ数の増加に伴い定常対称流，次に定常非対称流，再び定常対称流，そして非定常流という複雑 な移行を呈する ${ }^{(1-61)(1-62)}$ 。これら流れが移行するレイノルズ数（分岐レイノルズ数 Rec）は，ステップ高さなどの流路幾何パラメータや流れの境界条件に依存す るため統一的結論は得られていない。

断面形状が二次元対称急拡大流路と同種の形状である軸対称急拡大流路内流 れも工学上よく利用され，多くの研究がなされてきた ${ }^{(1-63)-(1-76)}$ 。軸対称急拡大流

路内流れにおける非対称流れの存在は，実験結果 ${ }^{(1-65)}$ からは確認されているが数値計算結果 ${ }^{(1-9)}$ からは確認されていない。また，軸対称急拡大流路内流れが非定常流へ移行するレイノルズ数は，実験結果 $(R e c=1000)^{(1-65)}$ と計算結果 $(R e c=1450)$ ${ }^{(1-9)}$ とで値が大きく異なる（面積比が 4 ，断面拡大比が 2 の場合）などの不明な点がある。このように軸対称急拡大流路と二次元急拡大流路とは，定常非対称流の存在や分岐レイノルズ数の違いなどがあり，両者の流れの性質が異なるこ とを示唆している。二次元流と軸対称流において非対称流れの存在の有無や分岐レイノルズ数などに差異が生じる原因は，二つの独立した循環渦領域を持つ二次元急拡大流と，ドーナツ状の循環渦領域を持つ軸対称急拡大流のそれぞれ に形成される渦構造の違いに起因すると考えられる ${ }^{(1-76)}$ ．

一方，急拡大流路内流れの分岐問題は，二次元流や軸対称流を除けばほとん ど解析がなされていない。そのため，矩形管などの三次元流路で生じる二次流 れや縦渦が流れの分岐，すなわち流れの非対称性や非定常性に及ぼす影響を調査する必要がある。

（流れの制御）

自動車などの輸送機器の周囲に見られる流れ ${ }^{(1-1)}$ は外部流である。これらの流 れは物体表面に存在する繋ぎ目の内部や突起の背後，あるいはその物体自身の背後にはく離循環渦領域を形成する ${ }^{(1-77)-(1-79)}$ 。このようなはく離を伴う流れは管路など（1－80）－（1－84）の内部流においても見られる現象であり，いずれの場合もエネル ギーの損失をもたらすため，その制御は重要である。

一方で，内部流は連続の条件により断面を通過する流量が規定されるために，壁面近傍での逆流は順流領域を増速させることとなり，そのため外部流の場合 よりも強いせん断層が流れ場に生じる。また，その影響を受けて変形した不均

一な流れは，外部に拡散することなく下流へと輸送される。このことは，流量計測など標準的かつ平衡な流れ場の形成が必要となる場面において問題となる。層流式流量計では，測定管内の流れを層流状態に保ち，管内に軸対称で相似 な速度分布を持つ流れを導くことが測定精度の向上につながる ${ }^{(1-6)}$ ．したがって，測定管の直径を小さくする，あるいは測定管内を細管などで多数に分割するこ とで流路の代表長さスケールを小さくし，層流状態を保持するなどの工夫がな されている ${ }^{(1-85)}$ ．

また層流形電磁流量計では，装置の高性能化を狙って断面形状を矩形管にす $る^{(1-86)}$ ，さらに複数の仕切り板で流路を水平分割することにより流路断面アスペ クト比の大きな複数の矩形断面流路を形成する ${ }^{(1-87)}$ などの試みが行われている。 これにより，測定管内の流れは三次元成分の影響を受けにくくなり，流量が多 い場合にも定常層流の二次元流を形成しやすくなり測定精度向上につながる。

一方，オリフィス前後の流れ ${ }^{(1-88)}$ のように，明らかにはく離•再付着流れが形成される場合においても，曲がり管からオリフィスまでの距離を大きくとるな どして安定した軸対称流を形成することが測定精度の向上につながる。

このように，内部流れにおいてははく離や循環渦の制御に加え，不均一な流 れを適切に制御する操作も重要であるため，流れの非対称性や非定常性および不安定性に着目してこれらの発生原因を解明し，適切な制御を施す必要がある。拡大流路において，流れを制御する方法は能動的制御と受動的制御に大別さ れる．能動的制御としては，古くは流体素子で用いられてきた吹き出し・吸い込みを設ける ${ }^{(1-89)}$ ，あるいは拡大部の側壁位置を動的に変化させることにより拡大角を変化させ循環渦領域内の圧力の変化により非対称流れを制御する ${ }^{(1-90)}$ 。ま た，主流に時間周期的に変化する流量を付加することにより主流の運動量を増減させ，せん断層を介して循環渦領域内の運動量を制御する ${ }^{(1-17)}$ ，あるいはステ

ップ角部に設置したプラズマアクチュエータにより壁面近傍の速度に周期的な変動を与え，せん断層を制御する ${ }^{(1-91)}$ などの方法がある。これらの能動的な制御 の実現は，外部からのエネルギーの供給や付加的な機構を必要とする。

一方，流路形状の工夫により流れを制御する受動的制御は構造を単純にする ことができる点，および外部からのエネルギーの供給を必要としない点で能動的制御よりも優れている場合がある。急拡大流路においては，流路の拡大比あ るいはステップ高さを変更することによりステップ下流の逆圧力勾配を変化さ せ，流れの方向や循環渦領域の拡がりを制御する。例えば，流路形状を非対称 にすることにより横断面方向圧力勾配を変化させる ${ }^{(1-47)}$ ，循環渦領域に小物体を設置し循環流量の減少とそれに伴ら循環渦内の圧力低下を抑制する ${ }^{(1-92)}$ などの方法がある。また，壁面に周期的な窪みを設けることにより壁面から発達する境界層および壁面近傍の速度勾配を変化させることが可能である ${ }^{(1-93)}$ ．非定常流 れの生成とその利用としては，障壁板を周期的に設置することにより周期的な拡大縮小流を形成し自律的な振動流を励起することが可能である ${ }^{(1-94)(1-95)}$ ．

1． 2 従来の研究と概観

1．2． 1 後ろ向きステップ

典型的なはく離•再付着流として，後ろ向きステップ流における多くの実験 および数値計算結果が報告されてきた ${ }^{(1-13)-(1-37)}$ 。例えば，はく離せん断層の発達 や循環渦領域の流れおよび再付着点距離に影響を及ぼす諸因子 ${ }^{(1-14)}$ ，すなわちス テップ比 ${ }^{(1-35)}$ ，ステップ比と密接に関連するステップ下流の圧力勾配 ${ }^{(1-95)}$ ，ステ ップ入口での速度分布や乱れ強度の影響 ${ }^{(1-21)}$ などが調べられている。にもかかわ らず，ステップ下流のはく離せん断層は強い逆圧力勾配の影響により極めて複雑であるため，十分理解されていない ${ }^{(1-35)(1-97)}$ 。乱流に比べて層流における解明

は進んでいるものの，はく離循環渦についてみると，ステップ・レイノルズ数 $R e_{h}=U h / v$（ U は代表速度，h はステップ高さ）の一価の関数ではなくステップ入口での流速分布やステップ比の影響を受け，各影響因子について一致した見解には至っていない ${ }^{(1-15)(1-50)}$ 。

後ろ向きステップ形状を流路の上下壁に設置した対称急拡大流路内の流れは，幾何形状が対称であるにも拘らず，定常な非対称流れを形成する場合があるこ とが実験的，数値計算的，あるいは解析的に報告されてきた（図 $1-1$ 参照）。代表的には Durst ら ${ }^{(1-52)}$ は $\alpha=2$ と 3 の場合について，また Fearn ら ${ }^{(1-8)}$ は流路拡大比 $\alpha=3$ の場合のダクト流について報告している。 さらに，太田ら ${ }^{(1-19)}$ は $\alpha=2$ と 3 の場合について，温度場を伴ら流れ場に関して詳細な報告をしている。そ れらの結果を見ると，対称急拡大流路内の流れはレイノルズ数が低い領域では， ステップ背後に形成される循環渦長さは上下壁で等しく，流路全体の流れパタ ーンは流路中心線に対して対称となる。また，循環渦の長さはレイノルズ数の増加に伴い直線的に増加する。これに対し，高いレイノルズ数領域においては， はく離渦長さは上下のいずれか一方のみが引き続き増加し，他方のはく離渦長 さとは異なる挙動を示すため，全体の流れパターンは流路中心線に対して非対称となる。この対称流れから非対称流れに移行する分岐レイノルズ数 Rec は，流路拡大比に依存して変化している。この Recの値を水島ら ${ }^{(1-62)}$ は線形安定性解析および弱非線形安定性解析で調査し，数値計算結果や可視化結果とほぼ一致 することを報告している。しかしながら，ステップや拡大部下流域に生じるは く離せん断層は，流れ場の幾何形状に伴う複雑な逆圧力勾配の影響を受けるた め，系統的な理解は十分とは言い難い。特に内部流である急拡大流路内流れに おいては，外部流と比較して流路拡大比の変化に伴う逆圧力勾配の影響を受け やすいことが予想され，また非対称はく離流れが生じると，流路横断面方向の

圧力勾配が流れ方向圧力勾配と同程度になる可能性が推測される。それにもか かわらず，いずれの報告も再付着点距離と圧力勾配などの力学量との関連を調 べたものは極めて少ない。

軸対称急拡大流路内流れにおいて，最近遷移に関する報告がなされてきてお $り^{(1-63)}$ ，注目を浴びつつある。これについて，Mullin ら ${ }^{(1-65)}$ は MRI（磁気共鳴画像装置）を利用した軸対称急拡大流路内流れの実験からはく離せん断層の挙動 を調査した。これによると，レイノルズ数の増加に伴い，せん断層で生じる間欠的なバースティングが流れ構造の崩壊や軸対称性の崩壊に影響を与えること を明らかにしている。Rojas ら ${ }^{(1-9)}$ は数値計算結果より $R e \geqq 1450$ の領域では非定常流れ（Disordered Motion Flow）が存在することを報告し，また実験において生じる定常非対称流は実験装置の不完全性に起因することを示唆している。

1．2．2 はく離再付着と三次元渦構造

平板上に設置された円柱周りに形成される馬蹄形渦 ${ }^{(1-98)}$ や壁面からの吸い込 みにより形成される竜巻状の螺旋渦 ${ }^{(1-99)}$ などは，渦軸方向の速度が生じるため二次元流の場合とは著しく異なる循環渦形状を呈する。したがって，三次元渦構造の理解においては三次元計測から得られたデータ，あるいは三次元計算によ る各速度成分の取得と，それらに影響を与える三次元圧力分布の調査は不可欠 となる。加えて，Délery ${ }^{(1-38)}$ は多種類にわたる三次元物体周りの流れの可視化観察を行うことにより，三次元物体周りの流れの本質の把握には，可視化結果が必須であり，それをトポロジー的に解釈する必要性を指摘している。

流れ場の可視化による調査（数値計算においてはラグランジュ的な流体粒子 の挙動の調査等）は，これまでに行われた三次元の基礎的流れ場の一つである対称急拡大流路内流れ ${ }^{(1-7)(1-42)}$ やダクト内後ろ向きステップ流れ ${ }^{(1-15)}$ の結果をふ

まえ，はく離•再付着の構造等複雑な側面を明らかにするために必要と考えら れる。またラグランジュ的に調査を行うことは，物質の拡散•混合を分析する ことを意味しており，工学的応用への期待が高まる。

例えば，これらの流れ場は速度分布から見る限り規則的で単純な流れに見え るが，可視化結果やラグランジュ的な挙動を調べてみると，当然ながら流路側壁の影響を受けており，予測し難い挙動 ${ }^{(1-7)(1-15)(1-100)(1-101)}$ をとることも知られて いる．Durst $ら^{(1-7)}$ は，側壁と接合するステップ端に形成されるキャビティ渦が，側壁近傍の流れに三次元的な影響を及ぼすことを可視化結果から指摘している。岩井ら ${ }^{(1-100)}$ はステップ近傍の流れをラグランジュ的挙動の調査から明らかにし，側壁近傍を通過する流体粒子はその出発位置のわずかな変更が軌跡を大きく変 えること，あるいは一部の流体粒子はステップ上流から循環渦内へ流入し渦内 で螺旋運動しながら流出する挙動を示すことを報告している。稲岡ら ${ }^{(1-101)}$ は， ステップ上流から循環渦領域へ流入する流体の運動をラグランジュ的な挙動か ら調査し，スパン方向の圧力差が循環渦内への流体の流入に影響することを報告している。ここで示された循環渦内へ流入•流出する流体運動や渦内に生じ る螺旋運動は，循環渦領域内では三次元運動が主要な役割を果たすことを意味 する．また，このような運動は二次元急拡大および軸対称急拡大流路内流れで は見られず，三次元流を特徴付ける重要な運動形態であると考えられる ${ }^{(1-38)}$ 。し かしながら，三次元流におけるこのような調査は，基礎的で比較的単純な流路形状の流れ場においてさえ皆無に近い。

内部流の代表形状の一つである矩形管内流れは，側壁から発達する境界層が隣接する角部の流れ場で互いに干渉し，二次流れが生じるという特徴を持つこ とが知られている ${ }^{(1-102)(1-103)}$ 。この二次流れは角部の角度および断面アスペクト比に依存することは容易に理解されるため， 90 度の角部を持ち，流路断面のア

スペクト比が 1 である正方形流路は矩形管路の最も基本的流れ場と考えて良い。 これについて，Alizerd $ら^{(1-102)}$ は，流れ方向コーナーフローの線形安定性解析を行い，コーナーの二等分線上に存在する変曲点と非粘性不安定との関連を指摘 している．また組織的な流れ構造の存在も指摘されており ${ }^{(1-103)}$ ，Uhlmann $5^{(1-104)}$ は，時間平均的な二次流れには秩序構造が存在し，臨界レイノルズ数付近の乱流では管軸周りに90度回転すると互いに一致する二対の四つ渦パターンの平均二次流れが生じることを報告している。層流においても矩形管内の流れは周方向でひずみ速度が異なる不均一な流れ場となっており，また流れの発達過程に おいても二次流れが生じている。この現象とはく離，遷移あるいは上記の秩序構造との関係は，ほとんど未解明である。このように急拡大を伴う矩形管内流 れははく離と再付着を伴ら流体力学的に重要な流れ場であり，また工学的によ く見られる流れ場であるが，上述した特徴の説明が未完結の状況にあり，二次元流や軸対称流の結果 ${ }^{(1-7)(1-65)}$ からその流れの様子を推測することはできていな い。

1． 3 本研究の目的

本研究は，急拡大を伴ら矩形管内の層流はく離流れを調査し，レイノルズ数 の変化が主流や循環渦領域におよぼす影響およびそれらと力学量との関係を明 らかにすることを目的とする。矩形管の急拡大流れは円管や二次元の急拡大流路内流れに比べて複雑である。複雑な流れになる主な原因は，流路断面形状の違いがパラメータとなり流れ方向速度分布が変化すること，および境界層の発達過程で二次流れが生じるためである。十分発達した矩形管の流れ方向速度分布は矩形断面の縱横比であるアスペクト比と流量をパラメータとした漸近式に よって求めることが可能である ${ }^{(1-105)}$ 。矩形管のアスペクト比が 1 の場合は正方

形管となり，十分発達した定常層流の分布は壁面近傍で壁面に沿ったほぼ矩形状の等速度線分布，流路中心に近づくにつれ十分発達した円管内の速度分布で あるハーゲンポアズイユ流を示す。一方，矩形管のアスペクト比が無限大の場合は二次元平行流路となり，十分発達した定常層流の分布は二次元ポアズイユ流となる。このように矩形管内の流れは管断面アスペクト比に依存した速度分布を示す点が，円管内流れの場合との決定的差異である。また二次流れは二次元急拡大流路内流れや定常な軸対称急拡大流れでは考慮する必要のない成分で ある．矩形管内の二次流れは急拡大など流路幾何形状が変化する領域で生じる。 これは流れの発達過程において，矩形管内壁の直交する側壁で成長するせん断層が互いに干渉することが原因となって生じる。この二次流れの発生に伴い生 じる流れ方向に軸を持つ渦度成分 ω_{x}（縦渦の存在を意味する）より，循環渦の三次元性，それに関連する非線形性が予想される。

本研究ではアスペクト比が 1 における矩形管の急拡大流路として正方形急拡大流路を，アスペクト比が無限大における矩形管の急拡大流路として二次元対称急拡大流路を調査する。本研究で調査するような流路幾何形状が対称性を持 つ急拡大流路の場合は，流れの分岐問題が重要な課題となる。二次元対称急拡大流路内の流れはレイノルズ数の増加に伴い，定常対称流れから定常非対称流 れ，さらには非定常流れへと分岐することが知られているが，拡大比やレイノ ルズ数の違いによりそのパターンおよび分岐レイノルズ数は異なるため，単純 にそれらを力学量から説明することはできていない。十分に広い拡大比および広いレイノルズ数範囲に渡って調査を行い統一的な説明を行うことが必要であ る．一方，正方形管内の流れは円管に準じて扱われることが多く，その流れの特性については不明な点が多い。矩形管内で生じる縦渦は急拡大部下流に形成 される循環渦領域に影響を与え，三次元の複雑な渦領域が形成されることが予

想される。縦渦が正方形急拡大流路内の主流や循環渦領域におよぼす影響，流 れの定常•非定常分岐に及ぼす影響を調査する必要がある。

（本研究の主眼）

本研究では二次元対称急拡大流路および正方形急拡大流路を調査することで，急拡大に伴い形成されたはく離領域の構造，流れの分岐および流れの制御の可能性に注目する。
（1）循環渦領域の構造
流路の拡大比により圧力勾配を変化させ，循環渦長さや循環渦形状 に影響を与える．三次元流路においては，急拡大により生じさせた縦渦が，渦構造に与える影響に注目する。
（2）流れの分岐
流路拡大比を大きく変化させることにより，非対称流れへの分岐レ イノルズ数を明らかにし，急拡大流において定常対称流や定常非対称流が安定して存在する領域を明確にする。三次元急拡大流路において は，定常非対称流および層流非定常流の存在の有無，存在する領域な どを明確にする。これらは流れの安定性と関連する。
（3）流れの制御
外部エネルギーの供給を必要としない受動的な制御の可能性として，流路を局所的に変化させることで流れの制御を試みる。

（本研究の手段）

本研究では過去の研究内容の問題点を踏まえ，以下の研究手段を用いる。第一段階として二次元急拡大流路内の流れを数値計算により明らかにし流れパタ

ーン，特にはく離循環渦と圧力勾配との関係を調心゙，流れ場の力学量に基づく説明を試みる。本論文では，上述の事柄を考慮して各パラメータの広い範囲（ α $=1.4 ~ 4.0, R e=20 \sim 1600$ ）について系統的調査を行う。この結果に基づきステ ップ下流の適切な流れスケールで規格化し，はく離渦長と各パラメータとの間 の相似性について考察する。また急拡大流路を蛇行する主流の流れパターンを力学量から予測するため，流線パターンと力学量との対応づけを試みる。工学的応用を考慮し，流路の局所的幾何形状変化として上下のステップ位置をずら すことにより（ずれ間隔 L_{D} ）拡大部下流の流れ方向および横断面方向圧力勾配 を変化させ，はく離循環渦長さの制御の可能性を調査する。

第二段階として正方形急拡大流路を通過する三次元層流の流れ構造におよぼ す影響を調査し，レイノルズ数の影響，拡大部下流域に形成される三次元渦の流路内への広がり，はく離領域内の流体の挙動，開いた三次元渦領域に流入•流出する流れ機構を明らかにする。また分岐に関しては，非定常流へ移行する レイノルズ数と導入した撹乱が流れに与える影響を明らかにする。

1． 4 本研究の意義

対称急拡大流路における非対称流れを広い拡大比およびレイノルズ数範囲に おいて調査することにより，拡大比が 1 である二次元平行流路から拡大比が無限大に相当する噴流の間の流れパターンが明確になる。これにより流れの制御 に必要となる代表長さスケールや分岐レイノルズ数の特定を可能とする．三次元流れにおいては，拡大部下流に形成される複雑な循環渦をトポロジー的解釈 と結びつけることにより，三次元はく離•再付着と三次元渦構造を関連付ける ことが期待できる。また低レイノルズ数領域の流れに対する縦渦導入が渦構造 や分岐レイノルズ数に与える影響を明らかにできる。また，これらのことは標

準的かつ平衡な流れ場の形成条件の明確化に役立つ。
このような層流領域における流れの制御は，マイクロチップ集積化化学セン シングシステムやマイクロ流体デバイスなど（1－106），微細加工技術の発達に伴い表面化し始めた代表長さスケールの小さな流れ ${ }^{(1-107)(1-108)}$ において必要となる技術である。また生体流れやマイクロ流路など ${ }^{(1-109)}$ の微少流量測定に利用可能な層流形流量計および層流形電磁流量計の高性能化に貢献できる。

1． 5 本論文の構成

第1章では，これまでの経緯と問題提起，目的と意義を示す。第 2 章では解決手段および方法について述べる。第3章では，二次元対称急拡大流路（拡大比 $\alpha=1.4 \sim 4)$ についての調査結果を示す。レイノルズ数を $R e=20 \sim 1600$ の範囲（定常流の範囲）で系統的に変化させ，流れパターン，はく離渦長，分岐レ イノルズ数を明らかにし，圧力勾配を用いてそれらの流れパターンを説明する。第4章では，二次元急拡大流路（拡大比 $\alpha=2$ ）のステップ下流に形成されるは く離渦を調査し，はく離流線形状の幾何学的相似性について検討する。また上下ステップをずらすこと（ずれ間隔 L_{D} 変化）により圧力勾配を変化させ，はく離渦長さの制御の可能性を調査する。第5章では，流路拡大比やレイノルズ数 によって大きく変化するはく離渦長さの変化を系統的にまとめることを試みる． はく離渦長の代表長さスケールを調査し，全ての拡大比におけるはく離渦長さ の規格化について検討する．第6章では，正方形急拡大流路内流れの三次元計算に基づき，そこに生じる流れパターンに着目する。流れの対称性および定常性が維持されるレイノルズ数範囲（ $R e \leqq 700$ ）に注目し，拡大部下流に形成され る三次元渦の構造，空間的な広がり，レイノルズ数に対する再付着点距離の変化を明らかにする．第 7 章では，正方形急拡大流路内流れについて，$R e=20 \sim$

1900 の範囲で変化させ，非対称分岐および非定常分岐に関する調査を行う。ま た，レイノルズ数の変化に伴い生じる流れパターンを調査し，それらの流れの特徴を明らかにする。第8章では第3章から第 7 章で得られた結論を総括し，全体を通しての結論とする。

1． 6 主要記号

x ：流れ方向座標
y ：高さ方向座標
z ：スパン方向座標
$H, H_{l} \quad$ ：入口高さ $(=1, y$ 方向）
W_{I} ：入口幅（ $=1, z$ 方向）
$h \quad$ ：ステップ高さ
$\alpha \quad$ ：流路拡大比 $(=H+2 h)$
A_{1} ：入口断面積
A_{2} ：拡大部下流の断面積
A_{2} / A_{1} ：流路断面の面積比
$L_{i n} \quad$ ：入口から急拡大部までの長さ
$L_{o u t}$ ：急拡大部から出口までの長さ
$L_{D} \quad:$ 上下ステップのずれ間隔（ x 方向）
U ：入口平均速度 $(=1)$
$u \quad: x$ 方向速度 $\left(=\langle u\rangle+u^{\prime}\right)$
$v \quad: y$ 方向速度
w ：z 方向速度
$\langle u\rangle: x$ 方向時間平均速度
$u^{\prime} \quad: ~ x$ 方向変動速度
$u^{\prime}{ }_{r m s} \quad: x$ 方向変動速度の RMS 値 $\left(=\left\langle u^{\prime} u^{\prime}\right\rangle^{1 / 2}\right)$
$\omega_{x} \quad: x$ 方向渦度成分
$\omega_{y} \quad: y$ 方向渦度成分
$\omega, \omega_{z}: z$ 方向渦度成分
p ：圧力
$\partial p / \partial x$ ：流れ方向圧力勾配
$\partial p / \partial y$ ：横断面方向圧力勾配
$\partial p / \partial z$ ：スパン方向圧力勾配
Re ：レイノルズ数（＝$U H / v$ または $\left.U H_{l} / v\right)$
$v \quad$ ：動粘度
T ：代表時間（ $=H / U$ または H_{1} / U ）

Fig.1-1 Symmetric and asymmetric flow

2章 計算モデルおよび方法

2．1 二次元急拡大流路

2．1． 1 計算モデルおよび境界条件

対称急拡大流路の計算モデルは上壁と下壁とに高さhの後ろ向きステップを もち，ステップ上流で流路幅 $H=1$ ，一方下流で $H+2 h$ の幅をもつ二次元流路であ る〔図2－1（a）〕．また流れの制御を考慮し，上下ステップ位置のずれ間隔を L_{D} とした非対称な流路形状を図2－1（b）に示す。いずれも座標は下壁ステッ プ下端を原点とし，流れ方向に x ，横断面方向に y とする。なお，図中に記載し た $X_{R I} \sim X_{R 4}$ は流路内に形成されるはく離渦のはく離点または再付着点までの距離を示している。

境界条件は，
（i）流路入口境界は流速分布が二次元ポアズイユ流（入口平均速度 $U=1$ ），
（ii）流路出口境界は $d^{2} \psi / d x^{2}=0, d^{2} \omega / d x^{2}=0(\psi, \omega$ は流れ関数および渦度），
（iii）壁で流れは滑り無し，
とした。流路の長さは入口境界および出口境界が注目するステップ近傍の流れ に影響を及ぼさない十分な長さが要求される。そこで，これについて詳細な検討がなされている渡邊ら ${ }^{(2-1)}$ の計算結果，GAMM－Workshop の報告 ${ }^{(2-2)}$ ，Durst $ら^{(2-3)}$ の実験結果を考慮して，代表寸法 H に対して入口境界から下壁ステップまでの距離 Lin $=2 \sim 10$ ，下壁ステップから出口境界までの距離 Lout $=30$ ，50，100， 1000 について予備的計算を実行した。Lin 33 ，Lout $\geqq 50$ の場合の圧力勾配，渦度分布 および主流速度分布の比較は，それぞれ 1% 以下の誤差で一致することが確認で きた。この入口，出口境界条件の流路長に関する予備的計算の結果から，本報告のレイノルズ数範囲を考慮すると，Lin はステップ高さの 6 倍にとれば十分で

ある．またステップ下流のはく離流はLout＝45 でポアズイユ流に戻るとした文献 ${ }^{(2-1)-(2-3)}$ の結果と一致している。これより本研究での流路長さは Lin＝10，Lout $=100$ とした。

2．1． 2 計算手法

本研究で取り扱ら流れは，二次元非圧縮性ニュートン流体の層流である。調査対象とする流れ場が内部流であることを考慮すると，保存則が方程式の段階 で満足される流れ関数一渦度法（ $\psi-\omega$ 法，差分法）が流れ場の解析に適している。 したがって，流れを記述する方程式はナビエ・ストークス方程式に渦度 ω と流 れ関数 ψ を導入した下式の渦度輸送方程式，

$$
\begin{align*}
& \frac{\partial \omega}{\partial t}=\frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y}-\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x}+\frac{1}{R e} \nabla^{2} \omega \tag{2-1}\\
& \omega=-\nabla^{2} \psi \tag{2-2}
\end{align*}
$$

ここで，

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \tag{2-3}
\end{equation*}
$$

である。方程式（2－1），（2－2）は代表流速，寸法および時間をそれぞれ流路断面平均流速 U ，ステップ上流の流路幅 H および対流時間 H / U とした無次元表示であ る。ここで $R e$ は $R e=U H / v$ で定義されるレイノルズ数であり，圧力 p は ρU^{P} で無次元化した。これらの方程式を差分法で解き流れ場を調べる。空間の離散化 に関しては二次精度中心差分とし，時間に関してはEuler 法（陽解法）を用いた。

計算手順はローチェ ${ }^{(2-4)}$ と同様の非定常法であり，式（2－2）のポアソン方程式を SOR 法で解き，次に式（2－1）の渦度輸送方程式の時間を Δt 進め，これを繰り返し て $t \rightarrow \infty$ で定常解を得る ${ }^{(2-5)}$ 。計算に用いた差分格子は $\Delta x=\Delta y=1 / 20$（流路拡大比 $\alpha \geqq 1.8$ の場合）および $1 / 50 ~(~ \alpha<1.8$ の場合）の正方格子，時間の刻み幅は Δt $=1 / 200 \sim 1 / 500$ とした。解の収束判定は $\left|\psi^{(n+1)}-\psi^{(n)}\right| \leqq 10^{-5}$（ n は反復回数）， $\mid \omega^{(t+1)}$ $-\omega^{(t)} \mid \leqq 10^{-5}$ で行った。参考として $\alpha=3$ の急拡大部近傍の計算格子を図2－1（c） に示す。
 のステップ近傍での実験結果および計算結果と著者らの結果との比較を示す。 いずれの場合も著者らの結果とよく一致しており，特に計算結果は極めて良い一致を示した。これまでに報告されているように ${ }^{(2-6)-(2-9)}$ ，対称流れから非対称流 れへの分岐の原因は明白にされていないが，実験においては装置の不完全性，計算においては計算の打ち切り誤差に起因すると考えられる。著者らはこの点 について以下の 5 条件について予備的計算を行った。
（1）ステップ直後の下壁に振幅 $\Delta \psi=0.005$ の周期的な吸い込み撹乱を $t=3$ まで（3 周期）与えた場合。
（2）ステップ直後の下壁に吸い込み流量 $\Delta \psi=0.01$ の定常的な吸い込み撹乱 を $t=3$ まで与えた場合。
（3）（1）および（2）によって得られた非対称解を初期値として順次低い レイノルズ数の解を求めた場合。
（4）低いレイノルズ数の解を初期値として順次高いレイノルズ数の解を求 めた場合。
（5）対称条件（流路中心で $\psi=0.5, \omega=0$ とした）で求めた対称解を初期値 として同じレイノルズ数の解を求めた場合。

得られた結果は物理的性質の異なる上述の撹乱条件に依存せず一致する結果 を得た。〔ただし，（5）の方法は高レイノルズ数においてもかなり長時間の計算を要した］．これについては同様の結果が報告されている ${ }^{(2-6)(2-10)}$ ．そこで，本研究では（3）の方法による計算を主とし，またこれによる結果から非対称流 れの限界を分岐レイノルズ数 Rec と定義した。なお，この Rec 近くを（4）の方法で計算してみると，Re $\geqq \operatorname{Rec}$ で非対称流れの収束解を得るには（3）の方法 よりかなり多くの計算時間を要した。ただし，レイノルズ数がある値を超える と非対称流れの収束時間は（3）の方法による場合と同程度となる。本研究で はこの臨界レイノルズ数をRec＇と定義する。図2－3において，（4）の方法で対称流れ $(R e=60)$ から非対称流れ $(R e=80)$ に移る過程の流線と圧力分布を示す。図2－3からステップ直後の再付着点距離近傍で見られるわずかな非対称性が，時間の変化に伴い大きな非対称性に変化していく様子がわかる。した がって，人工的なトリガーを陽に入れなくても非対称流れは得られる。

2． 2 正方形急拡大流路

2．2． 1 計算モデルおよび境界条件

本研究に使用した正方形急拡大流路の計算モデルおよび座標系を図2－4（a） に，下流側から見た流路および循環渦の概略を図 $2-4$（b）に示す。この急拡大流路は入口側，出口側の断面形状がいずれも正方形であり，入口側と出口側 の流路中心が一致するよう接続されている。流路形状は入口の流路高さ $H_{l}=1$ ，流路幅 $W_{1} / H_{l}=1$（断面積 A_{1} ），拡大部下流の流路高さ $H_{2} / H_{l}=2$ ，流路幅 $W_{2} / H_{1}=$ 2 （断面積 A_{2} ），面積比 $A_{2} / A_{1}=4$ とした。流路の長さは，入口から急拡大部まで の長さ $L_{\text {in }} / H_{l}=10$ ，急拡大部から出口までの長さ $L_{\text {out }} / H_{l}=100($ Model 1，Model 3） または150（Model 2）とした．拡大部下流の流路長さと格子数，x 方向に使用し

た不等間隔格子の最小格子幅 $\Delta x_{\min }$（急拡大直後の格子幅），格子幅の下流方向増加割合 $\Delta x_{i+1} / \Delta x_{i}, y$ および z 方向に使用した等間隔格子幅 $\Delta y, \Delta z$ を表2－1に示す。また Model 1 の急拡大部近傍の計算格子を図 $2-5$ に，Model 2 の場合の全計算領域を図2－6に示す。

境界条件は，
（i）流路入口では，入口断面と等しい形状の十分長い直管流路において予備的計算を実施し，求められた十分発達した流れにおける速度分布（入口平均速度 $U=1$ ）と圧力勾配（ $d p / d x=$ 一定，p は圧力）の値，
（ii）流路出口では Sommerfeld 放射条件 ${ }^{(2-11)}$ ，
（iii）壁面上では流れは滑り無し，壁に垂直方向（ n 方向とする）の圧力勾配 はゼロ $(d p / d n=0)$ ，

と設定した。レイノルズ数は代表速度として入口平均速度 U ，代表長さとして入口高さ H_{l} に基づく $R e=U H_{1} / v$ で定義した．取り扱ら流体は非圧縮性のニュー トン流体とし，レイノルズ数 $R e=20 \sim 1900$ の層流領域を解析の対象とした。

2．2． 2 計算手法

本研究で取り扱ら流れは三次元非圧縮性ニュートン流体の層流である。調査対象が三次元流路であり内部流であることを考慮すると，保存則を満たし複雑 な形状を比較的簡単に取り扱える有限体積法 ${ }^{(2-12)}$ が流れ場の解析に適している。 そこで，本研究ではオープンソース CFD ツールボックスである OpenFOAM （OpenCFD 社）${ }^{(2-13)}$ の有限体積法を用いて流れ場を得ることとする。したがっ て，支配方程式は連続の式とナビエ・ストークス方程式，

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{u}=0 \tag{2-4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\nabla \cdot(\boldsymbol{u} \boldsymbol{u})=-\nabla p+\frac{1}{\boldsymbol{R e}} \nabla^{2} \boldsymbol{u} \tag{2-5}
\end{equation*}
$$

となる。方程式（2－4）および（2－5）は，寸法および時間をそれぞれ流路断面平均流速 U ，ステップ上流の流路高さ H_{l} および対流時間 H_{l} / U とした無次元表示であ る．$R e$ は $R e=U H_{1} / v$ で定義されるレイノルズ数であり，圧力 p は $\rho U^{2} / 2$ で無次元化した。空間の離散化に関して，対流項は QUICK，その他に関しては二次精度中心差分とし，時間に関しては Crank－Nicolson 法を用いた。

計算手法の妥当性を確認するため，まずは 2．1節で用いた二次元対称急拡大流路内流れ〔図2－1（a）〕を本手法で計算し，$\psi-\omega$ 法で得られた結果と比較した。その結果，流れパターン，渦度分布およびはく離渦長さのいずれも両者の間で一致した ${ }^{(2-14)}$ 。

次に，本手法を用いて軸対称急拡大流路内流れ（入口直径 $H_{1}=1$ ，面積比 A_{2} / A_{1} ＝4）の計算を行い，拡大部下流に形成されるはく離渦の再付着点距離 X_{R} のレイ ノルズ数に対する変化を確認した。その結果，定常流における再付着点距離の変化は $X_{R} \fallingdotseq 0.043 R e$ であり，同じ拡大比の他著者の結果 $0.04445 R e^{(2-15)}$ ， $0.0438 R e^{(2-16)}$ および $0.04428 R e^{(2-17)}$ と同程度であることを確認した。また，Rojas $ら^{(2-17)}$ が報告している非定常流についても同様の非定常な流れの様相が得られ た。

さらに本計算で用いた流路長さや計算格子の違いが正方形急拡大流路内流れ におよぼす影響を確認した。定常流領域における再付着点距離（壁面中央 $X_{R V}$ および対角角部 $X_{R D}$ ）を Model 1 と Model 2 とで比較したところ，それぞれ 1% の範囲内で一致することが確認できた。また，定常流から非定常流への遷移レ

イノルズ数 $(R e c=900)$ ，定常対称流が得られる上限のレイノルズ数（ $R e=1300$ ） のいずれの値も Model 1 と Model 2 とで同一の値となった。一方，非定常流領域 においては流路中心線上の u＇rms 値の最大値および最大値をとる位置（後述の第 7 章 図 $7-7$ および図 $7-8$ 参照）を Model 1，Model 2 および Model 3 で比較 した．いずれの場合もレイノルズ数の変化に対して同様の変化傾向を示すこと が確認できた。計算に用いた時間刻み幅 $\Delta t / T$ は 0.02 の一定値としたが，この値 はクーラン条件から求められる時間刻み幅の上限値よりも小さく，また予備計算において求めた正方形急拡大流路内の非定常流に表れる変動周期（ $\Delta t / T, 1.43$ より大きい）よりも十分小さい値である。これらの結果より，本計算手法は妥当であると判断した。

なお，OpenFOAMを用いた層流非定常流れについては軸対称急拡大流路内流 $れ^{(2-17)}$ の他にも，鈍頭物体周りの流れ ${ }^{(2-18)}$ ，コイルを挿入した管内流れ ${ }^{(2-19)}$ など が報告されており，いずれも実験結果と良い精度で一致している。

(a) Coordinates system and geometry for symmetric expansion channel

(b) Coordinates system and geometry for asymmetric expansion channel

(c) Detail of mesh close to lower step $(\alpha=3)$

Fig.2-1 Calculation model for two-dimensional expansion channel

Fig. 2-2 Comparison of u-velocity profiles with results of other workers

Fig. 2-3 Instantaneous streamlines and equi-pressure distributions with passage of time for calculation procedure (at $t=25,94$ and $144, \operatorname{Re}=60 \rightarrow 80$)

(a) Coordinates system and geometry

(b) Reattachment length $X_{R V}, X_{R D}$ and reattachment line

Fig.2-4 Calculation model for square expansion channel

Table 2-1 Specification of models

	$L_{\text {out }} / H_{l}$	cells	H_{2} / H_{l}	cells	W_{2} / H_{I}	cells	$\Delta x_{\text {min }}$	$\Delta x_{i+1} / \Delta x_{i}$	Δy	Δz
Model 1	100	200	2	40	2	40	0.148281	1.010504	0.05	0.05
Model 2	150	400	2	40	2	40	0.150807	1.004042	0.05	0.05
Model 3	100	200	2	60	2	60	0.148281	1.010504	0.033	0.033

Fig.2-5 Detail of mesh close to expansion (Model 1)

Fig.2-6 Full computational domain for square expansion channel (Model 2)

第3章 二次元対称急拡大流路を通過する層流はく離流れ
 （拡大比と流れパターン）

3． 1 緒 言

本章では二次元対称急拡大流路内の流れを数値計算により明らかにし，流路拡大比の変化が拡大部下流の流れパターンに与える影響を明らかにする．特に急拡大流路内の流れは内部流であるため，逆圧力勾配および横断面方向圧力勾配のいずれの圧力勾配量も流路拡大比とレイノルズ数に依存することが想定さ れる。したがって，広い範囲の流路拡大比とレイノルズ数について系統的に調査を行い，流れパターン，特にはく離循環渦と圧力勾配との関係を調べ，流れ場の挙動の変化について力学量を用いて説明することを試みる。また対称急拡大流路で生じる非対称流れに関しても議論を試みることとする。

3． 2 計算手法の概要および計算モデル

本章で使用する計算モデルは，第2章の図2－1（a）に示した二次元対称急拡大流路とする．流路拡大比 $\alpha=2,3,3.5,4$（それぞれのステップ高さ $h=0.5$ ， $1.0,1.25,1.5)$ の 4 つの流路において，$R e=20 \sim 400$ の範囲を 20 間隔で計算し，定常解を得る．境界条件および計算手法は第2章2． 1 節に示したものを用い る。

3． 3 計算結果と考察

3．3． 1 流れパターン
代表的な流れ場として $\operatorname{Re}=100, \alpha=2,3,3.5,4$ の場合を選び，流線，流速分布，および等渦度分布をそれぞれ図 $3-1$ ，図 $3-2$ および図 $3-3$ に示す。

図 3－1 の流線は下壁を $\psi=0$ ，上壁を $\psi=1$ ，その間を 0.1 間隔で図示している。 ただし，はく離領域は 0.01 間隔で示した。後述するが，流れはレイノルズ数の増加に伴い対称流，非対称流，下流の第 3 のはく離渦が生じる流れへと変化す るが，流路拡大比が大きい流れの方が低いレイノルズ数で非対称流，第 3 のは く離渦の生じる流れとなる。図3－2は $x=$ 一定での x 方向速度 $u(y)$ 分布を示し たものである．これよりはく離領域での u の逆流の大きさは主流の u の大きさと比較して小さい。図3－3より，はく離流線近傍に強い渦度 $(|\omega| \fallingdotseq 1 ~ 2)$ が分布しているが，それと比較して循環渦領域，特に上壁での大きな循環渦領域で の渦度は（上壁側で $|\omega| \fallingdotseq 0 \sim 0.5$ ，下壁側で $|\omega| \fallingdotseq 0 \sim 1$ ）必ずしも強くないことが分かる。

図 3－4は計算した全てのパラメータについてレイノルズ数変化に伴うはく離循環渦長さ X_{R} / h（図中の補足図を参照）の変化を示す。なお，図中にDurstら ${ }^{(3-1)}$ ， Fearnら ${ }^{(3-2)}$ および太田ら ${ }^{(3-3)}$ の計算結果も示しておく。対称流れから非対称流れ への分岐レイノルズ数Recは α によって異なり $\alpha=2$ の場合はRec $\fallingdotseq 100, \alpha=3 \sim 4$ の場合はRec $\fallingdotseq 30 \sim 40$ である。ただし，$\alpha=3,3.5,4$ と増加するに伴い $R e c=40$ ， 35，30とわずかに減少する．レイノルズ数の増加に伴い上壁側の X_{R} / h は増加して おり，その増加率は $\alpha=2$ の場合より $\alpha=3 \sim 4$ の場合の方が大きい。一方，下壁側 のそれはほぼ一定である。第3のはく離渦の生じるレイノルズ数はいずれの α の場合も Rec の 3 倍程度で，$\alpha=2$ で $R e=300, \alpha=3$ で $R e=110, \alpha=3.5$ で $R e=100, \alpha$ $=4$ で $R e=90 〔 \alpha=2$ でDurstら ${ }^{(3-1)}$ は $R e=280$ ，太田ら ${ }^{(3-3)}$ は $R e=300, \alpha=3$ でFearn $ら^{(3-2)}$ は $R e=167$（いずれも本論文のレイノルズ数に換算）が報告されている］で ある．図 3－5はレイノルズ数の増加に伴って伸びるはく離循環渦の渦中心の位置を示したものである。図の座標軸は縦軸を流路中央を原点とした $y^{\prime} 〔=y-$ （ $0.5+h)$ ］で示している．上壁でのはく離循環渦はレイノルズ数の増加に伴い膨

らみ伸びる。それに対応して渦中心は下流，流路中央方向へ移動している。た だし，渦中心は第3のはく離渦が発生すると，その影響で平行に下流へと移動す る．また，上壁の渦中心の移動経路は α によらない。一方，下壁のそれは，$\alpha=2$ ではレイノルズ数によらずほぼ一定の位置であるが，α が大きくなるとわずかに下流，下壁方向へと移動している。これらのことより，上壁でのはく離循環渦 は壁面の拘束を受けにくいが，下壁でのそれは壁面の拘束を受けやすいと考え られる。

図3－6は流路拡大比 α の変化と分岐レイノルズ数Recとの関係を示したもの である。比較のため他研究者の結果 ${ }^{(3-1)-(3-9)}$ を図示しておく。これまで急拡大流路流れにおける流れの分岐は急激でなく，Recを明確に特定するのは困難なこと が報告されている ${ }^{(3-1)}$ 。これに関して，太田ら ${ }^{(3-3)}$ ，光永ら ${ }^{(3-4)(3-5)}$ はこれを範囲で示す報告をしている（図中の各著者の記号が2箇所示してあるのはこのためであ る）．この範囲は本章の Rec ${ }^{\prime} \sim R e c$（図中に網掛けで示す）の範囲に対応してい ると考えられる。図3－4で述べたが，$\alpha=2$ から 3 の間でRecは大きく減少して いるが，$\alpha=3$ 以上では α の増加に伴いわずかな減少にとどまる．また，Rec ${ }^{\prime} \sim$ Recの領域は α の増加に伴い狭くなり，分岐が明確になることが推測できる．な お図中で示したように，本結果は各 α でRecは他研究者と同程度の値を示してい る。

3．3． 2 力学量特性

流路全体を見る前に，一般的に実験で測定される流路中心線上での流れ方向圧力勾配分布 $\operatorname{Re}(\partial p / \partial x)$ を $\alpha=3$ を代表として調べる（図 3－7）。図中の矢印は参考のため上下壁のはく離流線の再付着点位置を示したものである，ステップ近傍（ $x \fallingdotseq 0 \sim 5$ ）では $\operatorname{Re}(\partial p / \partial x)$ の分布はレイノルズ数に独立してほとんど変化し

ていない。これに対応して下壁の再付着点もほとんど変化していない。これよ り下流 $(x>5)$ を見るとレイノルズ数の増加に伴い極大値 $[\operatorname{Re}(\partial p / \partial x)]_{\max }$ をとる位置が下流へ移動し，それに対応して上壁への再付着点が下流へ移動している。 いずれの場合も強い逆圧力勾配の下流に再付着点がある，この結果より流路中心線上の $\partial p / \partial x$ から上下壁の再付着点がほぼ予測でき，流れが非対称な流れパタ ーンであることが判定できる．$R e=240,300$ では，上述の極大値の前後で順圧力勾配領域が見られるが，これは流路中央まで膨らんだ上壁のはく離領域を横切っているためである，つづいて流路中心線上での横断面方向圧力勾配分布 $\operatorname{Re}(\partial p / \partial y)$ を見る（図 3－8）。図3－7と同様に再付着点位置を矢印で示す。図
下向きに曲げられる．$x \fallingdotseq 4$ 付近では上向きの力 $(\partial p / \partial y<0) ~ か ゙ ~ 亻 ⿰ 亻 ⿰ ⿳ ㇒ ⿻ ⿱ 一 ⿱ 日 一 丨 一 力 灬 力 て お り, ~ こ の ~$位置は下壁はく離循環渦の再付着点に対応している。それより下流での強い下向きの力の極値は上壁でのはく離循環渦の再付着点に対応しており，図 3－4 で見たようにレイノルズ数の増加に伴い下流へ伸びているのかわかる。この結果より非対称流れの場合は流路中心線上での $\partial p / \partial y$ の分布からも再付着点が予測 できる．ただし，流路中心線上での値のみでは第3のはく離渦の存在の予測は困難である。

流れ場と圧力勾配との関係を $R e=160, \alpha=3$ の場合を代表として考察する（図 $3-9$ 参照）．図は等圧力線に重ねてはく離流線 $\psi=0,1$ と $\psi=0.1,0.5,0,9$ の流線で示した。ステップ上流から圧力が変化し始め，ステップ近傍では上壁と比較して下壁での圧力が低くなり，ステップを過ぎると急激な圧力変化が見ら れる。このため流れは下向きに曲げられる。上下壁のはく離流線の再付着点近傍を見ると再付着点より少し下流に局所的に圧力の高い箇所が存在している。 したがってこの領域では，上壁では下向き，下壁では上向きの圧力勾配，また

再付着点より上流に強い逆圧力勾配，下流に順圧力勾配が存在する結果となっ ている．はく離循環渦領域および第3のはく離渦領域を見ると圧力の変化は再付着点近傍を除いて小さい。以上の結果をさらに分かり易くするため，等 $\operatorname{Re}(\partial p / \partial y)$分布にはく離流線 $\psi=0,1$ と $\psi=0.5$ の流線を重ねて図 $3-10$ に $(\partial p / \partial y>0$ の領域を網掛けで示す），また等 $R e(\partial p / \partial x)$ 分布を図 3－1 1 に示す $(\partial p / \partial x<0$ の領域 を網掛けで示す）。図3－10から前述したステップ近傍，上下壁の再付着点近傍および第3のはく離渦のはく離点近傍での圧力勾配分布の様子が明確に分 かる。注目することは流路横断面方向の強い圧力勾配 $\partial p / \partial y$ は $\psi=0.5$ の流線に沿 って分布しており，当然のことであるが流線は $\partial p / \partial y$ 分布に対応した曲率となっ ている．同様に図 3－11からは，前述の上下壁の再付着点付近での逆圧力勾配および順圧力勾配分布の様子が分かる。また，上壁のはく離循環渦領域（再付着点近傍を除く）および第3のはく離渦領域は弱い逆圧力勾配となっている。図3－12は図3－10で調べた $\partial p / \partial y$ 分布と流線曲率との関係を明確に示した ものである．図から図 3－10 で述べたように，$\partial p / \partial y$ 分布とまったく対応した流線曲率となっており，このことは流路中心線上での圧力勾配分布から蛇行す る主流の流れパターンを推測できることを意味している．実験的には $\psi=0.5$ 上の圧力勾配分布 $\partial p / \partial y$ を計測することは困難であるが，流路中心線上での値とほぼ対応した分布となるものと考えられる（図 $3-8$ 参照）。つぎに α の違いが流れ におよぼす影響を見る。 α の増加に伴い $\partial p / \partial y$ の極値は下流方向へと移動し，それ に対応して上壁の再付着点も下流方向へと移動する。またステップ出口を除い てその極値の絶対値は増加し，それに対応して大きな曲率の流れパターンとな る様子が見られる。

図 $3-7$ ，図 $3-8$ で第3のはく離渦領域は流路中心線上での圧力勾配分布か ら予測困難であることを述べた。そこで壁面での $\partial p / \partial x, ~ \partial p / \partial y$ 分布に注目して調

べたが，いずれの値もはく離渦領域では小さく（図3－9～図3－11参照） それを明確に特定するのは困難であった。一方，工学的，実験的観点からする と壁面での力学量から再付着点を決定することは重要と考えられるので，壁面 での $\partial p / \partial x$ と再付着点との関係を整理して示しておくことは意義があると考えら れる。これについて，図 3－13に再付着点近傍での $\partial p / \partial x$ の最大値を示す位置 X_{P} と再付着点 X_{R} との比で示しておく。同時に，第3のはく離渦のはく離点も示し ておく（第3のはく離渦の再付着点については X_{P} が不明確であり示していない）。 いずれの α の場合も $R e>R e c$＇で，下壁では $X_{P 1}$ の約 1.3 倍，上壁では $X_{P 2}$ の約 1.1 倍の位置に再付着点がある。 $R e>R e c$＇の領域でレイノルズ数の減少にしたがい X_{R} / X_{P} の増加が見られる。これは，X_{R} は減少するが両者の間隔 $X_{R}-X_{P}$ がほぼ一定の値 をとることによっている。また，第3のはく離渦のはく離点は $X_{P 3}$ の約 1.1 倍の位置となっている。

次に，これまでに見てきた結果を本研究のねらいである $\partial p / \partial y$ と再付着点距離 との関係で整理して示したものが図 3－14である。図は，Re＞Recの範囲につ いて X_{R} と流路中心線上における $[\operatorname{Re}(\partial p / \partial y)]_{\max }$ との関係で示している．下壁での X_{R} は α および $[\operatorname{Re}(\partial p / \partial y)]_{\max } へ$ の依存度は弱く増加率は極めて小さい。一方，上壁で の X_{R} は $[\operatorname{Re}(\partial p / \partial y)]_{\max }$ の増加に伴い直線的に増加しており，またその増加割合は α が大きい方が大きくなっている．

3． 4 結 言

2次元対称急拡大流路内流れについて，数値計算により流れパターンと力学量 について調べ以下の点を明らかにした。
（1）対称流れから非対称流れへの分岐レイノルズ数Recは流路拡大比 α によっ

て異なり，$\alpha=2$ の場合は Rec $\fallingdotseq 100, \alpha=3 \sim 4$ の場合は Rec $\fallingdotseq 30 \sim 40$ であり，α $=2$ から 3 の間で大きく減少する。ただし，$\alpha=3$ から 4 へと増加するに伴いRec の値は緩やかに減少する。
（2）第3のはく離渦が生じるレイノルズ数はいずれの α の場合も分岐レイノル ズ数Recの 3 倍程度である．
（3）大きい $\partial p / \partial y$ の値は $\psi=0.5$ の流線に沿って分布しており，流線は $\partial p / \partial y$ 分布 に対応した曲率となっている。この $\partial p / \partial y$ の値は流路中心線上での値とほぼ対応した分布であるので，流路中心線上での圧力勾配分布から蛇行する主流の流れパターンを推測できる。
（4）再付着点近傍での $\partial p / \partial x$ が最大値を示す位置 X_{P} と再付着点 X_{R} との比より， いずれの α の場合も $R e>R e c^{\prime}$ の領域で，下壁では X_{P} の約 1.3 倍，上壁では約 1.1倍の位置に再付着点がある。
（5）Re＞Recのレイノルズ数範囲について，下壁での X_{R} は α および流路中心線上での $[\operatorname{Re}(\partial p / \partial y)]_{\max }$ にあまり依存せず，ほぼ一定である。一方，上壁での X_{R} は $[\operatorname{Re}(\partial p / \partial y)]_{\max }$ の増加に伴い直線的に増加し，その増加割合は α が大きい方 が大きくなっている。

Fig. 3-1 Stream lines for cases of expansion ratio $\alpha=2,3,3.5$ and $4(R e=100)$

Fig. 3-2 Streamwise velocity profiles for cases of expansion ratio $\alpha=2,3,3.5$ and $4(R e=100)$

Fig. 3-3 Equi-vorticity distributions for cases of expansion ratio $\alpha=2,3,3.5$ and $4(R e=100)$

Fig. 3-4 Variation of detachment and reattachment points on both upper and lower wall as Reynolds number varies

Fig. 3-5 Variation of location of vortex center as Reynolds number varies

Fig. 3-6 Relation between critical Reynolds number Rec (symmetry-breaking bifurcation) and expansion ratio α

Fig. 3-7 Distributions of pressure gradient $\operatorname{Re}(\partial p / \partial x)$ on center line of channel, Re as a parameter $(\alpha=3)$

Fig. 3-8 Distributions of pressure gradient $\operatorname{Re}(\partial p / \partial y)$ on center line of channel, Re as a parameter $(\alpha=3)$

X

Fig. 3-9 Distributions of equi-pressure and streamlines ($R e=160, \alpha=3$)

Fig. 3-10 Distributions of equi-pressure gradient $\operatorname{Re}(\partial p / \partial y)$ and streamlines $(\operatorname{Re}=160, \alpha=3)$

Fig. 3-11 Distributions of equi-pressure gradient $\operatorname{Re}(\partial p / \partial x)$ and streamlines $(\operatorname{Re}=160, \alpha=3)$

Fig. 3-12 Relation between curvature $1 / R$ of streamline and pressure gradient $\operatorname{Re}(\partial p / \partial y)$ on streamline of $\psi=0.5(R e=160)$

Fig.3-13 Variation of length ratio X_{R} / X_{P} as Reynolds number varies, (X_{R} : reattachment length measured from step, X_{P} : distance measured from step to point of maximum pressure gradient $[\operatorname{Re}(\partial p / \partial x)]_{\max }$ at wall)

Fig. 3-14 Relation between reattachment length X_{R} and maximum value of pressure gradient $[\operatorname{Re}(\partial p / \partial x)]_{\max }$ on centerline of channel

第4章 二次元急拡大流路を通過する層流はく離流れ
 （はく離渦形状の相似性）

4． 1 緒 言

第3章において，二次元対称急拡大流路の拡大部下流の流れパターンを調査 し，ステップ・レイノルズ数および流路拡大比 α の変化に伴うはく離循環渦長 さの変化特性，およびそれらと圧力勾配量との相互関係について報告した。そ の中で，条件によっては流路横断面方向の圧力勾配が流れ方向圧力勾配と比肩 できるほど大きくなることを明らかにした。このためステップ下流の循環渦領域を調査するためには，流路横断面方向の圧力勾配と流れ方向圧力勾配の両者 を系統的に変化させて，それらの関係，特にはく離流線形状との関係を調査す る必要があると考えられる。

そこで，流路の局所的幾何形状変化として流路上下の急拡大ステップ位置を流れ方向にずらす（ずれ間隔 L_{D} ）ことにより，流れ方向および横断面方向の圧力勾配量を変化させ，循環渦領域との関連を調査する．このことは，はく離渦長さの制御にもつながり工学的にも重要となる。また，はく離渦長さを特定す る代表長さスケールを明らかにするためにははく離渦の幾何学的な相似性も含 めた考察が必要と考えられる。

本章では，流路拡大比 $\alpha=2$ の場合に限定し，非対称流れの分岐が生じるまで のレイノルズ数範囲 $R e=20 \sim 160$ ，ずれ間隔 $L_{D}=0 \sim 1.0$ の範囲で系統的に計算 する．この結果に基づきはく離渦の幾何学的相似性および循環渦長さと各影響因子とについて考察する。

4． 2 計算手法の概要および計算モデル

本章で使用する計算モデルは，第2章の図2－1（b）に示した二次元非対称急拡大流路とする。流路の拡大比 $\alpha=2$ ，上下ステップずれ間隔 $L_{D}=0,0.05$ ， $0.25,0.5,0.75,1.0$ とした 6 通りの流路において，それぞれ $R e=20 \sim 160$ の範囲を 20 間隔で計算を行う。これら計算パラメータと記号を表 $4-1$ に示す。 $L_{D}=0$ の場合は第3章で示した対称急拡大流路と同一の流路となり分岐レイノ ルズ数以上では対称流と非対称流の両方の解が存在するが，ここでは基準とし て対称流の結果のみを示す。境界条件および計算手法は第3章と同様であり，第2章2． 1 節に示したものを用いる。

4． 3 結果および考察

4．3． 1 流れパターンとはく離循環渦

図 4－1（a）（b）（c）（d）はステップ近傍の流線パターンを見るため，代表 として $R e=80,160, L_{D}=0,1.0$ の場合を示したものである．流線は下壁を $\psi=0$ ，上壁を $\psi=1$ ，その間を 0.1 間隔で図示している．ただし，$\psi<0$（下壁はく離渦領域）と $\psi>1$（上壁はく離渦領域）の領域は 0.01 間隔で示した。図から $L_{D}=0$ の場合，$R e=80$ と 160 のいずれもステップ下流の循環渦長さは上下壁で等しく，対称な流れパターンを示している〔図4－1（a）（b）〕．これに対し，幾何学的に対称な拡大流路で，しかも流路入口および流路出口の流れが対称な流速分布であっても，ある $R e$ 数〔 $R e \sim 100$ ，ただしアスペクト比とステップ比に依存 する ${ }^{(4-1)}$ 〕になると対称な流れは不安定となり，Re 数の増加に伴い顕著な定常非対称流を形成することが実験事実として知られている ${ }^{(4-1)-(4-5)}$ 。これについて数値解析的にも取り扱われている ${ }^{(4-2)(4-5)-(4-8)}$ 。これについて，著者らは第 3 章にお いて，対称急拡大流路の拡大部下流の流れパターンを調査し，ステップ・レイ

ノルズ数および流路拡大比 α の変化に伴うはく離循環渦長さの変化特性，およ びそれらと圧力勾配量との相互関係について報告している。図4－1（c），（d） に示した $L_{D}=1.0$ の場合には，上下の循環渦の長さは異なり，下壁に比べて上壁 の循環渦は長くなっている。このことはステップ位置のずれにより流れは曲げ られるが，上壁での外向きの圧力（ $-\partial p / \partial y$ ）は下壁でのそれより小さい（図 $4-$ 8 参照）。また，下壁側ステップでの流路拡大比〔（ $H+h) / H=1.5 〕$ より上流側ス テップでの流路拡大比〔（H＋2h）／（H＋h） $1.3 〕$ は小さくなるため，上壁での逆圧力勾配は下壁より小さい（図4－10参照）。この二つの効果により，下壁での はく離循環渦と比較して上壁でのそれは伸びると考えられる。その結果，主流 が蛇行している様子が見られる。 $R e=80$ と $R e=160$ とを比べると，レイノルズ数の増加につれ下壁に比べ上壁の循環渦は著しく伸びる。また，$L_{D}=0$ と比較す ると，いずれのレイノルズ数についても下壁の循環渦は短く，一方上壁の循環渦は長くなる結果となっている。次にステップの影響がどの程度上流に及ぶか を見るため，局所位置での流速 $u(y)$ とポアズイユ流の流速 $u_{P}(y)$ との差 $\Delta u=u(y)$－ $u_{P}(y)$ の分布を調ベ $R e=80, L_{D}=0.05$ および 1.0 の場合を選んで図 $4-2$ に示す。 Δu の分布の傾向は $L_{D}=0$ の場合，壁近傍で加速し流路中央で減速する分布を示 している．これに対し $L_{D}=0.5$ と 1.0 の場合，下壁側で加速されるが上壁側では減速されているのが分かる。 L_{D} の Δu に対する影響は L_{D} の値が大きいほど，ま たレイノルズ数が大きいほど上流まで Δu が存在していた。（ $\Delta u=0$ となる位置は図示していない）．なお，本章のレイノルズ数範囲ではステップ高さの $2 \sim 3$ 倍上流まで Δu が存在する（図4－6参照）。 はく離循環渦の幾何学的相似性を調べるために，図 $4-3$ に $R e=80,160$ の場合のはく離流線を示す。ここで x 方向は再付着点距離 X_{R} で，y 方向はステッ プ高さ h で規格化した．なお，再付着点距離は壁での渦度 $\omega=0$ の点と定義した。

また比較のため，Acrivos らの対称急拡大流路流れの解析結果 ${ }^{(4-9)}$ と Denham らに よる後ろ向きステップ流れの実験結果 ${ }^{(4-10)}$ を示しておく，図 $4-3$ から下壁側の はく離流線はレイノルズ数，L_{D} によらずほぼ一致（他著者の結果とも一致）し ており，はく離循環渦形状には相似性があると考えられる。これは，下壁での外向きの圧力が L_{D} の増加によらずほぼ一定（図 $4-8$ 参照）であるためである。 しかしながら，図 $4-3$ 中に示した渦中心の位置はばらつきが見られる。一方，上壁側のはく離循環渦のはく離流線は L_{D} の増加に伴い膨らんだ形となっている。 $L_{D}=0$ の場合を除きレイノルズ数が大きい方がはく離流線の膨らみが大きく，渦中心は対応して流路中央方向へ移動する。これより，上壁側の循環渦形状には相似性が見られない。このことは，L_{D} の増加に伴い上壁では外向きの圧力 $(-\partial p / \partial y)$ は小さくなり（図 $4-8$ 参照），変化することによる。

4．3． 2 壁面渦度分布

図 $4-4$ は代表として $R e=80$ および $160, L_{D}=1.0$ の場合の壁での渦度分布を示す。下壁での渦度の値は上壁のそれと比較するために負号を反転して示して いる。壁での渦度 $\omega=(-\partial u / \partial y)$ at wall の分布は，壁でのせん断応力と等価と考え られる．$R e=80$ の下壁の渦度分布をみると，ステップ直後の分布の変化の後 x $=4 ~ 7$ の間でいったん一定値をとり，その後増加しながら $x \geqq 11$ で再度一定値 （流路幅 $H+2 h=2$ のポアズイユ流に対する壁での値は $\omega=1.5$ ）を示す分布とな っている．これに対して $R e=160$ の場合，$x=4$ 付近で渦度の値はいったんオー バーシュートし，その後 $x \fallingdotseq 9$ まで減少した後，徐々に増加し $x \geqq 25$ で一定値 $(\omega$ $=1.5)$ となる分布を示す。一方，上壁の渦度分布は $R e=80$ および 160 の場合と も大略単調に一定値（ $\omega=1.5$ ）に漸近する分布傾向を示す〔この $x=11$ および x $=25$ で一定値となることは，後述する $\operatorname{Re}(\partial p / \partial x)$ および $\operatorname{Re}(\partial p / \partial y)$ の分布でも一致

していることが確認できる（図 $4-7$ ，図 $4-9$ ）］．上述の $x=11$（本章では h $=0.5$ なのでステップ高さの 22 倍）および $x=25$（ステップ高さの 50 倍）の値 は，前述の対称拡大流路のステップ下流の非対称流れが再びポアズイユ流に帰 るステップからの距離〔 $R e=80$ でステップ高さの 20 倍，$R e=186$ でステップ高 さの 40 倍とした Fearn らの実験および計算結果 ${ }^{(4-5)}$ 〕 とほぼ一致している。ただ し，彼らの結果は流路拡大比が 3 であり，レイノルズ数の値は著者らの定義に換算している．一方，Durst $ら^{(4-3)}$ は $R e=114$ でこれより長い距離（ステップ高さ の 45 倍）を報告している。これは彼らの実験流路がステップ上流に平行流路部 をもたないことによる違いと考えられる。

次に L_{D} の変化に伴らステップ近傍の壁面の渦度の変化を調心゙てみる。図 $4-$ 5 は $R e=80, L_{D}=0.05,0.5$ および 1.0 の場合を代表として示す。図の表示は図 $4-4$ にならって示している。循環渦領域に見られる渦度の極値の絶対値 $|\omega|$ \max は下壁が上壁より大きい。これは後述するが $\operatorname{Re}(\partial p / \partial y)$ の分布からも推測でき る．L_{D} の増加に伴う循環渦領域の変化は，下壁の方は短く，上壁のそれは長く なる傾向が見られる。また，循環渦領域の渦度に注目すると，L_{D} の増加に伴い わずかではあるが下壁の $|\omega|_{\max }$ の値は大きく上壁のそれは小さくなる。一方，上壁の渦度分布は極値が明確でなくなる。図示していないが，この傾向は計算 した条件全てにおいてレイノルズ数の増加とともに顕著となっている．

図4－6は図4－2 で示した Δu 分布と同様に，ステップが上流の壁面渦度に及ぼす影響を見るために，$\Delta \omega=\omega-\omega_{P}\left(\omega\right.$ は局所位置での壁面渦度，ω_{P} はポア ズイユ流の壁面渦度）の分布を示したものである。代表として $R e=80, L_{D}=0.5$ および 1.0 の場合のみ示す。結果を見ると，$\Delta \omega / \omega_{P}=0.01$ となる位置は $x=-1.25$ ～ 1.35 （図 $4-6$ 中にそれぞれの L_{D} の場合について矢印で示す）であり，ステ ップの影響はステップ高さの 2.5 倍程度上流まで及んでいると判断できる。図示

していないが，レイノルズ数の増加に伴いその影響はより上流まで及び，$R e=$ 160 で $\Delta \omega / \omega_{P}=0.01$ となる位置は $x=-1.55$（ステップ高さの 3.1 倍）となる．ま た $L_{D}=0.5$ と 1.0 の結果を比較してわずかではあるが L_{D} が大きい方がステップ の影響が上流まで及んでいる。

4．3． 3 壁面における圧力勾配分布

図 $4-7$ は壁での流路横断面方向の圧力勾配分布を $R e=80$ および $160, L_{D}=$ 1.0 について示す。圧力勾配の値は $\operatorname{Re}(\partial p / \partial y)=(\partial \omega / \partial x)_{\mathrm{at} \text { wall }}$ で計算した。参考のた め再付着点を黒丸で示しておく（以下図 $4-8$～図4－10 も同様）。いずれの レイノルズ数の場合も上下壁ステップすぐ下流 $(x<1$ の範囲）に極値が存在し ている．下壁の極値の絶対値は上壁のそれに比較して大きな値であるが，レイ ノルズ数の増加に伴い上下壁の極値の絶対値はどちらも小さくなる。図4－8 は図 $4-7$ と同様，圧力勾配分布を $R e=80, L_{D}=0.05,0.5$ および 1.0 の場合に ついてステップ下流近傍のみを示したものである。 L_{D} の変化に対するステップ すぐ下流での $\operatorname{Re}(\partial p / \partial y)$ の極値の変化に注目すると，下壁では L_{D} によらずほぼ一定値を示すが，上壁では L_{D} が増加すると小さくなる。このことは 4．3．1節 で述べた圧力勾配と流路拡大比の二つの効果で説明できる。また，いずれの場合も再付着点は $\partial / \partial x(\partial p / \partial y) \sim 0$ に近い領域に存在している。

図 4－9に流れ方向の圧力勾配分布を $R e=80$ および $160, L_{D}=1.0$ の場合につ いて示す。圧力勾配の値は横断面方向圧力勾配分布と同様に $\operatorname{Re}(\partial p / \partial x)=(\partial \omega / \partial y)_{\mathrm{at}}$ wall で計算した。はく離循環渦領域での極大値を比較すると，いずれのレイノル ズ数の場合も循環渦領域の短い舌壁の方が，上壁より強い圧力勾配の値となっ ている。全体の分布傾向は，下壁では明確な極値を持つが上壁ではそれほど顕著ではない。上壁の極値についてみると，$R e=160$ の場合が $R e=80$ の場合より

不明膫となっている。図4－10は同様に $R e=80, L_{D}=0.05, ~ 0.5$ および 1.0 の場合のステップ下流近傍の流れ方向圧力勾配分布である，ステップ下流の逆圧力勾配の極大値 $[\operatorname{Re}(\partial p / \partial x)]_{\max }$ は L_{D} の増加にしたがい循環渦の長さの減少する下壁では大きく，循環渦の長さが増加する上壁では小さくなる。これは前述した ように，ステップのずれにより流路拡大比は下壁に比べ上壁の方が小さく，し たがって上壁での $\operatorname{Re}(\partial p / \partial x)$ の値は小さくなるためと考えられる．このことより循環渦の伸びに $\operatorname{Re}(\partial p / \partial x)$ が関連していることが推測される。なお，循環渦領域内における $|\operatorname{Re}(\partial p / \partial y)|_{\max } /[\operatorname{Re}(\partial p / \partial x)]_{\max }$ の値は，下壁については $0.2 \sim 0.3$ 程度，上壁では $0.4 \sim 0.5$ 程度の値であった。再付着点距離における $\operatorname{Re}(\partial p / \partial x)$ の値はい ずれの場合も極大値の $1 / 2$ 程度の値であった。

4．3． 4 等圧力分布

流路断面全体の圧力のようすを見るため図 $4-11$ に $R e=80, L_{D}=1.0$ の場合 の等圧力分布を示す．圧力の値は $x=-2, y=1$（ステップ上流の流路断面中央） の位置を基準値 $p=0$ として $\operatorname{Re} \times p$ の値で示す．4．3． 1 節および 4 ．3． 2節ですでに述べたように，ステップ上流で $\partial p / \partial y \neq 0$ でありステップの影響が見 られる。ステップ下流を見ると $x \fallingdotseq 4.5$ まではステップ下流の逆圧力勾配により圧力は上昇している．$x \fallingdotseq 4.5 \sim 9$ の領域では大きな圧力変化は無く，ほぼ一定値 $(R e \times p \fallingdotseq-5)$ となっている。この領域は 4.3 ． 3 節の $\operatorname{Re}(\partial p / \partial x)=0$ となる位置（ $x \fallingdotseq 6$ ）およびその近傍の弱い流れ方向圧力勾配の存在する領域と一致し ている．$x \geqq 11$ の領域では流路幅 2 のポアズイユ流に対応する値となっている．

4．3． 5 再付着点距離

図4－12（a）は計算した全ての場合について，再付着点距離 X_{R} とレイノル

ズ数との関係をステップ位置のずれ間隔 L_{D} をパラメータにして示したものであ る．レイノルズ数の増加に伴い全ての場合において X_{R} は増加している。すでに流線パターンで述べたが，$L_{D}=0$ の場合の X_{R} は上下壁とも等しい。各レイノル ズ数における $L_{D}=0$ と $L_{D} \neq 0$ の場合の X_{R} を比較すると，$L_{D} \neq 0$ の方が上壁では長く下壁では短い。 X_{R} の L_{D} に対する依存性をみると，低レイノルズ数領域では上下壁の X_{R} の差は小さい．レイノルズ数が増加するにつれ上下壁の X_{R} の差は大 きくなり，特に下壁の X_{R} が強く L_{D} の影響を受ける。その傾向は L_{D} が増加する と下壁の循環渦は短くなり，上壁のそれはわずかに伸びる傾向を示す。下壁の再付着点距離はレイノルズ数と L_{D} の両者に依存するが，上壁のそれは L_{D} によら ずほぼレイノルズ数のみに依存しており（ $\left.L_{D}=0.05\right)$ を除く，レイノルズ数の増加に対し直線的に増加する結果となっている。これに関し下壁の L_{D} の依存性を明らかにするため L_{D} の変化に対する X_{R} の変化を図4－12（b）に示しておく．次に図 4－12（c）は図4－12（a）で示した $L_{D}=0$ および $L_{D}=1.0$ の場合の下壁側の X_{R} を選び，他研究者の結果と比較する．$L_{D}=1.0$ の場合の X_{R} は後ろ向 きステップ $(h=0.5)$ の実験結果 ${ }^{(4-10)(4-11)}$ および計算結果 ${ }^{(4-12)(4-13)}$ と，$L_{D}=0$ の場合は本計算モデルと同じ流路拡大比の Durst $ら^{(4-2)}$ の実験および計算結果と比較 する．ここで，他著者の結果のレイノルズ数の値は著者らの定義に合わせて換算した値で示している。図から，$L_{D}=0$ の再付着点距離 X_{R} は後ろ向きステップ に近い値となっている。 $L_{D} \rightarrow \infty$ で後ろ向きステップ流路と考えられることを考慮すると，両者の X_{R} は L_{D} の増加とともに一致することが推測される．$L_{D}=0$ の場合をみると，Durst らの Re＞80 で流れが非対称となることを除いた $R e \leqq 80$ に おいて両者の結果は一致している。

次に，本研究のねらいである逆圧力勾配の極大値が再付着点距離に及ぼす影響を表4－1 で示した全てのケースについて調べてみる。図4－13で示した

上壁側および下壁側の X_{R} / h の分布傾向は図 $4-9$ ，図 $4-10$ ，図4－12よ り予想できるので説明を省く。まとめると，上壁の再付着点距離 X_{R} はほぼレイ ノルズ数の単一関数であり，一方下壁のそれはレイノルズ数と $\left[(\operatorname{Re}(\partial p / \partial x)]_{\max }\right.$ の両者に依存する傾向をとる。

4． 4 結 言

二次元非対称急拡大流路の層流はく離の問題について，数値計算によりはく離循環渦の挙動について調べ，以下の点を明らかにした。
（1）はく離渦長さおよびステップ高さを用いて規格化したはく離流線の形状 は，下壁側ではレイノルズ数，上下ステップずれ間隔によらず一致してお り，はく離循環渦は相似性が見られるが，上壁側のそれには相似性が見ら れない。
（2）ステップが流れに影響を及ぼす領域は，$R e=80$ ではステップ上流にステ ップ高さの 2.5 倍，下流にステップ高さの 22 倍である。また，この領域は レイノルズ数の増加に伴い増加し $R e=160$ では上流に 3.1 倍，下流に 50 倍 の領域である。
（3）下壁の再付着点距離は，レイノルズ数の増加に伴い増加し，一方上下ス テップずれ間隔の増加に伴い減少する。他方，上壁の再付着点距離はずれ間隔に依存せず，レイノルズ数の増加に対し直線的に増加する。

Table 4-1 Parameter of calculations

Symbol	\bullet	回	\diamond	\bigcirc	\triangle	\square
L_{D}	0.00	0.05	0.25	0.50	0.75	1.00
Re_{e}	$20,40,60,80,100,120,140,160$					

(a) $\mathrm{Re}=80, \mathrm{~L}_{\mathrm{D}}=0.0$

(b) $\mathrm{Re}=160, \mathrm{~L}_{\mathrm{D}}=0.0$

(c) $\operatorname{Re}=80, \mathrm{~L}_{\mathrm{D}}=1.0$

(d) $\mathrm{Re}=160, \mathrm{~L}_{\mathrm{D}}=1.0$

Fig. 4-1 Stream lines $\left(R e=80,160, L_{D}=0,1.0\right)$

Fig. 4-2 Velocity profiles Δu on upstream of the step

Fig. 4-3 Similarity of separated streamlines

Fig. 4-4 Distribution of vorticity on upper and lower wall ($R e=80,160, L_{D}=1.0$)

Fig. 4-5 Distribution of vorticity on upper and lower wall ($R e=80, L_{D}=0.05,0.5,1.0$)

Fig. 4-6 Distribution of vorticity $\Delta \omega$ on uppr and lower wall, upstream of the step $\left(\Delta \omega=\left(\omega-\omega_{P}\right)_{\text {at wall }}, R e=80, L_{D}=0.5,1.0\right)$

Fig. 4-7 Distribution of pressure gradient $\operatorname{Re}(\partial p / \partial y)$ on upper and lower wall ($R e=80,160, L_{D}=1.0$)

Fig. 4-8 Distribution of pressure gradient $\operatorname{Re}(\partial p / \partial y)$ on upper and lower wall ($\left.R e=80, L_{D}=0.05,0.5,1.0\right)$

Fig. 4-9 Distribution of pressure gradient $\operatorname{Re}(\partial p / \partial x)$ on upper and lower wall $\left(\operatorname{Re}=80,160, L_{D}=1.0\right)$

Fig. 4-10 Distribution of pressure gradient $\operatorname{Re}(\partial p / \partial x)$ on upper and lower wall $\left(\operatorname{Re}=80, L_{D}=0.05,0.5,1.0\right)$

Fig. 4-11 Contours of pressure distribution $\left(R e=80, L_{D}=1.0\right)$

Fig. 4-12(a) Variation of reattachment length on both upper and lower wall as Reynolds number varies

Fig. 4-12(b) Variation of reattachment length on both upper and lower wall as L_{D} varies

Fig. 4-12(c) Variation of reattachment length with results of other workers

Fig. 4-13 Relation between Reattachment length and pressure gradient

第5章 二次元急拡大流路を通過する層流はく離流れ （はく く離渦長さの相似性および制御）

5． 1 緒 言

第3章および第4章において，二次元対称急拡大流路および二次元非対称急拡大流路の拡大部下流の流れパターンを調査し，ステップ・レイノルズ数およ び流路拡大比 α の変化に伴うはく離循環渦長さの変化特性，はく離渦形状の相似性およびそれらと圧力勾配量との相互関係について報告した。これらの結果 を見ると，ステップ下流域に形成されるはく離循環渦長さは，ステップ・レイ ノルズ数 Reおよび流路拡大比 α に，それぞれ独立に依存した挙動を示すことが分かる。また，短い方の循環渦形状は相似性を示すことが分かる。

この独立した影響因子の挙動を明らかにするためには，はく離渦長さを特定 する代表長さスケールを評価し，流れ場の運動学的側面と合わせた考察が必要 と考えられる。そのため，広範囲にわたる条件の流れ場について，速度および圧力分布に加えて流れの可視化結果も同時に考察し，力学量の変化を説明する必要がある。

そこで，本章では上述した内容を考慮できるように，各パラメータの広い範囲 $(\alpha=1.4 \sim 4.0, R e=20 \sim 1600)$ について系統的に計算し，目標とする流体物理量をステップ・レイノルズ数および流路拡大比に対する線図として表示する ことを試みる．次に，この結果に基づきステップ下流の流れ場の相似性を，適切な長さスケールで規格化したはく離渦長さと各影響因子とについて考察する。 また，非対称流れが生じる条件の場合について，急拡大流路内を蛇行する主流 の流れパターンを，流線パターンと力学量との関係に加えて，運動学的考察か らも対応づけることを試みる。また工学的応用を重要視し，流路の局所的幾何

形状変化として流路上下の急拡大ステップ位置を第4章の場合よりも広い範囲 で流れ方向にずらす（ずれ間隔 L_{D} ）ことにより，急拡大部下流の流れ方向およ び横断面方向の圧力勾配量を変化させ，はく離循環渦長さを評価してみた。こ のズレ間隔 L_{D} と圧力勾配量との関係から，急拡大流路内流れを制御することを試みた。

5． 2 計算手法の概要および計算モデル

本章で使用する計算モデルは第2章の図2－1（a）（b）に示した二次元対称急拡大流路および二次元非対称急拡大流路である。対称急拡大流路は $\alpha=1.4$ ， $1.5,1.8,2.0,2.5,3.0,3.5,4.0$ の 8 つの拡大比について計算する．また非対称急拡大流路は $\alpha=2.0,3.0$ の場合に上下ステップずれ間隔 $L_{D}=0.25,0.5,0.75$ ， $1.0,2.0,3.0,4.0$ を，$\alpha=1.5,3.5$ の場合に $L_{D}=1.0$ の場合の計 16 種類につい て計算を行う。実行した全計算パラメータを表5－1に示す（表中，$L_{D}=0$ は対称急拡大流路を表す）。対称急拡大流路の場合，分岐レイノルズ数以上では対称流と非対称流の両方の解が存在するが，ここでは非対称流の結果のみを示す。境界条件および計算手法は第3章および第4章と同様であり，第2章2．1節 に示したものを用いる．

5． 3 結果および考察

5．3． 1 流れパターン

図5－1は第3のはく離渦が生じた場合の代表的流れパターンとして，$\alpha=3$ ， $R e=200, L_{D}=0$ についての流線を示したものである．同図中にはく離流線（ ψ $=0$ と 1.0 の流線）と主流の流線（代表として $\psi=0.5$ の流線）の流線曲率 $1 / R$（反時計回りを正とした）も合わせて示している．ステップすぐ下流の領域 I では，

下壁渦のはく離流線（ $\psi=0$ ）の曲率が主流（ $\psi=0.5$ ）および上壁渦のはく離流線（ $\psi=1.0$ ）の曲率と対応している。つづく領域 II では上壁渦の $\psi=1.0$ が主流 と，領域IIIでは下壁の第 3 のはく離渦の $\psi=0$ が主流と流線の曲率が対応してい る．このことは，いずれのレイノルズ数，α の場合でも同様のことがいえる。こ れよりステップ近傍のはく離渦の様相は蛇行する主流の流れパターン（流線の曲率）から予想することが可能である。図5－2は $\alpha=3, R e=200, L_{D}=1.0$ の場合の可視化実験および数値計算結果を示す。この流れパターンは図 $5-1$ に示した $L_{D}=0$ の場合と同様，ステップ下流の渦領域を 3 つの領域（図 5－1参照）に分類できる。数値計算と可視化実験（写真は必ずしも明瞭でない）との比較をすると，領域II，IIIで上下壁渦のはく離流線の波打ちに若干の差が見ら れるものの，両者は一致している。

領域 I の下壁渦長は，後述するように $\operatorname{Re}>\operatorname{Rec}(\operatorname{Rec}:$ 分岐レイノルズ数）の範囲であるためほぼ一定である。これは対応するレイノルズ数範囲で壁面上の流れ方向圧力勾配 $\partial p /\left.\partial x\right|_{\text {at wall }}$ 分布がほとんど変化しない（第3章 3．3．2節参照）ためであると予想される。これより，二次元非対称急拡大流路のステッ プ下流渦領域の流れスケールは，$X_{R c}$（分岐レイノルズ数におけるはく離渦長） にとることができる．

そこで，$L_{D}=0$（対称流路）の場合について，全ての計算条件の結果を調心゙て みる。図5－3（a）（b）は $L_{D}=0$ の場合のはく離渦長 X_{R} / h の $R e$ 数に対する変化を示す。図は $\alpha \leqq 2.0$ と $\alpha>2.0$ とに分けて示している。これは分岐レイノルズ数 Rec が $\alpha \leqq 2$ の領域では α に強く依存するが，$\alpha>2$ の領域ではその依存度は弱 い（第3章 図 3－6参照）こと，また後述するが，流れパターンが壁面上の流れ方向圧力勾配 $\partial p /\left.\partial x\right|_{\text {at wall に対し } \alpha \fallingdotseq 2.2 \text { を境として } 2 \text { 分類できることを考慮 }}$ したためである。図 $5-3$ で示したはく離渦長 X_{R} を分岐レイノルズ数における

はく離渦長 $X_{R c}$ で規格化したものを，Re／Rec に対して示したものが図5－4であ る。これは前述したように，$X_{R c}$ がはく離渦長の代表スケールとみなすことがで きることを，$L_{D}=0$ の場合について検討したものである。図5－4から，$X_{R} / X_{R \mathrm{c}}$ と Re／Rec との関係は全ての渦長について，分岐現象を含んで全分布傾向が α に よらず相似性を示す。詳細に見ると，Re 数の増加に伴うはく離渦長の変化につ いては，非対称流れとなる Re／Rec＞1 の領域では上壁渦長 $X_{R 1} / X_{R c}$ はおよそ直線的に伸びるが，下壁渦長 $X_{R 2} / X_{R c}$ はわずかに減少する。第 3 のはく離渦が生じる $R e / R e c>2.8$ の領域になると，$X_{R 1} / X_{R c}$ の増加割合は減少し，一方下壁渦長 $X_{R 2} / X_{R c}$ はわずかに増加に転ずる。第3のはく離渦のはく離点距離 $X_{R 3} / X_{R \mathrm{c}}$ は $X_{R 1} / X_{R \mathrm{c}}$ と同様の変化を示す。他方再付着点距離 $X_{R 4} / X_{R \mathrm{c}}$ は増加割合が大きく，そのため第 3 のはく離渦の寸法は成長する。Re数の全体を通して見ると，Re $/ \operatorname{Rec}<2.8$ におけ る $X_{R 1} / X_{R \mathrm{c}}$ と， $\operatorname{Re} / \operatorname{Rec}>2.8$ における $X_{R 4} / X_{R \mathrm{c}}$ の値の増加割合がほぼ等しい。以上 のことから，本章での $R e$ 数範囲では，ステップ下流の渦領域 I，IIにおける流 れパターンは規則性が存在していることが分かる。特に Re／Rec >2.8 の領域では $R e$ 数によらず各はく離渦の配列位置（ $X_{R 1}, X_{R 2}$ および $X_{R 3}$ ）はほとんど変化しな いため，各はく離渦の外周辺を蛇行する主流の流れパターン（図5－1 で示し た）からはく離渦の概形を予想することが可能である。

次に $L_{D} \neq 0$（非対称急拡大流路）の場合について調べる。図5－5は，L_{D} を変化させた場合の X_{R} / h と $R e$ 数との関係を示したものである。すでに第 4 章で $L_{D} \leqq 1, \alpha=2.0, R e \leqq 160$ の範囲の結果については報告しているが，本章では L_{D} と $R e$ 数を $L_{D}=0 \sim 4.0, R e \leqq 1600$ の広い範囲で系統的に変化させた場合について再吟味する。また，α については後述するように流れパターン特性が分類できる $\alpha \fallingdotseq 2.2$ を境に，主として $\alpha=2$ と $\alpha=3$ に注目して計算した。図 $5-5$ より，$\alpha=$ 2 の場合， $50<R e<200$ の領域では，$L_{D}>0$ での下壁はく離渦 $X_{R 2}$ は $L_{D}=0$ での

それより短い。 $R e$ 数が増加して $R e \geqq 250$ になると，$X_{R 2}$ は L_{D} に依存せずほぼ一定となる．一方 $\alpha=3$ の場合，$\alpha=2$ の場合に比べ $X_{R 2} へ$ の影響がおよぶ $R e$ 数領域は狭く $(R e<80)$ ，その変化量も小さい。また，$\alpha=2$ の場合よりも低い $R e$ 数 （ $R e \geqq 100$ ）で $X_{R 2}$ は L_{D} に依存せず一定となる。図5－6は X_{R} / h と $R e$ 数との関係を，$L_{D}=0$ の場合と同様に $X_{R c}$ と Rec とで規格化して示したものである。なお，図5－6には著者らの可視化実験の結果も示しておく，図5－6より $X_{R} / X_{R \mathrm{c}}$ と $R e / R e c$ との関係は L_{D} に対する依存性を示す。その分布傾向は低 Re数領域（Re／Rec <0.25 ）では依存性が弱く，上下壁のはく離渦長の差は小さい。Re数が増加す ると下壁のはく離渦長 $X_{R 2} / X_{R \mathrm{c}}$ が影響を受け，$L_{D}=0$ の結果（実線）に比べて短 くなる。一方，上壁のはく離渦長 $X_{R 1} / X_{R \mathrm{c}}$ は $L_{D} \leqq 1$ の場合，$L_{D}=0$ の結果と比心 わずかに伸びるが $L_{D}>1$ の場合は減少している。さらに，Re数が増加した $\operatorname{Re} / \operatorname{Rec}$ >2.0 の範囲の結果を見ると，L_{D} の変化に対し $X_{R 1} / X_{R \mathrm{c}}$ は $L_{D}=0$ の場合に比べ小 さく，一方 $X_{R 2} / X_{R \mathrm{c}}$ は $L_{D}=0$ の場合とほぼ一致している。上述の $X_{R} / X_{R \mathrm{c}}$ に対する L_{D} の依存性を陽に見るため，図5－7にRe／Rec＝一定として L_{D} を変化させた場合に対する $X_{R} / X_{R \mathrm{c}}$ の変化を示す．$R e / R e c=0.5$ では L_{D} の増加に伴い，上壁および下壁はく離渦長 $X_{R 1} / X_{R \mathrm{c}}, X_{R 2} / X_{R \mathrm{c}}$ はおよそ $L_{D}=0$ の場合に比べ減少する。ただし，上壁はく離渦長 $X_{R 1} / X_{R \mathrm{c}}$ は $L_{D} \leqq 1$ で極めてわずかながら伸びる傾向を示す。この ような傾向は $\operatorname{Re} / \operatorname{Rec}=1.0$ でもみられるが， $\operatorname{Re} / \operatorname{Rec}=0.5$ の結果に比べ顕著である． $X_{R 1} / X_{R \mathrm{c}}$ に注目すると，$L_{D}=0.75$ で最大値をとる。 $L_{D}=4$ では $X_{R 1} / X_{R \mathrm{c}}$ と $X_{R 2} / X_{R \mathrm{c}}$ は Re／Rec の値に依存して一致した値を示す。これらの値は図中矢印で示した後ろ向きステップの渦長 ${ }^{(5-1)}$ に近い値をとる。これは $L_{D} \rightarrow \infty$ で上下壁それぞれが独立 した後ろ向きステップ流路となることから推測できる．Re／Rec＞2．0においては， はく離渦長の分布傾向は $\operatorname{Re} / \operatorname{Rec} \leqq 1.0$ の場合とは異なる。すなわち，$X_{R 1} / X_{R \mathrm{c}}$ は L_{D} の増加につれ単調に減少する。一方，$X_{R 2} / X_{R \mathrm{c}}$ は $L_{D} \leqq 1.0$ の範囲でほぼ一定の

値をとるが，$L_{D}>1$ では増加傾向を示す。両者の L_{D} に対する変化傾向はおよそ逆であるが，その変化割合は $X_{R 1} / X_{R \mathrm{c}}$ の方が大きい。上述の図 $5-6$ および図 5 -7 の結果より， $0<L_{D} \leqq 1$ と $L_{D}>1$ とでははく離渦長におよぼす L_{D} の影響が異 なっていることが分かる。また $\operatorname{Re} / \operatorname{Rec}>2.0$ において，はく離渦長に対する L_{D} の変化による制御を考えると，上壁はく離渦の制御に大きく効果があると考え られる。

これまで図 $5-4$ ，図 $5-6$ および図 $5-7$ で，はく離渦長 X_{R} と $R e$ 数との関係を $X_{R \mathrm{c}}$ とRec とで規格化することにより検討した。次に工学的応用を考慮し て，$X_{R \mathrm{c}}$ とRecとの関係を流路幾何スケールと対応づけて調心゙てみる。図5－8 は $X_{R c} / h$ および $R e c$（ $=R e \cdot h / H$ ；ステップ高さに基づく分岐レイノルズ数）と α との関係を示す。ここで，Rec＇を用いた理由はステップ高さhがステップ下流 に形成されるはく離渦の周辺概形の曲率に関連することを考慮したためである。図5－8中には実線で数値計算結果（数値実験式）と比較のため他著者の結果 ${ }^{(5-2)}$ －（5－4）を示しておく。図5－8と前掲の図5－4を用いると，対称流路（ $L_{D}=0$ ） のいかなる α の流路についてもはく離渦長の予測が可能である。 L_{D} を変化させ た非対称流路の場合については，図5－8と図5－7の併用によりその予測が可能となる。 α の Rec＇および $X_{R c} / h$ におよぼす影響を見ると，図から両者の関係 は $\alpha<2.2$ で α の減少に伴い急激に増加する傾向を示すが，$\alpha>2.2$ ではその変化割合は極めて小さくなり，直線的な増加または減少傾向を示す。Bradshaw 5 ${ }^{(5-5)}$ は後ろ向きステップを過ぎる乱流におけるかく乱の強さをステップ高さと境界層厚さの比で 3 分類して定義している。これに関して，層流の場合の本結果も これに対応させて考えると，弱いかく乱の場合の $\alpha<2.2$ と強いかく乱の場合の $\alpha>2.2$ の領域に分類できるようである。

5．3． 2 力学量

図5－9は下壁はく離渦の再付着点 $X_{R 2}$ 近傍における壁面上の流れ方向逆圧力勾配の最大値 $(\partial p / \partial x)_{\text {max }}$ と各 α における下流側拡大流路幅に相当する二次元 ポアズイユ流の流れ方向圧力勾配の値 $|\partial p / \partial x|_{2 D}$ との比を α について示したもので ある． $\operatorname{Re} / \operatorname{Rec}=1,2$ Wずれの場合も，$\alpha<2.2$ の領域では上述した圧力勾配比は ほぼ一定値をとるのに対して，$\alpha>2.2$ の領域では直線的な増加を示す。また， この傾向は L_{D} の変化によらない。このことは，図5－8 で述べた α による分類 と一致しており，ステップ後方はく離渦近傍の力学量から，前述したかく乱の強さによる分類を説明できる。

次に流れ場と力学量との関係を $\alpha=3.0, R e=200, L_{D}=1.0$ の場合を代表とし て考察する。図 5－10（a）は等ベルヌーイ関数 $B\left(=p+|\boldsymbol{u}|^{2} / 2\right)$ に重ねてはく離流線 $\psi=0,1.0$ と主流を代表する流線として $\psi=0.5$（図 11 中太い実線）とを示したものである。これに関して第3章では圧力分布で考察したが，実験的に は B（全圧）測定の方が容易であることを念頭に入れている。また図5－10（b）
（c）は，次式

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\omega \times u=-\operatorname{grad} B-\frac{1}{\operatorname{Re}} \nabla \times \omega \tag{5-1}
\end{equation*}
$$

の右辺各項の x 方向成分について示したものである．図5－10（a）より，ス テップ上流の壁近傍からステップ下流壁に達する $B= \pm 200$ の等 B 線は，それぞ れ上壁および下壁に形成されるはく離流線とほぼ一致している。また $\psi=0.5$ 上 では任意の x での B の y 方向分布が極大値をとつており，$\partial B / \partial y=0$ で $\psi=0.5$ の流線が決定できる。図5－1 0 （b）を見ると（ $\partial B / \partial x<0$ の領域を網掛けで示す）， $\psi=0.5$ の流線は流れ場の大部分の領域で $\partial B / \partial x=0$ の位置とほぼ対応する分布 となっている．図 5－1 0（c）で見ると（ $\partial \omega / \partial y<0$ の領域を網掛けで示す），ψ
$=0,1.0$ の流線は第 1 および第 2 渦の周辺ではほぼ $\partial \omega / \partial y=0$ となっており，$\psi=$ 0.5 の流線は図 5－10（a）で述べた B の場合と同様の関係にある。ここで，渦度 ω は実験的に計測するのは必ずしも容易ではないが，$-\partial \omega / \partial y \sim \partial^{2} w \partial y^{2}$ と置き かえると比較的容易であるため，以上に述べた力学量より非対称急拡大流路の後方に生じる蛇行する流れパターンの様相を予測できる。

5．4 結 言

二次元非対称急拡大流路内流れについて，広い範囲のパラメータにわたり数値計算を実行した結果，以下のことが明らかになった。
（1）L_{D} 増加に伴い下壁はく離渦長 $X_{R 2} / X_{R \mathrm{c}}$ は， $\operatorname{Re} / \operatorname{Rec}<2.0$ の領域で $L_{D}=0$ の場合に比べて短くなるが，Re／Rec＞2．0になると L_{D} に依存せずほぼ一定の値を示す。一方，上壁はく離渦長 $X_{R 1} / X_{R c}$ は $\operatorname{Re} / \operatorname{Rec}>2.0$ の領域では L_{D} の増加に伴い減少するが， $\operatorname{Re} / \operatorname{Rec}<2.0$ では $0<L_{D} \leqq 1$ でわずかに増加し，$L_{D}>1$ で減少する。これより非対称流路における L_{D} による制御は，はく離渦長におよ ぼす影響が異なる L_{D} 範囲 $0<L_{D} \leqq 1$ と $L_{D}>1$ とに分類できる。
（2）Re／Rec＞2．0 での L_{D} 増加に伴う上下壁はく離渦長の変化割合を比較すると，上壁はく離循環渦長が大きい。これより，Re／Rec＞2．0におけるはく離渦の制御は，上壁はく離渦を制御するのに効果があると考えられる。
（3）ステップ角近傍からステップ下流壁に達する等 B 線は，はく離流線とほ ぼ一致している。また $\psi=0.5$ 上では任意の x での B の y 方向分布が極大値 をとつており，$\partial B / \partial y=0$ で主流を代表する $\psi=0.5$ の流線が決定できる。こ

れよりステップ下流の流れパターンの様相が B 分布より予測できる。
（4）二次元非対称急拡大流路のステップ下流渦領域の流れスケールは，$X_{R \mathrm{c}}$（分岐レイノルズ数 Rec におけるはく離渦長）にとることができる。
（5）対称流路（ $L_{D}=0$ ）における $R e$ 数に対するはく離渦長 X_{R} / h の変化は，Rec と $X_{R \mathrm{R}} / h$ とで規格化すると，α によらず相似性を示す。これと，α と $X_{R c} / h$ お よびRec＇との関係を用いて X_{R} / h が明確に決定できる。これより α による制御に関して，いかなる α についてもはく離渦長の予測が可能となる。
（6）非対称流路（ $L_{D} \neq 0$ ）における $R e$ 数に対するはく離渦長 X_{R} / h の関係を，対称流路の場合と同様に Rec と $X_{R c} / h$ とで規格化して $X_{R} / X_{R \mathrm{c}}-\operatorname{Re} / \operatorname{Rec}$ 図で系統的に表すことができる。これと，α と $X_{R c} / h$ および $R e c$＇との関係から X_{R} / h が明確に決定できる。これより非対称流路についても，はく離渦長の予測 が可能となる。

Table 5-1 Calculated range of expansion ratio α, Reynolds number $R e$ and distance between both steps L_{D}

Symbols	α	Re	LD
-	1.4	$20 \sim 1200$	0
\triangle	1.5	$20 \sim 1600$	0, 1.0
∇	1.8	$20 \sim 600$	0
\bigcirc	2.0	$20 \sim 400$	$\begin{aligned} & 0, \quad 0.25,0.5,0.75,1.0, \\ & 2.0, \quad 3.0,4.0 \end{aligned}$
\bigcirc	2.5	$20 \sim 220$	0
\square	3.0	$20 \sim 300$	$\begin{aligned} & 0, \quad 0.25, \quad 0.5,0.75,1.0, \\ & 2.0, \quad 3.0,4.0 \end{aligned}$
\diamond	3.5	$20 \sim 220$	0, 1.0
∇	4.0	$20 \sim 160$	0

Fig.5-1 Streamlines and curvature $1 / R$ on streamlines of $\psi=0,0.5,1.0$

Fig.5-2 Streamlines $\left(R e=200, \alpha=3.0, L_{D}=1.0\right)$

(a) $\alpha \leqq 2.0$

(b) $\alpha>2.0$

Fig. 5-3 Variation of recirculation length on both upper and lower wall as Reynolds number varies $\left(L_{D}=0\right)$

Fig. 5-4 Variation of normalized recirculation length $X_{R} / X_{R c}$ on both upper and lower wall as normalized Reynolds number Re/Rec varies ($L_{D}=0$)

Fig.5-5 Variation of recirculation length on both upper and lower wall as Reynolds number varies ($\alpha=1.5,2.0,3.0,3.5, L_{D}=0 \sim 4.0$)

Fig. 5-6 Variation of normalized recirculation length $X_{R} / X_{R c}$ on both upper and lower wall as normalized Reynolds number Re/Rec varies ($L_{D}=0 \sim 4.0$)

Fig.5-7 Variation of normalized recirculation length $X_{R} / X_{R c}$ on both upper and lower wall as L_{D} varies

Fig. 5-8 Variation of $R e^{\prime} c$ and $X_{R c} / h$ as expansion ratio α varies

Fig.5-9 Relation between maximum value of normalized pressure gradient and expansion ratio α

Fig.5-10 Contours of Bernoulli function, Bernoulli function gradient and vorticity gradient

$$
\left(R e=200, \alpha=3.0, L_{D}=1.0\right)
$$

第 6 章 正方形急拡大流路を通過する層流はく離流れ （循環渦領域の渦構造）

6． 1 緒 言

著者らは第3章において，対称急拡大流路の拡大部下流の流れパターンを調査し，レイノルズ数および流路拡大比 α の変化に伴うはく離循環渦長さの変化特性，およびそれらと圧力勾配量との相互関係について報告した。続いて，第 4 章でははく離渦形状の幾何学的相似と力学量との関係を報告し，第5章では レイノルズ数の変化に対するはく離渦長さの影響を，分岐レイノルズ数 Rec と分岐レイノルズ数におけるはく離渦長 $X_{R c}$（う短い方のはく離渦長）で規格化し て評価すると α によらず相似性を示すことを報告した。また，急拡大流路内を蛇行する主流の流れパターンを，流線パターンと力学量との関係に加えて，運動学的考察からも対応づけた。これらの結果より，レイノルズ数および流路桩大比に依存する二次元対称急拡大流路内の流れパターンを系統的に示すことが できた．ところが，急拡大三次元流路内の流れは三次元はく離•再付着を伴い， そこに形成される循環渦は二次元流からは単純には予測し難い挙動を示す。し たがって，これまでに得られてきた二次元流の結果から単純に予測し，適切に考察を加えることはできないものと考えられる。

本章では，正方形急拡大流路内の流れを CFD ツールである OpenFOAM （OpenCFD 社）を用いて三次元の層流計算を行い，正方形急拡大流路を通過す る三次元層流の定常流領域における流れ構造を調査する。拡大部下流域に形成 される三次元渦の流路内への広がり，はく離領域内の流体の挙動，開いた三次元渦領域に流入•流出する流れ機構を明らかにすることを目的とする。従来の研究から予想される流れ場の三次元的特徴が表れやすい面積比の $A_{2} / A_{1}=4$ の場

合について，流れパターン，はく離渦の長さ，流れ場の平均速度と圧力および渦度を評価する。また，流体粒子のラグランジュ的な挙動の調査から三次元渦 の挙動や形状を明らかにし，運動学的考察に基づく説明を試みる。

6． 2 計算モデルと CFD 解析の概要

本章で使用する計算モデルは第2章の図2－4（a）（b）に示した正方形急拡大流路である．流路形状は第2章の表2－1中の Model 1 であり，拡大部上流の断面積 A_{1} と下流の断面積 A_{2} の面積比 $A_{2} / A_{1}=4$ ，下流側の流路の長さ $L_{\text {out }} / H_{l}=$ 100 である．この流路の垂直断面（ $x-y$ 断面）形状は流路拡大比 $\alpha=2$ の二次元対称急拡大流路と同一形状となる．境界条件および計算手法は第 2 章 2 ． 2 節に示した通りである。この流路を OpenFOAM の有限体積法を用いて解き，$R e=20$ ～700 の範囲の定常流を解析する。

6． 3 結果および考察

6．3． 1 流れパターン

図6－1（a），（b）は，垂直断面（ $z=0$ 断面）および対角断面（ $y=z$ 断面） における流れパターンを流線で示したものである。ここで，紙面に垂直な速度成分はほぼゼロであるため，それを無視している．図6－1（a）（b）の流れパ ターンはいずれも急拡大角部下流に渦が生じ，主流部領域の流れも含めて上下対称である．また，循環渦領域付近でははく離および再付着する流線も見られ，一見すると二次元急拡大流路や軸対称急拡大流路内流れでよく見られる流れパ ターンを示している。しかしながら，これらはく離•再付着する流線を詳細に見てみると，垂直断面〔図6－1（a）参照〕では拡大部角を出発する流線は下流の上下壁面に付着せず，下流へと続いている。一方，上または下壁面に付着

している流線は拡大部角から出発したものではなく，循環渦の渦中心付近から渦巻き状の経路を辿った流線であることがわかる。赤色の流線は，先に示した角部から出発した流線と，渦中心付近から出発し壁面に付着する流線との間を通過して下流に流れ出る流体粒子の存在を示しているため，この流線が閉じて いないことを予想させる。なお，この赤の流線は $x / H_{l}=0.5$ において角から出発 する流線と壁に付着する流線の中間点を出発点として描くと同時に，速度を反転させて逆方向にも描くことで出発点を辿っている。次に対角断面〔図 6－1
（b）参照〕の流線をみると，上または下壁面に付着している流線は，急拡大部角からではなく拡大部上流から来ていることがわかる。赤色の流線は，拡大部上流から循環渦領域に流入する流体粒子の存在を示しており，壁面に付着する流線と壁面との間を通過し循環渦領域へ流入している。緑色の流線は，赤の流線の内側の閉じた領域を周回している。これらは二次元流からは説明できない流れパターンであり，三次元渦の特徴 ${ }^{(6-1)-(6-3)}$ を表している。

図 $6-2$ は垂直断面あるいは対角断面における流れ方向速度成分の下流方向変化を無次元化して示したものである。縦軸は流れと垂直方向の距離 y（垂直断面について）および y_{D}（対角断面について）を H_{l} で無次元化しており，流れ方向速度 u は流路中心線上の速度 U_{C} で無次元化されている。図6－2中には Macagno と Hung ${ }^{(6-4)}$（軸対称急拡大流路，$R e=60$ ）の急拡大部および再付着点位置における分布も掲示している。主流領域に注目すると，全領域において流路中心線上で最大速度を示しており，一般的な急拡大流路内流れで見られるよう な速度分布となっている。拡大部直前 $\left(x / H_{l}=0\right)$ に注目すると，垂直断面の速度分布はポアズイユ流に近い速度分布であるが，一方，対角断面の分布はすで に逆圧力勾配の影響が表れ変曲点を持つ分布となっており，この分布は図 $6-$ 1 （b）で示した対角断面の流れの様相とも対応している．次に循環渦領域に注

目すると，対角断面の方がより下流まで逆流が生じており，対角断面と垂直断面で形成される渦の大きさが異なっていることが確認できる。これら異なる領域に分布する逆流領域は流路内で繋がっているため，ここに形成される三次元流場は単純ではないことが分かる。

6．3． 2 はく離渦長さ

三次元流の流れ関数は定義できないため，Délery ${ }^{(6-3)}$ は壁面上のせん断応力線 （限界流線）の分布をトポロジー的に解釈し，再付着線や再付着点を定義して いる。著者らも，その定義を参考にし，壁面上の速度勾配から拡大部下流の三次元渦の空間的な広がりを調査する。図6－3（a）は $R e=100$ における拡大部下流の壁面上 $\left(y / H_{l}=-1\right)$ の無次元速度勾配 $(d u / d y) /\left(U / H_{l}\right)$ の等値線を示し たものである。無次元速度勾配が正の領域を赤色，負の領域を青色で示し，等値線間隔は 0.1 とした。図 $6-3$（a）中の等値線の値がゼロを示す尖角形状の線が限界流線であり，それを再付着線と定義した。ただし $d w / d z$ を考慮していな いため $d w / d z=0$ となる壁面中央線上 $\left(z / H_{l}=0\right)$ および対角 $\left(z / H_{l}= \pm 1\right)$ 以外の分布は正確ではないが，ここでは概略の再付着線として示している。急拡大部す ぐ下流は循環渦領域なので逆流しており負の値となる。この逆流領域は垂直断面よりも両側壁に近い領域（対角断面領域）で下流方向に広く分布しており， また壁面中央に対して対称な分布となっている。

図6－3（a）で得られた結果を基にして，垂直断面（ $z / H_{l}=0$ ）および対角断面（ $\left.z / H_{l}=0.95\right)$ における速度勾配の流れ方向変化を示したのが図 $6-3(\mathrm{~b})$ である．これより，対角断面の再付着点距離 $X_{R D} \doteqdot 7.3$ であり，垂直断面の再付着点距離 $X_{R V} \fallingdotseq 3.7$ に比べ概ね 2 倍と著しく長いことがわかる。なお，ここで示 した対角および垂直断面の再付着点距離は図 6－1で示した流線の付着位置と

対応している。
再付着点距離のレイノルズ数に対する変化を調査するため，図 $6-3$（b）で求めた $X_{R V}, ~ X_{R D}$ のレイノルズ数に対する変化を示したものが図 6－4 である． レイノルズ数範囲 $R e \leqq 700$ においては，レイノルズ数の増加に対して $X_{R V}, X_{R D}$ のいずれも，軸対称急拡大流路内流れ ${ }^{(6-4)(6-5)}$ や第 3 章で示した低レイノルズ数領域における二次元対称急拡大流路内流れ ${ }^{(6-6)}$ の場合と同様，直線的に増加してい る．本結果は後述の図 $6-8$ で示すような三次元渦の再付着点距離であるが，二次元および軸対称の結果と同傾向であると言える。

6．3． 3 三次元的な流れの構造

正方形急拡大流路内の流れ構造を渦度の x 方向成分 ω_{x} と垂直および水平方向速度成分ベクトル $(v-w$ ベクトル）を用いて図 $6-5$（a）に，また図 $6-5$（a） の右下 $1 / 4$ の領域の拡大図を図 $6-5$（b）に示す。 $\omega_{x}>0$ の領域を赤色，$\omega_{x}<0$ の領域を青色とし，下流側から見た図を示している。等値線は ω_{x} を U と H_{l} で無次元化した値に対し 0.02 間隔で示している。渦度は縦渦状の流れが $x=$ 一定断面において形成されていることを示しており，正負で交互に規則正しく八つ並ぶ三次元構造となっていることが分かる。速度ベクトルから見ると，流路中心からは壁面に向かう外向きの流れ，対角の四隅からは流路中心に向かう内向 きの二次流れが規則的に生じている。これら八つの規則的な渦構造は，対称断面である二つの対角断面，水平•垂直断面および壁面で挟まれた領域にそれぞ れ存在している。また，速度ベクトルの方向から分かるように，それぞれの領域をまたいで流体の輸送はなされていない。この挟まれた $1 / 8$ の領域を調査する ことで，流れ場全体の構造を明らかにできると考えられる。

図6－6は，$R e=100$ における流れ方向の等速度線を示したものである．速度

の大きい箇所を赤色で，小さい箇所を青色で示し，等値線は順流領域を 0.1 間隔，逆流領域を 0.02 間隔とした．$x / H_{l}=0 \sim 1.0$ の範囲において，流路の形状に沿つ た正方形状の等速度線分布は，急拡大角部を通過する際に変形を受け，流路中心付近は同心円状に，周囲の低速な領域はひし形状の分布になる。そのさらに周囲には逆流領域が生じている。そのため，角部を中心に逆流領域が形成され る．このことは垂直断面にくらべ対角断面に形成される渦の寸法が大きいこと （図6－1参照）および二次流れの分布（図6－5参照）からも確認できる。

図6－7は，$R e=100$ における断面内の等圧力分布 $p /\left(\rho U^{2} / 2\right)$ を示したもの である．各断面内において圧力が高い箇所を赤色で，低い箇所を青色で示し，等値線は 0.004 間隔とした。図6－6における主流の等速度線が正方形状からひ し形状になる原因として，急拡大直後 $\left(x / H_{l}=0.3\right)$ の領域で，青色で示す圧力 の低い領域が生じること，さらに対角の四隅に高い圧力の領域が生じることか ら説明できる。一方，循環渦領域に注目すると，対角の四隅の圧力に比べ，垂直断面内の壁面付近の圧力が小さいことより，対角四隅から壁面中央向きの圧力勾配が存在していることがわかる。このことは後述の図6－8 で示す循環渦領域内における対角から壁面中央の方向への流体粒子の移動原因となっている。 また $x / H_{l}=1.0$ での分布は図 $6-5$ で示した速度ベクトルの分布とも対応してお り，流路中心の圧力が高いため主流から外向きの流れが生じる，また対角線上 に青で示す圧力の低い領域が存在するため対角の四隅から内向きの速度が生じ ることがわかる。

これまでの結果より，この流れ場は八分割された領域が規則的に存在する構造であることを示した。そこで，この領域の一つ（ $1 / 8$ の領域）を対象として流体粒子の挙動を追跡することにより流れの構造を明らかにする。なお，本報告 では定常流の結果のみを扱うため，ここで示した流体粒子の挙動は流線と同一

のものを表す．流体粒子の挙動解析には ParaView（Kitware 社ほか）を利用した。 まずは，拡大部上流の壁面近傍と循環渦領域に設置した代表的な流体粒子の挙動から，急拡大部における流れ挙動を示す。図 $6-8$（a）に示した流体粒子の初期位置 $\left(x / H_{l}, y / H_{l}, z / H_{l}\right)$ は，青色 $(-0.5,-0.45,0 \sim-0.3)$ に 5 カ所（上流壁中央寄り），赤色 $(-0.5,-0.45,-0.4)$ に 1 力所（上流壁対角），緑色（1．5， $-0.65,-0.5)$ に 1 力所（循環渦内）とした〔図 $6-8$（a）中の挿入図参照〕．図6－8（a）に示すように，下流へと流されるパターン（青色の流体粒子），循環渦内へ流入し流出するパターン（赤色の流体粒子），循環渦内で周回し続け るパターン（緑色の流体粒子）があることがわかる。ここでは流入•流出する パターンと循環渦内を周回するパターンについて詳しく調べる。

図6－8（b），（c）は図6－8（a）で示した赤色と緑色の流体粒子の軌道を それぞれ $x-y$ 断面，$x-z$ 断面に投影したものである。図6－1（b）で示した拡大部下流の壁面に付着する流線も図6－8（b）中に示す。流入•流出するパ ターンに注目すると，上流壁対角から出発した赤色の流体粒子は桩大部下流の循環渦領域に流入し，その内部を $4 \sim 5$ 周螺旋運動しながらスパン方向へ移動し，壁面中央 $\left(z / H_{l}=0\right)$ 付近で循環渦領域から下流へ流出している。この流体粒子 の挙動により，螺旋状の三次元渦がここに形成されていると考えられる。また流体粒子が循環渦内で壁面中央方向に移動するのは，図6－7（b）で説明した ように，急拡大直後で対角の圧力に比べて壁面中央の圧力が低いことが影響し ている．ここで示した上流壁対角から循環渦内への流入構造は，図 $6-1$（b） の赤色の流線で示した流体の流入経路と対応している．また，スパン方向へ螺旋運動した後に循環渦領域から下流へ流出する構造は，図 6－1（a）の赤色の流線で示した流体の流出経路と対応している。なお，これと類似の粒子挙動は， ダクト内後ろ向きステップ流れにおいても報告されている ${ }^{(6-7)(6-8)}$ ．

一方，前述の螺旋状の三次元渦の内部には流体粒子が周回し続けるリング状 の三次元渦領域（図 $6-8$ 中の緑の流線で示す）が存在している。ここでは螺旋渦の内側に沿った大きな回転半径の運動（リング状運動と呼ぶ）と，その周回方向に軸を持つ小さな回転半径の運動（縦渦状運動と呼ぶ）の二つの運動が同時に行われている。これを詳しく見るため，リング状運動の渦中心付近 $\left(x / H_{l}\right.$ ＝1．3）において流体粒子が $y-z$ 断面を通過する点を図 $6-9$ に示す。縦渦状運動のため，流体粒子は楕円状に並んだ上側の通過点を反時計回りに，下側の通過点を時計回りに上側下側交互に通過する。この運動のため，回転半径が大き いリング状運動の時は螺旋渦（図6－9中赤で示す）と同じように垂直断面の方向へ，回転半径が小さいリング状運動の時は対角断面の方向へ移動する（図 6－9中矢印で示す），そしてそれらを繰り返すことを表している。この対角断面方向に移動する挙動は図 $6-5$ に示す速度ベクトルの方向とも一致している． なお，この縦渦状運動の周期は流体粒子の初期位置にも依存するが，リング状運動 15 周につき 1 周程度である。これらは，いずれの軌道も螺旋運動する流体粒子の内側にあることから，螺旋渦の内側の閉じた領域にリング状の三次元渦が存在していると考えられる。

6． 4 結 言

面積比が 4 の正方形急拡大流路内流れについて，OpenFOAM を用いて三次元 の層流計算を行い $R e=20 \sim 700$ の範囲で流れ場を調査した。特に，拡大部下流 に形成される三次元渦を流体粒子の挙動から調べ，以下の事柄を明らかにした。
（1）正方形急拡大流路の流線パターンは，垂直断面では渦中心付近から出発 して下流に流出する流線を示している。一方，対角断面の流線では，拡大

部上流から循環渦領域に流入する流線を示している。これらが三次元渦の特徴を表すものである。
（2）三次元渦構造を粒子挙動から求めた流線で見ると，拡大部下流の循環渦領域で螺旋運動をする挙動が見られる。これは垂直および対角断面で見ら れたパターンと対応しており，循環渦の流入流出構造を表している。一方，螺旋渦の内側の領域には大きな回転半径の運動と，その周回方向に軸を持 つ小さな回転半径の運動をする挙動が見られる。したがって，螺旋渦の内側にはリング状の三次元渦が存在していると考えられる。
（3）$x=$ 一定断面の渦度の x 方向成分の分布は正負で交互に規則正しく八つ並 ぶ三次元構造となっている。速度ベクトルから見ると，流路中心からは壁面に向から外向きの流れ，対角の四隅からは流路中心に向から内向きの二次流れが規則的に生じている。このため流れ場には対称断面である二つの対角断面，水平•垂直断面および壁面で挟まれた領域に，それぞれ規則的 な八つの構造が存在している。

Fig.6-1 Streamline $(R e=100)$

Fig.6-2 Velocity profile $u / U_{C}(R e=100)$

(a) Contours of $(d u / d y) /\left(U / H_{l}\right)$ on the wall

(b) Reattachment length evaluated from $(d u / d y) /\left(U / H_{l}\right)$

Fig.6-3 Distribution of $(d u / d y) /\left(U / H_{l}\right)$ on the wall $\left(R e=100, y / H_{l}=-1\right)$

Fig.6-4 Variation of reattachment length on the wall as Reynolds number varies

Fig.6-5 Contours of vorticity ω_{x} and velocity vector $v / U-w / U(R \mathrm{e}=100)$

Fig.6-6 Contours of velocity $u / U(R e=100)$

Fig.6-7 Contours of pressure $p /\left(\rho U^{2} / 2\right)(R e=100)$

Fig. 6-8 Behavior of fluid particles $(R e=100)$

Fig.6-9 Longitudinal vortex motion $\left(R e=100, x / H_{l}=1.3\right)$

第7章 正方形急拡大流路を通過する層流はく離流れ （有限振幅を伴ら流れの特徴）

7． 1 緒 言

第6章では，正方形急拡大流路を通過する三次元層流を定常流の領域におい て調査した。その結果，拡大部下流域に形成される三次元渦の流路内への広が り，はく離領域内の流体の挙動および三次元渦領域に流入•流出する流れ機構 を明らかにした。レイノルズ数が増加すると，正方形急拡大流路内に形成され るはく離せん断層はさらに下流方向に大きく引き伸ばされ，同時に拡大部下流域で生じる強い逆圧力勾配の影響を受ける。はく離せん断層は微少撹乱の影響 を受け，非対称流や非定常流などへの遷移を引き起こすきっかけとなり得る ${ }^{(7-1)(7-2)}$ が，このような三次元的に発達するはく離せん断層が非対称流や非定常流 への遷移に及ぼす影響は明らかとなっていない。また，正方形流路内の流れは水平•垂直断面と対角断面とで流れの様相は異なっており，特に対角断面の速度分布には変曲点が存在しているため，撹乱の存在位置の違いに対してはく離 せん断層が受ける影響が異なる可能性があるものと思われる。

本章ではレイノルズ数の変化（粘性の効果）が正方形急拡大流路を通過する三次元層流の流れ構造におよぼす影響を明らかにすることを目的とする。レイ ノルズ数変化が，せん断層の分布と密接に関連している循環渦領域に及ぼす影響，非定常流へ移行するレイノルズ数，速度および変動速度から見た流れ構造 パターン，および導入撹乱が流れに与える影響を明らかにする。

7． 2 CFD 解析の概要および計算モデル

本章で使用する計算モデルは第2章の図2－4（a）（b）に示した正方形急拡

大流路である．流路形状は第2章の表2－1中の Model 1～Model 3 であり，拡大部上流の断面積 A_{1} と下流の断面積 A_{2} の面積比 $A_{2} / A_{1}=4$ ，下流側の流路の長 さ $L_{\text {out }} / H_{l}=100$（Model 1，Model 3）または $L_{\text {out }} / H_{l}=150$（Model 2）である．境界条件および計算手法は第2章2．2節に示した通りである。この流路を OpenFOAM の有限体積法を用いて解き，$R e=20 \sim 1900$ の範囲の定常流および非定常流を解析する。

7． 3 結果および考察

7．3． 1 レイノルズ数の変化に伴う流れ構造の変化

低レイノルズ数領域における正方形急拡大流路内の流れ構造については，す でに第 6 章で報告しているが，ここで概略を述べておく，この流路の低レイノ ルズ数領域で見られる流れは定常対称流（垂直断面，対角断面において，それ ぞれ対称な流れ）である。拡大部下流に形成される循環渦領域は対角の角部が最も長く，一方，壁面中央が最も短くなる傾向を示す。このような循環渦領域 が形成されるのは，急拡大直後のせん断層付近に見られる正方形状の等速度線分布が，対角の四隅に形成された高圧領域の影響を受け，下流に流れる際にひ し形状に変形するためである。また，それに伴い拡大部下流には二次流れが生 じるため，$x=$ 一定断面内の流れを渦度で見ると，正負で交互に規則正しく八 つ並ぶ三次元構造となる。これは第 6 章で述べたように，循環渦領域には三次元渦が形成されており，流体の流入•流出を伴う螺旋状の渦の中にリング状の三次元渦が存在する複雑な構造が生じていることを示している。

レイノルズ数の変化に対するこの循環渦領域の下流方向変化を示すため，壁面上の流れ方向速度勾配から求めた再付着点距離 $X_{R V}$（壁面中央）および $X_{R D}$（対角角部）を図 7－1に示す。また，レイノルズ数の変化に伴い生じる代表的な

流れ構造を，x 方向速度の等速度線で図 $7-2$ に示す。なお，図 $7-2$ 中の白線 は $u / U=0$ を示しており，速度は右上に示すカラーバーと対応している。以後に示す図 $7-3$ ，図 $7-5$ および図 $7-9$ も同様である。図 $7-1$ の領域 I に示す低レイノルズ数領域（ $R e \leqq 900$ ）では第 6 章と同様，定常対称流のみが生じる〔図 $7-2$（a）〕．再付着点距離 $X_{R D}$ と $X_{R V}$ は，いずれもレイノルズ数に対して直線的に増加する。
$R e=900$ を越えると，定常対称流〔図7－2（b）〕と非定常流〔図7－2（c）〕 のいずれかの流れが生じる（図 $7-1$ 領域 II）。定常対称流は低いレイノルズ数 の定常対称流を初期値として，順次，高いレイノルズ数の流れを求めることに より $R e=1300$ を上限として得られた。この流れは領域 I の定常対称流と同じ流 れ構造であり，再付着点距離もレイノルズ数に対して直線的に増加する。 $R e=$ 1300 を越えると定常対称流は非定常性を伴う別の流れとなる．先程と逆に，こ の非定常な流れを初期値として，順次，低いレイノルズ数の流れを求めると Re $=900$ で定常流が得られることより，レイノルズ数に対するヒステリシス現象が存在することがわかる。同様の現象は軸対称流急拡大流路においても報告され ており，Rojas $ら^{(7-2)}$ は $R e=1450 ~ 1850$ の範囲にそれが存在することを報告して いる．7．3． 3 節で述べるが，この領域 II で得られた定常対称流に撹乱を導入すると，いずれも非定常性を伴ら流れに移行するため，この領域で得られた定常対称流は不安定であると言える。したがって，本報告では $R e=900$ を定常流 から非定常流への遷移レイノルズ数 Rec とする。なお，ここで得られた非定常性を伴う流れと同様の流れをRojas ら ${ }^{(7-2)}$ は Disordered Motion Flow と呼んでいる。著者らは，この流れを有限振幅流れと呼ぶこととする。有限振幅流れが生じる と再付着点距離は時間的に変化するため，図7－1中の再付着点距離は時間平均的な流れから再付着点距離を求め，各角部および各壁面中央それぞれ 4 力所

の平均値として示している。有限振幅流れの再付着点距離は同レイノルズ数に おける定常対称流と比べ，特に対角の $X_{R D}$ がレイノルズ数の増加に伴い大きく減少する傾向を示している．Re＞1300の領域においてはこの $X_{R D}$ のレイノルズ数 に対する減少割合は小さくなり，一方 $X_{R V}$ は増加から減少傾向に転じる。また前述の定常対称流が存在する上限が $R e=1300$ であること，さらに後述の流路中心線上の変動速度の最大値（図 7－8 参照）も $R e=1300$ 付近から変化傾向が異な ることを考慮し $R e=1300$ を領域 II の上限とした。ここで示した $\operatorname{Rec}=900$ の値 は Rojas ら ${ }^{(7-2)}$ の示した軸対称急拡大流路の場合の Rec＝1450よりも小さな値で あるが，正方形急拡大流路の拡大部上流に常に存在する速度分布の変曲点，軸対称急拡大流路の再付着点の二倍近くに達する対角の循環渦領域（図 $7-1$ 中 の軸対称急拡大流の再付着点距離参照）および拡大部下流に存在する二次流れ などがせん断層の安定性に影響をおよぼしていることが要因として考えられる。

図 $7-1$ の領域 III（ $R e>1300$ ）は，有限振幅流れのみが安定して存在する領域であり，レイノルズ数の増加に伴い再付着点距離 $X_{R V}$ および $X_{R D}$ は減少する傾向を示す。ここでの流れパターン〔図7－2（d）〕は領域II〔図7－2（c）〕と似たパターンを示しているが，$x / H_{l}=32$ の中心の高速領域（黄色）が消滅してい ることより，崩壊位置がより上流に移動していることがわかる。この移動原因 については，後述の7．3． 2 節で述べる。

以上の結果よりレイノルズ数に対して流れ構造は三分類でき，領域 $\mathrm{I}(R e \leqq 900)$ は定常対称流のみが存在し，壁面中央および対角の再付着点距離はいずれもレ イノルズ数に対して直線的に増加する。領域 II（ $900<R e \leqq 1300)$ は不安定な定常対称流と有限振幅流れが存在する。ここでの定常対称流の再付着点距離は領域Iと同様の変化をするが，一方，有限振幅流れは特に対角の再付着点距離がレ イノルズ数の増加に伴い大きく減少する。領域 III（Re＞1300）は有限振幅流れ

のみが安定して存在し，レイノルズ数の増加に伴い壁面中央および対角の再付着点距離のいずれも減少する傾向を示す。定常非対称流は，定常流の存在する領域 I と領域 II のいずれにおいても見られなかった。

正方形ダクト内流れについて，Uhlmann $ら^{(7-3)}$ は DNS で調査し，乱流が安定し て存在するレイノルズ数の下限は $R e \fallingdotseq 2200$ であることを報告しており，また， Avilla ${ }^{(7-4)}$ が軸対称管内流れにおいて報告しているパフ（局所乱れ）の平均寿命の結果より $R e>1900$ の領域では乱流的な流れの性質が急増することが予想さ れる。これらに加え図 $7-1$ のはく離渦長さが高レイノルズ数領域において急激な変化をしていないことから本報告においては $R e \leqq 1900$ の領域を解析の対象 とした。

7．3． 2 有限振幅流れの詳細

図 $7-1$ および図 $7-2$ で示したように，有限振幅流れではある領域から下流の流れ構造が大きく変化する。これを詳しく見るため，図 $7-3$（a）（b）に $R e=1300$ における有限振幅流れの垂直断面および対角断面における x 方向等速度分布をそれぞれ示す（ここに示した画像は紙面上で縦方向に 4 倍拡大してあ る）．比較のため，同レイノルズ数における定常対称流の場合も図 $7-3$（c）（d） に示す．$x / H_{l}=0 \sim 30$ の領域は有限振幅流れと定常対称流のいずれも主流近くに赤色から黄色で示す高速領域が存在し，壁面近傍の循環渦領域には青色で示す逆流あるいは低速な順流領域が分布している。対角角部を中心に循環渦が形成 されるため，対角断面の方により大きな循環渦領域が形成されていることがわ かる。この領域においては，有限振幅流れと定常対称流とで同じ流れ構造 $〔 x=$ 一定断面でみると八分割の流れ構造（第6章図6－5参照）〕を示している。 x / H_{l} $=30$ を過ぎると有限振幅流れでは非定常性を伴う変動が出始め，さらに $x / H_{l}=$

40 付近では大きな変動を伴いながら急激に流れ構造が変化する。これに伴い，主流付近の高速領域は周囲に急速に拡散して壁面近傍の循環渦領域の形成を妨 げるため，図 $7-1$ で示したように再付着点距離が定常対称流に比べ短くなる。 この領域の流れ構造は時間的に変化しており，上流側に存在する八分割構造は ここで崩壊する．崩壊位置より下流の $x / H_{l}=60$ 付近の速度分布は，$x=$ 一定断面で見ると定常対称流に比べ平坦となり〔図7－2（b）および（c）の $x / H_{l}=80$参照］，これ以降，下流に行くにつれ変動が減衰しながら十分発達した定常対称流へと漸近していく。

有限振幅流れの流れ構造が崩壊する領域を定量的に調査するため，流路中心線上の x 方向速度 u, x 方向時間平均速度 $\langle u\rangle$（急減速する領域の最大時間スケ ールで u を積分）および x 方向変動速度の RMS 値 $u^{\prime} r m s$ を図 $7-4$ に示す。有限振幅流れの x 方向速度は $x / H_{l}=40$ 前後で変動を伴いながら急減速する．減速の開始•終了位置は非定常性を伴うため時間的に変化する。これを時間平均的な立場から見ると，$x / H_{l}=30$ を過ぎた付近から減速が始まり，$x / H_{l}=50$ を過ぎた付近では逆に増速し始めている。したがって，この間で流れ構造の崩壊が起き ていると考えられる。また，変動速度のRMS 値分布は時間平均速度で説明した流れ構造の崩壊領域とほぼ対応していることがわかる．したがって，有限振幅流れでは，流れ構造の崩壊に伴い狭い領域のみで強い非定常性が生じるという極めて興味深い挙動を示している。

図 $7-5$ は，先に示した図 $7-3$ と同様の x 方向等速度分布を $R e=1800$ につ いて示したものである。このレイノルズ数領域では定常対称流は得られていな いため，有限振幅流れの場合のみ示している．$R e=1800$ の流れは $R e=1300$ の場合〔図7－3（a）（b）〕とよく似た構造を示しているが，流れ構造が崩壊する位置は異なり，$R e=1800$ の方がより上流側から崩壊が始まっている。図 $7-6$

も図 7－4と同様に，$R e=1800$ の場合の流路中心線上の分布を示したものであ る。時間平均速度および変動速度のRMS 値から見た流れ構造の崩壊位置は，い ずれも $x / H_{l}=28 \sim 45$ 付近であり，崩壊開始位置，終了位置のどちらも $R e=1300$ の場合に比べ上流側に移動していることが確認できる。また，RMS 値の最大値 は $R e=1300$ の場合よりも $R e=1800$ の方が大きく，より活発な変動が生じてい ることがわかる。

図 $7-7$ は先に示した流路中心線上の RMS 値分布を基に，有限振幅流れにお ける流れ構造が崩壊する領域とレイノルズ数との関係を示したものである。上流側の $u^{\prime}{ }_{r m s} / U=0.1$ となる位置を崩壊開始位置（○），下流側の $u^{\prime}{ }_{r m s} / U=0.1$ と なる位置を崩壊終了位置（•）および $u^{\prime}{ }_{r m s} / U$ が最大をとる位置（○，ロ，$\left.\diamond\right)$ を示した。また，図 $7-8$ は最大値 $\left(u^{\prime}{ }_{r m s} / U\right)_{\max }$ とレイノルズ数との関係を示した ものである。図 $7-7$ より，崩壊開始位置，最大値をとる位置および崩壊終了位置のいずれもレイノルズ数の増加に伴い上流側へと移動しているが，高レイ ノルズ数領域でのその変化割合は小さいことがわかる。この変化の様相は，図 7－1に示した有限振幅流れの再付着点距離の変化と対応している．また崩壊領域を表す開始位置から終了位置までの広さを見ると，レイノルズ数が高い方 が狭いことがわかる。一方，図 $7-8$ の $\left(u^{\prime}{ }_{r m s} / U\right)_{\max }$ の値は，レイノルズ数の増加に伴い増加していることより，レイノルズ数の増加に伴い狭い範囲で急激な流れ構造の変化が生じていると考えられる。

7．3． 3 撹乱の影響

正方形流路内の流れは，水平•垂直断面と対角断面とで流れの様相が異なる ため，撹乱の存在位置の違いに対してせん断層が受ける影響が異なる可能性が ある．そこで，$R e=1000$ における定常対称流の拡大部上流に一時的な撹乱を挿

入し，その後の流れ場の変化を調査する。図 $7-9$ は撹乱を挿入した断面 $\left(x / H_{l}\right.$ $=-1)$ における x 方向等速度分布と撹乱挿入位置を示したものである。撹乱挿入位置は，壁面中央付近 Case A または角付近 Case B のどちらかとし，それぞれの速度がほぼ等しくなる位置とした。撹乱の大きさは平均速度の 5% の増減（赤丸：$+0.05 U$ ，青丸：$-0.05 U)$ を x 方向速度に加えた。これは連続の条件を考慮 している。図 $7-10$ は撹乱が主流の非対称性に与える影響を調べるため，流路中心線上における $v-w$ ベクトルの最大値の時間変化を示したものである。Case A の場合は $t / T=100$ 付近から徐々に変化し始め，$t / T=155$ 付近で急激に $v-w$ ベク トルの最大値が増加している。これは，主流に急激な非対称性が生じているこ とを表している。一方，Case B の場合は $t / T=60$ 付近ですでに大きな非対称性が生じている。いずれの場合も，大きな非対称性が生じた以降は流れ構造が崩壊 し，非定常性を伴いながら有限振幅流れへと移行する。したがって，上流の角部に挿入した方がより早く流れを移行させる結果となっている。

図 7－1 1 は挿入した撹乱の空間的な発達を x 方向速度 u と定常対称流の x方向速度 $u_{\text {steady }}$ との差 u－$u_{\text {steady }}$ として等値面で示したものである。赤は速い部分 $〔\left(u-u_{\text {steady }}\right) / U \geqq 0.0025 〕$ ，青は遅い部分〔（u－u steady $) / U \leqq-0.0025 〕$ を示してい る。Case A を見ると〔図7－11（a）〕，拡大部上流側に入れた撹乱は引き延ば されながら下流に流されている。青で示す遅い撹乱領域の方が下流に流されて いるのは，初期速度が大きい箇所に挿入されているためである。これらの撹乱 は下流に行くにつれせん断層で増幅され，また対抗壁方向にも影響を与え，$t / T=$ 8〔図7－11（b）〕では上下で交互に増減速領域が生じる。これは主流がわず かに上下方向に歪んでいることを表している。一方，Case B の場合，挿入直後〔図7－11（c）〕から撹乱は横方向にも広がっている。これは，ここに生じ る三次元渦の構造（第6章 図 $6-9$ 参照）と対応している．$t / T=8$ 〔図 $7-1$

1 （d）〕では，Case A と同様に撹乱は下流に流されながら増幅しているが，Case Aとは異なり対角方向に主流が歪んでいる。

図 $7-10$ および図 $7-11$ の結果より，撹乱が流れに及ぼす影響は撹乱初期挿入位置によって異なることがわかった。そこで，上下左右壁面におけるエ ンストロフィー $E=|\omega|^{2} / 2$ の分布から壁面近傍の流れ挙動およびその相関を見る。図7－12は代表として循環渦領域における各壁面中央のエンストロフィーの x 方向変化を示したものである。同時刻における $y-z$ 断面 $\left(x / H_{l}=25\right)$ の $u-u_{\text {stead }}$分布も図7－13に示す〔赤色：増速領域（正），青色：減速領域（負）〕．Case A の場合〔図7－12（a）〕を見ると，初期に挿入した撹乱は $t / T=27$ では $x / H_{1}=$ 30 近くまで到達し，主に上下壁の流れ（黒•赤線）に影響を与えていることが わかる．図 $7-13$（a）の分布もこれと対応するように上下に増減速領域が生 じている。この後，この撹乱は下流に流されながら徐々に減衰するが，同時に上流側から新たな撹乱が発生し，$t / T=70$ では先ほどと同様 $x / H_{l}=30$ 近くまで到達する〔図7－12（b）〕．この撹乱の分布は $t / T=27$ の分布とよく似ているが，上下ではなく左右壁（緑•青線）が大きく変動している点が異なる。図 $7-1$ 3 （b）の分布にもその傾向が表れており，$t / T=27$ の分布を約 90° 回転させた分布になっている。これに関する詳細な機構は不明であるが，循環渦領域は周囲 に渡って繋がっていること，さらに流れ場には縦渦の存在を示す ω_{x} が生じてい る（第6章 図 $6-5$ 参照）ことが原因として考えられる。この後，この撹乱も下流に流されるが，先ほどと同様に新たな撹乱が上流に発生し，$t / T=155$ では上下左右の全ての壁面で変動が起きる〔図7－12（c）〕．ここでは，図7－13 （c）に示すように，上下あるいは左右の増減速の明確な傾向は見られない．こ れらがきっかけとなり規則的な流れ構造は崩壊をし始め，図7－10に示すよ うに，有限振幅流れへと移行する。一方，Case B〔図7－12（d）〕を見ると，

Case A と同様，初期に挿入した撹乱は $t / T=27$ で $x / H_{l}=30$ 近くまで到達してお り，全ての壁面が撹乱の影響を受けている。ここでは上壁と左壁，下壁と右壁 が同じように変化していることから，流れが対角方向に歪んでいることを示し ている．図 7－13（d）の分布も対角方向に傾いた増減速領域を示している。 この撹乱も下流へ流されるが，同時に上流側から新たな撹乱が発生し，$t / T=60$ で流れは大きく変動し始める〔図7－12（e），図7－13（e）〕。これらがき っかけとなり規則的な流れ構造は崩壊する。このように，Case A，Case B のい ずれも初期に挿入した撹乱の影響を受けてせん断層には間欠的な変動が発生し始めるが，それらの時間発展は両者で異なる。また，いずれの場合も上下左右全てのせん断層が変動し，断面内の撹乱が複雑な増減速領域を示した後に，有限振幅流れへと移行する。

7． 4 結 言

面積比が 4 の正方形急拡大流路内流れについて，OpenFOAM を用いて三次元 の層流計算を行い $R e=20 \sim 1900$ の範囲で流れ場を調査した。特に，レイノル ズ数の変化が流れ構造に与える影響を調べ，以下の事柄を明らかにした。
（1）正方形急拡大流路における流れ構造はレイノルズ数で三分類できる。 $R e \leqq 900$ 領域は定常対称流のみが存在し，壁面中央および対角の再付着点距離はいずれもレイノルズ数に対して直線的に増加する． $900<R e \leqq 1300$ の領域は不安定な定常対称流と有限振幅流れのどちらかの構造が表れ，定常対称流の再付着点距離は $R e \leqq 900$ と同様の変化，有限振幅流れは特に対角角部の再付着点距離がレイノルズ数の増加に伴い大きく減少する。 $R e>1300$ の領域は有限振幅流れのみが安定して存在し，レイノルズ数の増加に伴い

壁面中央および対角の再付着点距離はいずれも減少する傾向を示す。これ らの結果より，安定した流れにおいて最も再付着点距離が長くなるのは，壁面中央では $R e=1300 ~\left(x / H_{l}=40\right)$ ，対角角部では $R e=900\left(x / H_{l}=66.7\right)$ の場合である。
（2）流路中心線上の流れ方向変動速度の RMS 値から流れ構造の崩壊開始•終了位置を定義することで，有限振幅流れの特徴を明らかにした。レイノル ズ数を増加させることにより，有限振幅流れの崩壊開始位置，RMS 値が最大値をとる位置および崩壊終了位置を上流側へ移動させること（平均速度 が急減速する領域を上流側へ移動させることに対応），さらに RMS 値の最大値を増加させることが可能となる。また，この流れ構造の崩壊に伴い主流付近の高速領域は周囲に急速に拡散して壁面近傍の循環渦領域の形成を妨げるため，再付着点距離の制御が可能となる。
（3）撹乱が流れに及ぼす影響は撹乱初期挿入位置によって異なり，上流の壁面中央および角部に挿入した場合では，角部の方がより早く流れを有限振幅流れへ移行させることが可能となる。これは，初期に挿入した撹乱位置 の違いが，時間および空間発展の異なる間欠的な変動を循環渦領域に生じ させるためである．

Fig.7-1 Variation of reattachment length on the wall as Reynolds number varies

(b) Steady flow at $R e=1300$

(c) Disordered motion flow at $R e=1300$ (Snap shot)

(d) Disordered motion flow $R e=1800$ (Snap shot)

Fig.7-2 Contours of streamwise velocity u / U on $y-z$ plane

Fig.7-3 Contours of streamwise velocity u / U on vertical and diagonal plane at $R e=1300$

Fig.7-4 Distribution of velocity $u / U,\langle u\rangle / U$ and $u^{\prime}{ }_{r m s} / U$ on centerline at $R e=1300$

(b) Diagonal plane (Disordered motion flow, snap shot)

Fig.7-5 Contours of streamwise velocity u / U on vertical and diagonal plane at $R e=1800$

Fig.7-6 Distribution of velocity $u / U,\langle u\rangle / U$ and $u^{\prime}{ }_{r m s} / U$ on centerline at $R e=1800$

Fig.7-7 Area of disordered motion

Fig.7-8 Maximum value of fluctuations

Fig.7-9 Initial position of disturbance $\left(x / H_{I}=-1\right)$

Fig.7-10 Growth of $\left(v^{2}+w^{2}\right)^{1 / 2}{ }_{\text {max }} / U$ on centerline at $R e=1000$

Fig.7-11 Growth of disturbance $\left(u-u_{\text {steady }}\right) / U$ at $R e=1000$

(a) Case A, $t / T=27$

(b) Case A, $t / T=70$

(c) Case A, $t / T=155$

(d) Case B, $t / T=27$

(e) Case B, $t / T=60$

Fig.7-12 Distribution of enstrophy $E=|\boldsymbol{\omega}|^{2} / 2$ on the wall at $R e=1000$

(a) Case $\mathrm{A}, t / T=27$

(b) Case A, $t / T=70$

(c) Case A, $t / T=155$

(d) Case B, $t / T=27$

(e) Case B, $t / T=60$

Fig.7-13 Growth of disturbance on $y-z$ plane at $R e=1000\left(x / H_{l}=25\right)$

8 章 結 論

本研究では，急拡大を伴う二次元および三次元流路内の層流はく離流れを調査し，拡大部下流に形成される循環渦領域の構造，非対称流れおよび非定常流 れへの分岐，流れの制御の可能性について明らかにすることを目的とした。

第一段階として第3章から第5章では，二次元急拡大流路内の流れを差分法 （流れ関数一渦度法）により解き，流路拡大比 $\alpha=1.4 \sim 4.0$ ，レイノルズ数 $R e=$ 20～1600 の範囲の定常流を系統的に調査した。流れパターンと圧力勾配との関係および分岐レイノルズ数を調査し，はく離渦長と各パラメータとの間の相似性について検討した。また，流路の局所的幾何形状変化として上下のステップ位置をずらすことにより拡大部下流の流れ方向および横断面方向圧力勾配を変化させ，はく離循環渦長さの制御の可能性を調査した。

第二段階として第6章と7章では，正方形急拡大流路を通過する三次元層流 の流れを OpenFOAM の有限体積法を用いて解き，拡大比（面積比） $4, R e=20$ ～1900 の範囲の定常流および非定常流を調査した。流れパターン，拡大部下流 に形成される循環渦領域の広がり，流れ場の平均速度と圧力および渦度から流 れ構造を調査した。また，流体粒子のラグランジュ的な挙動の調査から三次元渦の挙動や形状を明らかにすることを試みた。 さらに，非定常流へ移行するレ イノルズ数，速度および変動速度から見た流れ構造パターン，および導入撹乱 が流れに与える影響を調査した。

これらの調査結果を基にして検討を行い，以下の結果が得られた。

三次元対称急拡大流路における主な結果

（1）はく離渦長さおよびステップ高さを用いて規格化したはく離流線の形状は，

下壁側ではレイノルズ数および上下ステップずれ間隔によらず一致してお り相似性が見られるが，上壁側のそれには相似性が見られない。
（2）二次元非対称急拡大流路のステップ下流渦領域の流れスケールは，$X_{R \mathrm{c}}$（分岐レイノルズ数 Rec におけるはく離渦長）にとることができる。
（3）対称流れから非対称流れへの分岐レイノルズ数 Rec は流路拡大比 α によっ て異なり，$\alpha=1.4$ から 3 の間で大きく減少する。ただし，$\alpha=3$ から 4 へと増加するに伴い Rec の値は緩やかに減少する。
（4）対称流路におけるレイノルズ数に対するはく離渦長の変化は，それぞれの拡大比 α における分岐レイノルズ数 Rec とRecにおけるはく離渦長さとで規格化すると，α によらず相似性を示す。これより，いかなる α についても はく離渦長の予測が可能となる。
（5）第3 のはく離渦が生じるレイノルズ数はいずれの α の場合も分岐レイノル ズ数 Recの 3 倍程度である．
（6）上下ステップのずれ間隔 L_{D} 増加に伴い下壁はく離渦長は， $\operatorname{Re} / \operatorname{Rec}<2.0$ の領域で対称流路の場合の渦長に比べ短くなるが，Re／Rec＞2．0 になると L_{D} に依存せずほぼ一定の値を示す。

正方形急拡大流路における主な結果

（1）定常流対称流における渦構造を流線で見ると，拡大部下流の循環渦領域で螺旋運動をする挙動および循環渦への流入流出構造が見られる。螺旋渦の内側の領域にはリング状の三次元渦構造が存在している。
（2）急拡大部下流の $x=$ 一定断面では，x 方向渦度成分の分布が正負で交互に規則正しく八つ並ぶ三次元構造となっている。このため流れ場には対称断面である二つの対角断面，水平•垂直断面および壁面で挟まれた領域に，

それぞれ規則的な八つの構造が存在している。
（3）正方形急拡大流路における流れ構造はレイノルズ数で三分類できる． $R e \leqq 900$ の領域は定常対称流のみが存在し， $900<R e \leqq 1300$ の領域は不安定 な定常対称流と有限振幅流のどちらかの構造が表れ，Re＞1300の領域は有限振幅流のみが安定して存在する。
（4）撹乱が流れに及ぼす影響は撹乱初期挿入位置によって異なり，上流の壁面中央および角部に挿入した場合では，角部の方がより早く流れを有限振幅流へ移行させることが可能となる。これは，初期に挿入した撹乱位置の違 いが，時間および空間発展の異なる間欠的な変動を循環渦領域に生じさせ るためである。
（5）安定した流れにおいて最も再付着点距離が長くなるのは，壁面中央では $R e=1300\left(x / H_{l}=40\right)$ ，対角角部では $R e=900\left(x / H_{l}=66.7\right)$ の場合である．
（6）レイノルズ数を増加させることにより，有限振幅流れの崩壊開始位置，RMS値が最大値をとる位置および崩壊終了位置を上流側へ移動させること（平均速度が急減速する領域を上流側へ移動させることに対応），さらに RMS値の最大値を増加させることが可能となる．また，この流れ構造の崩壊に伴い主流付近の高速領域は周囲に急速に拡散して壁面近傍の循環渦領域の形成を妨げるため，再付着点距離の制御が可能となる．

本研究の結論を以下に示す。
正方形急拡大流路の循環渦は，規則的に生じた二次流れの影響を受け螺旋状 およびリング状の三次元渦構造となる。正方形急拡大流路内の非対称分岐は，循環渦内で生じる二次流れが局所的な低圧領域の形成を妨げることで主流が対称性を保つため，生じないことを明らかにした。一方，非定常分岐は $R e>900$

の領域で生じることを明らかにし，また縦渦成分を持つ対角角部の循環渦領域 に微少撹乱を導入した方がより早く非定常流に移行することが分かった。この ことは非定常性の誘起に流れ方向渦度成分が強く関連していることを示してお り，非定常分岐の時間変化過程を渦度輸送方程式における各項を評価すること で，より明確な非定常性の生成過程が明らかにできると考えられる。

謝 辞

本研究は，山口大学大学院理工学研究科 望月信介教授，広島工業大学 中西助次教授，大坂英雄 山口大学名誉教授（元広島工業大学教授）の御指導のもと に行われたものであります。本論文は広島工業大学で実施してきた研究の成果 を，日本機械学会論文集などに公表した研究論文を中心にまとめたものであり ます。はく離を伴う流れは至るところに存在し，その典型的な流れ場である急拡大流路内流の複雑な流れ構造を明らかにすることで分岐過程の一端を明らか にしたことは乱流遷移の解明に繋がる大きな成果と考えております。また，本研究を通して得られたこれらの成果は，産業上の機器開発にも役立つものと期待しております。

本論文を結ぶにあたり，御世話になった方々への感謝の気持ちを記します。望月信介教授には本研究による学位取得の機会を与えて頂き，また本論文をま とめるにあたり御指導およびご鞭撻を賜りました。ここに深く感謝いたします。論文審査にあたり御指導および御助言を賜りました羽田野袈裟義教授，加藤泰生教授，朝位孝二准教授および田之上健一郎准教授に謝意を表します。本論文 の研究を始める機会を作って頂き，また長年にわたつて研究の基礎から御指導賜りました中西助次教授に対し心からお礼申し上げます。大坂英雄先生には研究のみならず研究に対する取り組み姿勢を御指導賜り，さらに学位取得の道筋 をつけて頂きました。ここに深厚なる謝意を表します。元広島工業大学 西茂夫先生には広島工業大学における活動の機会を与えて頂き心より感謝いたします。中村育雄 名古屋大学名誉教授には現象解明にかかわる重要な示唆を賜り，ここ に謝意を表します。研究会を通して本研究に係わる貴重なご助言を賜りました広島工業大学 福島千晴教授，宇都宮浩司准教授，近畿大学 亀田孝嗣 准教授お

よび西日本乱流研究会の先生方には厚く御礼申し上げます。本研究の遂行に際 し技術的な御協力を頂きました広島工業大学 越智秋雄教授，小松正雄教授およ び西本澄教授には心より御礼申し上げます。

職場にあたっては学位取得を目指すことに理解とご配慮頂きました広島工業大学共同研究機構および地域連携推進室の皆様には謝意を表します。

最後に，著者を様々な面から支えてくれ，惜しみない協力をしてくれた家族 である久恵と佑樹に心から感謝致します。

文 献

第1章

（1－1）山崎 博之，土岐 優美子，村山 俊之，＂ 3 代目プリウスの空力特性向上技術＂，TOYOTA Technical Review，Vol．57，No．1（2010），pp．20－26．
（1－2）上甲 正義，＂トンネル換気用ジェットファンの VSD（可変速）運転の実用化＂，産業機械， No．744（2012），pp．30－32．
（1－3）白樫 了，高野 清，Christophe PROVIN，酒井 康行，藤井 輝夫，＂平板型高細胞密度バイオ リアクターの流動特性と酸素代謝の評価＂，日本機械学会論文集B編，Vol．75， No．752（2009），pp．864－870．
（1－4）大谷 英之，関 眞佐子，＂円管内壁に接着している球形粒子周りの遅い流れ：二層流モデル による数値解析＂，日本流体力学会誌ながれ，Vol．29，No．5（2010），pp．363－371．
（1－5）石黒 博，＂バイオトランスポートにおけるマルチスケールでの水の役割およびバイオト ランスポートの当世関連事情＂，日本機械学会誌，Vol．111，No．1076（2008），pp．601－603．
（1－6）＂技術資料 流体計測法＂，日本機械学会編，初版，（1985），pp．214－215，日本機械学会．
（1－7）Durst，F．，Pereira．J．C．F．and Tropea，C．，＂The Plane Symmetric Sudden－Expansion Flow at Low Reynolds Numbers＂，Journal of Fluid Mechanics，Vol．248，（1993），pp．567－582．
（1－8）Fearn，R．M．，Mullin，T．and Cliffe，K．A．，＂Nonlinear Flow Phenomena in a Symmetric Sudden Expansion Channel＂，Journal of Fluid Mechanics，Vol．211，（1990），pp．595－608．
（1－9）Rojas，E．and Mullin，T．，＂Finite－amplitude solutions in the flow through a sudden expansion in a circular pipe＂，Journal of Fluid Mechanics，Vol．691，（2012），pp．201－213．
（1－10）中村 育雄，大坂 英雄，＂工科系流体力学＂，初版第2刷，（1986），共立出版．
（1－11）親川 兼勇，平良 哲治，山里 栄昭，＂噴流による後ろ向きステップ下流の再付着領域の熱伝達特性の制御に関する研究：第2報，流路拡大比を変えた場合について＂，日本機械学会論文集 B 編，Vol．60，No．569（1994），pp．248－254．
（1－12）Devenport，W．J．and Suppon，E．P．，＂An experimental study of two flows through an axisymmetric sudden expansion＂，Experiments in fluids，Vol．14，（1993），pp．423－432．
（1－13）Goldstein，R．J．，Eriksen，V．L．，Olson，R．M．and Eckert，E．R．G．，＂Laminar Separation，Reattachment and Transition of the Flow over a Downstream－Facing step＂，Trans．ASME Journal of basic engineering，Vol．92，（1970），pp．732－741．
（1－14）Bradshaw，P．and Wong，F．Y．F．，＂The reattachment and relaxation of a turbulent shear layer＂， Journal of Fluid Mechanics，Vol．52，Issue 01（1972），pp．113－135．
（1－15）Armaly，B．F．，Durst，F．，Pereira，J．C．F．and Schönung，B．，＂Experimental and theoretical investigation of backward－facing step flow＂，Journal of Fluid Mechanics，Vol．127，（1983）， pp．473－496．
（1－16）仲條 一郎，本阿弥 真治，＂後方ステップ流れのはく離•再付着現象に関する研究：第1報，再付着流れに及ぼす流路曲率の影響＂，日本機械学会論文集 B 編，Vol．51，No．471（1985）， pp．3732－3736．
（1－17）Tutty，O．R．and Pedley，T．J．，＂Oscillatory flow in a stepped channel＂，Journal of Fluid Mechanics， Vol．247，（1993），pp．179－204．
（1－18）Neto，A．S．，Grand，D．，Metais，O．and Lesieur，M．，＂A numerical investigation of the coherent vortices in turbulence behind a backward－facing step＂，Journal of Fluid Mechanics，Vol．256， （1993），pp 1－25．
（1－19）太田 照和，柳岡 英樹，畑 孝典，＂二次元対称急拡大流路内流れと熱伝達の数値解析＂，日本機械学会論文集 B 編，Vol．60，No．579（1994），pp．3930－3936．
（1－20）Morgan，K．，Periaux，J．and Thomasset，F．，＂Analysis of Laminar Flow over a Backward Facing Step＂，Notes on Numerical Fluid Mechanics，Vol．9，（1984），pp．1－420，Vieweg．
（1－21）Kaiktsis，L．，Karniadakis，G．E．and Orszag，S．A．，＂Onset of three－dimensionality，equilibria，and early transition in flow over a backward－facing step＂，Journal of Fluid Mechanics，Vol．231， （1991），pp．501－528．
（1－22）近藤 継男，長野 靖尚，辻 俊博，＂後向ステップ剥離•再付着流の層流熱伝達：プラン トル数の影響＂，日本機械学会論文集 B 編，Vol．57，No．536（1991），pp．1422－1427．
（1－23）森西 洋平，小林 敏雄，＂バックステップ流れにおけるはく離域の乱流構造：LES デー夕を用いた検討＂，日本機械学会論文集 B 編，Vol．58，No．553（1992），pp．2730－2735．
（1－24）宇野 透，高橋 晃，植田 利久，溝本 雅彦，＂ステップ後流に形成される拡散火炎の保炎機構＂，日本機械学会論文集 B 編，Vol．63，No．608（1997），pp．1440－1447．
（1－25）山田 俊輔，松本 達矢，佐川 裕達，高井 正人，本阿弥 眞治，＂低レイノルズ数域におけ る後方ステップ流れ：はく離および再付着領域における壁面近傍の時間平均挙動（流体工学，流体機械）＂，日本機械学会論文集 B 編，Vol．72，No．714（2006），pp．251－256．
（1－26）Barri，M．and Andersson，H．I．，＂Turbulent flow over a backward－facing step．Part 1．Effects of anti－cyclonic system rotation＂，Journal of Fluid Mechanics，Vol．665，（2010），pp．382－417．
（1－27）Sobey，IIJ．，＂Observation of waves during oscillatory channel flow＂，Journal of Fluid Mechanics， Vol．151，（1985），pp．395－426．
（1－28）Ralph，M．E．and Pedley，T．J．，＂Flow in a channel with a moving indentation＂，Journal of Fluid Mechanics，Vol．190，（1988），pp．87－112．
（1－29）Chiang，T．P．and Sheu，T．W．H．，＂A numerical revisit of backward－facing step flow problem＂， Physics of Fluids，Vol．11，No．4（1999），pp．862－874．
（1－30）Driver，D．M．，Seegmiller，H．L．and Marvin，J．G．，＂Time－dependent behavior of a reattaching shear layer＂，AIAA Journal，Vol．25，No．7（1987），pp．914－919．
（1－31）Kim，J．，Kline，S．J．and Johnston，J．P．，＂Investigation of a reattaching turbulent shear layer ：Flow over a backward－facing step＂，Trans ASME Journal of Fluids Engineering，Vol．102（1980）， pp．302－308．
（1－32）Westphal，R．V．and Johnston，J．P．，＂Effect of initial conditions on turbulent reattachment downstream of a backward－facing step＂，AIAA Journal，Vol．22，No．12（1984），pp．1727－1732．
（1－33）Yang，J．T．，Tsai，B．B．and Tsai，G．L．，＂Separated－reattaching flow over a backstep with uniform normal mass bleed＂，Trans ASME Journal of Fluids Engineering，Vol．116，（1994），pp．29－35．
（1－34）Yoo，J．Y．and Baik，S．J．，＂Redeveloping turbulent boundary layer in the backward－facing step flow＂，Trans ASME Journal of Fluids Engineering，Vol．114，（1992），pp．522－529．
（1－35）Ötügen，M．V．，＂Expansion ratio effects on the separated shear layer and reattachment downstream of a backward－facing step＂，Experiments in Fluids，Vol．10，（1991），pp．273－280．
（1－36）Berbee，J．G．and Ellzey，J．L．，＂The effect of aspect ratio on the flow over a rearward－facing step＂， Experiments in Fluids，Vol．7，（1989），pp．447－452．
（1－37）Ötügen，M．V．，Papadopoulos，G．，Vradis，G．and Muckenthaler，G．，＂Spanwise characteristics of the separated flow in a suddenly expanding duct＂，Experiments in Fluids，Vol．14，No．3（1993）， pp．213－216．
（1－38）Délery，J．，＂ROBERT LEGENDRE AND HENRI WERL：Toward the Elucidation of Three－dimensional Separation＂，Annual Review Fluid Mechanics，Vol．33，（2001），pp．129－154．
（1－39）Chiang，T．P．，Sheu，T．W．H．and Tsai，S．F．，＂Topological flow structures in backward－facing step channels＂，Computers \＆Fluids，Vol．26，Issue 4（1997），pp．321－337．
（1－40）Papadopoulas，G．and Ötügen，M．V．，＂Separating and reattaching flow structure in a suddenly expanding rectangular duct＂，Trans ASME Journal of Fluids Engineering，Vol．117，（1995）， pp．17－23．
（1－41）Battaglia，F．，Tavener，S．J．，Kulkarni，A．K．and Merkle，C．L．，＂Bifurcation of low Reynolds number flows in symmetric channels＂，AIAA Journal，Vol．35，No．1（1997），pp．99－105．
（1－42）太田照和，柳岡英樹，渋谷一幸，中島円，吉川浩行，＂急拡大矩形流路内はく離流れと熱伝達の数値解析＂，日本機械学会論文集 B 編，Vol．66，No．648（2000），pp．2109－2116．
（1－43）菅原 一彰，海原 英治，吉川 浩行，太田 照和，＂傾斜後向きステップまわりの二次元非定常はく離流れおよび熱伝達の数値解析＂，日本機械学會論文集 B 編，Vol．70， No．695（2004），pp．1812－1819．
（1－44）Durst，F．，Melling，A．and Whitelaw，J．H．，＂Low Reynolds number flow over a plane symmetric sudden expansion＂，Journal of Fluid Mechanics，Vol．64，part 1 （1974），pp．111－128．
（1－45）Shapira，M．，Degani，D．and Weihs，D．，＂Stability and existence of multiple solutions for viscous flow in suddenly enlarged channels＂，Computers and Fluids，Vol．18，No．3（1990），pp．239－258．
（1－46）Braza，M．，Chassaing，P．and Minh，H．H．，＂Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder＂，Journal of Fluid Mechanics， Vol．165，（1986），pp．79－130．
（1－47）Ouwa，Y．，Watanabe，M．and Matsuoka，Y．，＂Behavior of a Plane Jet at Low Reynolds Number Confined in a Rectangular Channel II．Two Solutions by Numerical Analysis＂，Japanese Journal of Applied Physics，Vol．25，No．11（1986），pp．1736－1740．
（1－48）光永 昭治，広瀬 達三，＂コアンダ現象についての一考察＂，日本機械学會論文集，Vol．42．No．364（1976），pp．3899－3905．
（1－49）光永 昭治，高岸 宏二郎，遠藤 俊樽，広瀬 達三，＂層流の二次元急拡大流れのフローパ ターンと温度の影響＂，日本機械学會論文集，Vol．44，No．384（1978），pp．2734－2740．
（1－50）Cherdron－W．，Durst，F．and Whitelaw，J．H．，＂Asymmetric flows and instabilities in symmetric dusts with sudden expansions＂，Journal of Fluid Mechanics，Vol．84，（1978），pp．13－31．
（1－51）Mizushima，J．and Shiotani，Y．，＂Structural instability of the bifurcation diagram for two－dimensional flow in a channel with a sudden expansion＂，Journal of Fluid Mechanics， Vol．420，（2000），pp．131－145．
（1－52）Durst，F．，Pereira，J．C．F．and Trorea，C．，＂The plane symmetric sudden－expansion flow at low Reynolds numbers＂，Journal of Fluid Mechanics，Vol．248，（1993），pp．567－581．
（1－53）水島 二郎，草地 大輔，山崎 祐一，＂急拡大管路における化学反応の促進（複雑流体の数理 III）＂，京都大学数理解析研究所講究録，Vol．1305，（2003），pp．24－33．
（1－54）Alleborn，N．，Nandakumar，K．，Raszillier，H．and Durst，F．，＂Further contributions on the two－dimensional flow in a sudden expansion＂，Journal of Fluid Mechanics，Vol．330，（1997）， pp．169－188．
（1－55）Sobey，I．J．and Drazin，P．G．，＂Bifurcations of two－dimensional channel flows＂，Journal of Fluid Mechanics，Vol．171，（1986），pp．263－287．
（1－56）Drazin，P．G．，＂Flow through a diverging channel ：instability and bifurcation＂，Fluid Dynamics Research，Vol．24，（1999），pp．321－327．
（1－57）Acrivos，A．and Schrader，M．L，＂Steady flow in a sudden expansion at high Reynolds numbers＂， Physics of Fluids，Vol．26，No．6（1982），pp．923－930．
（1－58）Abbott，D．E．and Kline，S．J．，＂Experimental investigation of subsonic turbulent flow over single and double backward facing steps＂，Trans ASME Journal of basic engineering， SEPTEMBER（1962），pp．317－325．
（1－59）Ota，T．and Hata，T．，＂Numerical analysis of laminar heat transfer and flow in a plane enlarged channel＂，Proceedings of the 2nd JSME－KSME ，Vol．1，（1992），pp．63－68．
（1－60）．Mizushima，J．，Okamoto，H．and Yamaguti，H．，＂Stability of flow in a channel with a suddenly expanded part＂，Phys．Fluids．，Vol．8，No．11（1996），pp．2933－2942．
（1－61）水島 二郎，山口 博司，河野 晋三，足立 高弘，＂急拡大•縮小流路流れの流体力学的特性＂，日本機械学会論文集 B 編，Vol．64，No．624（1998），pp．2491－2498．
（1－62）水島 二郎，藤村 薫，＂流れの安定性＂，日本流体力学会編，初版3刷，（2012），朝倉書店。
（1－63）Rojas，E．，Pino，C．and Montes，C．，＂Global mode analysis of a pipe flow through a 1：2 axisymmetric sudden expansion＂，Physics of Fluids，Vol．22，（2010），pp．071702＿1－071702＿4．
（1－64）Cantwell，C．，Barkley，D．and Blackburn，H．，＂Transient growth analysis of flow through a sudden expansion in a circular pipe＂，Physics of Fluids，Vol．22，（2010），pp．034101＿1－034101＿15．
（1－65）Mullin，T．，Seddon，J．，Mantle，M．and Sederman，A．，＂Bifurcation phenomena in the flow through a sudden expansion in a circular pipe＂，Physics of Fluids，Vol．21，（2009）， pp．014110＿1－014110＿6．
（1－66）Macagno，E．O．and Hung，T．K．，＂Computational and Experimental Study of a Captive Annual Eddy＂，Journal of Fluid Mechanics，Vol．28，part 1（1967），pp．43－64．
（1－67）Furuichi，N．，Takeda，Y．and Kumada，M．，＂Spatial structure of the flow through an axisymmetric sudden expansion＂，Experiments in Fluids，Vol．34，（2003），pp．643－650．
（1－68）Durst，F．，Founfi迅M．and Wang，A．B．，＂Experimental investigation of the flow through an axisymmetric constriction＂，Turbulent Shear Flows，Vol．6，（1989），pp．338－350．
（1－69）Latornell，D．J．and Pollard，A．，＂Some observations on the evolution if shear layer instability in laminar flow through axisymmetric sudden expansions＂，Physics of Fluids，Vol．29，No．9（1986）， pp．2828－2835．
（1－70）Moon，L．F．and Rudinger，G．，＂Velocity distribution in an abruptly expanding circular duct＂， Trans ASME Journal of Fluids Engineering，Vol．99，（1977），pp．226－230．
（1－71）Gordon，R．and Imbabi，M．S．，＂CFD simulation and experimental validation of a new closed circuit Wind／Water tunnel design＂，Trans ASME Journal of Fluids Engineering，Vol．120，（1998）， pp．311－318．
（1－72）Oliveira，P．J．and Pinho，F．T．，＂Pressure drop coefficient of laminar Newtonian flow in axisymmetric sudden expansion＂，International Journal of Heat and Fluid Flow，Vol．18， No．5（1997），pp．518－529．
（1－73）Pollard，A．，＂Entrance and diameter effects on the laminar flow in sudden expansions．＂，ASME HTD，Vol．13，（1980），New York，pp．21－26．
（1－74）Guo，Z．Y．，Li，D．Y．and Liang，X．G．，＂Thermal effect on the recirculation zone in sudden－expansion gas flows＂，International journal of heat and mass transfer，Vol．39， No．13（1996），pp．2619－2624．
（1－75）Budwig，R．，Egelhoff，C．J．and Tavoularis，S．，＂Laminar pulsatile flow through an axisymmetric sudden expansion＂，Trans ASME Journal of Fluids Engineering，Vol．119，No．1（1997）， pp．208－211
（1－76）Zemanic，P．，P．and Dougall，P．，S．，＂Local Heat Transfer Downstream of Abrupt Circular Channel Expansion＂，Trans ASME Journal of heat transfer，C92，（1970），53－60．
（1－77）Antoniou，J．and Bergeles，G．，＂Development of the reattached flow behind surface－mounted two－dimensional prisms＂，Trans ASME Journal of Fluids Engineering，Vol．110，（1988）， pp．127－133．
（1－78）Schofield，W．H．and Logan，E．，＂Turbulent shear flow over surface mounted obstacles＂，Trans ASME Journal of Fluids Engineering，Vol．112，（1990），pp．376－385．
（1－79）Hunt，J．C．R．and Snyder，W．H．，＂Experiments on stably and neutrally stratified flow over a model three－dimensional hill＂，Journal of Fluid Mechanics，Vol．96，（1980），pp．671－708．
（1－80）Krall，K．M．and Sparrow，E．M．，＂Turbulent heat transfer in the separated，reattached，and redevelopment regions a circular tube＂，Trans ASME Journal of heat transfer， FEBRUARY（1966），pp．131－135．
（1－81）Durst，F．，Jovanovic，J．and Sender，J，＂LDA measurements in the near－wall region of a turbulent pipe flow．＂，Journal of Fluid Mechanics，Vol．295，（1995），pp．305－335．
（1－82）Durst，F．，Kikura，H．，Lelalis，I．and Ye，Q．，＂Wall shear stress determination from near－wall mean velocity data in turbulent pipe and channel flows＂，Experiments in Fluids，Vol．20，（1996）， pp．417－428．
（1－83）Durst，F．，Jovanovic，J．and Sender，J．，＂Detailed measurment of the near－wall region of a turbulent pipe flow＂，Turbulent Shear Flows，Vol．9，（1995），pp．225－240．
（1－84）Ishigaki，H．，＂Laminar convective heat transfer in rotating curved pipes＂，JSME international journal．Ser．B，Fluids and thermal engineering，Vol．42，No．3（1999），pp．489－497．
（1－85）層流形空気流量計 LEF シリーズ，株式会社司計測，＂http：／／www．sokken．co．jp／flow／ 201011／entry37．html＂，（2013）．
（1－86）Jena，A．V．，Magori，V．and Russwurm，W．，＂Ultrasound gas－flow meter for household application＂， Sensors and Actuators，Vol．37－38，（1993），pp．135－140．
（1－87）別荘大介，梅景康裕，岩永茂，中林祐治，＂層流多層型（LML）方式 超音波流速計技術＂，日本機械学会誌，Vol．110，No．1066（2007），p．7．
（1－88）Agartwal，N．K．，＂Mean separating and reattachment in turbulent pipe flow due to an orifice plate＂，Trans ASME Journal of Fluids Engineering，Vol．116，（1994），pp．373－376．
（1－89）Shakouchi，T．，＂A new fluidic oscillator flowmeter，without control port and feedback loop＂， Trans ASME Journal of Dynamic Systems，Measurement and Control．，Vol．111，（1989）， pp．535－539．
（1－90）社河内 敏彦，葛原 定朗，＂側壁付着噴流に関する研究（第 2 報，対抗壁の影響について）＂，日本機械学会論文集 B 編，Vol．47，No． 421 （1981），pp．1726－1735．
（1－91）佐野 正利，杉山 勇気，鈴木 進＂プラズマアクチュエータを用いたチャネル流れの圧力特性と流動特性＂，日本機械学会論文集B編，Vol．79，No．803（2013），pp．1208－1218．
（1－92）安藤 俊剛，社河内 敏彦，山本 寛之，辻本 公一，＂急拡大円管内のはく離流れの制御お よび流動抵抗低減に関する研究＂，日本機械学會論文集 B 編 ，Vol．72，No．717（2006）， pp．1125－1130．
（1－93）中西 助次，大坂 英雄，＂二次元粗面流路内流れに関する研究：第1報，流れパターンの分類＂，日本機械学會論文集 B 編，Vol．55，No．516（1989），pp．2181－2189．
（1－94）Roberts，E．P．L．，＂A numerical and experimental study of transition processes in an obstructed channel flow＂，Journal of Fluid Mechanics，Vol．260，（1994），pp．185－209．
（1－95）Rockwell，D．and Rockwell，D．，＂Vortex－edge interaction ：Mechanisms for generating low frequency components＂，Physics of Fluids，Vol．23，No．2（1980），pp．239－240．
（1－96）Eaton，J．K．and Johnston，J．P．，＂A Review of Research on Subsonic Turbulent Flow Reattachment＂，AIAA Journal，Vol．19，No．9（1981），pp．1093－1100．
（1－97）Isomoto，K．and Honami，S．，＂The Effect of Inlet Turbulence Intensity on the Reattachment Process Over a Backward－Facing Step＂，Trans ASME Journal of Fluids Engineering，Vol．111， Issue1（1989），pp．87－92．
（1－98）Seal，C．V．and Smith，C．R．，＂Visualization of a mechanism for threedimensional interaction and near－wall eruption＂，Journal of Fluid Mechanics，Vol．394，（1999），pp．193－203．
（1－99）趙令家，＂ポンプ吸込水槽の渦の可視化＂，可視化情報，Vol．30，No．116（2010），pp．28－33．
（1－100）岩井裕，中部主敬，鈴木健二郎，＂ダクト内後ろ向きステップ流れの三次元流動と熱伝達＂，日本機械学会論文集 B 編，Vol．62，No． 599 （1996），pp．2729－2736．
（1－101）稲岡恭二，西村路子，岩井裕，千田衛，＂ダクト内バックステップ流れの熱伝達に関す る数値解析（流体粒子軌跡のパターンについて）＂，日本機械学会論文集B編，Vol．75， No． 749 （2009），pp．125－131．
（1－102）Alizard，F．，Rist，U．and Robinet，J．C．，＂Linear Instability of Streamwise Corner Flow＂，12th EUROMECH European Turbulence Conference，Marburg，Germany，Sept．7－10，（2009）．
（1－103）Wedin，H．，Biau，B．，Bottaro，A．and Nagata，M．，．＂Coherent flow states in a square duct＂，Physics of Fluids，Vol．20，（2008），pp．094105＿1－094105＿12．
（1－104）Uhlmann，M．，Pinelli，A．，Kawahara，G．and Sekimoto，A．，＂Marginally turbulent flow in a square duct＂，Journal of Fluid Mechanics，Vol．588，（2007），pp．153－162．
（1－105）＂流体力学ハンドブック＂，日本流体力学会編，第2版，（1998），pp．59－61，丸善．
（1－106）久本秀明，＂マイクロチップを用いる新規化学センシングシステムの開発＂，分析化学， Vol．54，No．4（2005），pp－267－278．
（1－107）山田博之，吉田善一，寺田信幸，萩原茂，寺澤章裕，＂レーザによるフッ素樹脂への血球変形能観察用マイクロ流路の加工＂，精密工学会誌，Vol．73，No．9（2007），pp．1035－1039．
（1－108）原崎務，＂微細転写領域における樹脂流動解析＂，住友重機械技報，No．168，（2008）， pp．19－22．
（1－109）Pfund，D．，Rector，D．，Shekarriz，A．，Popescu，A．and Welty，J．，＂Pressure drop measurements in a microchannel＂，AIChE Journal，Vol．46，No．8（2000），pp．1496－1507．

第2章

（2－1）渡辺 崇，中村 育雄，遠藤 和広，＂後ろ向きステップ流解析における有限要素法の計算条件の影響＂，日本機械学会論文集 B 編，Vol．58，550（1992），pp．2010－2016．
（2－2）第1章（1－20）と同じ
（2－3）第1章（1－15）と同じ
（2－4）Roache，P．J．，＂コンピュータによる流体力学＜上＞＂，第4版（1990），構造計画研究所．
（2－5）Nakanishi，S．and Kawaguti，M．，＂Numerical Study on Peristaltic Flow of Viscous Fluid＂，Journal of the Physical Society of Japan，Vol．52，（1983），pp．848－855．
（2－6）第1章（1－52）と同じ
（2－7）第1章（1－8）と同じ
（2－8）第1章（1－19）と同じ
（2－9）第1章（1－47）と同じ
（2－10）第1章（1－46）と同じ
（2－11）吉田 尚史，渡辺 崇，中村 育雄，＂非定常非圧縮流れの流出境界条件に関する数値的研究＂，日本機械学会論文集B編，Vol．61，No． 588 （1995），pp．2887－2895．
（2－12）数値流体力学編集委員編，＂数値流体力学シリーズ 1 非圧縮性流体解析＂，初版（1995）， pp．35－148，東京大学出版会．
（2－13）＂OpenFOAM－The open source CFD toolbox－＂，OpenCFD Ltd，http：／／openfoam．com／，（2013）．
（2－14）桜井 元康，中西 助次，大坂 英雄，＂CFD ツール（OpenFOAM）を用いた二次元急拡大流路内流れの試行計算＂，広島工業大学紀要 研究編，Vol．45，（2011），pp．23－32．
（2－15）第1章（1－63）と同じ
（2－16）第1章（1－64）と同じ
（2－17）第1章（1－9）と同じ
（2－18）Bohorquez，P．，Rojas，E．，Sevilla，A．，González，J．and Bazán，C．，＂Stability and dynamics of the laminar wake past a slender blunt－based axisymmetric body＂，Journal of Fluid Mechanics， Vol．676，（2011），pp110－144．
（2－19）Esparza，D．and Rojas，E．，＂Numerical simulations of the laminar flow in pipes with wire coil inserts＂，Computers \＆Fluids，Vol．44，（2011），pp．169－177．

第3章

（3－1）第1章（1－52）と同じ
（3－2）第1章（1－8）と同じ
（3－3）第1章（1－19）と同じ
（3－4）第1章（1－48）と同じ
（3－5）第1章（1－49）と同じ
（3－6）第1章（1－44）と同じ
（3－7）第1章（1－50）と同じ
（3－8）第1章（1－27）と同じ
（3－9）第1章（1－45）と同じ

第4章

（4－1）第1章（1－50）と同じ
（4－2）第1章（1－7）と同じ
（4－3）第1章（1－44）と同じ
（4－4）第1章（1－27）と同じ
（4－5）第1章（1－8）と同じ
（4－6）第1章（1－59）と同じ
（4－7）第1章（1－45）と同じ
（4－8）第1章（1－47）と同じ
（4－9）第1章（1－57）と同じ
（4－10）Denham，M．K．and Patrick，M．A．，＂Laminer flow over a downstream－facing step in a two－dimensional flow channel＂，Transactions of the Institution of Chemical Engineers， Vol．52，（1974），p． 361.
（4－11）Kueny，J．L．and Binder，G．，＂Viscous flow over backward facing steps ：an experimental investigation＂，Notes on Numerical Fluid Mechanics，Vol．9，（1984），Vieweg，Braunschweig， pp．32－47．
（4－12）Taylor，C．and Morgan，K．，＂Computational techniques in transition and turbulent flow＂，Vol．2， （1981），p．283，Pineridge P．L．
（4－13）中西 助次，大坂 英雄，＂後ろ向きステップの層流剥離に関する研究＂，山口大学工学部研究報告，Vol．38，No．2（1988），pp．203－211．

第5章

（5－1）第4章（4－13）と同じ
（5－2）第1章（1－8）と同じ
（5－3）第 1 章（1－7）と同じ
（5－4）第1章（1－19）と同じ
（5－5）第1章（1－14）と同じ

第6章

（6－1）第1章（1－98）と同じ
（6－2）第1章（1－99）と同じ
（6－3）第1章（1－38）と同じ
（6－4）第1章（1－66）と同じ
（6－5）第1章（1－9）と同じ
（6－6）第1章（1－44）と同じ
（6－7）第1章（1－100）と同じ
（6－8）第1章（1－101）と同じ

第7章

（7－1）第1章（1－64）と同じ
（7－2）第1章（1－9）と同じ
（7－3）第1章（1－104）と同じ
（7－4）Avila，K．，Moxey，D．，Lozar，A．，Avila，M．，Barkley，D．and Hof，B．，＂The Onset of Turbulence in Pipe Flow＂，Science，Vol．333，No． 6039 （2011），pp．192－196．

