AFXRV—=T 4 VT o F—F7F « VAT A
(Cooperating Systems of Automata)

TR 6 4 3 H

+ b

IR SRR AR B LAt 5e 7t



COOPERATING SYSTEMS OF
AUTOMATA

by
YUE WANG

DEPARTMANT OF COMPUTER SCIENCE
AND SYSTEMS ENGINEERING
FACULTY OF ENGINEERING
YAMAGUCHI UNIVERSITY






To my Father,

this little thesis is respectfully dedicated.






ABSTRACT

This thesis is a study of cooperating systems of automata as (one-dimensional or two-dimen-
sional) language acceptors. A cooperating system of automata consists of a finite number of
automata (such as finite-state automata, counter machines, and so on) which work indepen-
dently (in parallel) on the same input tape. Those automata whose input heads are on the same
cell of the input tape can communicate with each other. Some investigations about the maze
and labyrinth search problems for cooperating systems of finite-state automata have already
been made. But there is no investigation of such models as language acceptors at all. It is
worthwhile to study the properties of cooperating systems of automata as language acceptors,
because we can consider these machines as one of simple models of parallel computation. We
introduce in this thesis two types of cooperating systems of automata: the cooperating system
of finite-state automata, and the cooperating system of counter machines, where the later may
be considered as a natural extension of the former in computing power. The thesis consists of

five chapters.

Chapter 1 gives a general introduction to some important (nonwriting) models of computation
in the theory of automata and formal languages, as well as a historical overview. Among these

models, some are closely related to our concerned models.

Chapter 2 studies the properties of cooperating systems of finite-state automata as string
acceptors. It is shown that there exists an infinite hierarchy, based on the number of finite-
state automata, of the classes of languages accepted by cooperating systems of finite-state
automata. The differences between the computing powers of the cooperating systems of one-way
deterministic finite-state automata and the cooperating systems of one-way nondeterministic
finite-state automata, and between the computing powers of the cooperating systems of one-
way finite-state automata and the cooperating systems of two-way finite-state automata are
explored. We also prove some results concerning how the reversal number restriction to the

cooperating system of two-way finite-state automata affects its computing power. Finally the

_]



closure properties of the classes of languages accepted by cooperating systems of one-way finite-
state automata under Basic language operations are investigated.

Chapter 3 establishes a relationship of the cooperating systems of finite-state automata to
other kinds of automata. One of main results is that one-way (one-) counter machines and
cooperating systems of two one-way finite-state automata are equivalent in computing power.
From this fact, several results on the decision problems associated with the cooperating systems
of finite-state automata are obtained.

Chapter 4 turns to study the properties of cooperating systems of two-dimensional finite-state
automata as two-dimensional language acceptors. Many results similar to those for the one-
dimensional case are proved. For example, it is shown that hierarchies of the classes of languages
accepted by cooperating systems of two-dimensional finite-state automata can be obtained by
varying the number of finite-state automata in both the four-way case and the three-way case
(corresponding to the two-way and one-way cases in one-dimension, respectively). The differ-
ences between the computing powers of the cooperating systems of three-way two-dimensional
finite-state automata and the cooperating systems of four-way finite-state automata, and be-
tween the computing powers of the cooperating systems of three-way two-dimensional deter-
ministic finite-state automata and the cooperating systems of three-way two-dimensional non-
deterministic finite-state automata can be also shown. On the other hand, some results on
cooperating systems of three-way two-dimensional finite-state antomata are sharply contrast
with the corresponding results in the one-dimensional case, when the input tapes are restricted
to square ones. For example, in the one-dimensional case, the cooperating systems of one-way
finite-state automata are less powerful than one-way sensing multihead finite automata, whereas
in the two-dimensional case, the cooperating systems of three-way two-dimensional finite-state
automata and three-way two-dimensional sensing multihead finite automata are equivalent in
computing power when the input tapes are restricted to square ones. We also examine the
closure properties of the classes of languages accepted by cooperating systems of three-way

two-dimensional finite-state automata under some basic two-dimensional language operations.

—_ii—



Chapter 5 introduces the cooperating systems of counter machines, and investigates their
properties as (one-dimensional) language acceptors. Our attention is directed to cooperating
systems of polynomial time- (or space-) bounded counter machines. A relationship between the
accepting powers of the cooperating systems of counter machines and multicounter machines
with polynomial time or space bound is investigated. For the classes of languages accepted by
cooperating systems of counter machines with polynomial time or space bound, a full hierarchy
result based on the number of counter machines is proved for both the one-way case and the
two-way case, and some hierarchy results based on the time or space allowed are obtained for the
one-way case. We also show the differences between the computing powers of the cooperating
systems of one-way counter machines and the cooperating systems of two-way counter machines,
and between the computing powers of the cooperating systems of one-way deterministic counter
machines and the cooperating systems of one-way nondeterministic counter machines, where all
the automata are polynomial time bounded. Finally the closure properties of the classes of
languages accepted by cooperating systems of one-way counter machines with polynomial time

bound under basic language operations are investigated.

— i —






ACKNOWLEDGEMENTS

The work on this thesis has been made under the guidance of my thesis advisor, professor
Katsushi Inoue. I wish to express my sincere gratitude to him for his contant encouragement
and generous support.

I am greatly indebted to Professor Itsuo Takanami for his constant encouragement and valu-
able comments. I am also greatly indebted to Professors Toyoshi Torioka, Taiho Kanaoka,
Takahiro Watanabe and Akira Ito for their helpful suggestions and hospitality.

I would like to express my deep thanks to Professor Kenichi Morita who has provided me
with useful insights during the initial stage of this work.

Finally, the support recevied by the author from the staff and students in Inoue Laboratory

is gratefully acknowledge.

—iv —






Symbol

N ® m g

o C ¥

x
L=] ([=])

[z]

f(n) = O(g(n))

f(n) = Q(g(n))

GLOSSARY

Interpretation

empty set

infinity

is an element of

is not an element of

is a subset of

is a proper subset of

union

intersection

Cartesian product

greatest integer less than or equal to z
least integer greater than or equal to z
if there exist positive constants ¢ and ng such that
f(n) <c-g(n)for all n > ng

if there exist positive constants ¢ and ng such that
c- f(n) > g(n)for all n > ng

power set of a set Q

cardinality of a set Q

complement of a set X

concatenation of sets X and Y

set of strings over ¥

length of a string w

reversal of a string w

set of two-dimensional tapes over £

_—_v_



Symbol
TR

TRH

TRC

TCC

£[A]
CS-FA
CS-FA(k)

CS-DFA(k)

CS-1FA(k)

CS-1DFA(k)

HA(K)
DHA(k)
SeHA(k)
SeDHA(k)
SHA(k)
SDHA(k)
SeSHA (k)

SeSDHA(k)

1HA(K)

1DHA(k)

Interpretation

rotation of a set of two-dimensional tapes T'

row reflection of a set of two-dimensional tapes T

row cyclic closure of a set of two-dimensional tapes T
column cyclic closure of a set of two-dimensional tapes T’
language accpted by the automata A’s

a cooperating system of finite-state automata

a cooperating system of k (two-way nondeterministic)
finite-state automata

a cooperating system of k (two-way) deterministic
finite-state automata

a cooperating system of k one-way (nondeterministic)
finite-state automata

a cooperating system of k one-way deterministic
finite-state automata

a two-way k-head (nondeterministic) finite automaton

a two-way k-head deterministic finite automaton

a two-way k-head sensing (nondeterministic) finite automaton
a two-way k-head sensing deterministic finite automaton

a two-way k-head simple (nondeterministic) finite automaton
a two-way k-head simple deterministic finite automaton -
a two-way k-head sensing simple (nondeterministic)

finite automaton

a two-way k-head sensing simple deterministic

finite automaton

a one-way k-head (nondeterministic) finite automaton

a one-way k-head deterministic finite automaton

—vi —



Symbol

1SeHA(k)
1SeDHA(k)
1SHA(k)
1SDHA(k)

1SeSHA (k)

1SeSDHA (k)

MA (k)
DMA(k)
PA(k)
DPA(k)
1PA(k)
1DPA()
CM(k)
DCM(k)
1CM(k)
1DCM(k)

CM(k)-Space(S(n))

DCM(k)-Space(S(n))

1CM(k)-Space(S(n))

1DCM(k)-Space(S(n))

Interpretation

a one-way k-head sensing (nondeterministic) finite automaton
a one-way k-head sensing deterministic finite a.utor'na.ton

a one-way k-head simple (nondeterministic) finite automaton
a one-way k-head simple deterministic finite automaton

a one-way k-head sensing simple (nondeterministic)

finite automaton

a one-way k-head sensing simple deterministic

finite automaton

a k-marker (nondeterministic) finite automaton

a k-marker deterministic finite automaton

a two-way (nondeterministic) finite automaton with k& processors
a two-way deterministic finite automaton with k processors

a one-way (nondeterministic) finite automaton with k processors
a one-way deterministic finite automaton with % processors

a two-way (nondeterministic) k-counter machine

a two-way deterministic k-counter machine

a one-way (nondeterministic) k-counter machine

a one-way deterministic k-counter machine

a two-way (nondeterministic) k-counter machine

which accepts in space S(n)

a two-way deterministic k-counter machine

which accepts in space S(n)

a one-way (nondeterministic) k-counter machine

which accepts in space S(n)

a one-way deterministic k-counter machine

which accepts in space S(n)

— Vil —



Symbol
CM(k)-Time(T(n))

DCM(k)-Time(T(n))

1CM(k)-Time(T(n))

1DCM(k)-Time(T(n))

CS-2-FA(k)

CS-2-DFA(k)

CS-TR2-FA(k)

CS-TR2-DFA(k)

TR2-HA(k)

TR2-DHA(k)

TR2-SeHA (k)

TR2-SeDHA(k)

TR2-SHA (k)

Interpretation

a two-way (nondeterministic) k-counter machine
which accepts in time T'(n)

a two-way deterministic k-counter machine

which accepts in time T'(n)

a one-way (nondeterministic) k-counter machine
which accepts in time T(n)

a one-way deterministic k-counter machine

which accepts in time T'(n)

a cooperating system of k (four-way) two-dimensional
(nondeterministic) finite-state automata

a cooperating system of k (four-way) two-dimensional
deterministic finite-state automata

a coopefating system of k three-way two-dimensional
(nondeterministic) finite-state automata

a cooperating system of k three-way two-dimensional
deterministic finite-state automata

a three-way two-dimensional k-head (nondeterministic)
finite automaton

a three-way two-dimensional k-head deterministic

finite automaton

a three-way two-dimensional k-head sensing (nondeterministic)

finite automaton

a three-way two-dimensional k-head sensing deterministic

finite automaton

a three-way two-dimensional k-head simple (nondeterministic)

finite automaton

— viii —



Symbol

TR2-SDHA(k)

TR2-SeSHA(k)

TR2-SeSDHA (k)

TR2-CM(k)5-Time(L(m))

TR2-DCM(k)5-Time(L(m))

TR2-CM(k)5-Space(L(m))

TR2-DCM(k)5-Space( L(m))

CS-CM

CS-CM(k)

CS-DCM(k)

CS-1CM(k)

CS-1DCM(k)

Interpretation

a three-way two-dimensional k-head simple deterministic
finite automaton

a three-way two-dimensional k-head sensing simple
(nondeterministic) finite automaton

a three-way two-dimensional k-head sensing simple
deterministic finite automaton

a three-way two-dimensional (nondeterministic) k-counter
machine with L(m) time bound whose input tapes are
restricted to square ones

a three-way two-dimensional deterministic k-counter machine
with L(m) time bound whose input tapes are restricted to
square ones

a three-way two-dimensional (nondeterministic) k-counter
machine with L(m) space bound whose input tapes are
restricted to square ones

a three-way two-dimensional deterministic k-counter machine
with L(m) space bound whose input tapes are restricted to
square ones

a cooperating system of counter machines

a cooperating system of k£ (two-way nondeterministic)
counter machines

a cooperating system of k (two-way) deterministic

counter machines

a cooperating system of k one-way (nondeterministic)
counter machines

a cooperating system of k¥ one-way deterministic counter machines

—ix —



Symbol
CS-CM(k)[Time(T(n))]

CS-DCM(k)[Time(T'(n))]

CS-1CM(k)[Time(T(n))]

CS-1DCM(k)[Time(T(n))]

CS-CM(k)[Space(S(n))]

CS-DCM(k)[Space(S(n))]

CS-1CM(k)[Space(S(n))]

CS-1DCM(k)[Space(S(n))]

Interpretation |

a cooperating system of k (two-way nondeterministic) counter
machines with time bound T'(n)

a cooperating system of k (two-way) deterministic counter
machines with time bound T'(n)

a cooperating system of k one-way (nondeterministic) counter
machines with time bound 7T'(n)

a cooperating system of k¥ one-way deterministic counter
machines with time bound T'(n)

a cooperating system of k (two-way nondeterministic) counter
machines with space bound S(n)

a cooperating system of k (two-way) deterministic counter
machines with space bound S(n)

a cooperating system of k one-way (nondeterministic) counter
machines with space bound S(n)

a cooperating system of k one-way deterministic counter

machines with space bound S(n)



CONTENTS

Page

AbsStract ..o i

Acknowledgements ... ..o iv

GlOSSATY ...oiiiiii i v

CHAPTER 1 Introduction ........ooiiinnuneeiie e, 1
CHAPTER 2 Cooperating Systems of Finite-state Automata

as String ACCePloIS .....inininiiiiit it 10

2.1 Definitions and Notation ........coiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiinennnn.. 10

2.2 Hierarchies Based on The Number of Finite-state Automata ............... 12

2.2.1 0me-Way Case ...ouviiuiiiiiiieiniieiiienteierietatenaaransennnns 12

2.2.2 Two-Way Case ...o.vvrriiiiitiiiiateeneerereeseeneneseeeannnnnnns 15

2.3 Determinism versus Nondeterminism ...........ccoiiiiuiiiiinninnennnn... 17

2.4 One-Way versus TWo-Way ...ooiiiiiiiiiiii ittt inannenennnnns 20

2.5 CS-FA’s with Reversal Number Restrcition ..................oooiiiiiia.t. 21

2.6 Closure Properties .........cvviiueiiiiiiiiiiiireriiiieinnneeeannnerennns 24

2.7 Concluding Remarks .................... e 34

CHAPTER 3 A Relationship to Other Automata...........covvvvevrnnnnnnn.... 37

3.1 Definitions and Notation ........cooeiiniiiiiiieniiiiniiiniianeenenennaenns 37

3.1.1 Multihead Finite Automata ....... ... i iiiiiiiiiiiiiiiiinnann 37

3.1.2 Marker Finite Automata ......... .. ittt .39

3.1.3 Multiprocessor Automata ........ccouiiiiniiiiiiiiiiiiiiiiieiaiaaan 41

— xi—



3.1.4 Multicounter Machines .......oouiiiimiiiini et it anns 42

3.2 RESUILS ottt e e e 43

CHAPTER 4 Cooperating Systems of Two-Dimensional Finite-state

AULOMALA oottt e e e e e 56

4.1 Definitions and Notation .........cooiiiiiiiiiii it 56
4.2 Three-Way versus Four-way .......c.ovurininiinin it i 58
4.3 Nondeterminism versus Determinisim ............. ..ot 59
4.4 Hierarchies Based on The Number of Finite-state Automata ............... 60
4.4.1 Four-Way Case .......i.iiuiiiiitenieitnneeneneenreaneenaeianennnans 60
4.4.2 Three-Way Case ........ccoov.nen. PP 61

4.5 Comparison‘s with Other Types of Acceptors ...................... e 70
4.6 Closure Properties TN 75
4.7 Concluding Remarks .......c.ouiiiiiiiiiiiiii ittt ii e 81
CHAPTER 5 Cooperating Systems of Counter Machines ....................... 83
5.1 Definitions and Notation ..........c.oiiiiiiiiiiiiiiiiiniieiiienrnnen. 83

5.2 A Relationship between Cooperating Systems of Counter Machines

and Multicounter Machines ............. e e e 85
5.3 Hierarchies Based on The Number of Counter Machines R PETERTRTE 92
5.3.1 One-Way Case ...uvviiniiieateeiirereanereeneruneeaneeseenaneennnnnns 92
5.3.2 TWo-Way Case ...oouiniiiir ittt iiiine e ietaianneannannn, 94
5.4 Hierarchies Based oﬁ The Bounded Time or Space ........coovvvvninnnn... 108
5.5 One-Way versus Two-way and Determinism versus Nondeterminism ...... 111

— xii —



5.6 Closure Properties ..

5.7 Concluding Remarks

BIBLIOGRAPHY .....

.....................................................

.....................................................

.....................................................






CHAPTER 1

Introduction

In computer science the theory of automata and the theory of formal languages play the im-
portant roles for understanding and exploiting basic concepts and mechanisms in computing
and information processing, because they provide the fundamental ideas and models underlying
computing for computer science.

Since Alan Turing introduced his famous Turing machine in 1936 to answer a fundamental
problems of computer science—“What kind of logical work can we effectively perform?”, that
is, what kind of problems can be solved by computers (or effective procedures), the Turing
machine has become a simple mathematical model of a computer or the formalization of an
effective procedure. Despite its simplicity, the Turing machine models the computing capability
of a general-purpose computer.

At the same time, many researchers made serious efforts to investigate another fundamental
problems of computer science—“How complicated is it to perform a given logical work?” The
concept of “computational complexity” is a formalization of such “difficulty of logical works”.
The theory of computational complexity is an attempt to show that certain problems cannot be
solved efficiently by establishing lower bounds on their inherent computational difficulty. Except
in a few special circumstances, it has been unable to demonstrate that particular problems
are computationally difficult. For example, the famous P-versus-NP question still remains far
beyond our present abilities. One way to make some progress on this is to limit the capabilities

of the computational model, thereby limiting the class of potential algorithms. In this way it

_1—



has been possible to achieve some interesting results. It is hoped that these may lead the way
to lower bounds for more powerful computational models.

A variety of other models of computation, of which some appear to much weaker thar Turing
machines, are introduced and showed to be equivalent to Turing machines in computing power.
For example, Baker and Book [1] proved that every recursively enumerable language (which
is defined by a Turing machine) can be recognized by a one-way two-pushdown machine that
operates in such a way that in every computation each pushdown makes at most one reversal.
Minsky [2] showed that a one-way deterministic two-counter machine can simulate an arbitrary
Turing machine. Either pushdown machine or counter machine can be considered as the re-
stricted Turing machine, but the study of these models can lead to a better understanding of
computation and bring some new, useful techniques to the theory of automata and the theory
of formal languages.

Another basic simplest model is the finite-state automaton, which was originally developed
with neuron nets and switching circuits in mind [3]. Nevertheless, the theory of finite-state
automaton has preserved from its origins a great diversity of aspects. From one point of view,
it is a branch of mathematics connected with the algebraic theory of semigroups and associative
algebras [4, 5]. From another point of view, it is a branch of algorithm design connected with
string manipulation and sequence processing. In contrast to the Turing machine models, the
finite-state automaton requires no work tape in its computation (i.e., is a nonwriting model).
In the simulation of this model for the processing of a language, one need not establish and
maintain the often costly list structures that are usually employed to simulate the work tape of
an Turing machine model (writing model). The nonwriting model is, in a sense, more efficient
than any writing model that will do the same job.

In view of the computational weakness of the model, from the above motivation, some of
models which preserve the nonwriting character have been introduced and investigated. In
the following we review some important models as the nonwriting extensions of finite-state

automata.



Piatkowski [6] first introduced the definition of multihead finite automata in the early 60’s,
and soon after Rosenberg [7] investigated the closure properties of the languages defined by
one-way multihead finite automata (called one-way multihead languages) under the Boolean
(union, intersection, and complementation) and Kleene (concatenation, closure, and reversal)
operations, the relationship of one-way multihead languages to the regular, context-free, and
context-sensitive languages, and several decision problems associated with one-way multihead
finite automata. Yao and Rivest [8] completely proved in 1978 that for one-way multihead finite
automata, k + 1 heads are better than k (which was observed by Rosenberg 7], but Floyd [9]
pointed out that Rosenberg’s informal proof was incomplete). The proof was by a technique
often called “cutting” and “pasting” or “fooling”. Hromkovic [10] used suitably modified cut-
ting and pasting to prove some non-closure properties of one-way multihead languages for the
deterministic case. The similar problems for multihead finite automata were also considered by
Ibarra [11, 12], Inoue [13], and Duris [14] et al. for so-called simple multihead finite automata,
that is, for such automata that only one head sees the input symbols, the other heads can detect
only the endmarkers.

The importance of two-way multihead finite automata results from the fact that they define
two central complexity classes (DLOG and NLOG) [15, 16]. Also some complexity problems such
as P-versus-NP and LBA, can be reduced to simple-looking problems about two-way multihead
finite automata [16, 17, 18], even for the automata accepting only one-letter alphabet languages
[19]. Two-way multihead finite automata are much more powerful than one-way ones, and
enough to allow application of two frequently used techniques for proving separation results:
diagonalization and padding [20]. The full hierarchy result based on the number of heads for
two-way multihead finite automata was proved by Monien [21]. Ibarra et al. [22] gave some
characterizations of two-way multihead finite automata in terms of multihead reversal-bounded
pushdown automata and restricted checking stack automata. Engelfriet [23] improved some
results of Ibarra et al. [22] and showed, in particular, that deterministic two-way two-head

finite automata are equivalent to deterministic two-way checking stack automata. The other

—3 —



interesting investigations about multihead finite automata can be found in [24, 25].

The concept of augmenting markers (also called pebbles sometimes) to finite-state automata
was first introduced by Blum and Hewitt [26] in two-dimensional finite-state automata. Their
work is the first attempt at approach to the problem of pattern recognition by serial computer,
within the framework of automata theory. They have shown several interesting results about this
model. For example, in the two-dimensional case one-marker finite automata are more powerful
than finite-state automata, whereas in the one-dimensional case both of them accept the same
regular languages. It was also shown that a one-marker finite automaton can decide if a pattern
is pathwise-connected. However, whether one marker is necessary for a finite-state automaton
doing so is not yet known. Ritchie and Springsteel [27, 28] investigated recognition of context-
free languages by (one-dimensional) marker finite automata. Hsia and Yeh [29] investigated
some fundamental properties of marker finite automata and studied their relationships to other
types of automata and languages. One of main results in [29] is the establishment of an infinite
hierarchy of languages recognizable by deterministic, halting marker finite automata. From this
result, one can give the full hierarchy result based on the number of markers for deterministic
marker finite automata by using the technique presented in [30]. As far as we know, it is unknown
whether an analogous result holds for nondeterministic marker finite automata. Wang, Inoue
and Takanami [31] considered a version of this problem for a new class of machines called
multihead marker finite automata, and showed that an additional marker can add power for
both the deterministic and nondeterministic versions of the machine that has at least two input
heads, even if the alphabet is restricted to a one-letter. The maze (or labyrinth) search problem
for finite automata was first investigated by Budach [32] and Shah [33]. Blum and Kozen [34]
showed that the search can be implemented by a (deterministic) two-marker finite automaton.
This result is “optimal”, because Hoffmann [35] has proved that one-marker finite automata
cannot search all finite mazes. Szepietowski [36] showed that a 5-marker finite automaton can
search every infinite or finite maze.

The model that is called the cooperating system of finite-state automata (CS-FA) and will

— 4 —



be studied as an acceptor of languages in this thesis, was first considered by Blum and Sakoda
[37] concerning the problem about searching a two- or three-dimensional obstructed space. The
search algorithms for two-dimensional space are particularly interesting in view of the difficulty
of searching more general graphs. It was shown in {37] that no CS-FA is capable of searching
every finite three-dimensional maze. Rollik [38] and Hemmerling [39] investigated some other
graph search problems on this model. Furthermore, Bull and Hemmerling [40, 41] essentially
improved these results. However, it is little known what are the fundamental properties of
CS-FA’s as language acceptors. One of main purposes of this thesis is to answer this question.

Recently, Buda [42] introduced the notion of multiprocessor finite automata as one of the
simplest models of parallel computation, and.some interesting properties of this model have
been investigated by Kakugawa et al. [43]. In view of parallel computation, it is interesting to
compare this model with the cooperating system of finite-state automata for understanding the
effects of data routing on parallel computation, since the later can be considered as another of
the simplest models of parallel computation.

In this thesis we also introduce the cooperating system of counter machines (CS-CM) as a new
type of language recognizers and investigate its basic properties. This model may be considered
as a natural extension of the model CS-FA to counter machines.

Given a class of automata, the following problems are usually investigated:

(1) are there (finite or infinite) hierarchies in the classes of languages defined by the automata?
(2) are nondeterministic automata better than deterministic ones?

(3) what are the closure properties of the languages defined by the automata?

(4) the relationships to other types of automata and languages.

(5) the decision problems associated with the automata.

These problems will be considered for both CS-FA’s and CS-CM’s in this thesis.

The thesis has 5 chapters in addition to this Introduction.

— 5 —



Chapter 2 consists of a detailed study of the cooperating systems of finite-state automata
as string acceptors. We first give the formal definition of cooperating system of finite-state
automata, and then turn to an investigation on the effect of the number of finite-state automata
in the system upon its computing power. We prove a full hierarchy result for the one-way case,
but only a weak hierarchy result for the two-way case, based on the number of finite-state
automata. It is shown that for each k > 1, cooperating systems of k + 1 one-way (deterministic
or nondeterministic) finite-state automata are more powerful than cooperating systems of k one-
way (deterministic or rondeterministic) finite-state automata, and for each k£ > 3, cooperating
systems of k + 2 two-way (deterministic or nondeterministic) finite-state automata are more
powerful than cooperating systems of k two-way (deterministic or nondeterministic) finite-state
automata (even for languages over a one-letter alphabet). We next investigate the differences
between the computing powers of the cooperating systems of one-way deterministic finite-state
automata and the cooperating systems of one-way nondeterministic finite-state automata, and
between the computing powers of the cooperating systems of one-way finite-state automata and
the cooperating systems of two-way finite-state automata. We show that there is a language
a.cceptéd by a cooperating system of 2 one-way nondeterministic finite-state automata, but
not by any cooperating system of one-way deterministic finite-state automata, and there is a
language accepted by a cooperating system of 2 two-way deterministic finite-state automata,
but not by any cooperating system of one-way nondeterministic finite-state automata. We also
prove some results concerning how the reversal number restriction to the cooperating system of
two-way finite-state automata affects its computing power. It is shown that there is a language
accepted by a cooperating system of 2 two-way deterministic finite-state automata, but not by
any cooperating system of two-way nondeterministic finite-state automata with reversal bound
n®, for any 0 < a < 1/3. Finally we investigate the closure properties of the classes of languages
accepted by cooperating systems of one-way finite-state automata under the Boolean and Kleene
operations. In particular, it is shown that the class of languages accepted by cooperating systems

of 2 one-way nondeterministic finite-state automata is a full abstract family languages.

— 6 —



In Chapter 3, we establish a relationship of the cooperating systems of finite-state automata
to other kinds of automata—multihead finite automata, marker finite automata, multiprocessor
automata, and multicounter machines, as well as recalling their definitions. We mainly concen-
trate our attention on the one-way case. In particular, it is shown that one-way deterministic
(nondeterministic) one-counter machines and cooperating systems of 2 one-way deterministic
(nondeterministic) finite-state automata are equivalent in computing power. Several results con-
cerning the decision problems associated with the cooperating systems of finite-state automata
are obtained as the corollaries of this fact. It is shown that for any £ > 2, the containment prob-
lem is undecidable for cooperating systems of k one-way deterministic finite-state automata, and
the equivalence and universe problems are undecidable for cooperating systems of k one-way

nondeterministic finite-state antomata.

In Chapter 4, we study some properties of the cooperating systems of two-dimensional finite-
state automata as two-dimensional language acceptors. A cooperating system of three-way two-
dimensional finite-state automata is introduced as an extension of a cooperating system of one-
way finite-state automata. We first show that cooperating systems of three-way two-dimensional
(deterministic or nondeterministic) finite-state automata are less powerful than éooperating
systems of four-way two-dimensional (deterministic or nondeterministic) finite-state automata,
and cooperating systems of three-way two-dimensional nondeterministic finite-state automata
are more powerful than cooperating systems of three-way two-dimensional deterministic finite-
state automata, even if the input tapes are restricted to square ones. We then show that
hierarchies of the classes of languages accepted by cooperating systems of two-dimensional
finite-state automata can be obtained by varying the number of finite-state automata in both
the four-way case and the three-way case. It is shown that for each k > 1, cooperating systems
of k + 1 three-way two-dimensional (deterministic or nondeterministic) finite-state automata
are more powerful than cooperating systems of k three-way two-dimensional (deterministic
or nondeterministic) finite-state automata, and cooperating systems of k + 2 four-way two-

dimensional (deterministic or nondeterministic) finite-state automata are more powerful than

— 7



cooperating systems of k four-way two-dimensional (deterministic or nondeterministic) finite-
state automata (even for languages over a one-letter alphabet). We also compare the cooperating
systems of three-way two-dimensional finite-state automata with other types of automata—
two-dimensional (sensing) (simple) multihead finite automata, and two-dimensional multihead
counter machines, when the input tapes are restricted to square ones. The results are sharply
contrast with the corresponding results in the one-dimensional case obtained in Chapter 3. For
example, it is shown (in Chapter 3) that for any k,r > 2, the class of languages accepted by
cooperating systems of k one-way deterministic finite-state automata and the class of languages
accepted by one-way simple (deterministic or nondeterministic) r-heads finite automata are
incomparable, whereas it is shown (in Chapter 4) that the class of languages accepted by
cooperating systems of three-way two-dimensional (deterministic or nondeterministic) finite-
state automata is the same as the class of languages accepted by three-way two-dimensional
simple (deterministic or nondeterministic) multihead finite automata. We finally examine the
closure properties of the classes of languages accepted by cooperating systems of three-way two-
dimensional finite-state automata with the square input tapes, under several two-dimensional
language operations.

In Chapter 5, we introduce a new class of devices called cooperating systems of counter ma-
chines, which may be considered as an extended version of the cooperating system of finite-state
automata where counter machines substitue for finite-state automata, and all questions about
cooperating systems of finite-state automata as language acceptors are also investigated in this
model. We first investigate a relationship between the accepting powers of cooperating systems
of counter machines and multicounter machines with polynomial time or space bound. We
then prove a full hierarchy result for both the one-way case and the two-way case, based on
the number of counter machines. It is shown that for any c,s,k > 1, cooperating systems of
k+1 one-way (deterministic or nondeterministic) counter machines with time (space) bound cn*
are more powerful than cooperating systems of k¥ one-way (deterministic or nondeterministic)

counter machines with time (space) bound cn’, and cooperating systems of k£ + 1 two-way (de-

— 8 —



terministic or nondeterministic) counter machines with space bound n are more powerful than
cooperating systems of k two-way (deterministic or nondeterministic) counter machines with
space bound n (even for languages over a one-letter alphabet). We also prove some hierarchy
results for the one-way case, based on the time or space allowed. It is shown that for each s > 1
and each k > 9, cooperating systems of k one-way (deterministic or nondeterministic) counter
machines with time bound n** are more powerful than cooperating systems of k one-way (deter-
ministic or nondeterministic) counter machines with time bound n*, and cooperating systems
of k one-way (deterministic or nondeterministic) counter machines with space bound n3(k—1)s+3
are more powerful than cooperating systems of k¥ one-way (deterministic or nondeterministic)
counter machines with space bound n®. We next investigate the differences between the comput-
ing powers of the cooperating systems of one-way counter machines and the cooperating systems
of two-way counter machines, and between the computing powers of the cooperating systems
of one-way deterministic counter machines and the cooperating systems of one-way nondeter-
ministic counter machines, where all the automata are polynomial time bounded. It is shown
that there is a language accepted by a two-way deterministic one-counter machine with linear
time bound, but not by any cooperating system of one-way nondeterministic counter machines
with polynomial time bound, and there is a language accepted by a one-way nondeterministic
one-counter machine in real time, but not by any cooperating system of one-way deterministic
counter machines with polynomial time bound. Finally we investigate the closure properties
of the classes of languages accepted by cooperating systems of one-way counter machines with
polynomial time bound under the Boolean and Kleene operations.

In addition, we list some open problems in the end of every chapter (from Chapter 2) for

suggesting some directions for further research.






CHAPTER 2

Cooperating Systems of Finite-state Automata as

String Acceptors

In this chapter we first define the cooperating system of finite-state automata that can rec-
ognize given classes of strings or “one-dimensional tapes”. After then, we turn to a detailed

investigation of its properties as a string acceptor.
2.1 Definitions and Notation

A cooperating system of finite-state automata can be considered as one of the simplest models
of parallel computation: there are more than one finite-state automata and an input tape where
these finite-state automata operate simultaneously (in parallel) and can communicate with each
other on the same cell of the input tape. More precisely, a cooperating system of &k finite-state
automata consists of k finite-state automata FAy, FAj, ---, FA, and a read-only input tape
where these finite-state automata independently work step by step. Each step is assumed to
require exactly one time for its completion. Those finite-state automata whose input heads
scan the same cell of the input tape can communicate with each other, that is, every finite-state
automaton is allowed to know the internal states of other finite-state automata on the cell it is
scanning at the moment. The input tape holds a string of input symbols delimited by left and
right endmarkers. The system starts with each FA; on the left endmarker in its initial state and
accepts the input tape if each FA; enters an accepting state and halts when reading the right

endmarker.



Formally, a cooperating system of k finite-state automata (CS-FA(k)) is denoted by

M = (FA;,FA,,--- ,FAy),

where for each 1 < i < k, FA; is a finite-state automaton defined by a 9-tuple (%, Q;, X;, 6;, g0,

Fi,¢,8,4) with

L is a finite input alphabet (¢,$ ¢ L),

Q; is a finite set of states (¢ & Q;),

Xi=(@u{e}) x - x (Qi-1U{#}) x (Qi+1 U {8}) x - -- x (Qx U {4}),

§; is the transition function mapping (X U {¢,$}) x X; x Q; to 29:*{~1.0.+1}

go; in Q; is the initial state,
- F; C Q; is the set of accepting states,
- ¢,$ are the left and right endmarkers, respectively.

An input to M is any string of the form ¢z$ where z is a string in X*. The function of the
endmarkers ¢ and $ is to let each automaton know when it is at the beginning or at the end of the
input. At the start of the computation, every FA; (1 <1 < k) is set to its initial state go,, with
its input head positioned on the left endmarker ¢. A single move of M is described as follows:
Let automata FA,, FA,, ---, FA; be in states qi, g2, -+, g5 and scanning symbols ai, az, -+ -,
ax (note that a; may equal ¢ or $) at the moment ¢. If 6;(a;, (g1, -, 91,041, - ), @) = 0,
then FA; has no next move (i.e., FA; halts). If (p;, d;) is in 6;(a;, (¢}, - -, Q8 B 4,
then FA; may enter state p;, move right its input head d; cells at the next moment ¢ + 1. Here

for each j € {1,---,i—1,i+1,---,k}

-

{ g; € Q; if FA; and FA; are on the same cell at the moment ¢;
]

¢ otherwise.

— 11 —



The input ¢z$ is accepted by M if there is a sequence of moves that leads every FA; to an accept-
ing state when scanning the right endmarker $. We assume that no FA; can fall off either end
of the input. The language accepted by M is the set T(M) = {z € L*|¢z$ is accepted by M}.

The CS-FA(k) M is called deterministic (denoted by CS-DFA(k)) if for each 1 <1 < k

and for each (ai)(qlly"' )qg—-laqg{+1’ ° ')Q;c)’qt') in (E U {¢)$}) X Xi X Qia
16:(ai, (g1, Gicts Gigrs - T G £ 1,

that is, there exists only one possible sequence of moves for any input to M.

The CS-FA(k) (CS-DFA(k)) M is called one-way (denoted by CS-1FA(k) and CS-1DFA(k),
respectively) if for each 1 < i < k and for each (p;,d;) in 6i(a;, (1, iy, Tiprs » Th)s 06D,
di # —1, that is, each FA; in M may move its input head only to the right.

By £[CS-FA(k)]= {T(M)|M is a CS-FA(k)}, we denote the class of languages accepted
by CS-FA(k)’s, and we will use the notation £[ - ] in the same way throughout this thesis.

We say that the speed of a automaton, 4, is 1/n if A moves its input head one cell every

n steps.

2.2 Hierarchies Based on the Number of Finite-state Automata

In this section we investigate how the number of finite-state automata of the cooperating system

affects its accepting power.

2.2.1 One-way Case

We begin with the following lemmas.

Lemma 2.1. Let M = (A;,A2,---,Ax) be a CS-1FA(k), k¥ > 1. If z is any word in

T(M), then there exits a computation of M on z such that M accepts z at most in O(|z]) steps.

Proof : For each 1 < i < k, let Q; denote the set of states of 4;. Consider a shortest

accepting computation of M on z (in which no loop exists). It is obvious that during the com-

— 12 —



putation, at least one A; moves its input head at least one cell to the right every |Q1]|Q2|- - - |Qk]

steps. So M can accept z within k|Q1]|Q2|-- - |Qk]|z| steps, and thus the lemma holds. o
Lemma 2.2. For each k > 1, let
T(k) = {0™10™1---10™20™ 10™1- .- 10™* € {0,1,2}F|Vi(1 < i < k)[m; > 1]}.
Then
(1) T (k) €£[CS-1DFA(k + 1)] and
(2) T(k) ¢ £[CS-1FA(k)].

Proof: (1) The language T(k) is accepted by the CS-1DFA(k+1) M = (4, 42, -, Ax,

Ak+1) which acts as follows: Consider the case when an input word
J0™10™1 ... 10™20™110™ 1 - - - 10™1$
is presented to M. (Input words in the form different from the above can easily be rejected by

(i) For each 1 < i <k, A; sweeps the subword 0™ at speed 1, the subword 0™ at speed 1/3,

and the other parts at speed 1/2.
(ii) Ax4+; sweeps the input tape at the same speed 1/2.

(iil) A;, Ag, ---, Ax41 can enter an accepting state when scanning the right endmarker if and
only if for each 1 < i < k, A; and Ax4; scan the same cell just after Ay, sweeps the

subword 0™:. (See Fig. 2.1.)

Note that for each 1 < i < k, m; = m! if and only if A; and Ax4; scan the same cell just
after Ax;; sweeps the subword 0™i. Thus M accepts the input word z if and only if z € T(k).
(2) Suppose that there is a CS-1FA(k) M = (A;, A2,--+, Ag) accepting T'(k). For each

n > 1, let

V(n) = {0™10™1-.-10™20™ 10™ 1. .- 10™ |Vi(1 < i < k)[1 < m; < n]}.

— 13 —



time

T o G Ll o 15

Aiy Ag41 Ay Aks1 input tape

Fig. 2.1. Comparing m; with m/ by using A; and Ag41.

Clearly, each word w in V(n) is in T'(k), so w is accepted by M. With each w € V(n), we
associate one fixed accepting compuation, c(w), of M onw. For each 1 < ¢ < k, let ¢;(w), ¢;(w)
denote the time and the internal state, respectively, when A; reads the symbol “2” of we V(n)
for the first time during the computation c(w), and let tmin(w) = min{t1(w), t2(w), - -, t(w)}.

Furthermore, for each w € V(n), let
w(w) = ((g1(w), t1(w) ~ tmin(w)), (g2(w), t2(w) = tmin(w)), -+ -, (q(w), ti(w) = tmin(w))),
and for each 1 < i < k, let
Wi(n) = {w € V(n)|ti(w) = tmin(w)}.

Then, the following statement must hold :

Statement. For each 1 < 1 < k and any two different words w, w’ in Wi(n), u(w) #
u(w’).
[ For otherwise suppose that
w=0m10"21...10™*20™ 10™21 .. - 10™¢,

—14 —



w' = 0™10™21...10™:20™110™11 - - - 10™,
(m1,ma,---,my) # (my,mh,---,m}), and u(w) = u(w'). Then, it follows that the word
w" = 0™10™21...10™20™1 1011 - - - 10™%

must be also accepted by M, because we can construct an accepting computation of M on w”
from c(w) and c(w'), by the assumption u(w) = u(w’). This contradicts the fact that w” is not
in T(k), since (my,ma,---,mg) # (mi,m4,---, my). |

Clearly, for some 1 < j <k,
Wi(n)] 2 |V (n)l/k = n* [k = Q(n*).

Let Uj(n) = {u(w)|lw € Wj(n)}. Since for each w € V(n), |[w| = O(n), by Lemma
2.1, it follows that for each 1+ € {1,---,5 — 1,7+ 1,---,k}, ti(w) = tmin(w) = O(n). Thus
|U;(n)| = O(nF~1) (note that tj(w) = tmin(w) for each w € Wj(n)). Therefore, it follows that
for large n, |W;(n)| > |U;(n)], and thus there must exist two different words w,w' € W;(n)

such that u(w) = u(w’). This contradicts the above statement, and completes the proof. ]
From Lemma 2.2, we can get the following theorem.

Theorem 2.1. For each k > 1,
(1) £[CS-1FA(k)]G£[CS-1FA(k + 1)}, and

(2) £[CS-1DFA(K)]G£[CS-1DFA(k + 1)].

2.2.2 Two-way Case

Can we extend the result of Theorem 2.1 to the two-way case? That is, whether £[CS-FA(k)]
(£[CS-DFA(k)]) G £[CS-FA(k + 1)] (£[CS-DFA(k + 1)]) for any k > 2? (Note that it is
trivial to show £[CS-FA(1)] (£[CS-DFA(1)]) ¢ £[CS-FA(2)] (£[CS-DFA(2)]).) Unfortunately,

we were not able to solve this problem. However, we can give a relatively weak result about

— 15 —



hierarchies based on the number of finite-state automata. This result is obtained as a corollary
of a hierarchy result on sensing two-way multihead finite automata [44].

A two-way k-head finite automaton (HA(k)) comnsists of a finite control and an input
tape where k read-only heads may move independently in both directions. The input is placed
between the left and right endmarkers. The automaton starts in a distinguished starting state
with its & heads on the left endmarker. It accepts the input string if it stops in an accepting
state. The automaton is called deterministic (denoted by DHA(k)) if its next move function is
deterministic. (See Chapter 3 for the formal definition of multihead finite automaton.)

A sensing two-way k-head finite automaton (SeHA(k)) is the same device as a HA(k)
except that the former can detect coincidence qf the heads, that is, whose heads are allowed
to sense the presence or absence of other heads on the same input position. A deterministic
SeHA(k) is denoted by SeDHA(k).

The following fact (from Theorem 3.1 in [44]) is used.
Fact 2.1. Forall k¥ > 3,
(1) £[SeHA(k)]G£L[SeHA(k + 1)], and
(2) £[SeDHA(k)]GL[SeDHA(k +1)].
The above result, in fact, holds even though the alphabet is restricted to a one-letter.
Theorem 2.2. For each k£ > 3,
(1) f[CS-FA(k)]gf[CS-FA(k +2)], and
(2) £[CS-DFA(k)]G£[CS-DFA(k + 2))].
Proof : It is easy to prove that every CS-FA(k) (CS-DFA(k)) can be simulated by a
SeHA(k) (SeDHA(k)), and that every SeHA(k) (SeDHA(k)) can be simulated by a CS-FA(k+1)

(CS-DFA(k +1)). From this observation and Fact 2.1, one can immediately derive the theorem.

a

— 16 —



2.8 Determinism versus Nondeterminism

In this section, we investigate the difference between the accepting powers of CS-1FA(k)’s and
CS-1DFA(k)’s. We give an example language which is acceptable by a CS-1FA(2), but not by

any CS-1DFA(k).

Lemma 2.3. Let M be any CS-1DFA(k), £ > 1. Then there exists a CS-1DFA M’ such

that
(1) T(M') = T(M),

(2) for any input ¢z$, during the computation of M’ on ¢z$, at least one finite-state au-
tomaton moves its input heads one cell to the right every c steps (except the finite-state
automata whose input heads have reached the right endmarker $), where c is some canstant

dependent only on M, and

(3) given any input ¢z$ to M', all the finite-state automata eventually halt on the right

endmarker $.

Proof : Let M = (A, Az,---,Ax) be a CS-1DFA(k) with 4; = (£, Q;, X5, 6, q0,, Fi, ¢, 8,
¢) for 1 < i < k. Let ¢ = maxy<i<x{|Qi] x |Xi|}. From M, we construct a CS-1DFA(k)
M' = (A}, 4}, .-+, A}) which acts as follows: Given an input ¢z$, M’ simulates the action of
M on ¢z$ by making A! simulate each move of A; and simultaneously remembering in its finite
control whether it is the nearest one to the left endmarker ¢ (i.e., whether it lags behind the
others), for all 1 < i < k. (Note that if there are more than two A!’s that are the nearest
ones to ¢, then we refer to the finite-state automaton with the least index as the one that lags
behind the others.) If A’ lags behind the others and stays on the same cell more than |Q;| x | X;|
steps (this means that A; enters a infinite loop, so that the input can never be accepted by M),
then A! moves to the right and makes all the finite-state automata halt without accepting the
input. If each of Ay, Az, ---, Ax eventually enters an accepting state when scanning the right

endmarker $, then M’ accepts the input and halts. If A, Ag, - -+, Ax reach the right endmarker

— 17—



$ and some A; cannot enter an accepting state within |Q1]|Q2]- -+ |Qk| steps (this means that

A; never enters an accepting state), then M’ halts without accepting the input.

It is straightforward that M’ satisfies the desired properties in the lemma. m]

Lemma 2.4. Let L = {w11w2|w1,w2 € {0, ]}' & |w1| = I‘wgl}. Then

(1) L, e£[CS-1FA(2)] and

(2) L, & UlSKoo.{,’[CS-lDFA(k)].

Proof : (1) L; can be accepted by a CS-1FA(2) M = (A;, A;) which acts as follows.
Given an input w € {0,1}*, A; starts at speed 1 to sweep the input, and nondeterministically
changes its speed to 1/3 when scanning the symbol “1”. Once A; changes its speed, it will
sweeps the remainder of the input at the same speed. On the other hand, A, sweeps the input
tape at the same speed 1/2. If A; and A; reach the right endmarker at the same time, then
M accepts the input. Otherwise, it rejects the input. (See Fig. 2.2.) It will be obvious that

time

¢ I ! l 1 ] w2 j$ ] input tape
Al,Ag Al; A2

Fig. 2.2. Profile of an accepting computation of M.

— 18 —



(2) Suppose that there is a CS-1DFA(k) M = (A1, Aa,---, Ax) accepting L; for some

k > 1. For each n > 1, let
V(n) = {0"w|w € {0,1}* & |w| = n}.

For each 1 < i < k and each z € V(n), let t;(z), gi(z) denote the time and the internal state,
respectively, just after A; sweeps the subword z during the computation of M on the input z0?

(p 2 1), and let ty;,(z) = min{t1(z), t2(2), - -, tk(z)}. Furthermore, for each z € V(n), let

u(z) = ((q1(2), 11(2) — tmin(2)), (92(2), t2(2) — tmin(2)), - -, (9k(2), k(%) — tmin (2)))-
Then, the following statement must hold:

Statement. For any two different words z,y € V(n), u(z) # u(y).

[ For otherwise suppose that for some two z,y € V(n), £ # y and u(z) = u(y). Let w(i) denote
the i-th symbol of w from the left. Then for some n < i < 2n, z(i) # y(i), since z,y € V(n)
and z # y. Without loss of generality, let z(¢) =1 and y(i) = 0.

Consider the following two words, z = 202271 and 2’ = y0%~2"~1 It is easy to
ascertain that z € L;. Hence z must be accepted by M. On the other hand, 2z’ must be also
accepted by M, because u(z) = u(y). This contradicts the fact that 2’ is not in L. ]

For each n > 1, let U(n) = {u(z)|z € V(n)}. By Lemma 2.3, t;(z) — tmin(z) = O(n)
for each 1 < i < k and z € V(n), so |U(n)] = O(n*~!). On the other hand, |V(n)| = 2".
Therefore, it follows that for large n, |V(n)| > [U(n)|, and thus there must exist two different
words z,y € V(n) such that u(z) = u(y). This contradicts the above statement, and thus (2)

holds. o

From Lemma 2.4, we can get the following theorem.

Theorem 2.3. For each k& > 2,
(1) f[CS—lDFA(k)]g.{.’[CS-]FA(k)], and

(2) Ui<keoo £[CS-1DFA(K)]IG Ur<k<oo £L[CS-1FA(k)].

— 19 —



2.4 One-way versus Two-way

In this section, we investigate the difference between the accepting powers of CS-1FA(k)’s and
CS-FA(k)’s. We give an example language that is acceptable by a CS-DFA(2), but not by any

CS-1FA(k).

Lemma 2.5. Let Ly = {w#wR|w € {0,1}*}, where w® denotes the reversal of word w.

Then
(1) L, €£[CS-DFA(2)] and

(2) L2 & Urckcoo £[CS-1FA(K)].

. Proof : (1) We construct a CS-DFA(2) M = (A;,A;) accepting language L,. M

executes the following steps :

Step 0. M checks if the input word is well formed, that is, if it is of the form w#w’ with
w,w’ € {0,1}* and |w| = |w’|. These actions can be easily done.

Step 1. Let w = ajaz---am and w' = a!, ---aha) (when the input word is well formed).
Now A; and A, simultaneously start to move on the symbol “a;”, and A; stores a; in its finite
control. A; moves left and returns at speed 1 when scanning the left endmarker, while A; moves
right and returns at speed 1 when scanning the right endmarker. It is easy to see that when
A; and A, simultaneously reach the same cell again, the symbol on the cell is “a}”. Then A,
;:hecks if a; = aj.

Stepi. 1 = 2,---,m. Suppose that A; has already verified that a; = af,---,a;-1 = a}_;.
Now if A; and A; are scanning the same symbol “a!_;” (this happens for even i’s), then A;
and A, simultaneously move left one cell, and A; stores a! in its finite control; if A; and A, are
scanning the same symbol “a;_,” (this happens for add i’s), then A; and A, simultaneously
move right one cell, and A; stores g; in its finite control. After that, A; and A2 acts as in Step
1 to check if a; = a}. M accepts the input if and only if for each 1 < i < m, a; = a!. (See Fig.

2.3.)



time

7] ol T I 5]

Aq, A2 Ay, Ag input tape

Fig. 2.3. Comparing @; with af.

(2) It is not difficult to prove, by using the technique in the proof of Lemma 2.2 (2), that

for any k& > 1, L, ¢ £[CS-1FA(k)]. m]
The following theorem follows from Lemma 2.5.

Theorem 2.4. For each k > 2,

(1) £[CS-1FA(k)]G£L[CS-FA(K)],

(2) £[CS-1DFA(k)]G£L[CS-DFA(K)],

(3) Usghcon £ICS-TPA(E)]G Usgr oo £[CSFA(R),

(4) Uigk<oo £[CS-1DFA(K)]G Ui gk<oo £[CS-DFA(K)].

2.5 CS-FA’s with Reversal Number Restriction

It has been known that the reversal complexity is intimately connected to parallel time com-
plexity and uniform circuit depth [45, 46]. In this section, we consider the CS-FA(k)’s with
reversal number restriction and investigate how this restriction affects the accepting power of

CS-FA(k)’s. Our result mainly follows from the J. Hromkovic’s work [47] where a language is

— 2] —



constructed to fool two-way nondeterministic (sensing) multihead finite automata with reversal
number restriction, by using a generalized technique presented by Yao-Rivest [8].

Let f be a function from natural numbers to the positive real numbers. We denote by
CS-FA(k)-R(f)’s the CS-FA(k)’s such that in their accepting computations each finite-state

automaton may use at most f(n) head reversals for input words of length n.

Lemma 2.6. Let
Ly = {wycwac- - cw fiw,c- - - cwpcwy|r > 1 & w; € {0,1} for i =1,2,---,7}

and}

Ly = {z1#z2# - #om#tm > 1 & zi € L for i =1,2,---,m}.

Then
(1) L; €£[CS-DFA(2)] and

(2) Ls ¢ Uickcoo £[CS-FA(K)-R(n®)], where 0 < a < 1/3.

Proof : (1) To prove L3 € £{CS-DFA(2)], it is enough to show that L} € £{CS-DFA(2)].
We construct a CS-DFA(2) M = (A;, A;) accepting language L§. M executes the following
steps :

Step 0. M checks if the input word is well formed, that is, if it is of the form
wicwac- - - cwwlc - cwhew)

with w;, w! € {0,1}" for each 1 < i < r and |wicwac-- - cw,| = |w)c- - - cwjcw]|. These actions
can be easily done.

Step 1. Let w; = a;1a;2---a;y; and w} = af ja}, o--aa“ for each 1 < i < r (when the
input word is well formed). Now A; and A, simultaneously start to move on the symbol of
the left end of w,, “a,1”, and A; stores a,; in its finite control. Both A; and Az move at

>

speed 1. A; moves left, turns to the right when first scanning the symbol “c”, and turns to

— 922 —



the left again when scanning the right endmarker, while A moves right, turns to the left when
(fixst) scanning the symbol “}” (or “c”), and turns to the right again when scanning the left
endmarker. It is easy to observe that when A; and A; simultaneously reach the same cell again,
the symbol on the cell is “a; ;”. So A; can check whether a,,; = a] ;. If this is the case, then
A1 and A; simultaneously move right one cell to the symbol “a; ,”, and check, in the same way,

whether ¢, ; = a:,'z. Clearly, A; and A, can check, by repeating the above oprations, whether

a,; = a, ; for each 1 < j < min{l,,;;}. Thus M can verify that w, = w]. (See Fig. 2.4.)

73 S 1 B 3 N ) I T 7 I ) I

Ay, A, Aj, A, input tape

Fig. 2.4. Comparing a; ; with af,j'

Step i. ¢ = 2,---,r. Suppose that M has already verified that w, = w/, -+, Wr—i42 =
'w,’._,'+2. Now if A; and A3 are scanning the same symbol “a,_;42;,_,.,”, then A; and A
simultaneously move left to the symbol of the left end of w,—i41, “@r—i41,1”, and A, stores

“@r—i+1,1” in its finite control; if A; and A; are scanning the same symbol “a,_;,,, . ", then



A; and A; simultaneously move right to the symbol of the left end of w;_;,y, “a;_; 411", and

! »

Ay stores “a;_; ., ,” in its finite control. After that, A; and Az acts as in Step 1 to check if

Wy_it1 = W, _;,,. It will be obvious that M accepts the input if and only if for each 1 < i < r,

w.-:wf.

(2) It was shown in [47] that L3 ¢ Ujckcoo £[SeHA(K)-R(n%)] for any 0 < a < 1/3,
where SeHA(k)-R(n*) denote a SeHA (k) which may use in its accepting computations at most
n® head reversals for input words of length n. Clearly, (2) follows from this fact, since £[CS-.

FA(k)-R(n®)]C £[SeHA(k)-R(n%)]. a
The following theorem is derived from Lemma 2.6.

Theorem 2.5. For each k > 2, and 0 < a < 1/3,
(1) £[CS-FA(k)-R(n®)]G£[CS-FA(K)],
(2) £[CS-DFA(k)-R(n®)]G£[CS-DFA(K)),
(3) Usck<oo £[CS-FA(K)-R(n®)]G Ui <k<oo £[CS-FA(K)],

(4) Uick<oo £[CS-DFA(K)-R(n*)]G Uick<oo £[CS-DFA()].

2.6 Closure Properties

In this section, we investigate closure properties of the classes of languages accepted by CS-
1FA(k)’s.

We first examine closure properties for the deterministic case.

Lemma 2.7. For each k > 1, the class of languages accepted by CS-1DFA(k)’s is closed

under union and intersection with arbitrary regular languages.

Proof : Let M be any CS-1DFA(k) and R any regular language. By Lemma 2.3, there
exists a CS-1DFA(k) M’ satisfying the properties described in Lemma 2.3. Consider a CS-

1DFA(k) M" which acts as follows. M" simulates the action of M’, and makes some finite-state

— 24 —



automaton try to accept R at the same time. It is easy to verify that M” can be constructed

to accept T(MYUR or T(M')N R. a
Lemma 2.8. For each k > 1, let

A(k) = {0™10™11...10™:20™ € {0,1,2}F|Vi(1 < i < K)[m; > 1]
& 3j(1 < j L k)[m; = m]},
A(oo) = {0™110™21---10™20™ € {0,1,2}F|k > 1 & Vi(1 < i < k)[m; > 1]

& 3j(1 < j < k)[mj = ml}.

Then,
(1) A(k) ¢£[CS-1DFA(k)] and

(2) A(00) ¢ Ur<kcoo £[CS-1DFA(K)].

Proof : (1) Suppose that there is a CS-1DFA(k) M = (A1, A2,-- -, Ax) accepting A(k).

For each n > 1, let
V(n) = {0™10™1...10™2Vi(1 <i < k)[1 < m; < n]}.

For each 1 < i < k, let ti(z), ¢i(z) denote the time and the internal state, respectively, when
A; first reads the symbol “2” of z € V(n) during the computation of M on an arbitrary word
w containing the prefix z, and let ¢pin(z) = min{t,(z),t2(z), -, tx(z)}. Furthermore, for each

£ = 0™10™1...10™2 € V(n), let

u(z) = ((91(2), 11(2) — tmin(2)), (92(2), t2(2) — tmin(2)), - - -5 (k(2), Tk (2) — tmin(2))),
N(z) = {m|3j(1 << k)[m; = m]}.
and for each 1 <1 <k, let
Wi(n) = {z € V(n)|ti(z) = tmin(2)},

Si(n) = {N(z)|z € Wi(n)}.

— 925 —



Then, the following statement must hold :

Statement. Foreach 1< i <k and any two words z,y € W;(n) such that N(z) # N(y),

u(z) # u(y)-
[ For otherwise suppose that

£ =0™10™1...10™2,
y=0m110™21-.-10™2,

z,y € Wi(n), N(z) # N(y), and u(z) = u(y). Let m € N(z) — N(y) and m = m;.

Consider the following two words,
z=z0™ =0™'10™?1-..10™k20™,
and
2 = y0™i = Q™110™21 .- 10™k20™.

It is easy to see that z € A(k). Hence z must be accepted by M. On the other hand, z’ must
be also accepted by M, because u(z) = u(y). This contradicts the fact that 2’ is not in A(k)
(since m; & N(y)). |

Clearly, for some 1 < j <k,

(;z)+(;>+..-+(2)}/k=ﬂ(nk)-

Let U;(n) = {u(z)|z € W;(n)}. Since for each z € W;(n), |w| = O(n), by Lemma 2.3, it follows

|S;(n)| >

that for each i € {1,-++,j — 1,7 + 1,--+,k}, ti(z) = tmin(z) = O(n). Thus |U;(n)] = O(n*"1).
(Note that t;(z) = tmin(z) for each z € W;(n).) Therefore, there must exist two different words
z,y € Wj(n) such that N(z) # N(y) and u(z) = u(y), if |S;(n)| > |U;(n)| which happens for n
large enough. This contradicts the above statement, and thus (1) holds.

(2) For each k > 1, let

A'(k) = {0™10™21--.10™20™ € {0,1,2}F|Vi(1 < i < k)[m; >'1] & m > 1}



Clearly, the language A'(k) is regular for each k¥ > 1. Suppose that A(c0) € Uj<rcoo£[CS-
1DFA(k)]. Then, there is a CS-1DFA(k) accepting A(oo) for some k& > 1. By Lemma 2.7,
A(oo) N A'(k) = A(k) € £[CS-1DFA(k)]. This contradicts (1) of the lemma, and thus (2) holds.

a

Theorem 2.6.

(1) For each k > 2, £[CS-1DFA(k)] is closed under complementation, but not under union

and intersection.

(2) Ui<k<oo£[CS-1DFA(k)] is closed under union, intersection and complementation.

Proof : (1) By Lemma 2.3, it is not difficult to prove that £[CS-1DFA(k)] is closed
under complementation for any k¥ > 1. Without loss of generality, one can only consider the
CS-1DFA(k)’s satisfying the properties (2), (3) described in Lemma 2.3. Then, For any CS-
1DFA(k) M, one may define a new CSl-lDFA(k) as the same as M except that the accepting
and non-accepting states are switched.

Foreach k> 1and 1< j <k, let
T'(k,7) = {0™1..-10™20™1-.-10™t € {0,1,2}F|Vi(1 < i < k)[mi,m! > 1] & mj = m}}.

Then, it is easy to verify that T'(k,j) € £[CS-1DFA(2)]. On the other hand, by Lemma 2.2,
T'(k,1)N---NT'(k, k) = T(k) ¢£[CS-1FA(k)]. This means that £[CS-1DFA(k)] is not closed
under intersection for each k > 2.

Since I; N L, = L; U L5, where the overbar denotes complementation with respect to
an alphabet including the alphabets of Ly and L,, it follows from the above facts that £[CS-
1DFA(k)] is not closed under union for each k > 2.

(2) We leave the proof to the reader. m]
Lemma 2.9. For each k > 1, let
B(k) = {170™i20™10™1...10™ € {0,1,2}*|1<j < k

—_—7 —



& Vi(1 <i < k)m; > 1]},
B(co) = {170™i20™10™1---10™ € {0, 1,2} [k > 1 & 1< j <k

& Vi(1 < i < k)ms > 1]}
Then,
(1) B(k) € £[CS-1DFA(2)],
(2) B(co) €£[CS-1DFA(3)),
(3) B(k)® ¢ £[CS-1DFA(k)], and
(4) B(00)® & Urgrcoo £[CS-1DFA(K)].

Proof: (1) B(k) can be accepted by a CS-1DFA(2) M = (A;, A;) which acts as follows:

Consider the case when an input word

4170™520™110™21 .- 10™8, 1< j < k,
is presented to M. (Input words in the form different from the above can easily be rejected by
M)

i) A, sweeps the subwords 1’ and 0™ at speed 1 2, and the other parts at speed 1; A,
P

sweeps the subwords 17 and 0™ at speed 1 /2, and the other parts at speed 1.

ii) Aj, A2 can enter an accepting state when scanning the right endmarker $ if and only if
g 8 g

A; and A; scan the same cell just after they sweep the subword 0™J. (See Fig. 2.5.)

Note that m; = m; if and only if A; and A; scan the same cell just after they sweep the
subword 0™i. So M accepts B(k).

(2) B(oo) can be accepted by a CS-1DFA(3) M = (A, A2, A3) which acts as follows:
Consider the case when an input word
4170™520™10™ 1. 10™$ (with j > 1, k > 1),

— 28 —



,  time

j—11’s

T T 12 Lo T 15

Ay, Ay Ay, Ay input tape

Fig. 2.5. Comparing m; with my.

is presented to M. (Input words in the form different from the above can easily be rejected by

M)

(i) A; sweeps the subword 1/ 0™ at speed 1, the symbols “2” and every “1” on the right hand

of “2” at speed 1/2, and the other parts at speed 1.

(ii) Az sweeps the subword 17 at speed 1/2, and after then changes its speed to 1. If A, and
Aj scan the same cell just after they read some symbol “1”, then A, changes its speed to

1/2 and sweeps the remainder of the input tape (in this speed).
(iii) A3 sweeps the subword 190™5 at speed 1/2, and the other parts at speed 1.

(iv) Ai, Az, A3 can enter an accepting state when scanning the right endmarker $ if and only
if A; and A, scan the same cell just after they read some symbol “1”, and after then A,
and Aj scan the identical symbol “1” just after A, sweeps the sequential 0’s. Note that
this happens if and only if ¥ > j and m) = mj, that is, the input is in B(c0). (See Fig.

2.6.)

— 929 —



time

;=11

fl v | om [2] [1] o [1] 18]

Ar, Az, A; A, A3 Az A input tape

Fig. 2.6. Comparing m; with m; (if k > 7).
(3),(4) In the same way as in the proof of Lemma 2.8, we can prove (3), (4) of the Lemma,
but we do not go into details. o

Theorem 2.7.  For each k > 2, neither £[{CS-1DFA(k)] nor U cx<o, £[CS-1DFA()] is

closed under the following operations :

(1) reversal “f”

(2) concatenation,

(3) Kleene closure “*”,

(4) nonerasing homomorphism.

Proof : (1) Nonclosure under reversal follows from Lemma 2.9.

(2) Let
H = {0™10™1.--10™20™ € {0,1,2}*[k > 1 & Vi(1 < i < k)[m: > 1]},

and T = {0"1|n > 1}*. It is easy to see that H,T €£[CS-1DFA(2)]. On the other hand,
TH = A(c0), by Lemma 2.8, and thus TH ¢ U <x<o0o £[CS-1DFA(K)].

— 30 —



(3) Let G = HUT. It is easy to see that G €£[CS-1DFA(2)]. On the other hand,
G* N T{0}*{2}{0}* = A(c0). Form this fact and Lemmas 2.7, 2.8, it follows that G* ¢
Usr<k <o £[CS-1DFA(E)].

(4) Let

Ly = {w12w2|w1,w2 € {0, 1}‘ & |w1| = I’LUQI}.

We can easily show that Ly €£[CS-1DFA(2)]. On the other hand, let h be the nonerasing
homomorphism defined by h(0) = 0 and h(1) = h(2) = 1. Then h(L4) = L1, where L, is the
language given in Lemma 2.4, and it follows that h(L4) ¢ Ui<kcoo £[CS-1DFA(K)], by Lemma

2.4. ' a
We next examine closure properties for the nondeterministic case.

Lemma 2.10. Let Ly = {w2w|w € {0,1}*}. Then,
(1) Ts € £[CS-1FA(2)), and

(2) Ls € Urgk<oo £[CS-1FA(E)).

Proof : (1) Is can be accepted by a CS-1FA(2) M = (A;, A2) which acts as follows:
Consider the case when an input word ¢dw,2w,$, wy,w; € {0,1}*, |wy| = |w,|, is presented to
M. (Input words in the form different from the above can easily be accepted or rejected by M.)
A; moves at speed 1 until it nondeterministically stores in its finite control some symbol (0 or
1) scanned by its input head during the sweep of the subword “w;”, and then moves at speed
1/2, while A; sweeps the subword “w;2” at speed 1/2 and the subword “wy” at speed 1. A,
As can enter an accepting state on the right endmarker if and only if A; and A, simultaneously
reach the same cell and the symbol on the cell is different from the symbol stored in the finite

control of A;. (See Fig. 2.7.) It is easy to verify that T(M) = Ls.
(2) The proof is similar to that of (2) of Lemma 2.2, and omited here. O

Theorem 2.8.

— 31 —



time

¢l plll |2 I h/ol l$ I input tape
AI,AZ A],A2

Fig. 2.7. An example for recognition of w € _L: by M.

(1) For each k > 2, £[CS-1FA(k)] is closed under union, but not under intersection and

complementation.

(2) Ui<k<oo£[CS-1FA(k)] is closed under union and intersection, but not under complemen-

tation.

Proof : (1) It is straightforward that £[CS-1FA(k)] is closed under union. The proof
for nonclosure under intersection is the same as in the deterministic case (see the proof of (1)
of Lemma 2.6). Nonclosure under complementation follows immediately from Lemma 2.10.

(2) Nonclosure under complementation follows from Lemma 2.10, and the proofs for other

closure properties are left to the reader. O

Theorem 2.9. For each k > 1, £[CS-1FA(k)] is closed under reversal “”, concatenation

and Kleene closure “*”. Thus, so does |J;<x<o0 £[CS-1FA(K)].

Proof : The proof for closure under reversal “f” is similar to the proof for the case
k = 1; a CS-1FA(k) can run a computation “in reverse”. Let L be accepted by a CS-1FA(k)
M= (AI’A2""’A}¢)) where for each 1 < t < k) 4 = (E,Q,‘,X{,é;,Qo;,Fl,',gi,$,¢). Now



consider the CS-1FA(k) M' = (A}, AS, -, AL) which, on input ¢w?$, simulates M on ¢w$, by

using the following algorithm :

(1) For each 1 <1 < k, A! chooses some accepting state of A;, ¢iy € F;, and stores it in the

finite control (denote the state stored in the finite control g;).
(2) Repeat

For each 1 < i < k, A! chooses a ¢! € @y, ai € T U {¢,$}, d! € {0,+1}
and z! € X; such that (g;,d!) € 6;(al,z!,¢!), and moves right d} cells. If the
values of a! and z! guessed by some A; are not correct (this can be detected
by comparing them with the symbol scanned by A; and the states of the other
finite-state automata on the same cell scanned by A; at the moment, since

A{’s can communicate with each other on the same cell), A! rejects the input.

Otherwise, set ¢; = g
Until the simulation cannot continue.

(3) If all A%’s are scanning the right endmarker and ¢; = go; for each 1 < ¢ < k, M’ accepts

the input.

It is straightforward to verify that M’ accepts L®. This shows that £[CS-1FA(k) is closed under
reversal “%»,

To show closure under concatenation, let M’ and M" be two CS-1FA(k)’s. We consider
the CS-1FA(k) M which acts as follows: While sweeping the first part of the input word z, M
simulates the action of M’ on tixe first part, and each finite-state automaton of M simultaneously
remenbering in the finite control whether it is nearest to the right endmarker $. Let 4; (1 <
i < k) be one finite-state automaton that is nearest to $. A; nondeterministically guesses the
arrival at the right end of the first part of z, and after that, without moving, detects the arrivals

of other finite-state automata at the same cell. If M finds out that M’ accepts the first part of

z by simulating the action of M’ in this way, M next proceeds to simulate the action of M" on



the latter part of z, and accepts if and only if the latter part is also accepted by M”. It will be
obvious that T(M) = T(M")T(M").

In a similar way, one can prove closure under Kleene closure “*”. ' a

The following theorem is derived from Theorem 3.4 (in the next chapter) and the fact
that the class of languages accepted by one-way nondeterministic (one-) counter machines is a

full AFL (Abstract Family of Languages) [48].
Theorem 2.10. £[CS-1FA(2)] is a full AFL.

The closure results obtained above are summarized in Table 2.1, where £(FA)P =£[CS-
IDFA(K)], £(FA)Y =£[CS-1FA(K)], £(FA)2 = Usck<oo £[CS-1DFA(K)], £(FA)Y = Uscrcoo
L[CS-1FA(k)], “y/” means that the class is closed, “x” means that the class is not closed, and

“?” means that the closure property is not known.

Table 2.1. Closure properties of CS-1FA(k)’s, k > 2

| [ LOFA)E | £(FA)Y [ £(FA)s | £(FA) |

complementation v X Vv X
union X Vv Vv Vv
intersection X X Vv V4
concatenation X Vv X Vv
reversal X V4 X Vv
Kleene closure X Vv X Vv
nonerasing V(k=2)

homomorphism X ?(k > 3) X ?

2.7 Concluding Remarks

In this chapter, the cooperating system of finite-state automata was introduced as a new non-
writing and parallel string acceptor, and its basic properties were investigated. Especially, we
obtained some hierarchy results about CS-FA(k)’s with respect to the number of finite-state
automata, nondeterminism-determinism, two way-one way, and the bounded reversal number.
Fig. 2.8 is a summary of the inclusion relations, which hold for these CS-FA(%)’s, & > 2. All

inclusions are proper. Looking back at the results in this chapter in more detail, we observe that

— 34 —



as the resources of computation, (1) nondeterminism cannot make up for an additional finite-
state automaton for CS-1FA(k)’s (Lemma 2.2), additional finite-state automata cannot make
up for the nondeterminism for CS-1DFA(k)’s (Lemma 2.4), (3) additional finite-state automata
plus nondeterminism cannot make up for the two-way power for CS-1FA(k)’s (Lemma 2.5), and
(4) additional finite-state automata plus nondeterminism cannot make up for the unlimitness
to the number of reversals for CS-FA(k)-R(n?%)’s with 0 < a < 1/3 (Lemma 2.6).

We also proved the closure results on CS-1FA(k)’s under the Boolean (union, intersection,
complementation) and Kleene (concatenation, closure, and reversal) operations. In the next
chapter, we will establish a relationship of CS-FA(k)’s to the other types of automata, and
consider several decision problems associated with CS-FA(k)’s.

We conclude this chapter by listing some open problems related to the ones investigated

in this chapter.

(1) Is £[CS-FA()] (£[CS-DFA(k)))G £[CS-FA(k + 1)] (£[CS-DFA(k + 1)]) for each k > 27

(We believe that the proof seems to require new techniques.)

(2) Does there exist a language L € £[CS-1FA(2)] such that L ¢ £[{CS-DFA(k)] for any k& > 17
(We will see in the next chapter that this problem is closely related to some open problem

concerning deterministic and nondeterministic tape-bounded Turing computations.)

(3) Does Theorem 2.1 still hold even if the input alphabet is restricted to a one-letter? (We

will see in the next chapter that this is true for CS-1FA(k)’s, k < 3.)

(4) Is £[CS-1FA(k)] closed under nonerasing homomorphism for each k > 3?

— 35 —



CS-DFA(k + 3)
U

CS-DFA(k + 1)
U

CS-1DFA(k + 1)
i

CS-1DFA(k) <+

ft
CS-DFA(k)

]
CS-DFA(k)-R(n®)

CS-FA(k + 3)
4

CS-FA(k + 1)
4

CS-1FA(k +1)
4

CS-1FA(k)

ft

CS-FA(k)

U
CS-FA(k)-R(n®)

Fig. 2.8. The relations for accepting power of CS-FA(k)’s according to a variety of restric-
tions, where k¥ > 2 and @ < 1/3. (A=>B indicates £[B]G £[A])

— 36 —






CHAPTER 3

A Relationship to Other Automata

In this chapter, we prove some results establishing a relationship of the cooperating systems
of finite-state automata to the other automata of tape complexity O(logn). We will consider
the following types of automata: (1) multihead finite automata, (2) marker finite automata,
(3) multiprocessor automata, and (4) multicounter machines. In particular, it is shown that
one-way (one-)counter machines and CS-1FA(2)’s are equivalent in accepting power. Several
results concerning the decision problems associated with CS-1FA(k)’s are simple consequences

of this fact.

3.1 Definitions and Notation

In this section, we recall the definitions of multihead finite automata, marker finite automata,

multiprocessor automata, and multicounter machines.

3.1.1 Multihead Finite Automata

A two-way k-head finite automaton, HA(k), is an 8-tuple (k, %, Q, 6, g0, F, ¢,8) where

- k > 11is the number of input heads,
- ¥ is a finite input alphabet (¢,$ ¢ X),

- @ is a finite set of states,

6 is the transition function mapping Q x (X U {¢,$})* to 2@x{-1,0,+1}*

— 37 —



- qgo in @ is the initial state,
- F C Q is the set of accepting states,
- ¢,8 are the left and right endmarkers, respectively.

A HA(k) M consists of a finite control, a read-only input tape with endmarkers and &
input heads. At the start of the computation, M is set to its initial state, with all input heads
positioned on the left endmarker. A single move of M is described as follows: Let M be in state
q and the k input heads scanning symbols ay, a2, - - -, ax, respectively. If 6(q, a1,a2,---,ax) = 9,
then M has no next move (i.e., M halts). If (p,dy,d2, --,dg) is in 6(g,a1,a2,---,ax), then M
may go to state p and move right its i-th head d; cells. The input heads are prevented from
going off either end of the input. The input is accepted by M if there is a sequence of moves
that lands M in an accepting state.

A deterministic HA(k) is a HA(k) = (k, %, Q, 6, g0, F, ¢, 8) such that, for all (¢,a1, a2, -,
ax) in Q x (T U {¢,8})¥, 6(q,a1,a2,---,ax) contains at most one element. |

A ome-way HA(k) is a HA(k) = (k,Z,Q,6, g0, F, ¢, 8) such that, for all (¢,a;,a9,--- ,vak)
in Q x (ZuU{¢,8}),if (p,d1,d2,--,dx) € 6(q,01,a2,+,ax), then d1,da,---,dx € {0,+1}.

A simple HA(k) (denoted by SHA(k)) is a HA(k) whose only one head (called the “read-
ing” head) is capable of distinguishing the symbol in the input alphabet, and whose other heads
(called the “counting” heads) can only detect whether they are on the left endmarker ¢, the
right endmarker $ or on a symbol in the input alphabet [11, 12].

We will use the following abbreviations.

HA(k) : a two-way k-head (nondeterministic) finite automaton,

DHA(k) : a two-way k-head deterministic finite automaton,

SeHA(k) : a two-way k-head sensing (nondeterministic) finite automaton,

SeDHA(k) : a two-way k-head sensing deterministic finite automaton,

— 38 —



o SHA(k) : a two-way k-head simple (nondeterministic) finite automaton,

e SDHA(k) : a two-way k-head simple deterministic ﬁgite automaton,

e SeSHA(k) : a two-way k-head sensing simple (nondeterministic) finite automaton,
o SeSDHA(k) : a two-way k-head sensing simple deterministic finite automaton,

e 1HA(k) : a one-way k-head (nondeterministic) finite automaton,

e 1DHA(k) : a one-way k-head deterministic finite automaton,

e 1SeHA(k) : a one-way k-head sensing (nondeterministic) finite automaton,

o 1SeDHA(k) : a one-way k-head sensing deterministic finite automaton,

e 1SHA(k) : a one-way k-head simple (nondeterministic) finite automaton,

e 1SDHA(k) : a one-way k-head simple deterministic finite automaton,

e 1SeSHA(k) : a one-way k-head sensing simple (nondeterministic) finite automaton,

e 1SeSDHA(k) : a one-way k-head sensing simple deterministic finite automaton.

3.1.2 Marker Finite Automata

A k-marker finite automaton (denoted by MA(k)) is an 8-tuple (k,%,Q,6, qo, F,¢,$) where

Z,Q, g0, F, ¢,$ have the same meanings as before. k is the number of markers. § is the transition
function mapping Q@ x K x (S U {¢,$}) x {0,1} to 29*KX{LRN}X{01} where “0” and “1”
mean the absence and the presence of a marker on the cell scanned by the input head of
MA(k), and K = {0,1,2,---,k}. The integer i € K means the number of markers “carried”
by MA(k) at the current moment. Furthermore, § satisfies the following conditions: For each
(¢,1,0,2) € @ x K x (BU{¢,$}) x {0,1}, if (p, 7, d,y) € 6(q,4,a,2), then i + 2 = j +y, that is,
only the following combinations of (i, z, j, y) are possible: (i,0,1,0), (1,0,i—1,1), (i,1,i + 1, 0),

and (4,1,4,1), which have the interpretations shown in Table 3.1.



Table 3.1.

( (i,z:j) y)

Meaning

(1,0,1,0)

MA(k) was carring #(> 0) markers, and no
marker was at the current position; after
the transition, MA(k) did not put down
any marker.

(4,0, = 1,1)

MA(k) was carring i(> 1) markers, and no
marker was at the current position; after
the transition, MA(k) did put down some
marker.

(i)11i+ 1»0)

MA(k) was carring i(> 0) markers, and
there was some marker at the current po-
sition; after the transition, MA(k) did pick
it up.

(i) l) i) 1)

MA(k) was carring i(> 0) markers, and
there was some marker at the current po-
sition; but MA(k) did not pick it up after
the transition.

A MA(k) M is a finite-state automaton with k distinguishable markers, my, ma, - -, my.
These markers can be thought of as labeled pebbles that can be placed on or removed from
only the cell the input head is currently scanning. Furthermore, M can place at most one
marker on any cell of the input tape. (Note that one can show that there is no difference in
computing power between marker finite automata that place at most one marker on any cell
of the input tape and those that can place up to some constant k¥ markers on a cell.) At the
start of the computation, M is set to its initial state with the input head positioned on the left
endmarker, and all markers are “carried” by the finite control. Acceptance is defined in the
obvious way. (Note that the markers here are assumed to be physical and labeled. This does
not lose generality, since Blum and Hewitt [26] had shown that marker finite automata with

abstract and physical markers are equivalent in computing power, as are those with labeled and

unlabeled markers.)

A MA(k) = (k,Z,Q, 6,90, F, ¢,8) is called deterministic (denoted by DMA(k)) if |6(q, 1, a,

z)| < 1 for each (g,4,a,2) in Q@ X K x (XU {¢,8}) x {0,1}.

— 40 —




3.1.3 Multiprocessor Automata

A two-way finite automaton with k processors (denoted by PA(k)) is a structure M = (Q, L,

g,h,q0, F, ¢,8), where £,Q, F, ¢,$ have the same meanings as before. g, the transition function,
is a mapping from Q x (£ U {¢,$}) into 29*{-1.0+1} h the switching function, is a mapping
from {1,2,---,k} x Q¥ into {0,1}. go € QF is the k-tuple of the initial states.

A PA(k) consists of k processors that read information from the input tape simultane-
ously and the switching function that depends on the internal states of all processors on the
step of computation. If processors py, ps,- - -,px arein states q,¢2,- -+, qx and scan a;, as, -+ ,ak
on the input tape, and (¢, d;) € g(gi, a:) for each 1 < ¢ < k, then each processor p; such that
h(i,q1,92, -, qx) = 1 may enter state ¢ and move right itself d; cells on the input tape. If
h(%,91,92,-*,qx) = O, then processor p; must miss the step. At the start of the computation,
all processors are set to the initial state and scanning the left endmarker. An input is accepted
by a PA(k) if all processors finally enter an accepting state. (Note that the definition of ac-
ceptance here is different from one in [42], where the acceptance is defined as follows: an input
is accepted if processors pi,pa,---,px enter states gi,qz2,---,qx such that forallt =1,2,--- )k,
h(%,q1,92,-+,qk) = 0. A relationship between two definitions of acceptance is discussed in [43].)

Let M be a PA(k) as defined above. If |g(gi,a;)] < 1 for any 1 < ¢ < k and any
(gi,8:) € Q x L, then M is a two-way deterministic finite automaton with k¥ processors. If
d; # —1, for all (¢/,d;) in 6(gi,a:), where (gi,8;) in Q x (2 U {¢,$}), then M is a one-way finite

automaton with k processors. The following abbreviations will be used later.
e PA(k) : a two-way (nondeterministic) finite antomaton with k processors,
o DPA(k) : a two-way deterministic finite automaton with k processors,
e 1PA(k) : a one-way (nondeterministic) finite automaton with k processors,

e 1DPA(k) : a one-way deterministic finite automaton with k processors.

— 41 —



3.1.4 Multicounter Machines

A two-way k-counter machine (denoted by CM(k)) is defined as a tuple M = (k,Z,Q,6, o, F,
Zo,72,¢,%) where X, Q, qo, F, ¢,$ have the same meanings as before. k is the number of“counters.
6 is a mapping from Q x (S U {¢,§}) X {Zo, Z}* into 2@x{~1.0+1}x{+10-1}* ' 7 3n4 Z (blank)
are the two symbols of counters. Furthermore, the symbol Zy, which serves as a bottom of the

counter, appears initially on the bottom of counter and may never appear on any other place.

A CM(k) M consists of a ﬁnilte control, a read-only input tape with endmarkers and &
counters. At the start of the computation, M is set to its initial state, with the input head
positioned on the left endmarker and with all counter heads positioned on the bottoms. A single
move of M is described as follows: Let M be in state ¢, the input head scanning symbol a, and
k counter heads scanning symbols a1, a2, ---, ax, respectively. If 6(q,a,(a1,a2,--+,ax)) = 9,
then M has no next move (i.e., M halts). If (p,d,dy,d2,---,dx) is in 6(q,a,(ay,as,:-,ax)),
then M may go to state p, move right its input head d cells, and move up the i-th counter
head d; cells. The input head and the counter heads are prevented from going off either end
of the input and the bottoms of counters, respectively. Note that an integer z; can be stored
by moving up the counter head z; cells from the bottom. The input is accepted by a CM(k) if
there is a sequence of moves that lands it in an accepting state. (Note that there is no difference
between acceptance by final state and by final state and empty counters except in the realtime
case [49].)

A CM(k) = (k,%Z,Q,6,q0, F, Z0,2,¢,8) is called deterministic (denoted by DCM(k)) if
|6(q, a, (a1,az,-++,ax))| < 1 for each (g,a,(a1,a2,---,ax)) in @ x (EU{¢,§}) x {2, Z}*. A
CM(k) (or DCM(k)) is called one-way (denoted by 1CM(k) or 1IDCM(k)) if for all (p, d, (d1, d2, - -+,
dy)) in 6(q, a,(a1,az2, -, ax)), where (g, a,(a1,a2,---,ax)) in @ x (ZU{¢,§})x {Zo, Z}*,d # —1.

A DCM(k) (or 1IDCM(k)), M:, accepts in time T'(n) if each input w accepted by M is ac-
cepted within T'(Jw|) steps, and we denote it by DCM(k)-Time(T(n)) (or 1DCM(k)-Time(T(n)).
A CM(k) (or 1CM(k)), M, accepts in time T'(n) if for each input w accepted by M there is a

— 42 —



computation of M on w which accepts in at most T'(|w|) steps, and we denote it by CM(k)-
Time(T'(n)) (or 1CM(k)-Time(T(n))).

A DCM(k) (or 1DCM(k)), M, accepts in space S(n) if for each input w accepted by M,
each counter of M requires space not exceeding S(|w|), and we denote it by DCM(k)-Space(.S(n))
(or 1IDCM(k)-Space(S(n))). A CM(k) (or 1ICM(k)), M, accepts in space S(n) if for each input
w accepted by M there is a computation of M on w in which each counter of M requires space

not exceeding S(|w|), and we denote it by CM(k)-Space(S(n)) (or 1CM(k)-Space(S(n))).

3.2 Results
For the two-way case, it is straightforward to see that for each £ > 1,

(1) £[CS-FA(k)] (£[CS-DFA(k)])

N

£[SeHA(k)] (£[DSeHA(k)])

C £L[SHA(k + 1)] (£[DSHA(k + 1)]),
£[SeHA(k)] (£[DSeHA(K)))

C £[CS-FA(k + 1)] (£[CS-DFA(k + 1)]);

(2) £[CS-FA(k)] (£[CS-DFA(k)])
C £[MA(K)] (£[DMA(K))),
£[MA(K)] (£[DMA(K)])
C £[CS-FA(k + 1)] (£][CS-DFA( + 1)]);

(3) £[CS-FA(k)] (£[CS-DFA(K)])
C £[CM(k)-Space(n)] (£[DCM(k)-Space(n)]),
£[CM(k)-Space(n)] (£[DCM(k)-Space(r)])
C L[CS-FA(k + 1)] (£[CS-DFA(k + 1)));

Moreover, it was shown in [43] that £[PA(k)]=£[HA(k)] for each k > 1. From this fact

we get

— 43 —



(4) £L[CS-FA(k)C £[PA(K + 1)),
£[PA(k)]C £[CS-FA(k + 1)].

Thus,

Us<k<oo £[CS-FA(E)]

= Urghcoo £ [HA(K)]

= Urckcoo £ [MA(K)]

= Ur<k<oo £[PA(K)]

= Ui k<o £[CM(k)-Space(n)]

=Space(log n),
and

U<k <oo £[CS-DFA(K)]
= Usck<oo L[DHA(K)]
= Urck<oo £[DMA(R)]
= Us<k<oo £[DCM(k)-Space(n)]

=DSpace(log n),

where Space(log n) (DSpace(log n)) denotes the class of languages accepted by nondeterministic
(deterministic) Turing machines within space bound log n.

Next we concentrate our attention on the one-way case.
Lemma 3.1. £[1DHA(2)]— Uik <oo £[CS-1FA(K)]# 0.

Proof : Let Ly = {w2w|w € {0,1}*} be the language defined in Lemma 2.10. It is

obvious that I € £[1DHA(2)]. Thus the Lemma follows from this fact and Lemma 2.10 (2). O

From Lemma 3.1, we have at once the following theorem.

— 44 —



Theorem 3.1.

(1) For each k > 2, £[{CS-1FA(k)] (£[CS-1DFA(k)])
G£[1SeHA(k)] (£[1SeDHA(k)]), and

(2) Uickcoo £[CS-TFA(R)] (Urcrcoo £[CS-1DFA(K)])

G U1 <keoo £[1SeHA(K)] (Usgrcoo £[1SeDHA(R))).

Theorem 3.2.
(1) For any k,r > 2, £[CS-1DFA(k)] is incomparable with £[1SHA(r)] (£[1ISDHA(r)]), and

(2) Ui<k<oo £[CS-1DFA(K)] is incomparable with Uj<kcoo £[1SHA(K)] (Uickcoo £[1SDHA

(B)])-

Proof : Let Ly = {wilw;]w,w; € {O,i}‘ & |wi| = |wz|} be the language defined in
Lemma 2.4. By Lemma 2.4, L; ¢ U;<kcoo£[CS-1DFA(K)]. It is shown, however, in [13] that
Ly €£[1ISDHA(2)]. On the other hand, let Lg = {a™b"|n > 1}*, then one canr easily show that
Le is in £{CS-1DFA(2)], but not in U;cxcoo £[ISHA(K)] (see Lemma 4.1 in [13]). The lemma

follows from those facts. O

Lemma 3.2. £[1DCM(2)-Time(cn)]— U;<ck<oo £[CS-1FA(K)]# @ for some positive con-
stant ¢ > 1.

Proof : For a word w in {1}{0, 1}*, let n(w) be the integer represented by w as a binary
number. It is shown in [47] that L7 = {w20™®)|w € {1}{0,1}*} is accepted by a 1DCM(2)-
Time(cn), where ¢ > 1 is a positive constant. On the other hand, using the technique in the
proof of Lemma 2.2 (2), we can prove that L7 cannot be accepted by any CS-1FA(k) for any
k> 1. O

Lemma 3.3. For each k > 1 and each CS-1FA(k+1) (CS-1DFA(k+1)), M, there exists
some positive constant ¢ > 1 such that we can construct a 1CM(k)-Time(cn) (1DCM(k)-Time
(cn)) to simulate M.

— 45 —



Proof: Foreachk > 1,let M = (A1, A2, -, Ax+1) bea CS-1FA(k+1) (CS-1DFA(k+1)).
We will construct a 1ICM(k)-Time(cn) (1DCM(k)-Time(cn)) M’ to simulate M, where c is some
positive constant dependent only on M. Let ¢, ¢z, -+, cx denote k counters of M'. M’ acts as

follows:

(1) M’ keeps track in its finite control of what states A;, Az, ---, Ax41 are in when they read

the cell of input tape scanned by M’.
(2) For each cell of input tape:

(2) M’ stores in its finite control the internal state of each A4; (1 < i< k + 1) when 4;
leaves the cell, and the order (t1,%3,---,tk+1) in which Ay, A3, ---, Ag41 leave the
cell subsequently (i.e., A¢, firstly leaves the cell, A;, secondly leaves the cell, and so
on).!

(b) Furthermore, for each i (1 < ¢ < k), the interval between the times at which A;; and
At;,, leave the cell is stored by counter ¢;. That is, M’ adds the difference of steps

between A;, , and A;; when they stay at the cell to the counter c;.

i+1
In addition, by Lemma 2.1, if M accepts its input tape, it can do so in linear time. Thus,

it is easy to verify that M’ can simulate M in linear time. ]

Note that the value of ¢ (> 1) iﬁ Lemma 3.3 is not important, because any linear time
multicounter machine can be replaced by an equivalent one that operates in time (1 + €)n for
any 0 < € < 1 [49]. Furthermore, we observe that for every 1CM(k)-Time(cn) (1DCM(k)-
Time(cn)), M, one can efficiently use two one-way sensing counting heads to simulate a counter
of M. This can be done as follows: when the counter contains the integer m, the distance
between two counting heads is I.-T—Z—J , and the residue m—c |,£:—j is retained in the finite control.
If the counter increases, move the leading head right without moving the lagging one; if the

counter decreases, move the lagging head right without moving the leading one. So the distance

YH Aiy, Aiy, oo+, Ai, (1 €41 <42 < -+ <ir < k+1) leave the cell simultaneously, we refer the order on them
as (il,i.g,' ",i,-).

— 46 —



between two counting heads will correspond to the contents of the counter. Thus one can easily
construct a 15eSFA(2k + 1) (1DSeSFA(2k +1)) M’ to simulate a 1CM(k)-Time(cn) (1DCM(k)-
Time(cn)) M by using its 2k counting heads to simulate k counters of M in this way. From

this observation and Lemmas 3.2, 3.3, the following theorem is obtained.

Theorem 3.3. For any 0 < € < 1 and each k > 2,
(1) £[CS-1FA(k + 1)]G£L[1CM(k)-Time((1+ €)n)],
(2)' £[CS-1DFA(k + 1)]G£L[1DCM(k)-Time((1 + €)n)],
(3) £[CS-1FA(k + 1)]|GL[1SeSHA(2k + 1)],
(4) £[CS-1DFA(k + 1)]G£L[1SeSDHA(2k + 1)],
(5) Usck<oo £1CS-1FA(R)IG Us cicoo £[1CM(K)-Time((1 + €)n)],
(6) Uik <oo £1CS-1IDFAK)IG Uj <k <oo £[1DCM(K)-Time((1 + €)n)],
(T) Uschcoo £1CS-1FA(R)G U<k oo £[1SeSHA(K)],

(8) Ui<k<oo£[CS-1DFA(K)]G UISKOOL'[]SeSDHA(k)].

The results of (1), (2) of Theorem 3.3 are “optimal” in the sense of Lemma 3.4. Moreover,
the result of (2) of Theorem 3.3 cannot be “tightened” by setting the “¢” to zero (Lemma 3.5).

It is open whether we can sharpen the results of (3), (4) in Theorem 3.3.
Lemma 3.4. For each k > 1, £[CS-1DFA(k +1)]— Ui <ccoo £[1CM(k — 1)-Time(cn)]# 0.

Proof : By using simple counting arguments (see [50] for details), we can show that T'(k)
(defined in Lemma 2.2) cannot be accepted by any 1CM(k — 1)-Time(cn). Thus, the lemma
follows from this fact and Lemma 2.2 (1). a

Lemma 3.5. £[CS-1DFA(2)]— Usck<oo £[1DCM(k)-Time(n)] 9.

— 47 —



Proof : It is shown in [51] that {0°1™|p > m > 1}* is not in Ujcxcoo £[IDCM(k)-
Time(n)]. On the other hand, it is easy to prove that {0P1™|p > m > 1}* can be accepted by

some CS-1DFA(2). a

Theorem 3.4.
(1) f[CS—lDFA(2)]=.£’[1DCM(])]Q£[lSeSDHA(2)], and

(2) £[CS-1FA(2)]=£[1CM(1)]=£[1SeSHA(2)].

Proof : (1) It is not difficult to prove that £[1IDCM(1)]C£[1SeSDHA(2)]. We, next,
show that £[1DCM(1)]C£L[CS-1DFA(2)]. Let M be a 1DCM(1) with s internal states. We will

construct a CS-1DFA(2) M’ = (A1, A;) to simulate M. M’ acts as follows:
1. A; and A; keep track of the state of M on the input tape in their finite controls.
2. For each cell of the input tape:

(a) If M reaches the cell with the memory configuration (go,co), where go denotes the

internal state and co < s denotes the contents of the counter, then

(i) if M leaves the cell (within 2s? steps) with the contents of the counter s + ¢
(1 < ¢ < s), then A2 moves at speed 1/(1+c) on the cell and A; moves at speed
1 on the cell;

(ii) if M leaves the cell (within 2s? steps) with the contents of the counter ¢ (0 <
c < s), then A; and A; leave the cell simultaneously (at speed 1) and store the
contents of the counter of M in their finite controls.

(iii) otherwise A; (A,) rejects the input tape (because M enters a loop, that is, M

will never leave the cell).

(b) If M reaches the cell with the memory configuration (go,co), where co > s, (in this

case, A; and A, are on the different cells) then

— 48 —



(i) if M leaves the cell (within s steps) with the contents of the counter cg, then A,

and A; move at speed 1 on the cell;

(i) if M leaves the cell (within s steps) with the contents of the counter ¢y + 6
(1 <6< s), then A; moves at speed 1/(6+1) on the cell and A; moves at speed

1 on the cell;

(iii) if M leaves the cell (within s steps) with the contents of the counter ¢y — §
(1 <6 < 3), then A; moves at speed 1/(6 + 1) on the cell and A; moves at speed

1 on the cell;

(iv) otherwise there must exist a sequence of memory configurations (go, ¢o), (g1, 1),
-++,(g5,¢5), 7 < 3, of M on the cell such that ¢; = ¢; for some 1 (0 < i < j). If
¢i < ¢; (it means that M enters a loop), then A; (A;) rejects the input tape; If
¢i > cj, then Ay stays on the cell until A, reaches the cell, and afterwords A4;
(A;) simulates the action of M on the cell with the contents of the counter s as

in the case 2.(a).

Note that (A) if the contents of the counter of M exceeds s when M leaves a cell of the
input tape, then M’ stores it by using the difference between the times at which A; and A2
leave the cell, and (B) otherwise M’ can simulate the action of M using the finite control. It is
easy to verify that M’ is able to simulate M, (since M is deterministic).

So we get £[1DCM(1)]=£[CS-1DFA(2)] by Lemma 3.3, and £[CS-1DFA(2)]G£[1SeSDH
A(2)] by applying the proof of Theorem 3.2.

(2) It is shown in [52] that every 1CM(1) is equivalent to some 1CM(1)-Time(n) (i.e.,
some 1CM(1) which accepts in real-time). Let M be a 1CM(1)-Time(n). We will construct a

CS-1FA(2) M’ = (A3, A2) to simulate M. M’ acts as follows:
1. A, sweeps the input tape at the same speed 1/2.

2. A, keeps track of the state of M on the input tape in the finite control.

— 49 —



3. For each cell of the input tape:

(a) If M does not change the counter on the cell, then A; moves at speed 1/2 on the

cell.
(b) If M increases the counter by 1 on the cell, then A; moves at speed 1 on the cell.

(c) If M decreases the counter by 1 on the cell, then FA; moves at speed 1/3 on the cell.

So the contents of the counter of M on each cell of the input tape corresponds to the
difference between the times at which 4; and A, leave the cell. It is easy to verify that M’ is
able to simulate M.

Consequently, (2) follows from the above fact, Lemma 3.3 and Lemma 7.1 of [13] (where

it was shown that £[ICM(1)]=£[1SeSHA(2)]). o

Lemma 3.6. Let Ly = {02"|n > 2}. Then there exists a CS-1DFA(3) M such that M

accepts L7.

Proof : A CS-1DFA(3) to recognize the language L7 need only check the input is of a
form bgby - - - by with bg = 00 and b; = 0---0 for each 1 < i < k, since 2541 =2 42! 4 ... 4 2F
2i
for any £ > 1.
Now consider the CS-1DFA(3) M =(Ai, A2, A3) which creates successively larger “blocks”

of length a power of 2 on the input using the following algorithm:

(1) Locate A; on the 3rd cell, A; and A3 on the 4th cell, from the left endmarker of the input

tape, and then make A;, A2, A3 start to move (to the right) simultaneously.

(2) Repeat the following:
A; moves at speed 1/4; A; moves at speed 1/3; Aj stays on the cell (which is visited
simultaneously by A3 and Aj) gntil Aj; reaches the cell, and then moves at speed 1/2 until
Aj and Aj reach the same cell again.

Until all of A;, A3 and Aj reach the right endmarker of the input.



input tape

2k 2]&-1+ 2];-}-1 2k+§2k+1 276{-2
¢l - o] [o] [0 [o] [o]
A1 Ax(4) Ay Az(A3z)

Fig. 3.1. Moves of M.

(3) If A2 and A3 reach the same cell simultaneously and the next cell is just the right end-

marker; then M accepts the input. Otherwise M rejects the input. (See Fig. 3.1.)

It is easy to verify that M accepts the language L7. a

It is well known [53] that the languages accepted by 1HA(k)’s over a one-letter alphabet

are regular for any £ > 1. From this fact and Lemmas 3.1 and 3.6, we get the following theorem.

Theorem 3.5.

(1) For each r > 2 and k > 3, £[CS-1FA(k)] and £[CS-1DFA(k)] are incomparable with

£[1HA(r)] (=£[1PA(r)]) and L{IDHA(r)].

(2) Ui<k<oo £[CS-1FA(k)] and U15k<°°£[CS-1HA(Ic)] are incomparable with U;<x<co £[1HA

(B)] (= Urgrcoo £1PA(R)]) and Uy ghcoo £[IDHA(K)].

It is also known [54] that context-free languages over a one-letter alphabet are regular,
so are the languages in £[1CM(1)]. From Theorem 3.4 and Lemma 3.6, we have the following

corollary.

— 5] —



Corollary 3.1. Even over a one-letter alphabet, CS-1FA(2)’s (CS-1DFA(2)’s) are strictly

less powerful than CS-1FA(3)’s (CS-1DFA(3)’s).

If a problem is undecidable for CS-1FA(2)’s (CS-1DFA(2)’s), then it is also undecidable
for CS-1FA(k)’s (CS-1DFA(k)’s), for any k¥ > 2. From this observation and the fact [55, 56]
that the containment problem is undecidable for 1IDCM(1)’s and the equivalence and universe

problems are undecidable for INCM(1)’s, we get the next corollary of Theorem 3.4.

Corollary 3.2. For any k > 2, the containment problem is undecidable for CS-1DFA(k)’s,

and the equivalence and universe problems are undecidable for CS-1FA(k)’s.

The following corollary relates to an important open problem of whether the classes of
languages accepted by deterministic and nondeterministic L(n) tape-bounded Turing machines
are the same for L(n) > logn, and is obtained by combining Theorem 3.4 with the result in

[13]. This perhapes gives another possibility to investigate the above problem.

Corollary 3.3. £[CS-1FA(2)] is contained in the class of languages accepted by deter-
ministic log(n) tape-bounded Turing machines if and only if the classes of languages accepted
by deterministic and nondeterministic L(n) tape-bounded Turing machines are the same for
L(n) > logn.

Finally, we give some results concerning a relationship between CS-FA(%)’s and reversal-
bounded CM(k)’s.

Let f(n) be a real function defined on natural numbers, and 1CM(k)-R(f(n)) denote a

1CM(k) which operates in such a way that for any input w of length n, if w is accepted, then
there is an accepting computation on w in which each counter head reverses its direction (i.e.,
changes from increasing to decreasing of a counter or vice versa) at most f(n) times.

For any nonnegative integers ¢, let DCM(k)-T(c) denote a DCM(Ic) which operates in
such a way that in every accepting computation the input head reverses its direction at most ¢

times.
Theorem 3.6.

— 52 —



(1) £[CS-1DFA(2)]~ Usckcoo £[1CM(k)-R(f(n))]# 8, where f(n) = o(n) be a function from

natural numbers to positive reals.

(2) For any nonnegative integer ¢, £[DCM(1)-T(c)]G£[CS-DFA(2)].

Proof : (1) Let
Lg = {w|w € {a,b}" & #4(w) = #u(w) & #a(z) > #4(z) for any prefix z of w},

where #,(w) denotes the number of a’s in w and similarly for #,(w). It is easy to see that
Lg can be accepted by some CS-1DFA(2). On the other hand, it was shown in [57] that
Lg & Uick<oo £[1CM(K)-R(f(n))]-

(2) Using the technique in the proof of Theorem 3.4 (1), one can easily prove that every
DCM(1)-T(c) can be simulated by some CS-DFA(2)-R(c). Thus (2) follows from this fact and

Lemma 2.6. ]

3.3 Concluding Remarks

In this chapter, we have established some relationships of language acceptabilities between CS-
FA(k)’s and other automata (HA(k)’s, MA(k)’s, PA(k)’s and CM(k)’s). We summarize the
main results for the one-way case in Fig. 3.2.

By the proof of Theorem 3.4 and Lemma 3.3, we can see that every CS-IFA(Z) is equiv-
alent in computing power to some CS-1FA(2) in which one of automata is deterministic. In
general, let CS-1FA(i, j) denote a CS-1FA(i + j) M such that i automata of M operate non-
deterministically and the other j automata operate deterministically. Then, we have £[CS-
1FA(2)]=£[CS-1FA(1,1)].

In light of the above result, a natural problem arises as to whether £{CS-1FA (k)] =£[CS-

1FA(4,7)] for k > 3 and some 1,5 > 1 such that i + j = k? Furthermore, it is natural to ask



whether the number of nondeterministic finite-state automata is a natural measure of compu-
tational complexity for CS;lFA(k)’s. Nondeterminism is one of the most elusive concepts in
computing, and much remains to be learned about the basic notion of nondeterminism. We
believe that it will be meaningful to solve the above broblems, towards an analysis of the power
inherent in nondeterminism.

By Theorem 3.4, we know that the equivalence problem is decidable for CS-1DFA(2)’s.
It is very interesting to ask whether the equivalence problem is decidable for CS-1DFA(k)’s, for
each k > 3.

Another interesting open problem is “what is the relationship between £[CS-1FA(k + 1)]

and £[1CM(k)-Time(n)] for k > 27?7,

— 54 —



1SeDHA(k+1) 1SeHA (k+1)
1DCM(k)-Time(cn) 1DHA(r) 1HA(x)=1PA(r) 1CM(k)-Time(cn)
ﬁ~ -~ -
\ 2 Sre TN /
Ve e P ~ -~ - \\
‘ - -~ S
CS-1DFA(k+1) CS-1FA(k+1)
A4
/ N \
v O
VoS
15eSDHA(2k+1) \ 1SeSHA (2k-+1)
\ B
\ N
~
\\ \\
\ ~
1SeDHA(2) 1SDHA(r) 1SHA(x) 1SeHA(2)
g -
\ // _ - - /
s -
L -
CS-1DFA(2) CS-1FA(2)
1SeSDHA(2) 1DCM(1) 1CM(1) 1SeSHA(2)

Fig. 3.2. Main relationships between the cooperating of system of one-way finite-state
automata and other kinds of one-way automata, where k,7 > 2, ¢ > 1, and A——B
means £[A]=£[B], A—B means f[B]g £[A] and A- - -B means £[A] and £[B] are

incomparable.

— 55 —






CHAPTER 4

Cooperating Systems of Two-Dimensional

Finite-state Automata

In this chapter, we investigate some properties of cooperating systems of two-dimensional finite-
state automata as two-dimensional language acceptors. We mainly propose a cooperating system
of three-way two-dimensional finite-state automata, which can be considered as an extension of
a cooperating system of one-way finite-state automata to two dimensions, and give some of its

properties.

4.1 Definitions and Notation

Let ¥ be a finite set of symbols. A two-dimensional tape over I is a two-dimensional rectangular

array of elements of L.

The set of all two-dimensional tapes over T is denoted by £(?). Given a tape w € £(?, we let
I;(w) be the number of rows of w and I3(w) be the number of columns of w. If 1 < ¢ < I1(w)
and 1 < j < Iy(w), we let w(i,j) denote the symbol in w with coordinates (1, 7). Furthenﬁore,
we define

w((i, 1), (", 5],
only when 1 <i < ¢ <lj(w) and 1 < j < j' < l2(w), as the two-dimensional tape z satisfying

the following:

(1) h(z)=i—1i+1and l(z)=j'"-j+1.

— 56 —



(2) foreach k,r, [1 <k <li(2), 1 <r < L)), z(k,r)=wk+i-1,r+j—-1).

A cooperating system of k two-dimensional finite-state automata (CS-2-FA(k)) is denoted by

M = (FA;,FA,,---,FAy),

such that for each 1 < ¢ < k, FA; is a two-dimensional finite-state automaton defined by an

8-tuple (X, @, X, &;, qo0;, Fi, #, ¢), where
- ¥ is a finite input alphabet (¢,$ ¢ L),
- Qi is a finite set of states (¢ € Q)),

Xi=(QuU{#}) x -+ x (Qi=1U{#}) X (Qi+1 U {$}) x - x (Qx U {¢}),

§; is the transition function mapping (£ U {#}) X X; x @Q; to

29i%{(0,-1),(0,+1),(~1,0),(+1,0),(0,0)}

go; in Q; is the initial state,

- F; C @Q; is the set of accepting states,

# not in ¥ is the boundary symbol.

An input to M is a two-dimensional tape over ¥ surrounded by boundary symbols #. The
action of M is similar to that of a CS-FA(k), except that every FA; can move left (=(0,-1)),
right (=(0,41)), up (=(~1,0)) or down (= (+1,0)). That is, when an input tape w € (2 is
presented to M, M starts its computation with every FA; (1 < ¢ < k) positioned on w(1,1).
A single move of M is described as follows: Let automata FA;, FA,, .-, FA; be in states ¢,
92, * -+, qx and scanning w(zq,¥y1), w(z2, ¥2), * -+, W(Tk,yx) (note that w(z;,y;) may equal #)
at the moment . If §;(w(zi, %), (41, 9i-1> %41, *» k)> i) = B, then FA; has no next move
(i-e., FA; halts). If (p;, (di1, di2)) is in 6;(w(zi, 4i), (41, @i—1, Tiy1s** *+ 0k), €i), then FA; may

enter state p;, move its input head to w(z; + d;1, ¥ + di2) at the next moment ¢ + 1. Here for



each j € {1,---,i—1,i+1,---,k}

r _J ¢ €Q; if FA; and FA; are on the same cell at the moment ¢,
%= ¢ otherwise. :

The input ¢z$ is accepted by M if there is a sequence of moves that leads all FA;’s to an
accepting state when scanning one of the bottom boundary symbols. We assume that no FA;
can fall off the input tape beyond boundary symbols.

A cooperating system of k three-way two-dimensional finite-state automata (CS-TR2-FA(k))

is a CS-2-FA(k) M =(FA1,FA2,-- - ,FA) such that every FA; can only move left, right, or down,
but not up.

By CS-2-DFA(k) (respectively, CS-TR2-DFA(k)), we denote a deterministic version of CS-2-
FA(k) (respectively, CS-TR2-FA(k)). For a two-dimensional automaton M, let M° denote a

M whose input tapes are restricted to square ones.

4.2 Three-Way versus Four-Way

In this section, we investigate the difference between the accepting powers of cooperating systems
of two-dimensional finite-state automata and cooperating systems of three-way two-dimensional
finite-state automata, and show that cooperating systems of two-dimensional finite-state au-
tomata are more powerful than cooperating systems of three-way two-dimensional finite-state
automata.

We will use the fact that cooperating systems of three-way two-dimensional (deterministic)
finite-state automata and three-way two-dimensional (deterministic) simple multihead finite au-
tomata accept the same family of two-dimensional languages when the input tapes are restricted

to square ones (Theorem 4.7), which will be proved in Section 4.5.
Theorem 4.1. £[CS-2-DFA(1)%]— UISk<w£[CS-TR2-FA(k)S]¢ 9.

Proof : Let Ty = {z € {0, 1}® |(3m > 2) [l(z) = l2(z) = m & z[(1,1),(1, m)] = z[(2, 1),
(2,m)]]}. Clearly, Ty €£[CS-2-DFA(1)5]. As shown in [58], T} cannot be accepted by any

— 58 —



three-way two-dimensional simple multihead finite automata. From this fact and Theorem 4.7,

the theorem follows. a
From Theorem 4.1, we can get the following corollary.

Corollary 4.1. For each k > 1,

(1) £[CS-TR2-FA(k)S]G£[CS-2-FA(k)®),

(2) £[CS-TR2-DFA(k)®]G£[CS-2-DFA(k)S],

(3) Uscrcoo £ICS-TR2-FA(E)®]G Uy < coo £1CS-2-FA(K)],

(4) Uick<oo £[CS-TR2-DFA()®1G U; ci<o0 £[CS-2-DFA(K)S).

Note that the corresponding result obviously holds for general input tapes.

4.3 Nondeterminism versus Determinism

It is well known [26] that a nondeterministic finite-state automaton is more powerful than a
deterministic finite-state automata in two dimensions (even if the input tapes are restricted to
square ones). That is, .£’[CS-2-DFA(1)S](_;£[CS-Z-FA(I)S]. In this section, we investigate the
difference between the accepting powers of cooperating systems of three-way two-dimensional
(nondeterministic) finite-state automata and cooperating systems of three-way two-dimensional

deterministic finite-state automata whose input tapes are restricted to square ones.

Theorem 4.2. £[CS-TR2-FA(1)°]- UISKM‘C[CS-TR%DFA(IC)S]# 0.

Proof : Let Ty = {z € {0, 1} |(3m > 2) [h(z) = o(z) = m] & 3i(1 < i < m) [z(1,i) =
£(2,1) = 1]}. Clearly, T> € £[CS-TR2-FA(1)®]. As shown in [58], > cannot be accepted by any

three-way two-dimensional deterministic simple multihead finite automata. From this fact and

Theorem 4.7, the theorem follows. ]
From Theorem 4.2, we can get the following corollary.

Corollary 4.2. Foreach k > 1,

— 59 —



(1) £[CS-TR2-DFA(k)*]G£[CS-TR2-FA(k)S], and

(2) Uigk<oo £[CS-TR2-DFA(K)®]G Usckcoo £[CS-TR2-FA(K)].

4.4 Hierarchies Based on the Number of Finite-State Automata

This section investigates how the number of finite-state automata affects the accepting power

of the cooperating system of two-dimensional finite-state automata.

4.4.1 Four-Way Case
We first give hierarchies for the four-way case.

Theorem 4.3. For each k > 1,
(1) £[CS-2-FA(k)5]g £[CS-2-FA(k + 2)°], and
(2) £[CS-2-DFA(I¢)S]§ £[CS-2-DFA(k + 2)%],

even if the alphabet is restricted to a one-letter.

Proof : It is easy to prove that every CS-2-FA(k) (CS-2-DFA(k)) can be simulated by a
two-dimensional (deterministic) sensing k-head finite automaton (described in Section 4.5), and
every two-dimensional (deterministic) sensing k-head finite automaton can be simulated by a
CS-2-FA(k + 1) (CS-2-DFA(k + 1)). As shown in [44], for sets of square tapes over a one-
letter alphabet, two-dimensional (deterministic) sensing (k¥ + 1)-head finite automata are more
powerful tnan the corresponding k-head finite automata. From these facts, we immediately get

the theorem. : a

Unfortunately, it is unknown whether £[CS-Z-XFA(k)S]g.C[CS-2-FA(k + 1)5] or £[CS-2-
XFA(k)®]G£[CS-2-FA(k + 1)°] for any k > 2.
Note that it is easy to show that £[CS-2-FA(1)S]G£[CS-2-FA(2)] and £[CS-2-FA(1)°]G £[CS-

2-FA(2)5]. In fact, it was shown in [59] that two-dimensional alternating Turing machines with



sublogarithmic space bound cannot accept the set of square tapes, T, which have the same
upper and lower halves. On the other hand, it is easy to see that T' can be accepted by a

CS-2-DFA(2) (using a similar technique in the proof of Lemma 2.5 (1)).
4.4.2 Three-Way Case

We next give hierarchies for the three-way case.
For each r > 1, let
T(r) = {z € {0, 1)@|3m > n[l(z) = lh(z) =m &
z[(1,1),(1, m)] = £[(2,1), (2, m)] € R,(m) & 2[(3,1), (m,m)] € {0}P]},
where R,(m) = {z € {0, 1}® |li(z) = 1, l(z) = m & z has exactly r 1’s} for each m > r.

It is obvious that for any fixed positive integer r, T'(r) can be accepted by a CS-TR2-DFA(r).
We first consider the following problem: Given a fixed positive integer r, find a cooperating
system of three-way two-dimensional (deterministic) finite-state automata that accepts T(r)
using the minimum number of finite-state automata. Unfortunately, we cannot generally solve
the problem in the present thesis, but we can give the lower and upper bounds for this problem.

Let m denote the minimum number of finite-state automata required for cooperating sys-
tems of three-way two-dimensional finite-state automata to accept T(r), and g(r) denote the
minimum number of finite-state automata required for cooperating system of three-way two-
dimensional deterministic finite-state automata to accept T(r). Clearly, g(r) > f(r) for any

r2>1.
Theorem 4.4. For each k > 1,
(1) g2 +k-1)< 2k -1,
(2) g(k% +2k) < 2k, and

(3) g(k(k+1)/2+1) 2 k+1.

Before giving the proof of Theorem 4.4, we will give an example for showing how some CS-

TR2-DFA(2) accepts T'(3), which will be used as a basis step in the proof of (1) (or (2)) of

— 81 —



Theorem 4.4 below.
Example. T(3) € £[CS-TR2-DFA(2)5].

Proof : Let T'(3) = {z[(1,1),(2,12(z))] |z € T(3)} (i.e., T'(3) is obtained {from the first
and second rows of every tape in T(3)). We actually show that there exists a CS-TR2-DFA(2)
M(2) = (A, A2) accepting T"(3), since one can easily make M (2) accept T'(3). Let h;(t) denote
the position of input head h; of A; at time ¢ for each i € {1,2}.

Consider the case when an input tape £ with 2 rows and m columns such that z[(1, 1), (1,1#)],
z{(2,1),(2,m)] € R3(m) is presenfed to M(2) which acts as follows. (Input tapes in the form
different from the above can easily be rejected by M(2).) What we have to show is that how
M (2) checks whether the symbol on pj(:) is 1 for each i € {1,2,3}, where p,(i) denotes the

position just under the position, pi(t), of the i-th 1 in the first row (counting from left-to-right).

(1) A; and A3 move hy and h; simultaneously to the position p1(1) (at some time t3). Thus,

h1(t§) = h2(t§) = p1(1). After that,

(2) (a) A; moves k; down one cell at speed 1 (thus, Ay(t]) = p5(1), ha(tf — 1) = p1(1),
where tJ = t¥ + 1), and then checks whether the symbol on p5(1) is 1. If this is the
case, then A; moves h; to the right at speed 1 from p}(1) to the position of the next
symbol 1 (denoted by p;(2)) if it really exists, and then moves %; to the right at
speed 1/2 from p3(2) to the position of next symbol 1 (denoted by p2(3)) if it really
exists. Otherwise A; halts forever (on the right boundary symbol attached to the

second row of z), that is, M (2) rejects z.

(b) A2 moves hy to the right from p1(1) to p1(2) at speed 1 and from p;(2) to p1(3) at

speed 1/2, and moves hy down one cell at speed 1.

(3) The time at which h; reaches p5(3) is denoted by t5. If hy and hy simultaneously reach
p2(3) at time t§ (i.e., p3(3) = p2(3)), M(2) accepts z. Otherwise M(2) rejects z. Note

that hy and h, simultaneously reach p,(3) at time ¢ if and only if l; + I = I} +‘l§ and

— 62 —



Iy + 21, = 1] + 21}, where, for each i € {1, 2}, !; denotes the distance from p,(3) to p1(i+1),
and 1§ and 1} denote the distance from p4(1) to p2(2) and from p3(2) to p2(3), respectively.

That is, I} =1{ and I; = 1}

It will be obvious that M (2) accepts T7(3). =]

Proof of Theorem 4.4 : The proofs of (1) and (2) are similar. We only give the proof of
(2) here. To prove (2) is equivalent to proving that: for each k > 1, T'(k? + 2k) € £[CS-TR2-
DFA(2k)%).

For each r > 1, let T'(r) = {z[(1,1),(2, (2))] |z € T(r)} (ie., T'(r) is obtained from the
first and second rows of every tape in T'(r)).

For convenience, we prove by induction on k that 7"’(102 + 2k) € £[CS-TR2-DFA(2k)]. It will
be obvious that (2) follows from this fact.

Basis step: k=1. There exists a CS-TR2-DFA(2) M(2) = (A1, A2) accepting T'(3) which
satisfies the property that for each = € T'(3), there are three times t§ < t{ < t7 during the

accepting computation of M(2) on z such that

[0.] hi(t§) = ha(1) = p1(1),
(1] hi(2F) = p5(1), ha(t5 — 1) = p1(1), and

(2] hi(15) = ha(25) = p2(3),

where h;(t) denotes the position of input head h; of A; at time ¢, p1(¢) denotes the position
of the i-th 1 in the first row (counting from left-to-right), and p5(i) denotes the position just
under p;(i). This has been shown in the above example.

Inductive Hypothesis: Suppose that for each 1 < j < k, there exists a CS-TR2-DFA(2j)
M(25) = (A1, Az, -+, A2;) accepting T'(j2 + 2j) which satisfies the property that for each
z € T'(j% + 2j), there are 2j + 1 times t < tf < --- < t3; during the accepting computation of

M (27) on z such that

— 63 —



[0.] hi(t§) = ha(tF) - - - = ha;(25) = pa(d;[1]),

(1] Au(tT) = pa(d;[1]), ha(2f — 1) = ha(tf — 1) = -+ = ho; (¢ — 1) = pa(d;[1]),
(L] A1(eF) = ho(tf) = --- = hi(tF) = po(d;[1]),
hip1(tF — 1) = higa(FF — 1) = --- = ho;(tF — 1) = p1(d;[1]),
(2] R1(t5;) = ha(85;) = - - = ho;(25;) = p3(d;[27]),
where
Ll = i(1+1)/2 for1<i<r+1,
il = i(dr—i4+3)/2—r(r+1) forr+1<i<2r.

(See Fig. 4.1.)

b B3] bl b+1] b+2] 27-2] (27— (2]

Fig. 4.1. ‘¢’ and % denote j(; +2) 1’s in the first row of z, and ‘[i]’ denotes the position
p1(d;[i]) for each 1 < i< 25.

Inductive Step: We show that there exists a CS-TR2-DFA(2(k+1)) M(2(k+1))=(41, A2, - -,
Agk+2) accepting T'(k? + 4k + 3) which satisfies the property that for each z € T'(k? + 4k + 3),
there are 2k + 3 times t§ < tf < .-+ < t§;,, during the accepting computation of M(2(k + 1))

on z such that

[0] hi(t5) = ha(tg) - - - = ha42(t§) = p1(di41[1]),

(1] R1(t5) = ph(dr+1(1]), h2(tf — 1) = ha(3] — 1) = - -+ = hog42(t] — 1) = p1(dr+1[1]),

— 64 —



(] ha(tF) = ha(f) = -+ = hi(tF) = pa(dr+1[i]),

hig1 (87 = 1) = higa(tf = 1) = -+ - = hoxa2(t] — 1) = pa(dr41[i]),
[2k+2.] h1(5k42) = ho(542) = -+ - = haka2(t5iq2) = P2(dk+1[2K + 2]).

Consider the case when an input tape z with 2 rows and m columns such that z[(1, 1), (1, m)],
z[(2,1),(2,m)] € R(z244x4+3)(m) is presented to M (2(k +1)) which acts as follows. (Input tapes

in the form different from the above can easily be rejected by M(2(k +1)).)

1. M(2(k + 1)) first verifies in a similar way as M (2k) that the symbol on p5(7) is 1 for each
i € {1,2,---,dr41 [k +1]}. That is, by using the corresponding 2k automata A;, A, ---,
Aok, M(2(k+1)) simulates the action of M (2k) for checking whether the symbol just under
the ¢-th 1 in the first row is 1 when an input tape y with 2 rows and m columns such that
y[(1,1), (1, m)], ¥[(2,1),(2,m)] € Rja4ox)(m) is presented to M(2k), while FAy; and
FAjk42 are idle, and move in the same way as FAg, dose. If this verification is successful,

then goto 2. Otherwise M (2(k + 1)) rejects z.

2. (a) Inductive hypothesis implies that hy, ha, - -, hx41 simultaneously reach ph(di41
[k + 1]) at some time ¢, and hxy2, hi43, -+, hoks2 reach pi(de41[k + 1]) at time
7,1 — 1. Then Axy; moves hyyy to the right from p)(dr4a[k + 1]) to the position
(denoted by pa(di41[k+1]41)) of the next symbol 1 at speed 1/(n*+n*~1+4...4+n+1),
from py(dg+1][k + 1] + 1) to the position (denoted by pa(di4+1[k + 1] + 2)) of the next
symbol 1 at épeed 1/(nF14nk2 4...4n+1), -, from pa(dx4a[k + 1] + k) to the
position (denoted by p2(di4+1[k + 1] + k + 1)) of the next symbol 1 at speed 1, and
from ps(dr41[k + 1] + k + 1) to the position (denoted by pa(dx41[k + 1]+ k +2) =
p2(dr+1[k + 2])) of the next symbol 1 at speed 1/2 if there really exist at least k + 2
1’s to the right hand of p4(dx+1[k + 1]), where n = 2(m + 2). Moreover, make h;,
ha, - -+, hry1 teach pa(dis1[k + 2]) at the same time if it really exists. For otherwise,

M(2(k + 1)) rejects z. FAxy; may do this by means of A;, 4s, -+, Aj.

— 65 —



Note that Ax41 can move hiyq at speed 1/(n' 4+ n'"* + ...+ n+1) for any i < k by
means of A1, Aj, ---, Ax. For example, suppose that h; and hy4; are positioned on
the same cell, (2, 5), and Axy; moves right one cell together with A; just when h;
meets hiyq again after A; moved hy one cycle of the second row (2(m + 2) cells) at
speed 1. This makes hy4+; move at speed 1/(n+ 1) (on z(2,7)). Similarly, by means
of A; and A; which are on the same cell scanned by A1, Aky+1 can move (together

with A; and A4;) at speed 1/((n + 1)n+ 1) =1/(n2 + n + 1) and so on.

(b) In a similar way as Ap4; dose, Axyz moves right hxip from py(dii[k + 1]) to
p1(drsa[k + 1] 4 1) at speed 1/(n* + n*¥"1 4+ ... 4 n 4+ 1), from py(drga[k + 1] + 1)
to p1(drs1[k + 1] + 2) at speed 1/(n* 1+ n*=2 4 ... 4 n+ 1), .-, from p1(dr+41[k +
1] + k) to pi(dx+1[k + 1] + k + 1) at speed 1, and from p;(de4i[k + 1]+ £k + 1) to
p1(dis1[k + 1]+ k + 2) = pi(dr+1[k + 2]) at speed 1/2, by means of Axy3, Axsq, -+,
Aok42. Moreover, make hiyo, hiys, - -+, hoks2 reach pi(dr4+1(k + 2]) simultaneously.

Then FAx42 moves hry s down one cell at speed 1.

3. The time at which Ay reaches ph(dx41[k +2]) is denoted by t5,,. M(2(k+ 1)) continues
the computation on z if hy, ha, - - -, hxy2 1each pa(dr41{k+2]) at time tf, (i.e., po(dr41[k+
2)) = Pz(dk+1[k+2])): that is, if hy(t5,5) = h2(t542) = -+ = his2(ti42) = Po(dr4a[k+2]),
and hip3(tfi0—1) = hrga(tf40 — 1) = -+ - = hapga(ti 42 — 1) = pa(dr4a [k + 2]). Otherwise
M (2) rejects z.

Note that Ay, ko, - -+, hgya reach pa(disq[k + 2]) at time ¢, if and only if

(3) lagg (k+1] Flappak+1]+1 + o0+ gy et 1]45+1
=l pe+1] Happager 0 F Uy o1 e+1)+k+1> 30d
(b) laypi(e+1) - n* +

(Udgyio+1] F lapgaprj41) - 0571+ +

gy prpe+1] Flagpaeerj4r + o oy i) ik—1) - m +

lay et 1] Flag g et1141 + 0+l e1)+k + 2a, 4 ke 1]4542

— 66 —



= k

=Dy peen) ™

(R pyprt1) F ¥y ) W7

(lﬁg+x[k+1] + Ifix+1[k+1]+1 4ot I:ix+1[k+1]+k—1) ‘n+

B k4] Flapmener T e + 20, ek

where [; denotes the distance from p1(f) to p1(i + 1), lzli,,+,[k+1] denotes the distance from
P5(dr41[k + 1]) to the pa(dk41[k + 1] + 1), and I:ik+1[k+1]+i denotes the distance from

p2(dks1[k + 1] + 1) to the pa(dky1[k + 1] + i + 1). That is,

= ! = ! e g /
Idz+1[k+1] = Idg“[k-e-l]’ Idk+l[k+1]+1 = Idg.H [k+1]+1> lay g [k 41)4R41 = Id,+1[k+1]+k+1~

This means that the symbol on p)(i) is 1 for each i € {dx41[k + 1] + 1, dr41[k + 1] + 2,

o dipa[k + 2]}

4. M(2(k + 1)) finally verifies in a similar way as M (2k) dose that the symbol on p5(i) is 1
for each 1 € {dx41[k + 2]+ 1, dks1[k + 2] + 2, -, dr+1[2k + 2]}. That is, by using A;, Az,
«oey Ak, Ax+3, Ak44, **, A2k4a corresponding to the 2k automata of M(2k), M(2(k +1))
simulates the action of M(2k) for checking whether the symbol under the j-th 1 in the
first row is 1 for each j € {di[k] + 1,di[k] + 2,---,dk[2k]} when an input tape y with 2
rows and m columns such that y[(1,1), (1, m)], ¥[(2,1),(2, m)] € R(x242x)(m) is presented
to M(2k), while Ax4; and Ax4o are idle, and move in the same way as A; dose. If this is

the case, M (2(k + 1)) accepts z. Otherwise M (2(k + 1)) rejects .

It is easy to see that by inductive hypothesis the action of M(2(k + 1)) described above
satisfies the required property. This completes the proof of (2).

We now prove (3). Suppose that there is a CS-TR2-DFA(k)° M(k) = (A, A4z, -, Ax)
accepting T(k(k + 1)/2 + 1). Let h; denote the input head of FA; for each i € {1,2,---,k}.

For each m > k(k + 1)/2 + 1, let»V(m) = {z € T(k(k +1)/2 + 1)|l1i(z) = lo(z) = m}, and
for each permutation o : {1,2,-",5} — {1,2,:--,k}, let W,(m) be the set of all input tapes
z € V(m) such that during the accepting computation of M (k) on z, input heads h,(1), ko),

— T —



**, ho(k) leave the first row of z in this order.! Then there must exist some permutation 7 such

that

Wo(m)] 2 [V(m)l/k! = Q(m**+D/241),

For each z € W,(m) and each 1 < i <k, let ¢.(;)(2), p-(i)(z) and t,(;)(z) denote the internal
state of FA,(;), the position of A,(;) and the time, respectively, when h,;) leaves the first row

during the accepting computation of M(k) on z. Furthermore, let

1(z) = (tr2)(2) = tr1)(2), tr(a)(2) = tr2)(2)s - s Br(h=1)(T) — tr(r—2)(2)),
and
‘U.(.’B) = ((qr(l)(x)vpr(l)(z))) Tty (QT(k)(z)7pr(k)(z))) t(:l:)).
Clearly, for each 2 < i < k, t,;)(z) = tri—1)(z) = O(m*™*), because for otherwise A,g), -+,
A,(xy would loop forever on the first row, and thus M (k) would never accept z. So
| {u(z) |z € W (m)} |= O(m**+D/2),
Therefore, it follows that for large m,

| We(m) |>] {u(z) | € Wr(m)} |

and there exist two different input tapes z,y € W,(m) such that u(z) = u(y). Let z be the
tape obtained from z by replacing the second row of z with the second row of y. It follows that
z is also accepted by M (k). This is a contradiction, because z is not in T(k(k + 1)/2 4 1). This

completes the proof of (3). a

Lemma 4.1. For each k > 1,

(1) if z is a tape with m rows and m columns accepted by a CS-TR2-DFA(k) M, then M

k+1)

accepts z in at most O(m steps, and

YIf hiy, by, o, hi, (1 €41 <43 < -+ < iy < k) leave the first row simultaneously, we refer the order on them
as (“l)izv’“ |ir>~

— 68 —



(2) if z is a tape with m rows and m columns accepted by a CS-TR2-FA(k) M, then there

exists a computation of M on z such that M accepts in at most O(m**+1!) steps.

Proof : (1) Consider the accepting computation of M on z. It is obvious that each finite-
state automaton of M can stay each row of z at most O(m*). (For otherwise M would enter a
loop and never accept ). Thus the accepting time is at most O(m*+1).

(2) Co’nsider a shortest accepting computation'of M on z (in which no loop exists). We can
observe that for every cm* steps, wilere c is some constant depending only on M, there is at

least one finite-state automaton of M moves down from the present row. (For otherwise M

would enter a loop). Thus, the accepting computation consists of at most O(m**!) steps. O
Theorem 4.5. Foreach k> 1, f(k*+k) >k + 1.

Proof : The proof is very similar to that of Theorem 4.4 (3). Suppose, to the contrary, that
there is a CS-TR2-FA(k)S M(k) = (A1, Az, -+, Ax) accepting T(k% + k). Let h; denote the
input head of A; for each i € {1,2,---,k}.

For each m > k? + k, let V(m) = {z € T(k? + k)|l1(z) = I2(z) = m}. With each z € V(m),
We associate a shortest accepting computation, ¢(z), of M (k) on z (in which no loop exists).
Furthermore, let W,(m), t(z) and u(z) (for each £ € W,(m)) have the same meanings as in the
proof of Theorem 4.4 (3).

By Lemma 4.1 (2),
t(i)(2) = tr—y(z) = O(m**?),
for each 2 < i< k.
So | {u(z) |z € W,(m)} |= O(m*" *+*¥=1). Therefore, it follows that for large m,

| We(m) |>] {u(z) |z € Wr(m)} |

and there exist two different input tapes z,y € W,(m) such that u(z) = u(y). Let z be the tape

obtained from z by replacing the second row of z with the second row of y. Clearly, from ¢(z)



and c(y), we can construct an accepting computation of M (k) on 2. This is a contradiction,

because z is not in T'(k? + k). a
Combining Theorem 4.4 with Theorem 4.5, we can get the following theorem.

Theorem 4.6. For each k > 1,
(1) £[CS-TR2-FA(k)S]G£[CS-TR2-FA(k + 1)5], and

(2) £[CS-TR2-DFA(k)S]G£[CS-TR2-DFA(k +1)5].

Proof : We only prove (1), since (2) can be proved in the same way. For each k > 1, let
N (k) = max{r |f(r) = k}. Since f(k?+k) > k+1 (by Theorem 4.5), we have N (k) < k*+k—1.
Let M be a CS-TR2-FA(k)® accepting T(N(k)). From M, we can easily construct a CS-TR2-
FA(k + 1)° M’ which accepts T(N (k) +1). Thus, T(N (k) + 1) € £[CS-TR2-FA(k + 1)°]. From
this fact and the definition of N(k), it follows that T(N(k)+1) € £[CS-TR2-FA(k+1)%]-£[CS-

TR2-XFA(k)S]. This completes the proof. a

Remark. It is easy to see that f(1) = g(1) = 1, f(2) = ¢(2) = f(8) = g(3) = 2,

9(4) = g(5) = 3; but it is unknown whether or not f(r) < g(r) for n > 4.

4.5 Comparisons with Other Types of Acceptors

In Chapter 3, we have shown some relationships between cooperating systems of one-way finite-
state automata and other automata, such as (simple) multihead finite automata and (time- or
space-bounded) one-way multicounter machines. Since a cooperating system of three-way two-
dimensional finite-state automata can be considered as an extension of a cooperating system of
one-way finite-state automata to two dimensions, some results obtained in the one-dimensional
case, such as (1) Ujcxr<oo £[CS-1DFA(K)] and Uicrcoo £[1SHA(K)] (Ui<kcoo £[1ISDHA(K)]) arze
incomparable, and (2) U <x<oo £[CS-1FA ()] (Ui1<k<oo £[CS-1DFA(K)]) G Ui <k<oo £[1SeSHA(K)]

(Ui<k<oo £[1SeSDHA(K)]), clearly hold for the two-dimensional case (if the input tapes are ar-

— 70 —



bitrary). A different situation, however, occurs when we restrict the input tapes to square
ones.
We will be concerned only with the three-way case, since for the four-way case, the similar

results as for the one-dimensional two-way case can be easily obtained.

A two-dimensional (simple) k-head finite automaton M is a finite automaton with k read-

only input heads operating on a two-dimensional input tape surrounded by boundary symbols
#. The action of M is very similar to that of one-dimensional two-way (simple) k-head finite
automaton except that the input head of M can move up, down, right or left.

A two-dimensional sensing (simple) k-head finite automaton, is the same device as a two-

dimensional (simple) k-head finite automaton except that the former can detect coincidence
of the input heads.

A two-dimensional k-counter machine M has a read-only two-dimensional input tape with
boundary symbols # and k counters. (Of course, M has a finite control, an input head, and
k counter heads.) The action of M is very similar to that of the one-dimensional two-way
k-counter machine except that the input head of M can move up, down, right or left.

A two-dimensional k-counter machine M whose input tapes are restricted to square ones is
said to be L(m) time-bounded if for each input w tape with m rows and m columns that is
accepted by M, there is an accepting computation of M on w which consists of at most L(m)
steps; M is said to be L(m) space-bounded if for each input tape w with m rows and m columns
that is accepted by M, there is an accepting computation of M on w in which each counter of
M requires space not exceeding L(m).

As usual, we define the deterministic and three-way versions of two-dimensional (sensing)
(simple) multihead finite automata and two-dimensional multicounter machines.

The following abbreviations will be used later.
e TR2-HA(K) : a three-way two-dimensional k-head (nondeterministic) finite automaton,

e TR2-DHA(k) : a three-way two-dimensional k-head deterministic finite automaton,

—T1 —



e TR2-SeHA(k) : a three-way two-dimensional k-head sensing (nondeterministic) finite au-

tomaton,

e TR2-SeDHA(k) : a three-way two-dimensional k-head sensing deterministic finite automa-

ton,

e TR2-SHA(k) : a three-way two-dimensional k-head simple (nondeterministic) finite au-

tomaton,

e TR2-SDHA(k) : a three-way two-dimensional k-head simple deterministic finite automa-

ton,

e TR2-SeSHA(k) : a three-way two-dimensional k-head sensing simple (nondeterministic)

finite automaton,

¢ TR2-SeSDHA(k) : a three-way two-dimensional k-head sensing simple deterministic finite

automaton,

e TR2-CM(k)S-Time(L(m)) : a three-way two-dimensional (nondeterministic) k-counter

machine with L(m) time bound whose input tapes are restricted to square ones,

¢ TR2-DCM(k)5-Time(L(m)) : a three-way two-dimensional deterministic k-counter ma-

chine with L(m) time bound whose input tapes are restricted to square ones,

e TR2-CM(k)5-Space(L(m)) : a three-way two-dimensional (nondeterministic) k-counter

machine with L(m) space bound whose input tapes are restricted to square ones,

e TR2-DCM(k)S-Space(L(m)) : a three-way two-dimensional deterministic k-counter ma-

chine with L(m) space bound whose input tapes are restricted to square ones.

Lemma 4.2. For any k£ > 1,

(1) £{TR2-SeSHA(k)]C £[CS-TR2-FA(2k)%], and

— 72 —



(2) £[TR2-SeSDHA (k)5]C £[CS-TR2-DFA(2k)5].
Proof : Let M be a TR2-SeSHA(k)S (TR2-SeSDHA(k)%). We will construct a CS-TR2-
FA(2k)% (CS-TR2-DFA(2k)S) M' to simulate M. M’ acts as follows:

1. M'simulates the moves of the reading head of M and all the left or right moves of counting

heads of M by using its (k + 1) finite automata.

2. M’ simulates all the down moves of counting heads of M by making the right moves of

input heads of its other (k — 1) finite automata.

3. During the simulation, if M moves its reading head down, then M’ must make all the
input heads of finite automata of M’ move down so that all the automata of M’ can keep
their input heads on the same row and can communicate with each other in that row.

It is easy to see that M’ can simulate M.

Lemma 4.3. For any k£ > 1,

(1) £[CS-TR2-FA(k)S]C £[TR2-SeSHA(K? + k)5],

(2) £[CS-TR2-DFA(k)®]C£L[TR2-SeSDHA(k? + k)5],

(3) £[CS-TR2-FA(k)5]C£[TR2-CM(2k — 1)5-Time(m*+1)],

(4) £[CS-TR2-DFA(k)°]C£[TR2-DCM(2k — 1)5-Time(m*+1)].
Proof : (1), (2): Let M = (A, A3, -+, Ax) be a CS-TR2-FA(k)® (CS-TR2-DFA(k)S). We

will construct a TR2-SeSHA(k?+ k)% (TR2-SeSDHA(k?+k)S) M’ to simulate M. Let r denote

the reading head of M/, and hy,ha,---, hga,x_; denote the k? + k — 1 counting heads of M.

M! acts as follows:

1. In its finite control M’ keeps track of what states A;, Az, ---, Ax are in when leaving the
row of input tape scanned by M'.

— 73 —



2. For each row of the input tape:

(a) M'simulates the left or right moves of input heads of A1, Az, - -+, Ax by using r and
hiy, ha, -+, hy. |

(b) M’ stores in its finite control the internal state of each A; when A; leaves the row,
and the order (di,dz,---,d;) in which A;, Az, .-+, Ax leave the row subsequently
(i-e., Aq, firstly leaves the row, A, secondly leaves the row, and so on).2 Moreover,

M keeps the horizontal position where A; leaves the row, by using hy, ho,-- -, hs.

(c) Furthermore, for each 1 < i < k—1, the interval between the times at which 44, and
Aug;,, leave the row is stored by a counter with O(mF**1) space bound, which can be
realized by using other k + 1 counting heads of M', where m is the number of rows
(or columns) of the input tape. This requires k2 — 1 counting heads (Ax+1, hr+2, -+

hkﬁ +k—-1) in tota.l.

Note that M works in O(m*+!) time (by Lemma 4.1), that is, if an input tape with m rows
(or columns) is accepted by M, then it can be accepted by M within O.(mk“) steps. Thus, it
is easy to verify that M’ can simulate M.

(3), (4): We leave it to the reader. (See the corresponding proof for the one-dimensional

one-way case.) ‘ s
It was shown in [58] that
(1) Urghcoo £[TR2-SHA(K)®]

= Ui koo £ITR2-SeSHA (k)]

= Ui ck<oo £[TR2-CM(k)®-Space(m)] and,

(2) Uigrcoo£[TR2-SDHA(K)®]
= Us gcoo £ITR2-SeSDHA(E)]
= Ulskw.£’[TR2-DCM(k)S-Space(m)].

I Ay, Aiy, oo, Aio (1 €01 <42 < -+ < i, < k) leave the row simultaneously, we refer the order on them as
(il,iﬁx' '.)ir’)~

— T4 —



Combining this result with Lemmas 4.2 and 4.3, we have the following theorem.

Theorem 4.7.

(1) Usrck<oo £[CS-TR2-FA(K)?]
= Usrckcoo £[TR2-SHA(E)]
= Us<kcoo £[TR2-SeSHA(k)°]

= Ui <k<oo £[TR2-CM(k)®-Space(m)] and,

(2) Uick<oo£[CS-TR2-DFA(K)?]
= Ur<k<oo £[TR2-SDHA (k)]
= Ui<k<oo £[TR2-SeSDHA(k)*]

= Urgh<oo £ [TR2-DCM(k)’-Space(m)).

A long-standing unsolved problem concerning two-dimensional finite-state automata [26] is
whether or not a two-dimensional finite-state automata can accept the set of connected patterns,
where a pattern on a tape £ € {0,1}()* is the set of all cells of z which have symbol 1’s, two
cells of a pattern are adjacent if they share a common edge (not just a common vertex), and
a pattern is connected if and only if any two cells of it are joined by a string of adjacent cells
on it. It is easily seen that there is a CS-2-DFA(2) (in fact, a two-dimensional deterministic
finite-state automaton with one marker [26]) which can accept the set of connected patterns.

On the other hand, we have
Corollary 4.3. For any k > 1, CS-TR2-FA(k)’s cannot accept the set of connected patterns.

Proof : It is shown in [60] that the set of connected patterns is not in U;crcoo £[TR2-

SeSHA(k)]. From this result and Theorem 4.7, the corollary follows. O

4.6 Closure Properties

This section investigates closure properties of the classes of languages accepted by CS-TR2-

FAS(k)’s under several two-dimensional language operations.

— 75 —



We first examine closure properties under Boolean operations. It was shown in [61] that
UISKOO.£‘[TR2-CM(k)S-Space(m)] is closed under union and intersection, but not under com-
plementation; U;<xcoo £[TR2-DCM(k)-Space(m)] is closed under union, intersection, and

complementation. From this fact and Theorem 4.7, we get the following theorem.

Theorem 4.8 (1) Ujckcoo £ [CS-TR2-FA(k)®] is closed under union and intersection, but not
under complementation, and (2) U; ckcoo [CS-TR2-DFA(k)®] is closed under union, intersec-

tion, and complementation.

Lemma 4.5 For each k > 1 and each 1 < i < k, let C(k, 1) be the set of all square tapes

z € {0,1}® such that
(i) = has at least k rows and columns,
(ii) there are exactly k 1’s in the first row,

(iii) there is exactly one 11in in the second row, and the symbol (in the second row) just below

the i-th 1 (counting from left-to-right) in the first row is 1,
(iv) all other rows contain only 0.
For each k > 1,1et C(k) = C(k,1)UC(k,2)U---UC(k,k). Then, foreack k > 1,each1 < i<k,
(1) C(k,i) € £[CS-TR2-DFA(1)%],
(2) C(2k?) ¢ £[CS-TR2-DFA(k)"].

Proof : The proof of (1) is obvious, and (2) follows from Lemma 4.3 and Lemma 6.2 (2) in

[62], where it was shown that C(2k?) € £[TR2-DCM(2(k — 1))°-Space(m*+1)]. o

Lemma 4.6 For each k¥ > 1 and each 1 < i < k, let T(k,t) be the set of all square tapes

z € {0,1}® guch that

(i) z has at least k rows and columns,

— 76 —



(ii) there are exactly k 1’s in the first and second rows, and the symbol (in the second row)

just below the i-th 1 (counting from left to right) in the first row is 1,

(iii) all other rows contain only O.

For each k > 1, let T(k) = T'(k,1) nT(k,2)N---NT(k, k). (Note that T'(k) is identical with

the set T'(k) described in Section 4.3.) Then, for eack k > 1, each 1 <1 <k,
(1) T(k,i) €£][CS-TR2-DFA(1)5],

(2) T(k? + k) ¢ £[CS-TR2-FA(k)5].

Proof : The proof is obvious, and (2) follows from Theorem 4.5. a
Now we can get the following theorem.

Theorem 4.9 For each k > 1, (1) £[CS-TR2-DFA(k)%] is not closed under union and in-
tersection, and (2) £[CS-TR2-FA(k)%] is closed under union, but not closed under intersection

and complementation.

Proof : (1) follows from Lemmas 4.5 and 4.6. It also follows from Lemma 4.6 that £[CS-
TR2-FA(k)®] is not closed under intersection, while closure under union for £{CS-TR2-FA(k)¥]
is obvious.

Let T} be the set described in Theorem 4.1. Consider the complement, T, of Ty. Clearly, T}
is in £[CS-TR2-FA(1)S]. On the other hand, 7 is not inAUISKM.C[CS-TRZ-FA(X:)S] (see the

proof of Theorem 4.1). This completes the proof. O

We next investigate closure properties under rotation, row reflection, row and column cyclic

closures, and projection.

Definition. If
411 -+ Gin

Gm1l *°* Gmny



the rotation z?® of z is given by

Gm1 -+ 411
T =
Gmn " Olp,
the row reflection zf% of z is given by
Gm1i *** Gmn
T =
211 *°* Giln,

a row cyclic shift of z is any two-dimensional tape of the form

Ok+1,1 *°° Gk41n
= ami1 e Gmn
a11 Qin
k1 te Qkn,

for some 1 < k < m, and a column cyclic shift of z is any two-dimensional tape of the form

a1k+1 *°° Gin @11 - Q1
r = . . .

Gmk+1 °** Gmn Gml *°° Gmk,

for some 1 < k < n.

Definition. Let T be a set of two-dimensional tapes. Then

o TR = {z®|z € T} (rotation of T),

o THRE = (;8RR|z € T} (row reflection of T),

o TRC = {y|y is a row cyclic shift of some z € T} (row cyclic closure of T),

o TCC = {y|y is a column cyclic shift of some z € T} (column cyclic closure of T).

Definition. Let Lj, I3 be finite sets of symbols. A projection is a mapping 7 : 2(12) — 2(22)
which is obtained by extending a mapping 7 : ¥1 — X, as follows: 7(z) = z’ if and only if
(1) Ix(z) = lx(z’) for each k = 1,2, and

— 78 —



(i) r(z(i,7)) = z'(i, ) for each 1 <1 < l1(z) and each 1 < j < Iz(z).

KT e x?, welet 7(T) = {7(z)|z € T}.

Theorem 4.10 (1) For each k > 1, neither £{CS-TR2-FA(k)%] nor £[CS-TR2-DFA(k)®] is
closed under rotation. (2) Neither UISKO‘,L‘[CS-TR%FA(IC)S] n0r Uj <k <00 £[CS-TR2-DFA(K) "]

is closed under rotation.

Proof : Let T3 = {z € {0,1}3m > 2[l1(z) = l2(z) & z[(1,1),(m,1)] = z[(1, 2), (m, 2)]]}.
Clearly, T3 is in £[CS-TR2-DFA(k)5]. On the other hand, T3* = T}, which is described in The-
orem 4.1, is not in U15k<°°£[CS-TR2-FA(Ic)s] (see the proof of Theorem 4.1). This completes

the proof. O

Let T, be the set of all square tapes z € {0,1}(?) such that
(i) =z has m (> 2) rows and columns,

(ii) there is exactly one 1 in the first row,

(iii) thereis a j, 1 < j < m, such that z(1, j) = z(m, j) = 1.
Let Ts be the set of all square tapes z € {0,1}(?) such that
(i) =z has m (> 2) rows and columns,

(ii) there is exactly one 1 in the last row,

(iii) thereis a j, 1 < j < m, such that z(1,1) = z(m,1) = 1.
Let Ty be the set of all square tapes z € {0,1}(?) such that
(i) z has m (> 2) rows and columns,

(ii) there is exactly one 1 in the first row,

(iii) thereis a j, 1 < j < m, such that z(1,j) = z(2,5) = 1.

Let T be the set of all square tapes z € {0,1,2}(® such that



(i) = has m (> 2) rows and columns,
(ii) there is exactly one 1 in the first .row,

(iii) thereis a j, 1 < j < m, such that z(1,) = z(m,j) = 2, and for each 1 < i < m, i # j,

z(1,1) # 2 and z(m,i) =0.

It was shown in [61] that Ty, Ts,Ts, Ty € £[CS-TR2-DFA(1)%], and TER = TEC = h(Ty), TRC
¢ UISKOO£[TR2-DCM(k)S-Spa,ce(m)], where % is the projection obtained by extending the
mapping h : {0,1,2} — {0,1} with h(0) = 0, h(1) = 1 and h(2) = 1. From this fact and

Theorem 4.7, we get the following theorem.

Theorem 4.11 (1) For each k > 1, £[CS-TR2-DFA(k)5] is not closed under row reflection,
row and column cyclic closure, or projection. (2) U15k<°°£[CS-TR2-DFA(k)S] is not closed

under row reflection, row and column cyclic closures, or projection, either.

Theorem 4.12 For each k > 1, £[CS-TR2-FA(k)5] is closed under row reflection, but not

closed under column cyclic closure.

Proof: Closure under row reflection can be obtained by extending the corresponding results
(i.e., closure under reversal) of the one-dimensional one-way case to the two-dimensional case,
whose proof is left for the reader.

We now prove nonclosure under‘ column cyclic closure. For eack n > 1, let 7(n) be the set

of all square tapes z € {0,1}(?) such that

(i) £ has m (> 3) rows and columns,

(ii) there are exactly (n + 1) I’s in the first row,
(i) z(1,1) =1,

(iv) the second row is equal to the first,

(v) all other rows contain only 0’s.

— 80 —



Clearly, for each k > 1, T/(N(k) + 1) is in £[CS-TR2-FA(k)5], where N(k) is defined in the
proof of Theorem 4.6. On the other hand, T'(N (k) + 1)°C = T(N (k) +1) ¢ £[CS-TR2-FA(k)")

(see the proof of Theorem 4.6). This completes the proof. o

Theorem 4.13 (J;<xcoo£[CS-TR2-NFA(k)S] is closed under row reflection, row and column

cyclic closures.

Proof : This directly follows from Theorem 4.7 and the result (Theorem 6.6 in [59]) that
Ui<k<oo [TR2-CM(k)S-Space(m)] is closed under row reflection, row and column cyclic clo-

sures. O

The closure results obtained above are summarized in Table 4.1, where £(FAS)P =£[CS-
TR2-DFA(k)®], £(FAS)Y =£[CS-TR2-FA(k)S], £(FAS)E = U15k<w£[CS-TR2-DFA(k)5],
L(FAS)Y = U15k<w£[CS-TR2-FA(k)5], “J/” means that the class is closed, “X” means that
the class is not closed, and “?” means that the closure property is not known.

Table 4.1. Closure properties of CS-TR?-FA(k)S's

[ | LFAS)Y [ L(FAS)T | £(FA%)g [ £(FA%) |
JE=1)

complementation | ?(k > 2) X Vv X
union X Vv Vv Vv
intersection X X Vv Vv
rotation X X X X
row reflection X Vv X Vv
row cyclic x(k=1)

closure X (k> 2) X Vv
column cyclic

closure X X X Vv
projection X ? X Vv

4.7 Concluding Remarks

We have investigated some properties of cooperating systems of two-dimensional finite-state
automata whose input tapes are restricted to square ones, and exhibited some features that

sharply contrast them from one-dimensional languages. We conclude this chapter by giving

— 81 —



several open problems.
(1) £[CS-2-FA(k)5]G£[CS-2-FA(k + 1)5] for each k > 27
(2) £[CS-2-DFA(k)S]G£[CS-2-DFA(k + 1)°] for each k > 27

(3) Is £[CS-TR2-DFA(k)5] closed under complementation for each k > 2? (It was shown in

[62] that £]{CS-TR2-DFA(k)] is closed under complementation.)

(4) Is £[CS-TR2-FA(k)®] closed under row cyclic closure for each k > 2? (It was shown in
[63] that £[CS-TR2-FA(1)] is not closed under row cyclic closure.) We believe that the

answer is negative, but we have no proof at present.

(5) Is £[CS-TR2-FA(k)®] closed under projection for each k > 1?

— 82 —






CHAPTER 5

Cooperating Systems of Counter Machines

In the previous chapters we studied in detail cooperating systems of finite-state automata as
language acceptors. It is suggested that this simple model for parallel computations seems
to give us a newer hierarchy of languages than other types of automata, and to be useful in
connection with computational complexity classes. All questions about cooperating systems of
finite-state automata may also be asked for cooperating systems of other type of automata. In
this chapter, we introduce such a new type of device, called the “cooperating system of counter
machines” (CS-CM), and investigate some of its properties. We mainly concentrate on the

one-way case.

5.1 Definitions and Notation

Informally, a cooperating system of k counter machines consists of k (one-)counter machines
CM,;, CM,, :--, CMy, and a read-only input tape where these counter machines independently
work step by step. Each step is assumed to require exactly one time for its completion. Those
counter machines whose input heads scan the same cell of the input tape can communicate with
each other, that is, every counter machine is allowed to know the internal states and the signs
(positive or zero) of counters of other counter machines on the cell it is scanning at the moment.
The input tape holds a string of input symbols delimited by left and right endmarkers. The
system starts with each CM; on the left endmarker in its initial state with the counter empty,

and accepts the input tape if each CM; enters an accepting state and halts with the counter

— 83 —



empty when reading the right endmarker. (Note that we let CS-CM’s accept by final states
and empty counters in this thesis. We conjecture that acceptance by final states and empty
counters is equivalent to acceptance by final states alone except in the realtime for CS-CM’s.)

Formally, a cooperating system of k counter machines (CS-CM(k)) is denoted by

- M =(CM;,CMg,-.-,CM,).

For each 1 < i < k, CM; is a counter machine defined by a 9-tuple (2, Q;, Xi, 6, q0;, Fi, ¢, $, 8),
where I, Q;, qo;, F;, ¢, $, ¢ have the same meanings as in the definition of cooperating system

of finite-state automata, and

- Xi = (@1 x{0,1}U{$}) x -+ X (Qi1 % {0, 1 U{#}) X (Qiz1 X {0, 1 U{#}) X -~ x (Qu X
{0,1}U {8)),

- 6; is the transition function mapping (SU{¢,$}) x X; x Q; x {0,1} to 2R:*{LH.R}x{~1,0;+1}

An input to M is any string of the form ¢z$ where z is a string in £*. A single move of
M is described as follows: Let machines CM;, CM,, ---; CM} be in states ¢, g2, -+, gx with
counter’s signs ¢, ca, -+ -, ¢k, and scanning symbols ay, as, - - -, ax (note that ¢; may equal ¢ or
$) at time t, reépectively. I 6;(ai, (g, 5901, 8415 1 4k), €ir ¢i) = @, then CM; has no next
move (i.e., CM; halts). If (p;, d;, u;) is in 6;(a;, (¢}, -+, €' _1, %41, @), €6, ¢i), then CM; may
enter state p;, move its input head in the direction d; (where d; = L, H, or R indicates the head
is to move one cell to the left, remain stationary, or move one cell to the right, respectively)
and decrease the counter by 1 if u; = —1, increase the counter by 1 if u; = +1 or not c-hange

the counter if u; = 0 at the next time ¢ + 1. Here for each j € {1,---,i = 1,i +1,---,k},

i _ ) (g5y¢;) € Q; x {0,1} if CM; and CM; are on the same cell at time ¢,
%= ¢ : otherwise.

The input ¢z$ is accepted by M if there is a sequence of moves that leads every CM; to an
accepting state with the counter empty when scanning the right endmarker §. We assume that

no CM; can fall off either end of the input.

— 84 —



If for no (a;, (qi,---,qf_l,q,'-“,-n,qi),q;,c;l) in the domain of &; does &;(ai, (g%, -, q/—1,
gi41s° "+ qk), @i, Ci) contain an element of the form (p;, L,u;), then M is said to be one-way.
If 6i(ai, (g1, *»9'—1,9l415 "+ *» Qk)s @i, ¢;) never contains more than one element, then M
is deterministic.

Let L(n) be a function from A to A/, where A is the set of natural numbers. M is said

to be L(n)-time bounded if for each input w accepted by M, there is a computation of M on

w which accepts in at most L(Jw|) steps. M is said to be L(n)-space bounded if for each input

w accepted by M, there is a computation of M on w in which each counter requires space not
exceeding L(Jw|).

We denote a one-way CS-CM(k), deterministic CS-CM(k) and one-way deterministic
CS-CM(k) by CS-1CM(k), CS-DCM (k) and CS-1DCM(k), respectively, and for each M€ {CS-
CM(k), CS-DCM(k), CS-1CM(k), CS-1DCM(k)}, if M is L(n)-time (space) bounded, we denote

it by M[Time(L(n))] (M[Space(L(n))]). Moreover, let
o £[M[Time(poly)ll= Uicc,s<oo £ [M[Time(cn?)]],

o £[M[Space(poly)ll= Ui<c,s<o0 £ [M[Space(cn?)]].

5.2 Relationship between Cooperating Systems of Counter
Machines and Multicounter Machines

It is well-known that without time or space limitations, 1DCM(2)’s have the same accepting
power as Turing machines [2]. Clearly, CS-1DCM(2)’s can simulate 1DCM(2)’s. Thus, CS-
1DCM(2)’s (without time or space limitations) are equivalent to Turing machines in accepting
power. In this chapter, we show some relationships between cooperating systems of counter

machines and multicounter machines regarding the polynomial time (space) complexity.

The following theorem is straightforward.

Theorem 5.1. For each k > 1, CS-CM(k)’s (respectively, CS-DCM(k)’s, CS-1CM(k)’s,

— 85 —



CS-1DCM(k)’s) can simulate CM(k)’s (respectively, DCM(k)’s, 1CM(k)’s, 1DCM(k)’s) under

the same time (space) bound.

From now on, for each integer k > 1, by L(k) we denote the language that is defined as

follows:
o L(1) = {0°20°}i > 1},
o L(k+ 1) = {0'1w10'|i > 1 & w € L(k)}.
Furthermore, let L'(k) = a*L(k)a*. |
Lemma 5.1. For each k > 1,
(1) L'(k+1) ¢£ [lCM(k)-Space(n)],
(2) L'(2k — 1) € £[CS-1DCM(k)[Time(2n)]],
(3) L'(2k — 1) € £[CS-1DCM(k)[Space(2n)]].

Proof : (1) follows from Lemma 2.1 of [48]. To prove (2) and (3), we construct a CS-
1DCM(k)[Time(2n)] M = (A, Az,---, Ax) which acts as follows: Consider the case when an
input word

¢aPO™ 10™2] . . . 10™ 31 20™at-11 ... 10™2 10™ a9§

is presented to M. (Input words in the form different from the above can easily be rejected by

M)

(i) For each 1 < i <k —1, A; sweeps the subword 0™2*-i at speed 1, the subword 0™ai-i at
speed 1/3, and the other parts at speed 1/2. Moreover, when it reads the subword 0™, A;
increases its counter by 1 for each move; and when it reads the subword 0™, A; decreases

its counter by 1 for each move (unless its counter is empty).

(ii) While sweeping the input tape at the same speed 1/2, Ay increases its counter by 1 in
every move when reading the subword 0™*, and decreases its counter by 1 in every move

when reading the subword 0™: (unless its counter is empty).

— 86 —



(iii) Each of Ay, A2, ---, Ak can enter an accepti'ng state when scanning the right endmarker
if and only if for each 1 < ¢ < k —1, A; and Ax scan the same cell just after Ay sweeps
the subword 0™2t-i and for each 1 < j <k, the contents of counter of A; becomes empty
just after A; sweeps the subword o™i

Note that for each 1 < i < k— 1, mog—; = mb, _; if and only if A; and Ay scan the same

cell just after Ay sweeps the subword 0™:-i and that for 1 Lj<Lk m;= m; if and only if

the contents of counter of A; becomes empty just after A; sweeps the subword 0™i. Thus M
accepts the input word z with time bound 2|z| if and only if £ € L’(2k — 1). Furthermore, it is

obvious that M accepts L'(2k — 1) with space bound n. O

In addition, we have the usual speed-up results concerning multicounter machines [49] as

follows.
Lemma 5.2. For each k> 1 and any ¢,3> 1,
(1) £[CM(k)-Time(cn)] (£[DCM(k)-Time(cn)]) ‘
=£[CM(k)-Time(linear)] (£[DCM(k)-Time(linear))),
(2) £[1CM(k)-Time(cn)] (£{1DCM(k)-Time(cn)])
=£[1CM(k)-Time(linear)] (£{1DCM(k)-Time(linear)]),
(3) £[CM(k)-Time(n*)] (£[DCM(k)-Time(n*)])
=£L[CM(k)-Time(cn®)] (£[DCM(k)-Time(cn*)]),
(4) £[1CM(k)-Time(n*)] (£[1DCM(k)-Time(n*)])
=£[1CM(k)-Time(cn*)] (£[1DCM(k)-Time(cn*)]),
where £[CM(k)-Time(linear)]= U; <o, £[CM(k)-Time(cn)]], and £[DCM(k)-Time(linear)], £[1
CM(k)-Time(linear)], £[1DCM(k)-Time(linear)] have similar meanings.
From Theorem 5.1 a.n(i Lemmas 5.1, 5.2, we get the following corollary.

Corollary 5.1. For each k > 2,

— 87 —



(1) £[1CM(k)-Time(linear)]G£[CS-1CM(k)[Time(2n)]],
(2) £{1DCM(k)-Time(linear)]GL[CS-1DCM(k)[Time(2n)]),
(3) £[1CM(k)-Space(n)]G£L[CS-1CM(k)[Space(n)]],
(4) £[1DCM(k)-Space(n)]G£[CS-1DCM(k)[Space(n)]].
For each s,k > 1, let f,(k) (f'(k)) denote the minimum number of counters required for
one-way multicounter machines with time (space) bound O(n*) to accept L'(k), and g, (k) (¢ (k))

denote the minimum number of counters required for one-way deterministic multicounter ma-

chines with time (space) bound O(n*) to accept L'(k). Furthermore, let
N,(k) = max{m|f,(m) = k},
N (k) = max{m|f,(m) = k},
D,(k) = max{m|g,(m) = k},

Dy(k) = max{m|g;(m) = k}.

Lemma 5.3. For each k,3 > 1,
(1) Dy(k) < N,(k) < ks, and

(2) Di(k) < Ny(k) < ks.

Proof : It follows from the definitions that D,(k) <N,(k) and D/(k) <N!(k) fo_r each
k,s > 1. Below we only establish by a contradiction that N/(k) < ks for each k,s > 1, since
Ny(k) <Ni(k).
Suppose that there exists some 1CM(k)-Space(n®) M accepting L'(ks + 1). For each
m > 1, let
V(m) = {a?01101 .- 10°ks+1 2041 10°0s 1 . . - 107 @7 |1 < i, 2,0+ ipsq1 S &
(F+ i1 +i2+ - +igq1) = (ks + 1)m}.



Clearly, V(m) C L'(ks+1) and |V (m)| = mv’““. With each w € V(m), we associate one
fixed accepting computation, c(w), of M on w which accepts in space |w|*. Since the number of
distinct memory configurations of M just after reading the symbol 2 during ¢(z2z%) for words
22z € V(m) cannot exceed O(m**),! it follows that for large m, there exist two different
words £2z%, y2yR € V(m) such that the memory configuration of M just after reading 2
during c(z2z®) is the same as that of M after reading the symbol 2 during c(y2y?). Clearly,
from c(z2z®) and c(y2y®), we can construct an accepting computation (in space |z2y%|’) of M
on £2y®. This is a contradiction, because z2y% is not in L'(ks + 1). Thus the lemma follows.

O
Lemma 5.4. For each ¥ > 1 and any s > 1,
(1) L'(Dy(k) + k — 1) €£[CS-1DCM(k)[Time(n*)}],
(2) L'(N,(k) + &k — 1) € £[CS-1CM(k)[Time(n*)]],
(3) L'(D(k)+ k — 1) e £[CS-1DCM(k)[Space(n®)]].
(4) L'(N!(k) + k — 1) € £[CS-1CM(k)[Space(n*)]],
Proof : It is obvious that the results are true for ¥k = 1. Now suppose £ > 2. We
only give the proof of (1), since the proofs of (2), (3) and (4) are just the same. Let M be

a 1DCM(k)-Time(n*) that accepts L'(D,(k)). We construct a CS-1DCM (k) M’ from M. M’

acts as follows: Consider the case when an input word

4aP0™ 1 ... 107PHB10™ ] -+ 10™E-120™ 11 - - 10™ 10" Du(D] - .- 10™ 9§

is presented to M’. (Input words in the form different from the above can easily be rejected by
M)

a) When reading the part of aP0™1---10"P«(® 1, M’ simulates the action of M when it reads
g

the input a?0™1-..10"Ds() 2,

! A memory configuration of M is an (k + 1)-tuple (g,c1,---,ck), where ¢ is the current internal state of M
and ¢; is the contents of the i-th counter of M for 1 <1 < k,

— 89 —



(b) In the same way as in the proof of Lemma 5.1, M’ checks without using any counter
whether m; = m! for all 1 < i < k — 1. If this is the case, then goto (c), otherwise M

rejects the input.
i
(c) M’ continues to simulate the action of M when reading the part of 0"Ps(b1...10" g9,

(d) Each machine of M' enters an accepting state (with counter empty) if and only if M

finally enters an accepting state.

It will be obvious that M’ accepts L'(N (k) + k — 1) within n® steps. o
From Theorem 5.1 and Lemma 5.4, we get the following corollary.

Corollary 5.2. For each s > 1 and each k > 2,
(1) £[1CM(k)-Time(n*)]G£[CS-1CM(k)[Time(n*)]],
(2) £[1DCM(k)-Time(n*)]G£[CS-1DCM(k)[Time(n*)]],
(3) £L[1CM(k)-Space(n*)|G£[CS-1CM(k)[Space(n*)]],

(4) £[1DCM(k)-Space(n*)]G£L[CS-1DCM(k)[Space(n*)]].

Theorem 5.2. For each ¢,s > 1 and each k > 2,
(1) £[CS-1CM(k)[Time(cn)]JCL[1CM(2k — 1)-Time(linear)],
(2) £[CS-1CM(k)[Time(cn**!)]JCL[1ICM(2k — 1)-Time(n**1)],
(3) £[CS-1CM(k)[Space(n*)]]C £[1ICM(2k — 1)-Space(n(*~1s+1)],
(4) £L[CS-CM(k)[Space(n*)]]C£L[CM(2k)-Space(n*)].
The corresponding result also holds in the deterministic case.

Proof : Let M = (CM,,CM,,.--,CM}) be an arbitrary CS-1CM(k). We construct a

1CM(2k — 1) M’ from M. M’ acts as follows:



(1) M’ stores in its finite control all the finite controls of CMy, CM>, - -+, CMj.

(2) For each cell of the input tape:

(a) M’ stores in its finite control the internal state of each CM; (1 < i < k) when CM;
leaves the cell and the order (di,d2,---,dx) in which CM,, CM;, ---, CM} leave the
cell subsequently (i.e., CMy, firstly leaves the cell, CM,, secondly leaves the cell, and

SO on),2 and the contents of the counter of CM; is stored by its ’i-th counter.

(b) Furthermore, for each 1 (1 <t < k—1), the interval between the times at which CMy;,
and CMy;,,, leave the cell is stored by the (k + ¢)-th counter of M’. This can be done
as follows: M' adds to the (k + 1)-th counter the difference between the numbers of

the steps for which CMy,,, and CMy; stay at the cell.

If M operates with time bound f(n), then it is easy to verify that M’ can simulate M in
at most k - f(n) time. From this fact and Lemma 5.2, (1) and (2) follow.

During the accepting computation of M, if the contents of its each counter does not
exceed n®, then it is easily seen that for each cell of the input tape, the interval between the
times at which CMy; and CMy,,, leave the cell is O(n(F=1s+1)_ From this observation it follows
that one can make M’ simulate M with space bound n(*=1s+1  Thus, (3) holds.

The proof of (4) is obvious, and omitted here. Note that for the deterministic case, we
can give the proof of corresponding result in the same way. This completes the proof of the

theorem. 0

The result of Theorem 5.2 (1) is “optimal” in the following sense. That is, for each
k > 2, £[CS-1DCM(k)[Time(2n)]]— £{1CM(2k — 2)-Time(linear)]# @. In fact, for each k > 2,
L'(2k — 1) € £[CS-1DCM(k)[Time(2n)]]- £[{1CM(2k — 2)-Space(n)] (by Lemma 5.1).

It was shown in [49] that multicounter machines with linear space bound and 3-counter

machines with polynomial time bound are as powerful as multicounter machines with polynomial

Mf CMy,, CM,, -+, CM;, (1 <41 < 43 < --- < iy < k) leave the cell simultaneously, we refer the order on
them as (i],i:,-”,ir).

— 91 —



time or space bound in all the cases (deterministic and nondeterministic, one-way and two-way).

From this fact and Theorems 5.1, 5.2, we have the following corollary.

Corollary 5.3.

(1) £[CS-ICM(3)[Time(poly)]] (£[CS-1DCM(3)[Time(poly)]])
= Ui <k<oo £[CS-1CM(k)[Space(n)]] (Uick<coo £[CS-1DCM(K)[Space(n)]])
= Ui ck<oo £[CS-1CM(K)[Time(poly)]] (Ui crcoo £[CS-1DCM(k)[Time(poly)]])

= Ul gkcoo £[CS-1CM(K)[Space(poly)]] (Uigkcoo £[CS-1DCM(k)[Space(poly)]]), and

(2) £[CS-CM(3)[Time(poly)]] (£[CS-DCM(3)[Time(poly)]))
= U ck<oo £[CS-CM(K)[Space(n)]} (Uigr<oo £[CS-DCM(K)[Space(n)]])
= Ui chcoo £[CS-CM(K)[Time(poly)]] (U ck<oo £[CS-DCM(K)[Time(poly)]])
= Ui <hcoo £[CS-CM(k)[Space(poly)]] (Uigr<oo £[CS-DCM(k)[Space(poly)])).

5.3 Hierarchies Based on The Number of Counter Machines

In this section, we investigate how the number of counter machines affects the accepting power
of the cooperating system of counter machines with polynomial time (space) bound.
5.3.1 One-way Case

Theorem 5.3. For each c,s8,k > 1,

(1) £[CS-1CM(k)[Time(cn*)]] (£[CS-1DCM(k)[Time(cn*)]]))
G£[CS-1CM(k + 1)[Time(cn?)]} (£[CS-1DCM(k + 1)[Time(cn*)]]), and

(2) £[CS-1CM(k)[Space(cn®)]] (£[CS-1DCM(k)[Space(cn®)]])
GL[CS-1CM(k + 1)[Space(cn’)]] (f[CS-lD.CM(k + 1)[Space(cn*)]])

Proof : For each ¢,s,k > 1, let p.,(k) (p.,(k)) denote the minimum number of counter

machines required for cooperating systems of one-way multicounter machines with time (space)



bound cn? to accept L'(k), and gc,s(n) (97 ,(k)) denote the minimum number of counter machines
required for cooperating systems of one-way deterministic multicounter machines with time

(space) bound cn* to accept L'(k). Furthermore, let
CN.,s(k) = max{m|pc,,(m) = k},
CN{,(k) = max{m|p ,(m) = k},
CD.,,(k) = max{m|qc,.(m) = k},
CD¢,,(k) = max{m|q ,(m) = k}.
By Theorem 5.2 and Lemma 5.3, for each ¢,s,k > 1,
CN.s(k) < (2k - 1)s,
CD.,s(k) < (2k — 1)s,
CN! (k) < (2k - 1)((k —1)s + 1),
CD. (k) < (2k = 1)((k—1)s +1).
Then, we can easily prove that
(1) L'(CN.4(k) + 1) € £[CS-1CM(k + 1)[Time(cn*)]],
(2) L'(CD. (k) + 1) € £[CS-1DCM(k + 1)[Time(cn’)]],
(3) L'(CN! (k) + 1) € £[CS-1CM(k + 1)[Space(cn*)]],
(4) L'(CD. (k) + 1) € £[CS-1DCM(k + 1)[Space(cn*)]].

For example, let M be a CS-1CM(k)[Time(cn*)] accepting L'(CN.,(k)). We consider a CS-

1CM(k + 1)[Time(cn*)] M’ which acts as follows: Suppose that an input word

a?071w107 a?’,

— 93 —



where w € {01101 .. 10°CNes(D 90 ONe (D] ... 107 10° Vj(1 < j < CN..(k))[i;,i% > 1]} and
p,p' >0, q,¢' > 1. (Input words in the form different from the above can be easily rejected by
M') M’ simulates the action of M on w by using its k counter machines, and checks by using
the remaining counter machine whether ¢ = ¢’. Each machine of M’ enters an accepting state
(with counter empty) only if it finds out that (1) M accepts w (i.e., w € L(CN.,(k))) and (2)
g = ¢'. Noting that for each w € L(CN,,(k)) and each w' = aP091w10%* € L'(CN,,(k) + 1),
|w|* + p+p' +2(g+1) < |w')°. It will be obvious that M’ accepts L'(CN, (k) + 1) in time n®.

Thus, the theorem follows from the above definitions and facts. D

Remark. The reader might have noted that the same technique is used in Chapter 4
(Theorem 4.6) and Chapter 5 (Theorem 5.3) for proving separation results. Its idea is rather
straightforward: Given any cooperating system A(k), where k is the number of processors in
the system, we try to find a sequence of languages L(1), L(2), --- such that there is a L(f(k)),
L(f(k)) €L[A(k + 1)]—- £[A(k)], where f(k) depends only on k, and is bounded. Note that it
suffices to prove only the existence of f(k) for our purpose. This is, in general, much simpler
than to determine the value of f(k). In particular, it is effective for the one-way (or three-way)

case. Clearly, this technique can also be applied to other types of automata.

5.3.2 Two-way Case

In [21], Monien showed, by using a transformational method, that for languages over a one-letter
alphabet, two-way (k + 1)-head finite automata are more powerful than two-way k-head finite
automata for each k > 1. In [44], Wang, Inoue and Takanami showed, by carefully exte;nding
the ideas of Monien [21], that for languages over a one-letter alphabet, two-way sensing (k + 1)-
head finite automata are more powerful than two-way sensing k-head finite automata for each
k > 3. In this subsection, we give an analogous result for the cooperating system of (two-way)
multicounter machines with space bound =, by using a similar method.

Let £5[CS-CM(k)[Space(n)]] (£2[CS-DCM(k)[Space(n)]]) denote the class of languages

over the alphabet ¥ accepted by CS-CM(k)[Space(n)]’s (CS-DCM(k)[Space(n)]’s), for each

— 94 —



k > 1. Let SPACEg(f(n)) (DSPACEz(f(n))) denote the class of languages over the alphabet
¥ accepted by nondeterministic (deterministic) Turing machines with space bound f(n).
In the following we only consider languages L C {02"|n > 1}. Let £[CS-CM(k)[Space(n)]]

(£[CS-DCM(k)[Space(n)]]) be the class of all languages L such that
L € £q}[CS-CM(k)[Space(n)]] (L € £o)[CS-DCM(k)[Space(n)]])

and L C {0%"|n > 1}. Let SP’RE(Iog n) (DSf’KCE(log n)) be the class of all languages L such
that

L € SPACE(g)(logn) (L € DSPACE(g)(logn))
and L C {0*"|n > 1}.

For each L C {0%"|n > 1} and j > 1, let
T(L) = {0¥"|n > 1 & 0*" € L}.
In all the proofs in this subsection there is no difference at all between the deterministic

and the nondeterministic cases. Therefore we will always consider only the deterministic case.

Lemma 5.5. For each k > 1,
(1) Z‘[CS—CM(k)[Space(n)]]gSPK@E(log n), and

(2) Z[CS-DCM(k)[Space(n)]]GDSPACE(log n).

Proof : It was shown in [21] (Lemma 1) that for all ¥ > 1, Z[HA(k)]gSP’./rCE(log n)
and Z[DHA(k)]QDS?KCE(Iog n), where Z’[HA(k)] (£[DHA(k))) is the class of all languages
L such that L C {0%"|n > 1} and L €£[HA(k)] (L €£[DHA(k)]). On the other hand, one
can easily show that for each k > 1, £[CS-CM(k)[Space(r)]]C £[HA(2k + 1)] and £[CS-

DCM(k)[Space(n)]]C £[DHA(2k + 1)]. From those facts, the lemma follows. o

Lemma 5.6. Foreach L € SPX’CE(log n) (DST’XCE(log n)), there exists an integer j > 1
such that T;(L) € £[CS-CM(2)[Space(n)]] (£[CS-DCM(2)[Space(n)]]).

— 95 —



Proof : The proof is very similar to that of Lemma 2 in [21]. Let L be any language
in DSf’XCE(Iog n), and M be a deterministic Turing machine accepting L within space bound
logn. Let M’ be the following modification of M:

(1) M’ writes bi(n) on its working tape, where n is the length of input tape and bi: the
set of natural numbers, A' — {0,1}*, be the bijective mapping defined by: bi(n) = ¢ & 1¢p is
the binary notation of n. |

(2) During the rest of the computation M’ never uses its input tape again. M’ simulates
M and during this simulation its working tape is divided into 3 tracks. On the first track M’
stores bi(n), on the second track the position of the input head of M in binary notation and on
the third track the inscription of the worktape of M.

Furthermore we can define M’ in such a way that it has only two worktape symbols.
There exists some j > 1 such that M’ uses for every computation at most j - logy n cells on its
worktape.

We now define a deterministic CS-DCM(2) M" accepting T;(L). M” first tests whether
the input tape is of the form 02,‘.»’ n > 1, using its two counters. If this is the case, then M"
simulates the action of M’ on the input tape 02". The working tape of M’ is divided by the head
position into two parts as described in Fig. 5.1, and M" stores this during the simulation on its
input tape by using the input heads of its two counter machines (CM; and CM>) as described

in Fig. 5.2 (with the counters empty).

v | u I

T(working head)

Fig. 5.1. The working tape of M'.

In order to simulate one step of M', CM; (CM3) has to divide or multiply the number

un(v?) (un(w)) by two, and has to add +1 or —1 to the number un(v?) (un(w)) (where “un” is



un(vR) uniu)

¢ | l l s
1 1(CMy) 1 (CM>) 27 m

Fig. 5.2. The input tape of M", where un: {0,1}* — A’ is the inverse mapping of bi.

the inverse mapping of “bi”). Moreover, CM; and CM; have to communicate with each other.
All of this can be easily done with the help of their empty counters.

In order to initialize this simulation, M” sets the position of the input head of CM; to
un(bi(2")?) =un(w) = 2" and then moves the input head of CM; to the right endmarker
$. This can be done ';sing two counters.

It is clear that M" accepts an input tape 0%™ if and only if M’ accepts 02", O

Lemma 5.7. For each L C {0%" |n > 1} and for j,k > 1:
T;(L) € £[CS-CM(k)[Space(n)]] (£[CS-DCM(k)[Space(n)]))
= L € £[CS-CM(jk + 1)[Space(n)]] (£[CS-DCM(jk + 1)[Space(n)]]).

Proof : It was shown in [44] (Lemma 3.3) that T;(L) € Z[SeHA(k)] (£[SeDHA(K)])
= L € £[SeHA(jk)] (£[SeDHA(jk)]), where £[SeHA(k)] (£[SeDHA(K)]) is the class of all
languages L such that I C {02"|n > 1} and L € £[SeHA(k)] (L € £[SeDHA(k)]). On the other
hand, one can easily show that for each k > 1,

£[CS-CM(k)[Space(n)]] (£[CS-DCM(k)[Space(n)]]) C £[SeHA(2k)] (£[SeDHA(2k)]),
and
Z[SeHA(k)] (£[SeDHA(K)]) C £[CS-CM(k + 1)[Space(n)]] (£[CS-DCM(k + 1)[Space(n)]}).

From those facts, the lemma follows. 0

Lemma 5.8. For each L C {0%" |n > 1} and for j > 3k, k > 1:
T;+1(L) € £[CS-CM(k)[Space(n)]] (£[CS-DCM(k)[Space(n)]])
= T;(L) € £[CS-CM(k + 1)[Space(n)]] (£[CS-DCM(k + 1)[Space(n)]]).
Proof : Let M =(CM;,CM,,---,CM}) be a CS-DCM(k)[Space(n)] accepting T;41(L).

— 97 —



We will construct a CS-DCM(k + 1)[Space(n)] M' = (CM{,CM;,---,CM; ) accepting T;(L).
It can be tested easily (using 2 counters) whether the input is of the form 02" for some

2(j+)n

n > 1. If this is the case, then M’ has to test whether 0 is accepted by M. In order to do

so M' encodes the input head position, h,, of each CM,, and the counter contents, ¢,, of each
CM,, where for each 1 < v < k, 0 < hy,c, < 20707 4 1, by the input head position, k', of
CM, the counter contents, ci, of CM/, and two additional numbers 03y, 0254y, in such a form

that always

0<L R, c! < 2".'” +1, 0L 02y, 02k4v < 2n,

v v

and

1 - / -
hv =hv+0'2v’2]n’ Cy =co+o'2k+u'21n°

Note that b, = 2(5+1)" +1iff b = 29" 41 and g9, = 2™ — 1, and that A, = h, iff either
(k! = R’ and ggy = gg,) o1 (k! — h!, = £27" and 09, — 03, = F1) holds.

M’ uses the counter of CM;“ to store the 2k numbers o3, -+, 02k, 02k 41, * -+, 03k i0 the
form

c;c-n =0y4+0;-2" 403 92n + .+ o3 2(3k—1)n + 2(,‘_1),,

where ¢}, denotes the counter contents of CMj,, and 03;_; = 1 for 1 < < k. This is possible
since j > 3k.
First M’ has to encode the initial head positions and initial counter contents of M. That

means it has to set

c;!-‘-l — 2011 + 22n + ven + 2(2k—2)n + 2()—1)75.

This can be done easily (using two counter machines).

During the simulation of one step of M, CM{, CMJ, --., CM] can communicate with
each other by means of CM{ ., (since the input head of CM{ , is free in the computation), and
every CM! (1 < v <k) a.lw#ys stores in its finite memory which of the 03,’s, encoded by ¢},

are equal to 2" — 1 and the information whether o3, = 03, or 0y, = 094 £ 1 holds for each

— 98 —



v,u € {1,2,---,k}, and v # u. Furthermore, in order to simulate the action of CM,, CM/ has

to distinguish two cases:

(1)

(2)

h! #0, h! # 29" 41 (i.e., the input head of CM! does not scan either of the endmarkers)
and 0 < ¢}, < 27" + 1. (Note that CM can check with the help of CM{, whether or not
its counter contents is equal to 27 4+ 1. In this case, the input head of CM, does not scan
either of the endmarkers, and ¢, > 0. CM] simply changes its input head position and its

counter contents in the same way as CM, would do.

Rl =0orh! =2™+1lorc, =0orc,=2"+1 Ifh, =0 (orc =0)and CM,
would move the input head to the left (or would decrease the counter), then CM| has
to set h! «— 2™ — 1 and 09y « 09y — 1 (o1 ¢, — 27" — 1 and ogx4y +— Ogkgo — 1). If
h! = 29" 41 (or ¢, = 29" + 1) and CM, would move the input head to the right (or
would increase the counter), then CM| has to set k!, — 2 and oy, « 03, + 1 (01 ¢!, — 2
and ook4y — O2k4y + 1). Otherwise, CM| simply changes its input head position and its

counter contents in the same way as CM,, would do.

In the simulation, performing the operation on o3, (or o2x4,) is the difficulty in this

proof, and the other operations may be easily done (with the help of CM}_,). In the following

we will show how M’ can perform the operation on 03,’s (0r 02k4,’S).

M’ can perform the operation +1 on o9, (or o2x+,) and test whether the new o3, (or

O2k+4v) 1S equal to 2" — 1, using the algorithms described in 1 and 2 in the proof of Lemma 4

in [21]. Below, we refer to these algorithms as Algorithm 1 and Algorithm 2. For the sake of

completeness‘, we recall them here, pointing out the necessary changes.

We will denote the counter contents of CM, by A as follows:

1-1
A= Z o, g(r=Dn 4 9(G=1)n
pn=1
with gg;-1 =1for 1 <1<k, and o354) = 03542 = -+ = 051 = 0.

Furthermore we can assume that ¢/, < 2/™. (Note that M’ can test whether ¢/, < 27 by

moving the input head two cells to the right.) If ¢/, > 2™ then we set ¢l = 2™ — 1 and store

— 99 —



the difference in the finite control of CM,. We decompose c,, in the form
C:, = d}vl + 1/’02 - 2"

with 0 < 9u1 < 2%, 0 < 1hyg < 20— D,

Algorithm 1: Now suppose that h!, = 27" 4+ 1 and CM, would move the input head to the
right. (The cases k!, =0, c, = 0 and cl, = 2"* + 1 will lead to analogous considerations.) Note
that the input head of CM does not store anything and therefore it is free for intermediate
computations.

CM, and CM},, change ¢, = thy1 + 922", 0 < 91 < 2", 0 < 3 < 2077 and

A= Ef:_-ll oy 2(s=1n 4 Z(j‘l)", 03i-1 =1for 1 < i<k, o3p41 = 0342 =-+- = 01 = 0, into
C: = 1/)02 + 2(j—1)n’

A=Ry(Yur)+0o1-2"+---+0j_1- 2(—n,

where for any z < 2", R,,(z) is defined in the following way:

Let p,(z) € {0,1}*, | pn(z) |= n, be the binary notation of z lengthened by an appro-
priate number of leading zeros. Then R,(z) < 2" is that number whose binary notation of
length n (again allowing leading zeros) is the reversal of ¢,(z). Note that R,(R,(z)) = z for
all z < 2™,

CM, and CM} , can do the above by executing the following:

ch

! B
v & Co+ 2T,

While; X< 2'™ Doy

Begin
CI CI
ch — [@L], and o « ¢, — 2 [—f],
A —a+2),
End1
X=X —2m,

— 100 —



It is clear that CM, and CM{, can perform this computation, since their input heads
are free now. The loop (Beginy, ---, End;) is carried out exactly n times and this leads to the

counter contents ¢, and A that we wanted. Note that 27" is given by the position of the right

v

. !
endmarker, and during the computation, if ¢, A > 27™ 4+ 1, we can, in fact, store [-———Cl———],

277 £ 1
A . . . . c!
[_27"_4-—1_] in the finite controls of CM, and CM{_ ,, and the residues ¢, — (2" + 1) [ﬁ] ,
A= (27" +1) [5"/\—-{-1] in the counters of CM, and CM{_,, respectively.

Algorithm 2: CM, and CM; _, change c| and A into
¢, = 0j—1+ o2 - 2%,
A= Ra(o1) + 012" + -+ + 0jg - 207D 4 901,

Let Bit,,(z) denote the m-th least significant bit of the binary notation of z with length

> m (allowing leading zeros). CM; , first changes X into
A= R (Y1) + 01+ 2" + -+ 0jog - 207D 4 oGm0,

where

1 _ Rﬂ(’d’v ) if Bit1(¢vl) =1,
RBo (Y1) = { R,;(?/J.,i) +1 otherwise.

That is, only the lowest bit of X is changed in such a way that ) becomes an odd number. (It
is stored in the finite control whether R, (%,1) is odd or even.)

Afterwards CM| and CMj , execute the following:

While; ¢l < 29™ Do,
Beging
Ify 2x> 2™
then,
X =2\ —2rm,
c, — 1+ 2c,

elsey

— 101 —



A= 2},
¢, « 2¢,,
Endif,

End;
In order to see what is done by the above execution, we consider the decomposition
A= AI +a ‘2_1'.1;-—1, )\I < 2j.n—1.

Then o = 1 if and only if 2) > 27", Note that Bitj.n(A) = a. As in Algorithm 1 it can be seen
that the loop (Beginy, -+, Endy) is carried out exactly n times and the number o;_; is carried

over from ) to ¢} bit by bit. Therefore, ¢, and ) are changed by this execution into
¢ =051+ P2 2"+,
A=Ri(Yo)2" + 012" + .t gy - 20708,
Then, we obtain the counter contents that we wanted by:
(a) subtracting 2/ from c/,
(b) adding 27" to A,
(c) dividing X by 2 as long as the remainder is 0,
(d) changing R} (¥v1) into Ry (%u1).
.Instead of

J-1 .
C:‘ = 1I)t)l + 1/}1)2 . 2") A = Z 0’“ . 2(“""1)71 + 2(]—1)11’
p=1

we write
(C:n }‘) = ("pvl; 01, *, 0'j—l)-
The application of Algorithms 1, 2 induces the transition

(1/),,];0’1, v ,Uj—l) - (Uj—l; Rn(’ﬁul); (PR »aj—Q)'

— 102 —



Therefore, by 7 — 2v applications, we get

(Yo1;01,°+,05-1) = (0j=1; Ru(¥w1), 01, -, 05-2) = - -~
— (020; Ra(02041), -+, Rn(0j-1), Rn(¥u1), 01, -+, 029-1).
Now Algorithm I is applied again. Since during the computation o5, is carried over from
c, to A bit by bit, CM, and CM} , are able to add +1 and to test whether the new o5, is equal
to 2" — 1 (this is true if and only if all bits which are carried over are equal to one). Afterwards

we apply Algorithm 2 and get
(020—1; Rn(020 + 1), Ru(02041),+ +, Rn(0j-1), Ru(¥01), 01, -, 029—2)-
Since R,(Rn(z)) = z for all z < 27, further applications of Algorithms 1, 2 lead to
(Y1501, * y029=1,020 + 1, 02941, +, 05-1).

This shows that by the applications of Algorithms 1,2, M' can perform the operation +1
on oy, (0T O2x4+y) and test whether the new g, (or o2x4,) is equal to 2™ — 1.

Next we show how M’ can decide whether the new o;, = 0;, for each v € {1,2,--- k}
and v # u (when k > 2), by the application of Algorithm 8 below. We will use CM], CM|
and CM;_,. (Note that the input heads of CM, and CM},, are free.) As in the above, we

decompose ¢, and ¢ in the form

C:, = o1 + Yu2 - 2"

with 0 < 9y, < 2%, 0 < g < 20717 and
C:‘ = "l}ul + ¢u2 .27

with 0 < ¥y; < 2%, 0 < 9y < 207D7 The counter contents of CM, ,, is denoted by X as

follows:
31
= Z Ty olk=1)n | o(j=1)n
ps=1
with 091 =1for 1 <i<k,and 03k41 = O3p42 =+ = 0j-1=0.

— 103 —



Algorithm 3: We first apply Algorithms 1, 2 to (cl;X) = (Yu1;01,++,05-1) by (j — 2v)
times to get
(Yo1;01,++,05-1)
= (020; Rn(02041),** *, Ra(05-1), Ru(Pu1), 01, - -, 020-1)-
After that, we apply Algorithms 1, 2 to (ci; ) = (Yu1; Ra(02041),* +, Ru(0j-1), Ru(¥01),
01, 3020—1) by 2(v — u) times to get
(Yu1; Ra(02041), -+ Ra(05-1), Ra($01), 01, - -+, 020-1)
= (02u; Ra(02041)s * + - s Bn(020-1), Ra(¥u1),
Ra(02041), -+ Ru(05-1)s Ra($01), 01, -+, 02u-1),
where we suppose, without loss of generality, that 1 < u < v < j.
Now CM,, CM, and CM},, compare 03, With oy, from Bit;(03,) to Bitl—_ﬂ (o2,) by
executing the following computation. Note that in the following computation, Bita()) (or its
reverse) is used as an identifier for distinguishing the bits of o2, (024) from A when the bits of

024 (024) are carried over to A by using a rotation technique.

a + Bity()),
B=7v+<0,
Whiles A< 2™ and f=47 Dos
Beging
B — Bity(c),
7 « Bita(cy,),

Ify, p=~v
then,
1
L %],
!
o |%]

Ifs 4\ <2

O,

c

O,

]

thens

— 104 —



A—a+2),
A= B +2)],
elses
Ify 2A<2i™
theny
T ~ 0,
elsey
T 1,
Endify,
A —a+2A,
A= B +2),
Endif;
Endif,
Ends,
where & denotes the reverse of o, that is, if « = 1 then & = 0 else & = 1.
Note that in the above (Whiles --- Dos) only one of control conditions (A < 2/"*) and
(B = 7v) is changed. It is clear that after (While; --- Doj) is carried out, if # # v, then this
means o2, # 024 (so M’ will restore the used counter machines, respectively, as jsut before
(Whiles --- Dog) is done, by the application of procedure Replace below), and otherwise (i.e.,

if B = 7), the loop (Begins - -+ Ends) is carried out exactly [%] times, and this leads to
A= Ru(02us1) - 23] 4o d gy - 207m 02[F] 4 2G-1m 92[3]

Note that ogy_; = 1 and 26-Dn . 22[#] = (T + 1)27. CM!, CM! and CM],, then

execute the following and compare o2, with o2, from B”Fﬂ +1(02,,) to Bit,(02,) if necessary.

Ifs B#7

thens
Replace( X, k1, k25 @),

— 105 —



elses

A= A= (T +1)2™,

Whiley, A< 2™ and B=v Do,

Beging
B «— Bity(ct),
v « Bity(c,),
Ife B=17

theng

A—a+2)
A= 42,
Endifg
Endy,

Replace(), ¢, cl; @),
A=A+ (T + 12",
r — Bit;()),

c, — T+ 2c),

cy — T+ 2,
N
Replace(), k1, ka; @),

Endifs

Procedure Replace(A,cl,cl;a):

While Bita(A) #a Do
Begin

* — Bit;()\),

— 106 —



ch — 7+ 2,
cy — T+ 2c,
A
A
-
End

Endprocedure

It will be easily seen that the loop (Beging --- Endy) is carried out at most |3] times,
and that during the above computation, the number o2, (02,) is carried over to A bit by bit as

long as f = v holds. (See Fig. 5.3 and Fig. 5.4.)

Gl e T = 1ol [l
!Jt'tl bity

J

<2 [;] bits

Fig. 5.3. The binary notation of A after (While3 --- Do3) ends with 8 # v, where for
each 1 <i<m, Bi = Biti(oz,) = Biti(oqu) (but Bitmy1(020) # Bitm+1(o'2.‘)).

(Bula] . B @B e Pod & ] .. [Bila [0/1]a]
bity bity . .
<2 [‘gﬁ;u 2-[3]bits

Fig. 5.4. The binary notation of A after (Whileg - -+ Doy) is carried out, where s = H‘]
and if m =n (i.e.,, 8 =) then Bnfn-1---B1 is the binary representation of o3¢ (= o24).

Now M' has finished the comparison between o5, and o2, (if # = 7, then 03, = 02,, and
otherwise 03, # 02,) and restored the used counter contents as just before (Whilez --- Dos).

Then, further applications of Algorithms 1, 2 lead to

(C:‘; /\) = ("/}ul; Rn(020+1): Tt Rn(aj—l)) Rn(¢vl)’ 01y, U2v—1)

and
(co; A) = (Yw1;01,° -+, 05-1)-
This shows that M’ is able to simulate M step by step. O
Theorem 5.4. For each k > 1,

— 107 —



(1) £[CS-CM(k)[Space(n)]]G£[CS-CM(k + 1)[Space(n)]],
(2) £[CS-DCM(k)[Space(n)]]G£[CS-DCM(k + 1)[Space(n)]],

even if the alphabet is restricted to a one-letter.

Proof: Suppose there exists some k > 1 such that £4)[CS-DCM(k)[Space(n)]]=£ (¢} [CS-
DCM(k + 1)[Space(n)]]. This implies Z[CS-DCM(k)[Space(n)]]= Z[CS-DCM(k + 1)[Space(n)]],
and therefore the following is true:
VL € DSPACE(log n)
= 35(> 3k), Tj(L) € £[CS-DCM(2)[Space(n)]] (Lemma 5.6)
= T;(L) € £[CS-DCM(k + 1)[Space(n)]] =£[CS-DCM(k)[Space(n)]]
= T;-1(L) € Z[CS-DCM(k + 1)[Space(n)]] =£[CS-DCM(k)[Space(n)]]  (Lemma 5.8)
- ...
= Tax41(L) € £[CS-DCM(k + 1)[Space(n)]] =£[CS-DCM(k)[Space(n)]] (Lemma 5.8)
= L € £[CS-DCM(k(3k + 1) + 1)[Space(n)]] (Lemma 5.7)
Therefore £ (5[CS-DCM(k)[Space(n)]]=£ (0} [CS-DCM(k+1)[Space(n)]] implies DSPACE

(log n) C £[CS-DCM(k(3k + 1) + 1)[Space(n)]], which is a contradiction to Lemma 5.5. o

5.4 Hierarchies Based on The Bounded Time or Space

In this section, we give the hierarchies based on the bounded time (space) concerning cooperating

systems of one-way counter machines.
Lemma 5.9. For each k > 1,

(1) £[1CM(k)-Time(n*)] (L[IDCM(k)-Time(n*)])
GL[1CM(k + 1)-Time(n*)] (£[1DCM(k + 1)-Time(rn*)]), and

(2) £[1CM(k)-Space(n*)] (£[tDCM(k)-Space(n*)])
GL[1CM(k + 1)-Space(n*)] (£[1DCM(k + 1)-Space(n*)}).

— 108 —



Proof : We leave it to the reader, and the reader can refer to the proof of Theorem 5.3.

]
The following lemma is obtained from Theorem 2.4 in [49].

Lemma 5.10. For each r,s,t > 1,

(1) £[1CM(rt)-Time(n*®)] (£[1DCM(rt)-Time(n*)])
GL[1CM(r + 1)-Time(n(+1*)] (£[1IDCM(r + t)-Time(n("+1*)}), and

(2) £[1CM(rt)-Space(n®)] (£[1DCM(rt)-Space(n*)])
GL[1CM(r + t)-Space(n”*)] (£[1DCM(r + t)-Space(n™*)]).
Theorem 5.5. For each s > 1 and each k > 9,

(1) £[CS-1CM(k)[Time(n*)]] (£[CS-1DCM(k)[Time(n*)]])
G£[CS-1CM(k)[Time(n**)]] (£[CS-1DCM(k)[Time(n**)]]), and

(2) £[CS-1CM(k)[Space(n*)]] (£[CS-1DCM(k)[Space(n*)]])
G £[CS-1CM(k)[Space(n®F~De+3)]] (£[CS-1DCM(k)[Space(n®F~D:+3)])),

Proof : We give the proof only for the nondeterministic case, since the same proof may

be applied to the deterministic case. (Note that 2k —1 < 3(k—-3)if k > 9.)

(1): £[CS-1CM(k)[Time(n*)]]

C £[1CM(2k — 1)-Time(n*)] (Theorem 5.2)
G£[1CM(3(k — 3))-Time(n*)] | (Lemma 5.9)
C £[1CM(k)-Time(n**)) (Lemma 5.10)
C £[CS-1CM(k)[Time(n*)]] (Theorem 5.1)

(2): £[CS-1CM(k)[Space(n*)]]

— 109 —



C £[1CM(2k — 1)-Space(n(k=1)s+1)] (Theorem 5.2)

GL[1CM(3(k — 3))-Space(n(k—Ds+1)] (Lemma 5.9)
C £[1CM(k)-Space(n3k-1)s+3)] (Lemma 5.10)
C £[CS-1CM(k)[Space(n3*:—1)s+3)]] (Theorem 5.1)

a

Remark. It was shown in 7[49] (Theorem 3.3 (2)) that for each k£ > 3, £[1CM(k)-
Time(n*)] (£[{1DCM(k)-Time(n*)])G£[1CM(k)-Time(n***3)] (£[1DCM(k)-Time(n**+3)]). In

fact, we can improve this result as follows.

Corollary 5.4. For each s > 1 and each k > 5,
£[1CM(k)-Time(n*)] (£[1DCM(k)-Time(n*)})

G£[1CM(k)-Time(n?*)] (£[1DCM(k)-Time(n>*)]).

Proof : For each k' > 3,

L[1CM(K' + 2)-Time(n*)] (£[1IDCM(k’ + 2)-Time(n*)])

GL[1CM(2k')-Time(n*)] (£[1DCM(24')-Time(n*)]) (Lemma 5.9)
CL[1ICM(K’ + 2)-Time(n3*)] (£[IDCM (K’ + 2)-Time(n>*)]) (Lemma 5.10)
O

A similar argument can show the following corollary.

Corollary 5.5. For each s > 1 and each k > 5,
£L[1CM(k)-Space(n*)] (£[1DCM(k)-Space(n®)])

G£[1 CM(k)-Space(n?*)] (£[1DCM(k)-Space(n?*))).

— 110 —



5.5 One-Way versus Two-Way and Determinism versus Non-
determinism

This section investigates the differences between the accepting powers of CS-CM(k)’s and CS-
1CM(k)’s, and between the accepting powers of CS-1CM(k)’s and CS-1DCM(k)’s, where all the

machines are polynomially time bounded.

Let I; = {wewf(20*h)*l|w € {0,1}*}. In [47] it was shown that

L, € £[DCM(1)-Time(linear)] — U £[1CM(k)-Time(poly)].
1<k< 00

From this fact and Lemma 5.2, Theorem 5.2, we get

Theorem 5.6. For any ¢ > 1,

£[CS-DCM(1)[Time(cn)]] = |J £[CS-1CM(k)[Time(poly)]] # 9.
1<k<o0

Let Ly = {wylwawy, w; € {0,1}" & |wi| = |wz|}. In [62] it was shown that

L, ¢ U £L[1DCM(k)-Space(n)].
1<k<o0

On the other hand, it is easily seen that the language L, can be accepted by a CS-1CM(1)[Time(n)].

Thus, from this fact and Theorem 5.2, Corollary 5.3, we get

Theorem 5.7.

£[CS-1CM(1)(Time(n)]] - | J £[CS-1DCM(k){Time(poly)]] # 9.
1<k<0

Remark. It was shown in [50] that two-way nondeterministic (one-) counter machines

are more powerful than deterministic ones. That is, £[CS-DCM(1)]G£[CS-CM(1)].

5.6 Closure Properties

This section investigates closure properties under several operations of the classes of languages

accepted by cooperating systems of one-way counter machines with polynomial time bound.

— 111 —



We first examine closure properties for the deterministic case.

Lemma 5.11. For a word w in 1{0,1}*, let n(w) be the integer represented by w as a

binary number. Let
L3 = {w20"™)|w € {1}{0,1}*}.
Then, L3 ¢ Ui<k<oo £[1DCM(k)-Time(poly)].

Proof : Suppose that there is a 1IDCM(k) M, k > 1, which accepts the language ;.

For each n > 1, let
V(n) = {w2|w € {1}{0,1}" & |w| = n}.

For each z € V(n), let q(z), c1(z), ca(z), - -+, cx(z) denote the internal state and the
contents of each counter of M when it first reads the symbol “2” of the input z. For each n > 1, |
let

5(n) = {{g(z), c1(z), ca2), -+, ca()M|z € V(n)}.
Since M is polynomially time bounded, there is some constant ¢ > 0 such that |S(n)| = O(n°).
On the other hand, |V(n)| = 2"~1. Thus as n gets large, there are two words z = w;2 and y =

w32 in V(n) such that wy # wq but (g(z), c1(z), c2(z), - - -, ex(2)) = {9(¥), c1(¥), c2(¥), - - -, ck(y)).

Now consider the following two words:
g’ = w20 ! = wy2n(w1),

Clearly, y' € L3, so ' will be accepted by M. Thus, £’ will also be accepted by M. This a con-
tradiction, because z' is not in € L3. Hence L3 cannot be in Ui<k<oo £[1DCM(k)-Time(poly)].

0

It has been shown in [49] that L3 can be accepted in linear time by a deterministic one-
way 2-counter machine. (The machine first converts w to n(w) stored in one counter; this takes
time n(w). Then it decreases n(w) from the counter while simultaneously checking that the
number of 0’s is correct; this takes time n(w). Thus L3 is in £[{1DCM(2)-Time(linear)].) From

this fact, Theorem 5.2 and Lemmas 5.2, 5.11, we have

— 112 —



Theorem 5.8. For each s > 1,k > 2 and any ¢ > 1, neither £[CS-1DCM(k)[Time(cn*)]]

nor £[CS-1DCM(k)[Time(poly)]] is closed under complementation.

Lemma 5.12. For each k > 1, let A(k) and A(co) be the languages defined in Lemma

2.8. Then, for any k,c,s > 1,
(1) A(2ks) g£[CS-1DCM(k)[Time(cn®)]] and
(2) A(00) & Urghcoo £(CS-1DCM(k)[Time(poly)]].

Proof : The proof is omitted here, and the reader may refer to the proof of Lemma 2.8

if necessary. 0

Theorem 5.9. For each ¢,s,k > 1, £[CS-1DCM(k)[Time(cn*)]] is not closed under

union and intersection.
Proof : Foreacht>1and 1<i<t,let

L(t,i) = {0™10™1...10™20™1- - - 10™210™
Vi(1 < j L t)[mj, mj > 1] & mi = m;},

A(t,7) = {0™10™11- .- 10™20™|Vj(1 < § < t)[m; > 1]}.
Then, it is easy to see that
a*L(2ks,)a*, A(2ks, 1) € £[CS-1DCM(1)[Time(n)]].
On the other hand, by Lemmas 5.3 and 5.12, for any ¢ > 1,
a*L(2ks,1)a* N---Na*L(2ks, 2ks)a*
= L'(2ks) ¢ L[ICM(2k — 1)-Time(cn*)], and
A(2ks,1)U---U A(2ks, 2ks)

= A(2ks) ¢ £[CS-1DCM(k)[Time(cn*)]].

— 113 —



From this fact and Theorem 5.2, the theorem follows. a

Remark. By Corollary 5.3,
£[CS-1DCM(3)[Time(poly)]]= Ui <k<oo £[CS-1DCM (k)[Time(poly)]].
From this, it will be obvious that for each ¥ > 3, £[CS-1DCM(k)[Time(poly)]] is closed under

union and intersection.
Lemma 5.13. Let B(oo) be the language defined in Lemma 2.9. Then,
(1) B(co) € £[CS-1DCM(2)[Time(n)]], and
(2) B(00)® & Unckcoo £[CS-1DCM(k)[Time(poly)]].
Proof : The proof is omitted here, and the reader may refer to the proof of Lemma 2.9
if necessary. O

Theorem 5.10. For each c,s > 1 and each k > 2, neither £[CS-1DCM(k)[Time(cn*)]]

nor £{CS-1DCM(k)[Time(poly)]] is closed under the following operations:
(1) reversal “B”,
(2) concatenation,
(3) Kleene closure “*”,

(4) nomerasing homomorphism.

Proof : (1): Nonclosure under reversal follows from Lemma 5.13.

(2), (3), (4): See the proof of (2), (3), (4) of Theorem 2.7. o
We next examine closure properties for the nondeterministic case.

Using the same language defined in Lemma 2.10, one can easily show the following theo-

rem.
Theorem 5.11. Foreach ¢, s, k > 1, neither £[CS-1CM(k)[Time(cn*)]] nor £{CS-1CM(k)
[Time(poly)]] is closed under complementation.

— 114 —



Theorem 5.12. For each ¢, 3,k > 1, £[CS-1CM(k)[Time(cn*)]] is closed under union,

but not under intersection.

Proof : Closure under union is obvious, and the proof for nonclosure under intersection

is the same as in the deterministic case (see the proof of Theorem 5.8). O

Remark. By Corollary 5.3,
£L[CS-1CM(3)[Time(poly)]]= Ui ck<oo £[CS-1CM(k)[Time(poly)]]-
From this, it is obvious that for each k > 3, £[CS-1CM(k)[Time(poly)]] is closed under union

and intersection.
By an argument similar to that in the proof of Theorem 2.9, we can get

Theorem 5.13. For each ¢,s,k > 1, both £[CS-1CM(k)[Time(cn®)]] and £[CS-

1CM(k)[Time (poly)]] are closed under reversal “?” concatenation and Kleene closure “*”.

The closure results obtained above are summarized in Table 5.1, where for each ¢ > 1,
s> 1, k> 2, £(cn*)P =£[CS-1DCM(k)[Time(cn®)]], £(cn*)Y =£[CS-1CM(k)[Time(cn*)]],
£(poly)P = £[CS-1DCM(k)[Time(poly)]], £(poly)y¥ =~£[CS-1CM(k)[Time(poly)]], and “\/’
means that the class is closed, “x” means that the class is not closed, “?” means that the

closure property is not known.

Table 5.1: Closure properties of polynomial time bounded CS-1CM(k), k > 2
| [ £(cn)p | £{en*) | £{poly)y | £(poly)f |

complementation X X X X
union X Vv (k> 3) Vv
intersection X X Vi(k > 3) Vv
concatenation X V4 X Vv
reversal X Vv X Vv
Kleene closure X Vv X Vv
nonerasing

homomorphism X ? X ?

Remark. We can also show that similar results hold for cooperating systems of one-way

counter machines with polynomial space bound.

— 115 —



5.7 Concluding Remarks

In this chapter, we have introduced the “cooperating system of counter machines”, and analyzed
some of its properties. We also investigated a relationship between the accepting powers of
cooperating systems of counter machines and multicounter machines with polynomial time (or

space) bound.

‘Some open problems in this chapter are:

(1) £[CS-1CM(2)[Time(poly)]] (ftCS-lDCM(2)[Time(poly)]])
G£[CS-1CM(3)[Time(poly)]} (£[CS-1DCM(3)[Time(poly)]])?

(2) Is £[CS-1CM(2)[Time(poly)]] (£[CS-1DCM(2)[Time(poly)]]) closed under intersection?

and
(3) Is £[CS-1DCM(2)[Time(poly)]] closed under union?

(4) £[CS-DCM(k)[Time(poly)]]G£[CS-CM(k)[Time(poly)]], for each k > 27

— 116 —



BIBLIOGRAPHY

1.

10.

11.

12.

13.

14.

B. S. Baker and R. V. Book, “Reversal-bounded multipushdown machines”, J. Comput. System Sci. 8:

3, (1974) 315-332.

. Minsky, M. L., “Recursive unsolvability of Post’s problem of ‘tag’ and others topics in the theory of Turing

machines”, Annals of Math., T4: 3, (1961) 437-455.

. McCulloch, W. S. and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, Bull.

Math. Biophysicss 5, (1943) 115-133.

S. Eilenberg, “Automata, languages, and machines (Volume A)", Academic Press, New York and London,

1974.

. S. Eilenberg, “Automata, languages, and machines (Volume B)”, Academic Press, New York and London,

1974.

. T. F. Piatkowski, “N-head finite state machines”, Ph. D. Thesis, University of Michigan, 1963.

A. L. Rosenberg, “On multihead finite automata”, IBM J. Res. Develop. 10, (1966) 383-394.

A. C. Yao and R. L. Rivest, “k + 1 heads are better than k”, J. Assoc. Comput. Mach. 25, (1978)

337-340.

. R. W. Floyd, “Review 14, 352 of [37]”, Comput. Rev. 9, (1968) 280.

J. Hromkovic, “One-way multihead deterministic finite automata”, Acta Inform. 19, (1933) 377-384.

O. H. Tbarra, S. K. Sahni and C. E. Kim, “Finite automata with multiplication”, Theoret. Comput. Sci.

2, (1976) 271-294.

O. H. Ibarra and C. E. Kim, “A useful device for showing the solvability of some decision problems”; J.

Comput. System Sci. 13, (1976) 153-160.

K. Inoue, I. Takanami, A. Nakamura and T. Ae, “One-way simple multihead finite automata”, Theoret.

Comput. Sci. 9, (1979) 311-328.

P. Duris and J. Hromkovic, “One-way simple multihead finite automata are not closed under concatena-

tion”, Theoret. Comput. Secs. 27, (1983) 121-125.

— 117 —



15

16.

17.

13.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28

O. H. Ibarra, “Characterizations of some tape and time complexity classes of Turing machines in terms of

multihead and auxiliary stack automata”, J. Comput. System Sci. 5, (1971) 33-117.
J. Hartmanis, “On non-determinacy in simple computing devices”, Acta Inform. 1, (1972) 336-344.

Z. Galil, “some open problems in the theory of computation as questions about two-way deterministic

automata languages”, Math. Systems Theorey 10, (1977) 211-228.

B. Monien, “Transformational methods and their application to complexity problems”, Acta Inform. 6,

(1976) 95-108.

B. Monien, “The LBA-problem and the deterministic tape complexity of two-way counter languages over

a one-letter alphabet”, Acta Inform. 8, (1977) 371-332.
O. H. Ibarra, “On two-way multihead automata”, J. Comput. System Sci. 7, (1973) 28-37.

B. Monien, “Two-way multihead automata over a one-letter alphabet”, RAIRO Inform. Theor. 14, (1930)

67-82.

O. H. Ibarra, S. M. Kim and L. E. Rosier, “Some characterizations of multihead finite automata”, Inform.

and Control 67, (1985) 114-125.

J. Engelfriet, “The power of two-way deterministic checking stack automata”, Inform. and Comput. 80,

(1989) 114-120.

I. H. Sudborough, “Bounded-reversal multihead finite automata languages”, Inform. and Control 25: 4,

(1974) 317-328.

W. J. Savitch and P. M. B. Vitanyi, “On the power of real-time two-way multihead finite automata with

jumps”, Inform. Process. Lett. 19, (1984) 31-35.

M. Blum and C. Hewitt, “Automata on a two-dimensional tape”, IEEE Symp. Swiiching Automata

Theory, (1967) 155-160.

R. W. Ritchie and F. N. Springsteel, “Languages recognition by marking automata”, Inform. and Control

20, (1972) 313-330.

F. N. Springsteel, “Context-free languages and marking automata”, Ph. D. Thesis, University of Wash-

— 118 —



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

ington, Seattle, wash., 1967.

P. Hsia and T. Y. Raymond, “Marker automata”, Inform. Sci. 20, (1972) 313-330.

M. Sipser, “Halting space-bounded computations”, Theoret. Comput. Sci. 10, (1980) 335-333.

Y. Wang, K. Inoue and I. Takanami, “Multihead finite automata with markers”, to appear .

L. Budach, “On the solution of the labyrinth problem for finite automata”, EIK 11/10-12, (1975) 661-672.
L. Budach, “Automata and labyrinths”, Math. Nachrichten 86, (1978) 195-282.

A. N. Shah, “Pebble automt;.ta on arrays”, Computergraphics and Image Processing 3, (1974) 236-246.

F. Hoffmann, “One pebble does not suffice to search plane labyrinths”, Proc. 10th MFCS, Lecture Notes

in Computer Science 117, (1981) 433-444.

A. Szepietowski, “A finite 5-pebble automaton can search every maze”, Inform. Process. Leit. 10, (1932)

199-204.

M. Blum and W. Sakoda, “On the capability of finite automata in 2 and 3 dimensional space”, Proc. 17th

IEEE FOCS Conf. (197T) 147-161.
H. A. Rollik, “Automata in planar graphs”, Acta Inform. 13, (1930) 287-2938.

A. Hemmerling, “Normed two-plane traps for finite systems of cooperating compass automata”, EIK

23/8-9, (1987) 453-470.

M. Bull and A. Hemmerling, “Finite embedded trees and simply connected mazes cannot be searched by

halting finite automata”, EIK 23/8-9, (1987) 453-470.
M. Bull and A. Hemmerling, “Traps for jumping multihead counter automata”, EIK 28/6, (1992) 343-361.
A. O. Buda, “Multiprocessor automata”, Inform. Process. Lett. 25, (1987) 257-261.

H. Kakugawa, H. Matsuno, K. Inoue and I. Takanami, “Some properties of one-way multiprocessor finite

automata”, IEICE Trans. Inf. & Syst. j75: 11, (1992) 963-972 (in Japanese).

Y. Wang, K. Inoue and I. Takanami, “Some hierarchy results on multihead automata over a one-letter

alphabet”, IEICE Trans. Inf. & Syst. E76: 6, (1993) 625-633.

— 119 —



45

.46.

47.

43.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59

J. W. Hong, “On similarity and duality of computation”, Proc. 21st IEEE Symposium on Foundations of

Computer Science, (1980) 348-359.

N. Pippenger, “On simultaneous resource bounds”, Proc. 20th IEEE Symposium on Foundations of Com-

puter Science, (1979) 307-311.

J. Hromkovic, “Fooling a two-way nondeterministic multihead automaton with reversal number restric-

tion”, Acta Inform. 22, (1985) 589-594.

S. Ginsburg, “Algebraic and automata-theoretic properties of formal languages”, North-Holland, Amster-

dam, 1975.

S. A. Greibach, “Remarks on the complexity of nondeterministic counter languages”, Theoret. Comput.

Sci. 1, (1976) 269-288.
M. Chrobak, “Variations on the technique of Duris and Galil”, J. Comput. System Sci. 30, (1985) 77-85.

P. C. Fischer, A. R. Meyer and A. L. Rosenberg, “Counter machines and counter languages”, Math.

Systems Theorey 2, (1968) 265-233.
S. A. Greibach, “Erasable context-free languages”, Inform. and Control 29, (1975) 301-326.

M. A. Harrison and O. H. Ibarra, “Multi-tape and multi-head pushdown automata”, Inform. and Control

13, (1963) 433-470.
S. Ginsburg and H. G. Rice, “Two families of languages telated to ALGOL”, J. ACM 9, (1962) 350-371.

O. H. Ibarra, “Restricted one-counter machines with undecidable universe problems”, Math. Systems

Theory 13, (1979) 181-186.
L. G. Valiant, “Deterministic one-counter automata”, J. Comput. System Sci. 10, (1975) 340-350.

P. Duris and J. Hromkovic, “Zerotesting bounded one-way multicounter machines”, Kybernetika 23: 1,

(1987) 13-18.

K. Inoue, I. Takanami and H. Taniguchi, “Three-way two-dimensional simple muitihead finite automata—

hierarchical properties”, IEICE Trans. 62-D/2, (1979) 65-72 (in Japanese).

M. Sakamoto, I. Sakuramoto and K. Inoue, “A space lower-bound technique for two-dimensional alternat-

— 120 —



ing Turing machines”, IEICE Trans. JT4-D-1/4, (1991) 311-314 (in Japanese).

60. K. Inoue, I. Takanami and H. Taniguchi, “Three-way two-dimensional simple multihead finite automata—

closure properties”, IEICE Trans. 62-D /4, (1979) 273-280 (in Japanese).

61. K. Inoue and I. Takanami, “Three-way two-dimensional multicounter automata”, Inform. Sci. 19, (1979)

1-20.
62. A. Szepietowski, “Some remarks on two-dimensional finite automata”, to appear in Inform. Scs..
63. A. Szepitowski, “On three-way two-dimensional multicounter automata”, Inform. Sci. 55, (1979) 35-47.

64. K. Inoue and I. Takanami, “On-line n-bounded multicounter automata”, Inform. Scs. 17, (1979) 239-251.

— 121 —






a3 H &%

A X R H RNEDFER VR #HEFE | smecemarss
L. aAv—74 v7 1456 | BFERBEERXRCEED-1 H 7R Chapter 2
HEEA—b=ZX X5 LD | Vol J75-D-1. pp.391-399, iR
»5HH 19924F7H ,
2.Some Hierarchy Results on | IEICE TRANS. INF. & K. Inoue Chapter 2
Multihead Automata over SYST., Vol. E76-D, No. 6, I. Takanami Chapter 4
a One-Letter Alphabet pp.625-633 (1993, 6). Chapter 5
3. A Note on One-Way IEICE TRANS. INE. & K. Inoue Chapter 3
Multicouﬁter Machines SYST., Vol. E76-D, No. 10, I. Takanami Chapter 5
and Cooperating Systems pp-1302-1306 (1993, 10).
of One-Way Finite
Automata
4. Multihead Finite Automata to appear in K. Inoue
with Markers IEICE TRANS. INF. & SYST.| I Takanami
5. aARU—F 4 ¥ 7 150 | EFMEEEFLRLHD | FEHA | Chapters
(B#ETE) IR A

H v EAEERY AT A










