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Abstract

Background: During ethanol fermentation, the ethanologenic bacterium, Zymomonas mobilis may encounter
several environmental stresses such as heat, ethanol and osmotic stresses due to high sugar concentration.
Although supplementation of the compatible solute sorbitol into culture medium enhances cell growth of Z
mobilis under osmotic stress, the protective function of this compound on cell growth and ethanol production by
this organism under other stresses such as heat and ethanol has not been described yet. The formation of sorbitol
in Z mobilis was carried out by the action of the glucose-fructose oxidoreductase (GFOR) enzyme which is
regulated by the gfo gene. Therefore, the gfo gene in Z mobilis was disrupted by the fusion-PCR-based construction
technique in the present study, and the protective function of sorbitol on cell growth, protein synthesis and ethanol
production by Z mobilis under heat, ethanol, and osmotic stresses was investigated.

Results: Based on the fusion-PCR-based construction technique, the gfo gene in Z. mobilis was disrupted.
Disruption of the Z mobilis gfo gene resulted in the reduction of cell growth and ethanol production not only
under osmotic stress but also under heat and ethanol stresses. Under these stress conditions, the transcription level
of pdc, adhA, and adhB genes involved in the pyruvate-to-ethanol (PE) pathway as well as the synthesis of proteins
particularly in Z. mobilis disruptant strain were decreased compared to those of the parent. These findings suggest
that sorbitol plays a crucial role not only on cell growth and ethanol production but also on the protection of
cellular proteins from stress responses.

Conclusion: We showed for the first time that supplementation of the compatible solute sorbitol not only
promoted cell growth but also increased the ethanol fermentation capability of Z mobilis under heat, ethanol,
and osmotic stresses. Although the molecular mechanism involved in tolerance to stress conditions after sorbitol
supplementation is still unclear, this research has provided useful information for the development of the effective
ethanol fermentation process particularly under environmental conditions with high temperature or high ethanol
and sugar concentration conditions.
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Introduction

Zymomonas mobilis, the Gram-negative facultative an-
aerobic bacterium, is unique in employing the Entner
Doudoroff (ED) (2-keto-3-deoxy-6-phosphogluconate,
KDPG), glyceraldehyde-3-phosphate-to-pyruvate (GP),
and pyruvate-to-ethanol (PE) pathway for sugar catabol-
ism and produces ethanol, and carbon dioxide as domin-
ant fermentation products [1]. It generates one mole of
ATP per mole of glucose utilized, which is a much lower
level than that of the traditional ethanol-producing
yeast, Saccharomyces cerevisiae. This bacterium thus ap-
pears to maintain a high level of glucose flux through
these metabolic pathways to compensate its low ATP
yield [2], for which large amounts of enzymes in the ED-
GP-PE pathway are expressed, constituting 30 to 50% of
total soluble proteins of cells [1]. Z. mobilis has a relatively
compact genome with a small number of genes (approxi-
mately 2,000 genes [3]). It possesses an incomplete
Embden Meyerhof Parnas (EMP) pathway and an incom-
plete tricarboxylic acid cycle (TCA cycle) due to a lack of
genes for 6-phosphofructokinase, 2-oxoglutarate dehydro-
genase complex, and malate dehydrogenase [1-3], but
possesses strong activities of the ED-GP pathway [4].
Comparative studies of both laboratory- and pilot-scales
on kinetics of batch fermentation of Z. mobilis versus a
variety of yeast have indicated the suitability of Z. mobilis
over yeasts due to the following advantages: its higher
sugar uptake rate and ethanol yield (97% theoretical
maximum yield), lower biomass production, and higher
ethanol tolerance. Additionally, it does not require a
controlled addition of oxygen during fermentation, it is
amenable to genetic manipulation, and most importantly
it is generally recognized as safe (GRAS) [1,5].

During fermentation, Z. mobilis produces not only
ethanol and carbon dioxide but also an alcohol sugar,
sorbitol, as a major by product when it is grown in
sucrose or mixtures of glucose plus fructose medium
[6-8]. Viikari [8] reported that the amount of sorbitol
produced is equivalent to as much as 11% of the original
carbon source. Only minor amounts of sorbitol are
formed from glucose or fructose alone. The formation of
sorbitol resulted from the in vivo inhibition of fructoki-
nase by glucose. Subsequently, fructose is accumulated
and then converted into sorbitol by the action of
glucose-fructose oxidoreductase (GFOR), a periplasmic
enzyme which comprises 1% of the total soluble protein
in Z. mobilis [7,9,10]. Previous studies by Loos et al. [11]
demonstrated that the addition of sorbitol into culture
medium promotes the growth of Z. mobilis when grown
in a high-sugar medium. This finding suggested that
sorbitol protected cells from harmful effects caused by
high osmotic pressures. However, during ethanol fer-
mentation, Z. mobilis may encounter not only high os-
motic stress but also heat and ethanol stresses [12,13],
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which adversely affect the ability of cells to perform effi-
cient and consistent conversion of sugars to ethanol. Al-
though the involvement of sorbitol in osmoprotection
has been previously described [11], its protective func-
tion on cell growth and ethanol fermentation ability of
Z. mobilis under heat and ethanol stresses has not been
investigated yet. In the present study, we disrupted the
gfo gene which encoded for GFOR in Z. mobilis and the
disruptant strain was designated as Z. mobilis Agfo. We
showed for the first time that disruption of the gfo gene
resulted in the reduction of cell growth and ethanol pro-
duction in Z. mobilis under osmotic stress as well as
under heat and ethanol stresses. We also demonstrated
that the addition of sorbitol not only promoted cell
growth but also increased the fermentation capability of
Z. mobilis under all stress conditions tested. Sorbitol also
protected cellular proteins from denaturation under
stress conditions.

Results
Disruption of the gfo gene in Z. mobilis
For the disruption of the gfo gene, plasmid pZA-
UDGFOR containing the up- and down-region of the gfo
gene linked with kan cassette was transformed into Z.
mobilis, and kanamycin-resistant transformants were se-
lected. Among the kanamycin-resistant transformants
obtained in this study, one isolate designated as Z. mobi-
lis Agfo was chosen for disruption analysis of the gfo
gene. Disruption of the gfo gene in Z. mobilis Agfo was
confirmed by PCR using specific primers GFOR-int-5’
and GFOR-int-3; as described in the Methods section.
As shown in Figure 1, a PCR product of approximately
1.0 kb corresponding to the internal fragment of the gfo
gene was observed in the Z. mobilis parental strain, but
not in the transformant. The nucleotide sequence of the
PCR product from the parental strain showed a high de-
gree of identity (99%) with the gfo gene in the Z. mobilis,
confirming that this amplified DNA fragment was a part
of the gfo gene in this microorganism (data not shown).
Disruption of the gfo gene in Z. mobilis was further
confirmed by detection of sorbitol concentration in the
Z. mobilis parental strain and transformant after cultiva-
tion in YP medium containing 300 g/L sucrose as a
carbon source. The results found that approximately

M TISTR548 Agfo

1.2kb

1.0kb 41.0kb
0.9kb

Figure 1 PCR analysis of the gfo gene in Z. mobilis parental
(TISTR548) and disruptant (Agfo) strains. The size of the PCR
product corresponding to an internal fragment of the gfo is
indicated on the right. M, indicates the 100 bp DNA ladder.
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3.84 g/L of sorbitol was detected in the Z. mobilis paren-
tal strain. However, the level of sorbitol was not detect-
able in the transformant. Based on this result and PCR
analysis, it was concluded that the gfo gene of Z. mobilis
was disrupted in the transformant strain.

Effect of stresses on growth of Z. mobilis parental and
disruptant strains

The effect of heat, ethanol, and osmotic stresses on the
growth of Z. mobilis parental and disruptant strains were
investigated and the results are illustrated in Figure 2.
As shown in Figure 2A, growth of Z. mobilis TISTR548
and Z. mobilis Agfo was not significantly different when
they were incubated at 30°C. However, when tempera-
tures were shifted from 30°C to 35°C and 37°C,
growth of Z. mobilis Agfo was remarkably decreased as
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compared to that of Z. mobilis TISTR548. At 39°C,
almost no growth of Z. mobilis Agfo was observed. The
effect of ethanol stress on the growth of Z. mobilis is
shown in Figure 2B. There were no significant differ-
ences in the growth of Z mobilis TISTR548 and Z
mobilis Agfo when they were grown on YPG medium
containing 0% (v/v) ethanol. However, when ethanol
concentration in the medium was increased up to 7% or
10% (v/v), a pronounced decrease in growth of Z. mobi-
lis Agfo was observed. In the YPG medium containing
13% (v/v) ethanol, almost no growth of Z. mobilis Agfo
was found. Figure 2C shows the effect of osmotic stress
on cell growth of Z. mobilis TISTR548 and Z. mobilis
Agfo. Growth of Z. mobilis TISTR548 and Z. mobilis
Agfo was not significantly different when they were
grown on YP medium containing 200 g/L sucrose.

-
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Figure 2 Effect of heat, ethanol, and osmotic stresses on the growth of Z. mobilis TISTR548 and Z. mobilis Agfo. (A) Z. mobilis cells were
grown in YP medium and incubated at 30, 35, 37, and 39°C or (B) in YP medium containing 7, 10, and 13 % (v/v) ethanol, (C) or in YP medium
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When the concentration of sucrose in the medium was
increased, a drastically decreased growth of Z. mobilis
Agfo was observed as compared to that of Z. mobilis
TISTR548. Almost no growth of Z. mobilis Agfo was de-
tected when it was cultured on YP medium containing
300 g/L sucrose.

The effect of heat, ethanol, and osmotic stresses on
the specific growth rate of Z. mobilis TISTR548 and Z
mobilis Agfo was also determined and the results are
summarized in Table 1. The specific growth rates of Z.
mobilis Agfo were lower than those of Z. mobilis
TISTR548 under all stress conditions tested. When incu-
bation temperatures, ethanol concentrations, or sucrose
concentrations increased, the specific growth rates of
both Z. mobilis TISTR548 and Z. mobilis Agfo were de-
creased. The lowest specific growth rates were found in
Z. mobilis Agfo growing under the extreme stress condi-
tions, (at 39°C or 13% (v/v) ethanol or 300 gL’1 sucrose,
which were 1.89-, 2.84-, and 2.09-fold lower than those
of Z. mobilis TISTR548 growing under the same condi-
tions, respectively). These results are similar to those ob-
served in Figure 2. It should be noted from these
findings that Z. mobilis Agfo was highly sensitive to heat,
ethanol, and osmotic stresses as compared to Z. mobilis
TISTR548.

Effect of stresses on ethanol production by Z. mobilis
parental and disruptant strains

The effect of heat stress on ethanol production by Z.
mobilis TISTR548 and Z. mobilis Agfo was performed
and the results are shown in Table 2. The ethanol
concentration produced by Z. mobilis Agfo at 30°C was

Table 1 Specific growth rate of Z. mobilis TISTR548 and Z.
mobilis Agfo under heat, ethanol, and osmotic stresses

Specific growth rate (h™')
Z. mobilis TISTR548

Stress conditions

Z. mobilis Agfo

Heat stress

30°C 0574027 0518+0.12
35°C 0.531+0.18 0310+ 0.04
37°C 0287 +0.26 0.102+0.20
39°C 0.121£0.22 0.064+£0.12
Ethanol stress

0% (v/v) ethanol 0.587+£0.24 0512+0.18
7% (v/v) ethanol 0417017 0435+0.27
10% (v/v) ethanol 0326+0.18 0290 +0.15
13% (v/v) ethanol 0.142+0.20 0.050+0.16
Osmotic stress

200 gL sucrose 0.540+0.23 0.502+0.03
250 gL' sucrose 0448 +0.27 0.349+0.10
300 gL’1 sucrose 0.119+0.24 0.057+0.18
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57.45+5.03 g/L, which was 1.27-fold lower than that of
the parental strain, Z. mobilis TISTR548. At 35°C and
37°C, the ethanol concentrations produced by Z. mobilis
Agfo were 21.00+0.63 g/L and 17.96+0.42 g/L, respect-
ively, which were 2.34- and 2.33-fold lower than those of
Z. mobilis TISTR548. Although the ethanol yields from
Z. mobilis TISTR548 and Z. mobilis Agfo were not much
different, the volumetric ethanol productivities of Z.
mobilis TISTR548 were about 1.51-, 2.28-, and 2.32-fold
higher than those of Z. mobilis Agfo at 30°C, 35°C, and
37°C, respectively.

Table 2 also shows the effect of ethanol stress on
ethanol production by Z. mobilis TISTR548 and Z.
mobilis Agfo. The ethanol concentration, volumetric
ethanol productivity, and ethanol yield obtained from Z.
mobilis Agfo grown in the medium containing 0 to 10%
(v/v) ethanol were lower than those from Z. mobilis
TISTR548. In the medium containing 10% (v/v) ethanol,
only 2.68 + 0.44 g/L ethanol was produced by Z. mobilis
Agfo, which was 3.98-fold lower than that of Z. mobilis
TISTR548 growing in the same condition.

We also tested the effect of osmotic stress on ethanol
production by Z. mobilis TISTR548 and Z. mobilis Agfo
and the results are summarized in Table 2. Z. mobilis
Agfo produced 54.12 + 5.22 and 45.80 + 0.45 g/L ethanol
concentration when cultured in the medium containing
200 and 250 g/L sucrose, which was 1.44- and 1.53-fold
lower than that of Z. mobilis TISTR548 in the same con-
dition, respectively. In addition, only 1.12+0.25 g/L etha-
nol concentration was produced by Z. mobilis Agfo
when cultured in the medium containing 300 g/L su-
crose, which was 30.73-fold lower than that of Z. mobilis
TISTR548. These results clearly demonstrated that the
fermentation activity of the Z. mobilis disruptant strain,
Z. mobilis Agfo, was highly sensitive to osmotic stress
compared to that of the parental strain, Z. mobilis
TISTR548, as observed under heat and ethanol stresses.

Real-time RT-PCR analysis of pdc, adhA, and adhB genes
under stress conditions

The ethanol production capability of Z. mobilis disrup-
tant strain as measured by ethanol content was lower
than that of the parental strain under all stress condi-
tions tested. This finding led us to the hypothesis that
heat, ethanol, and osmotic stresses may suppress the ex-
pression of genes involved in the PE pathway. To test
this hypothesis, we determined the expression levels of
pdc, adhA, and adhB genes in the disruptant strain by
real-time RT-PCR using 16 s RNA as an internal control
and compared its expression with those in the parental
strain under all stress conditions. As shown in Figure 3,
the mRNA expression levels of pdc, adhA, and adhB of
Z. mobilis TISTR548 under heat stress were 4.38-, 3.82-,
and 3.81-fold higher than those of Z. mobilis Agfo,
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Table 2 Effect of heat, ethanol and osmotic stresses on ethanol production by Z. mobilis TISTR548 and Z. mobilis Agfo

Fermentation parameter Z. mobilis TISTR548

Z. mobilis Agfo

Heat stress 30°C 35°C
PL" 7269+ 1062 4906+ 146
Qp@@L'h 1214018 1.02+004
Yps(gg’) 047 + 007 046 +0.08
Time (hours) 60 48
Ethanol stress 0% 7%
PL" 7460+ 3.08 4073+ 268
Qp@@L'h 1.55+0.20 085+0.12
Yps (g g') 048+ 0.07 044 +0.10
Time (hours) 48 48
Osmotic stress 200 g/L 250 g/L
P(gL™ 7767 189 69.85 + 2.44
Qp@L'h 129+ 003 1.16 £ 0.04
Yps(gg™) 0.50+001 0512001
Time (hours) 60 60

37°C 30°C 35°C 37°C
41.87+493 5745 +5.03 21.00+0.63 17.96 £ 042
1.16+£0.14 0.80 +0.07 044 +0.01 0.50+0.01
046 £0.03 047 £0.06 040+0.10 044 £0.09
36 72 48 36
10% 0% 7% 10%
10.66 +2.24 5803 £5.16 2936+ 224 268 £ 044
0.22+£0.10 0.97+£0.12 061 £0.04 0.07 £0.02
0.35+0.05 047 +0.08 037+0.12 0.10+0.03
48 60 48 36
300 g/L 200 g/L 250 g/L 300 g/L
3442+1.12 54124522 45.80+045 1.12+£0.25
0.57+0.14 0.75+0.07 0.64 +0.02 0.02 +£0.02
0.35+£0.05 046£0.11 044 £0.01 0.07 £0.03
60 72 72 72

P, ethanol concentration; Qp, volumetric ethanol productivity; Yps, ethanol yield.

respectively. Under ethanol stress, the expression levels
of pdc, adhA, and adhB of Z. mobilis TISTR548 were
3.90-, 4.87- and 5.67-fold higher than those of Z. mobilis
Agfo, respectively. Likewise the expression levels of pdc,
adhA, and adhB of Z. mobilis TISTR548 under osmotic
stress were 3.47-, 3.97-, and 5.63-fold higher than those
of Z. mobilis Agfo, respectively. These findings suggested
that the expressions of pdc, adhA, and adhB in the Z.
mobilis parental strain were higher than those in the dis-
ruptant strain, which in turn lead to the high ethanol
fermentation capability particularly under stress condi-
tions. Due to the suppression of pdc, adhA, and adhB
genes by heat, ethanol, and osmotic stresses, the ethanol
production by Z. mobilis Agfo was lower than that of the
parental strain.

Protective function of sorbitol on cell growth and ethanol
production by Z. mobilis parental and disruptant strains

To determine the protective function of sorbitol on cell
growth and ethanol fermentation ability by Z. mobilis
TISTR548 and Z. mobilis Agfo under stress conditions,
cells were exposed to heat (37°C), ethanol (10%), or
osmotic stress (300 g/L sucrose) in the presence of
50 mM sorbitol. As shown in Table 3, supplementation
of sorbitol into the culture medium enhanced cell
growth (as specific growth rate) as well as the fermenta-
tion capability of Z. mobilis TISTR548 and Z. mobilis
Agfo under all conditions tested. Under heat, ethanol,
and osmotic stresses, the specific growth rates of
sorbitol-supplemented cultures of Z. mobilis TISTR548
were 1.81-, 1.42-, and 4.30-fold higher than those of the
control cultures without sorbitol supplementation. A

pronounced increase in cell growth under sorbitol sup-
plementation was found in the Z. mobilis disruptant
strain. The sorbitol-supplemented cultures of Z. mobilis
Agfo showed approximately 4.08-, 1.59-, and 6.19-fold
higher in its specific growth rate than those of the con-
trol cultures without sorbitol supplementation under
heat, ethanol, and osmotic stresses, respectively. With
respect to the ethanol production, the maximum ethanol
concentrations produced by sorbitol-supplemented cul-
tures of Z. mobilis TISTR548 were 1.14-, 2.15-, and
2.14-fold higher than those of the control cultures with-
out sorbitol supplementation under heat, ethanol, and
osmotic stresses, respectively. In the case of Z. mobilis
Agfo, the maximum ethanol concentrations produced by
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Figure 3 Expression levels of pdc, adhA, and adhB genes in Z.
mobilis TISTR548 and Z. mobilis Agfo under heat, ethanol, and
osmotic stresses after real-time RT-PCR analysis. Values
presented as the mean and relative expression levels of each gene
as described in the Methods section.
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Table 3 Protective function of sorbitol on cell growth and ethanol production by Z. mobilis under heat, ethanol, and

osmotic stresses

Treatment conditions

Fermentation parameter

Z. mobilis TISTR548 Z. mobilis Agfo

u(h™ P@@L" Qer(gL'h™) p(h) P@L" Qe (gL'h™)
Heat stress
30°C 0.566+0.32 72.69+10.62 1.21£0.18 0.522+0.20 57.45+5.03 0.80+0.07
37°C 0.280+0.24 41.87+493 1.16£0.14 0.123£0.25 17.96+0.42 0.50£0.01
37°C+ 50 mM sorbitol 0.508+0.30 47.70£3.56 1.33+£0.17 0.502+0.22 50.12£1.54 1.04+0.06
Ethanol stress
10% (v/v) 0.340£0.25 1210+£3.20 0.25£0.12 0.286+0.18 3.10£1.12 0.06 £0.01
10% (v/v) + 50 mM sorbitol 0482+0.34 2602 +2.15 0.54+£0.14 0.456+0.26 25.18 £245 0.52+0.04
Osmotic stress
300 g/L sucrose 0.126£0.32 39.76£2.21 0.66£0.04 0.084+0.24 1.62+0.01 0.03+£0.01
300 g/L sucrose + 50 mM sorbitol 0.542+0.40 84.98+1.31 142+0.02 0.520+£0.32 68.84+1.42 1.15£0.02

u, specific growth rate (h™); P, ethanol concentration produced (g L™); Q,, volumetric ethanol productivity (g L' h).

sorbitol-supplemented cultures were 2.79-, 8.12-, and
42.49-fold higher than those of the control cultures
without sorbitol supplementation under such stresses,
respectively. These results clearly indicated that sorbitol
reduced the sensitivity in growth and fermentation activ-
ity of cells to heat, ethanol and osmotic stresses.

SDS-PAGE analysis

The effect of heat, ethanol, and osmotic stresses on pro-
tein synthesis in Z. mobilis TISTR548 and Z. mobilis
Agfo were analyzed by SDS-PAGE and the results are
shown in Figure 4. Under stress conditions, the protein
synthesis in Z. mobilis Agfo was almost suppressed as

compared to that in Z mobilis TISTR548 particularly
under ethanol and osmotic stresses. Only a small num-
ber of proteins with the apparent molecular weight of
approximately 58, 54, 48, 45, and 40 kDa were visualized
in the protein sample isolated from Z. mobilis Agfo
growing under stress conditions. However, the synthesis
of almost all proteins was recovered when sorbitol
was supplemented into the culture medium. This can
be seen from the protein patterns between sorbitol-
supplemented and control cultures. In addition, the pro-
tein patterns from the sorbitol-supplemented cultures of
Z. mobilis Agfo were almost similar to those of Z. mobi-
lis TISTR548, except the sorbitol-supplemented cultures
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50 mM sorbitol under (A) heat stress, (B) ethanol stress, and (C) osmotic stress.
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of Z. mobilis Agfo under osmotic stress. These results
suggested that sorbitol may prevent protein from under-
going denaturation under heat, ethanol, and osmotic
stresses.

Complementation test of Z. mobilis disruptant strain

To determine whether the growth defect of the Z. mobi-
lis disruptant strain under stress conditions is due to the
deletion of gfo gene, the recombinant plasmid carrying
the full length open reading frame (ORF) of the gfo gene
was introduced into the disruptant strain, as described
in the Methods section. A PCR product of approxi-
mately 1.3 kb was observed in the selected complemen-
ted strain, suggesting the presence of the full length
OREF of the gfo gene in this strain (data not shown). Spe-
cific growth rate of the complemented strain under
stress conditions was analyzed and the results are sum-
marized in Table 4. Introduction of the full length ORF of
the gfo gene rescued the growth defect of the Z. mobilis
disruptant strain under heat, ethanol, and osmotic
stresses. The complemented strain produced approxi-
mately 3.52 g/L of sorbitol when cultured in YP medium
containing 300 g/L sucrose. These findings suggested
that the gfo gene is required for proper growth of Z.
mobilis under heat, ethanol, and osmotic stresses.

Discussion

During ethanol fermentation, ethanologenic microorgan-
isms like Z. mobilis or S. cerevisiae may encounter sev-
eral environmental stresses such as heat [12,14], ethanol
[13,15], and osmotic stress at high sugar concentrations
[11] and oxidative stress by endogenous reactive oxygen
species (ROS) including hydrogen peroxide (H,O,) [16].
These stresses inhibit cell growth, cell division, cell via-
bility [17,18], and the fermentation activity of cells [19].
They can also modify plasma membrane fluidity [20] as
well as disrupt cellular ionic homeostasis, leading to a
reduction of metabolic activity and eventually cell death.
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Therefore, defense mechanisms to overcome these stresses
are important not only for the survival of these microor-
ganisms but also for ethanol production. Synthesis of
stress responsive proteins [12,21], fatty acids, particularly
unsaturated fatty acids or saturated fatty acids, and ergos-
terol are a few of the mechanisms against heat and ethanol
stresses which have been reported in Z. mobilis and S. cer-
evisiae [22]. In addition, formation of compatible solutes
such as sorbitol in Z. mobilis [11] or trehalose in S. cerevi-
siae [23] to counteract the detrimental effects of osmotic
stress, particularly under high sugar concentrations and
ethanol stress, have also been reported.

Previous studies by Loos et al. [11] demonstrated that
the addition of sorbitol into culture medium promoted
cell growth of Z. mobilis in environments with high con-
centrations of sugar. However, to our knowledge, the
protective function of sorbitol on cell growth and etha-
nol fermentation capability under heat and ethanol
stresses in Z. mobilis has not been studied yet. The syn-
thesis of GFOR protein is regulated by the gfo gene [24].
Therefore, the gene encoding GFOR (gfo) in Z. mobilis
was disrupted in this study and the protective effects of
sorbitol on cell growth and ethanol production in the Z.
mobilis parental and disruptant strains were determined.
Based on the fusion PCR-based construction technique,
the gfo gene in Z. mobilis was disrupted, as confirmed by
PCR analysis (Figure 1) and the determination of sorb-
itol content by HPLC in the parental and disruptant
strains of Z. mobilis cells after cultivation in YP medium
containing 300 g/L sucrose. This fusion PCR-based con-
struction technique has been wildly used to disrupt
many genes, (for example cytochrome c¢ peroxidase gene
(cytC) in Z. mobilis [25]).

As shown in this study, disruption of the Z. mobilis gfo
gene resulted in the reduction of cell growth both on
solid and in liquid medium particularly under heat,
ethanol, and osmotic stresses. The morphology of
Z. mobilis parental and disruptant strains grown under

Table 4 Specific growth rate of Z. mobilis parental, disruptant and complemented strains under heat, ethanol, and

osmotic stresses

Stress Specific growth rate (h"

conditions Parental Parental (pZA22) Disruptant Disruptant (pZA22) Complemented (pZA-GFORCOM)
Heat stress

30°C 0568+0.16 0.550+0.17 0520+0.14 0510+0.13 0564 +0.19
37°C 0.283+0.12 0.271£0.08 0.111£0.04 0.102 £0.01 0276 £0.11
Ethanol stress

0% (v/v) 0572+0.18 0.568+0.16 0521+0.18 0506+0.17 0562 +0.17
10% (v/v) 0329+0.12 0.326£0.11 0291 +0.12 0288 +£0.11 0321+0.14
Osmotic stress

200 gL' 0569+022 0.562+0.23 0516+0.18 0511+0.16 0.556+0.21
300 gL’1 0.183+0.10 0.177+0.10 0.073 £0.06 0.075+0.07 0.175+0.09
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stress conditions was not different after the microscopic
analysis, suggesting that the disruption of the gfo gene
did not interfere with cell morphology in this organism
(data not shown). As shown in Table 1, the specific
growth rates of the Z mobilis disruptant strain grown
under stress conditions were less than those of the
Z. mobilis parental strain. However, when sorbitol was
supplemented into the culture medium, the specific
growth rates of Z. mobilis parental and disruptant strains
grown under heat, ethanol and osmotic stresses were in-
creased as compared to the conditions without sorbitol
supplementation. Complementation experiments by
introducing the full length ORF of the gfo gene into the
Z. mobilis disruptant strain rescued the growth defect
under heat, ethanol, and osmotic stresses (Table 4).
These results clearly indicated that sorbitol is required
for proper cell growth not only under osmotic stress as
demonstrated by Loos et al. [11], but also under heat
and ethanol stresses. We speculate from these findings
that sorbitol may play a crucial role in cellular protec-
tion, by stabilizing the membrane bilayer or involving
membrane fluidity, and by recovery of the cells from the
stress.

Under stress conditions, the ethanol production cap-
ability of Z. mobilis parental and disruptant strains, as
measured by ethanol concentration, volumetric ethanol
productivity and ethanol yield, was decreased as com-
pared to that under control conditions. Moreover, the
ethanol fermentation ability of the Z. mobilis disruptant
strain was also lower than that of the Z. mobilis parental
strain (Table 2). This finding clearly demonstrated that
heat, ethanol, and osmotic stresses caused inhibition of
ethanol fermentation in Z. mobilis. One possible explan-
ation that has been proposed for such detrimental effects
is that heat, ethanol, and osmotic stresses cause a reduc-
tion in the effectiveness of the plasma membranes as a
semipermeable barrier and transport process, allowing
leakage of essential cofactors and coenzymes required
for the activity of enzymes involved in glucose catabol-
ism and alcohol production [19,26]. Surprisingly, the
ethanol fermentation activity of Z. mobilis parental and
disruptant strains was recovered when sorbitol was
added into the fermentation medium (Table 3). This
finding suggested that sorbitol not only enhanced cell
growth but also increased the fermentation ability of this
organism under stress conditions, since the expression
levels of pdc, adhA, and adhB genes involved in the PE
pathway in the Z. mobilis disruptant strain was lower
than that in the parental strain (Figure 3). Thus, reduc-
tion in the ethanol fermentation ability of the Z. mobilis
disruptant strain might be due to the suppression of
these genes by heat, ethanol, and osmotic stresses.

We have attempted to investigate the effect of heat,
ethanol, and osmotic stresses on protein synthesis in
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Z. mobilis parental and disruptant strains growing under
stress conditions. As shown in Figure 4, the protein
levels (as determined by protein intensity in the gel)
of Z. mobilis disruptant strain growing under heat, etha-
nol, and osmotic stresses were lower than those of the
Z. mobilis parental strain. One possibility is that heat,
ethanol, and osmotic stresses suppress the synthesis of
protein as well as cause protein denaturation [26].
These results are in agreement with those reported by
Chandler et al. [27] and Hu et al. [28]. The synthesis of
protein was increased when sorbitol was supplemented
into the culture medium particularly proteins with the
molecular weight of approximately 58, 54, 48, 45, and
40 kDa. We speculate from this finding that sorbitol
plays a crucial role in the protection of proteins under
heat, ethanol, and osmotic stresses. Yoo and Lee [29]
reported that sorbitol can be used to preserve protein
during storage since it can protect protein during dehy-
dration by heat stress.

Based on these findings, we considered that sorbitol
not only promoted cell growth but also increased the
ethanol fermentation capability of Z. mobilis under heat,
ethanol, and osmotic stresses. Increasing cell growth and
ethanol fermentation activity in Z. mobilis might be re-
lated to the stabilization of cellular proteins by sorbitol.
We are currently focused on the characterization of the
genes and proteins responsible for sorbitol supplementa-
tion under stress conditions.

With respect to the substrate utilization, the narrow
substrate spectrum with only three sugars, glucose, fruc-
tose, and sucrose, makes Z. mobilis not suitable for
ethanol fermentation from sugar- and sugar-based feed-
stocks. On the other hand, ethanol yield from fructose
and sucrose is very low since this microorganism accu-
mulates sorbitol as a major byproduct. If Z. mobilis is
engineered with pentose metabolic pathways, it might be
suitable for ethanol production from lignocellulose bio-
mass, since glucose is the only monomer sugar released
from cellulose hydrolysis. The unique byproduct sorbitol
might also provide some protection on cells from the
toxicity of byproducts released during the pretreatment
process of lignocellulose biomass. This hypothesis is
now under our investigation.

Conclusions

Z. mobilis Agfo required the compatible solute, sorbitol,
for normal cell growth, ethanol production as well as
synthesis of cellular protein under stress conditions in-
cluding heat, ethanol and osmotic stresses. This finding
suggested that sorbitol plays an important role in the
process of cell growth, ethanol fermentation, and protein
synthesis not only under osmotic stress as previously re-
ported but also under heat and ethanol stresses. Supple-
mentation of sorbitol into the culture medium may be
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one of the effective approaches to improve the produc-
tion yield of bioethanol or other chemicals under stress
conditions with high temperature, high ethanol, or high
sugar concentrations.

Methods

Strains, plasmid, and culture conditions

Z. mobilis TISTR548 was obtained from the Thailand In-
stitute of Scientific and Technological Research (TISTR),
Bangkok for use in this study. This strain exhibited
higher growth and ethanol fermentation ability at rela-
tively high temperature fermentation conditions (37°C
and 40°C) than those of the type strain, Z. mobilis ZM4
[30]. Both Z. mobilis TISTR548 and the gfo disruptant
strain, Z. mobilis Agfo, were grown in YPG medium
(3 g/L yeast extract, 5 g/L peptone, 30 g/L glucose) at
30°C [31]. When necessary, sugar stock solution auto-
claved separately was added. Cultures were maintained
on YPG medium solidified with 2% agar at 4°C with sub-
culturing every 2 months. For the extraction of nucleic
acids, Z. mobilis cells were grown in YPG medium at
30°C on a rotary shaker (100 rpm). After 16 hours of in-
cubation, cells were harvested by centrifugation at
5,000 rpm for 5 minutes and washed twice with steril-
ized distilled water. Escherichia coli strain DH5a
was used for gene manipulation. It was grown in
Luria-Bertani (LB) medium at 37°C on a rotary shaker
(100 rpm). Shuttle vector pZA22, kindly provided by
Professor Hideshi Yanase, was used to clone DNA frag-
ments and to disrupt the Z. mobilis gfo gene in fusion
PCR-based construction experiments. This vector con-
tains the chloramphenicol (cm) and tetracycline (c) re-
sistant marker genes.

DNA isolation and disruption of the Z. mobilis gfo gene

The genomic DNA of Z. mobilis was prepared by the
standard method [32]. The gfo gene in Z. mobilis was
disrupted by the fusion PCR-based construction tech-
nique [33]. The procedures for gene disruption are illus-
trated in Figure 5 and the primers used in the gene
disruption experiment are shown in Table 5. In the first
step, the 5- and 3’-flanking regions of the gfo gene were
amplified by PCR using specific primers, GFOR-up-5,
GFOR-up-kan-3; GFOR-down-kan-5, and GFOR-down-
3} synthesized based on the gfo gene in Z. mobilis. The
specific primers, GFOR-up-kan-3’ and GFOR-down-kan-
5; directly adjacent to the marker cassette contain 5-end
(primer GFOR-up-kan-3’) and 3’-end (primer GFOR-
down-kan-5’) sequences of kan cassette at their 5-ends.
Two specific primers, kan-GFOR-5" and kan-GFOR-3;
which sequences complementary to primer GFOR-up-
kan-3" and GFOR-down-kan-5" were used to amplify the
kan cassette. In the second step, the 5’- and 3’-flanking
regions of the gfo gene were joined to the DNA fragment
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Step 1. Amplification of gene by PCR reaction
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Figure 5 Schematic illustration of PCR-based construction of
the gfo gene disruption.

of the kan cassette by PCR using the outermost primer
GFOR-up-5" and GFOR-down-3; and the resulting DNA
fragment of approximately 4.2 kb in length was cloned
into pGEM-T Easy Vector (Promega, Medison, WI,
USA) and then transformed into E. coli DH5a by elec-
troporation. All PCR reactions were performed by using
a PCR amplification kit (Takara Biomedical, Otsu, Japan)
according to the manufacturer’s instructions. The posi-
tive clone was selected based on an ampicillin resistance
marker. Plasmid DNA was isolated from this clone using
the standard method [32] and then subjected to nucleo-
tide sequencing using a DNA sequencing kit (Applied
Biosystems, Foster City, CA, USA) with a MegaBACE
1000 automated DNA sequencer (Pharmacia Biotech,
Uppsala, Sweden). After EcoRI digestion, a DNA frag-
ment containing the up- and down-region of the gfo
gene linked with kan cassette was ligated into the EcoRI
site of shutter vector pZA22 to generate plasmid pZA-
UDGFOR. This plasmid was then transformed into
Z. mobilis by electroporation technique. After trans-
formation, the transformants were screened based on
the kanamycin resistance marker, and the gfo gene in the
selected transformants was confirmed by PCR using
primers GFOR-int-5" and GFOR-int-3’ synthesized based
on an internal fragment of the gfo gene in Z. mobilis,
with genomic DNA isolated from the parental strain and
transformants as template. Nucleotide sequencing of the
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Table 5 List of primers used in the study
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Gene name Primer name Sequences (5’ to 3') Usage
gfo GFOR-up-5' TGCCGCAGATAAACTCG Gene disruption
GFOR-up-kan-3' CAGCTCCAGCCTACACAGATTATCTGAAGACGAGA
GFOR-down-kan-5' AAGGAGGATATTCATATGTATGAAGCAGCTCGTACC
GFOR-down-3' CGCAAGAACCAATACCG
GFOR-int-5' AACGGATGACAACGCTT
GFOR-int-3' AGTCGTCGTGGTCGAAT
kan kan-GFOR-5' TCTCGTCTTGAGATAATCTGTGTAGGCTGGAGCTG
kan-GFOR-3' GGTACGAGCTGCTTCATACATATGAATATCCTCCTT
adhA adhA-F CATGAAAGCAGCCGTCA Real-time PCR
adhA-R TACACCCGCGCAAGTGA
adhB adhB-F GTCAACGAAATGGGCGA
adhB-R GTGACGGTCAACAATGG
pdc pdc-F GACTACAACCTCGTCCT
pdc-R CAGGGCATGGGAGCAAT
16 s RNA 16 s-F CAGCACCTGTCTCTGATCCA
16 s-R GTTCGGAATTACTGGGCGTA
gfo® GFOR-com-5' GCGAATTCATGACGAACAAAATCTCG Complementation
GFOR-com-3' GCGAATTCTCAATAACCACCCTGACG

*The italic sequence corresponds to the EcoRl site.

PCR product was carried out as previously described to
confirm the amplified product. Online database compar-
isons were performed with the BLAST algorithm in the
GenBank and DNA DataBank of Japan (DDBJ) data-
bases. To further confirm the disruption of the gfo gene,
sorbitol production by Z. mobilis parental strain and dis-
ruptant was measured after growing both strains in YP
medium containing 300 g/L sucrose as a carbon source.

Effect of stresses on the growth of Z. mobilis parental and
disruptant strains
The effect of stresses including heat, ethanol, and os-
motic stresses on the growth of Z. mobilis parental and
disruptant strains were tested. For heat stress, cells were
grown on YP agar medium (3 g/L yeast extract, 5 g/L
peptone) containing 200 g/L sucrose and incubated at
30, 35, 37, and 39°C for 2 days. For ethanol stress, cells
were grown on YP agar medium containing 200 g/L su-
crose and ethanol at a final concentration of 7, 10, and
13% (v/v), and then incubated at 30°C for 2 days. The ef-
fect of osmotic stress on cell growth was determined by
culturing cells on YP agar medium containing 200, 250,
and 300 g/L sucrose for 2 days at 30°C. After 2 days of
cultivation, a part of culture was taken and serial dilu-
tions of 10 times were made, and 10 pL of each dilution
was spotted on YP agar plate [34].

The effect of stresses on the specific growth rate of
Z. mobilis parental and disruptant strains was also com-
pared. For heat stress, cells were grown in YP liquid

medium containing 200 g/L sucrose and then incubated
at 30, 35, 37, and 39°C. For ethanol stress, cells were
grown in liquid YP medium containing 200 g/L sucrose
and ethanol at a final concentration of 0, 7, 10, and 13%
(v/v), and then incubated at 30°C. For osmotic stress,
cells were grown in liquid YP medium containing su-
crose at a final concentration of 200, 250, and 300 g/L
and incubated at 30°C. During cultivation, cells were
harvested every 2 hours and spread onto YP agar plate.
Cell growth was determined by colony-forming units
(CFUs) and the specific growth rate of bacterial cells
was calculated as described by Keeratirakha [35]. All ex-
periments were performed in quadruplets and repeated
twice. The data are means (+SD) of the results of the
experiments.

Effect of stresses on ethanol fermentation by Z. mobilis
parental and disruptant strains

Batch ethanol fermentation by Z. mobilis parental and
disruptant strains was carried out in 500 mL Erlenmeyer
flasks equipped with an air-lock for an anaerobic growth
condition as described by Taherzadeh et al. [36]. Next,
10% of active Z. mobilis cells were inoculated into
400 mL YP liquid medium containing sucrose as a sole
carbon source and statically incubated at 30°C. The in-
fluence of incubation temperatures on ethanol fermenta-
tion by Z. mobilis was performed by culturing cells in
liquid YP medium containing 200 g/L sucrose and incu-
bated at various temperatures (30, 35, and 37°C). The
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effect of ethanol stress on ethanol fermentation by
Z. mobilis was determined by culturing cells in liquid
YP medium containing 200 g/L sucrose and ethanol
at different concentrations (0, 7.0, and 10%) and then
incubated at 30°C. Likewise, the effect of osmotic
stress on ethanol production was evaluated by culturing
cells in liquid YP medium containing different sucrose
concentrations (200, 250, and 300 g/L) and incubated
at 30°C.

The protective effect of sorbitol against heat, ethanol,
and osmotic stresses was tested. Briefly, the cultures
growing in liquid YP medium containing 200 g/L su-
crose were exposed to heat (37°C) and ethanol (10%)
stresses in the presence of 50 mM sorbitol. For osmotic
stress, cultures were grown in liquid YP medium
containing 300 g/L sucrose in the presence of 50 mM
sorbitol. During ethanol fermentation, samples were
periodically withdrawn and analyzed for cell growth
(as specific growth rate) and ethanol content. All the fer-
mentation experiments were replicated twice and the
average values +SD are presented in this study.

RT-gPCR analysis of gene expression under stresses
The expressions of alcohol dehydrogenase A (adhA),
alcohol dehydrogenase B (ahdB), and pyruvate decarb-
oxylase (pdc) genes in Z. mobilis parental and disruptant
strains were determined by real-time RT-PCR. Total
RNA was isolated from Z. mobilis parental and disrup-
tant strains grown in YP liquid medium under stress
conditions, as described above, by using the GF-1
Total RNA Extraction Kit (Vivantis, Eco-Life Science,
Kowloon, Hong Kong). The concentration of RNA was
measured and adjusted by Nanodrop (Nanodrop Tech-
nologies, Wilmington, DE, USA). First-strand cDNA
synthesis and SYBR Green RT-PCR assays were per-
formed according to the manufacturer’s instruction. The
real-time RT-PCR amplifications were performed using
the CFX96 Touch Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA). The reactions were car-
ried out in a total volume of 25 pL containing 12.5 pL
iQ SYBR Green Supermix, 0.5 puL diluted cDNA, 11.0 pL
sterile water, and 0.5 pL of each forward and reverse pri-
mer. The thermal cycling conditions for PCR were initial
denaturation at 95°C for 3 minutes, followed by 40 cycles
each of denaturation at 95°C for 10 seconds, and anneal-
ing at 55°C for 30 seconds. The expression of 16 s RNA
was analyzed as an internal control with specific primer
as shown in Table 5. As a negative control, DEPC-
treated water was used instead of cDNA template. All
experiments were independently repeated at least twice
in order to ensure reproducibility of the results.

Data from real-time RT-PCR amplifications were
analyzed using CFX Manager Software (Bio-Rad, USA).
The comparative Ct method was used to analyze the
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expression levels of adhA, adhB, and pdc genes, based
on the method described by Jiang et al. [37]. For data
analysis, the relative expression levels were imported
into Microsoft Excel (Redmond, WA, USA) for subse-
quent statistical analysis. All data are presented as the
mean of relative mRNA expression.

Protein extraction and SDS-PAGE

Heat-, ethanol-, and osmotic-stressed cells were har-
vested by centrifugation, washed with sterilized distilled
water, and suspended in a 10 mM Tris HCI (pH 7.0)
buffer. Proteins were extracted from stressed cells by
sonicating in Bioruptor (Cosmo Bio, Tokyo, Japan) for
10 minutes at 50% pulse duty cycle with the output
power of 5, as described by Thanonkeo et al. [12]. Pro-
tein concentration of the cell-free extracts was measured
using Lowry reagent. For electrophoresis, approximately
20 pg of the protein sample was heated at 100°C for
5 minutes and separated by SDS electrophoresis on 12%
acrylamide gel with a constant voltage of 50 V. After
electrophoresis, proteins separated on the gel were visu-
alized using Coomassie Brilliant Blue R250 and fixed in
10% ethanol.

Complementation experiment

The full length ORF of the gfo gene was amplified by
PCR with genomic DNA isolated from Z. mobilis paren-
tal strain as a template and specific primers, GFOR-
com-5" and GFOR-com-3’ (Table 5), synthesized based
on the 5’- and 3’-region of the gfo gene in this organism.
All PCR reactions were performed by using a PCR
amplification kit (Takara Biomedical) according to the
manufacturer’s instruction. The amplified product was
purified and ligated into the EcoRI site of the shutter
vector, pZA22. The resultant recombinant plasmid was
designated as pZA-GFORCOM. This plasmid was then
transformed into Z. mobilis disruptant strain by electro-
poration. After transformation, the complemented cells
were screened based on the tetracycline resistance
marker and confirmed by checking growth ability under
stress conditions. The specific growth rate of the se-
lected complemented strain grown in YP liquid medium
under heat (37°C), ethanol (10% v/v), and osmotic stress
(300 g/L sucrose) was determined. The production of
sorbitol in YP medium containing 300 g/L sucrose by
complemented strain was also examined. In addition,
the replacement of the kan cassette by the full length
OREF of the gfo gene after homologous recombination in
the selected complemented strain was confirmed by
PCR using specific primers GFOR-com-5" and GFOR-
com-3; as described above. The Z. mobilis parental and
disruptant strains carrying pZA22 were generated as a
control.
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Analytical methods

The fermentation broths were centrifuged at 13,000 rpm
for 10 minutes to remove cells. The supernatant was
then determined for total residual sugars by phenol sul-
furic acid method [38]. Sorbitol concentration was ana-
lyzed by HPLC using an Aminex HPX 87C column
(300 mm x 7.8 mm, temperature 80°C) with a refraction
index detector. The distilled deionized water was used
as a mobile phase at a flow rate of 0.6 mL/min and
sorbitol was used as a standard. Ethanol concentration
(B, g/L) was analyzed by gas chromatography (GC) (GC-
14B, Shimadzu, Kyoto, Japan) using polyethylene glycol
(PEG-20 M) packed column, nitrogen as a carrier gas,
and a flame ionization detector (FID). Ethanol was quan-
tified by using 2-propanol as an internal standard [39].
The ethanol yield (Yps) was calculated as the actual
ethanol produced and expressed as gram ethanol per
gram sugar utilized (g/g). The volumetric ethanol prod-
uctivity (Qp, g/L.h) was calculated by the following
equations: Qp = P/t ; where P is the ethanol concentra-
tion (g/L) and ¢ is the fermentation time (hours) giving
the highest ethanol concentration.
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