The Journal of Microbiology Influence of the aspS Gene Sequence from Acetobacter pasteurianus SKU1108 on Escherichia coli Morphology --Manuscript Draft--

Manuscript Number:	TJOM-D-12-00619R1						
Full Title:	Influence of the aspS Gene Sequence from Acetobacter pasteurianus SKU1108 on Escherichia coli Morphology						
Short Title:							
Article Type:	Full Article						
Keywords:	Acetobacter pasteurianus; aspartyl-tRNA synthetase; aspS gene; ATP-binding domain; filamentous cell						
Corresponding Author:	Gunjana Theeragool, D.Agr.						
	Bangkok THAILAND						
Corresponding Author Secondary Information:							
Corresponding Author's Institution:							
Corresponding Author's Secondary Institution:							
First Author:	Kannipa Tasanapak, Ph.D. candidate						
First Author Secondary Information:							
Order of Authors:	Kannipa Tasanapak, Ph.D. candidate						
	Uraiwan Masud-Tippayasak, Ph.D.						
	Kazunobu Matsushita, Ph.D.						
	Wichien Yongmanitchai, Ph.D.						
	Gunjana Theeragool, D.Agr.						
Order of Authors Secondary Information:							
Abstract:	The aspS gene encoding Aspartyl-tRNA synthetase (AspRS) from a thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, has been cloned and characterized. The open reading frame (ORF) of aspS gene consists of 1,788 bp and coding 595 amino acid residues. The highly conserved of Gly-Val-Asp-Arg (motif 3), the ATP binding motif, is located at the position 537-540 in the C-terminus. Deletion analysis of the aspS gene upstream region suggested that the tentative promoter is around 173 bp upstream from ATG initiation codon. Interestingly, transformation with the plasmid pGEM-T138, pUC138 and pCM138 synthesizing 138 amino acids of C-terminal fragments of AspRS harboring the ATP binding domain caused E. coli cell lengthening at 37 and 42°C. Moreover, E. coli harboring pUC595 (synthesizing 595 amino acids) and disordered aspS gene in pGEM-T138 had normal rod shapes. The normal rod shape was observed in E. coli harboring pD539V following site-directed mutagenesis of the ATP binding domain. We propose that over-production of truncated C-terminal sequence of aspS may cause sequestration of intracellular ATP of E. coli leaving less ATP for cell division or shaping cell morphology.						
Response to Reviewers:	Dear Dr. Beom Sik Kang and Reviewers						
	Thank you for the opportunity to revise the manuscript entitled "Clones of aspS Gene Encoding Aspartyl-tRNA Synthetase from Acetobacter pasteurianus SKU1108 Affect Escherichia coli Morphology". We have substantially revised the paper in accordance with the reviewers' comments and in addition have had it checked carefully by a native English speaker who is willing to confirm this (email contact: gavin.reynolds@hotmail.com).						

We note that both referees feel the study is interesting; one (2nd reviewer) recommends to concentrate more on the cloning and characterisation of the gene and its promoter, while the other wishes to de-emphasise the promoter studies and undertake more work on the ATP-binding hypothesis. We have tried to finalise the paper that addresses as much as possible of each reviewer's concerns. However, we recognise that we cannot do this completely for both reviewers. We should be grateful if the manuscript can be assessed on the basis of the work reported without further studies.

Reviewer comments: (line number refer to original comments)

1: The title has been changed to address this.

28: "coding" add as reviewer suggestion

29: "highly conserved" as reviewer suggestion

30: change from "domain" to "motif" as reviewer comment

36-37: We change from "conclusion" to "propose"

50: rewrite for clearer understanding

57: change from "3" to "three" as reviewer suggestion

61: rewrite for clearer understanding

62: Leu535Pro "of AspRS" as reviewer comment

72: rewrite for clearer understanding

82: change from "retains" to "maintains"

194: high is that mean "high temperature" already present in the text

195-197: rewrite for clearer understanding

201: "high sequence homology" was add as reviewer suggestion

205: change from "regulatory region" to "upstream region" as reviewer suggestion

211: already move to discussion section on line 309

246: This section of the result has been removed.

253: Site-directed mutagenesis was performed as reviewer suggestion

256: change from "division" to "morphology" as reviewer suggestion

261: "not at 42oC" change to "but with different morphology at 42oC" as reviewer suggestion

264: why 39oC: already explain on line 249

272: "several constructs" was change to "recombinant plasmids that contain different length constructs of the aspS gene" as reviewer suggestion

280: change from "homology" to "similarity" as reviewer comment

216/239/283: we have mentioned the value of quantifying protein expression in the final section of the discussion.

292/299: This section of the discussion has been removed

300: 37oC is high temperature for A. pasteurianus

305: rewrite for clearer understanding

1 Influence of the *aspS* Gene Sequence from *Acetobacter pasteurianus* SKU1108 on

- 2 Escherichia coli Morphology
- 3
- 4 Kannipa Tasanapak^{a,1}, Uraiwan Masud-Tippayasak^{a,b}, Kazunobu Matsushita^c, Wichien
 5 Yongmanitchai^a and Gunjana Theeragool^{a,*}
- 6
- ^a Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900,
- 8 Thailand
- 9 ^b Center for Advanced Studies in Tropical Natural Resources, NRU-KU, Kasetsart
- 10 University, Bangkok 10900, Thailand
- ^c Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University,
- 12 Yamaguchi 753-8515, Japan
- 13 E-mail address: kannipa1974@hotmail.com (K. Tasanapak), khonlek_29@hotmail.com (U.
- 14 Masud-Tippayasak), kazunobu@yamaguchi-u.ac.jp (K. Matsushita), fsciwcy@ku.ac.th (W.
- 15 Yongmanitchai), fscignt@ku.ac.th (G. Theeragool)
- ^{*} For correspondence. E-mail: fscignt@ku.ac.th; Tel.: +66 29428445-9; Fax: +66 29428512
- 17
- 18 **Running title**: Aspartyl-tRNA synthetase from *A. pasteurianus* SKU1108
- 19
- 20
- 21
- 22

```
23
```

24 ¹

¹ Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand

25 ABSTRACT

26 The *aspS* gene encoding Aspartyl-tRNA synthetase (AspRS) from a thermotolerant 27 acetic acid bacterium, Acetobacter pasteurianus SKU1108, has been cloned and 28 characterized. The open reading frame (ORF) of *aspS* gene consists of 1,788 bp and coding 29 595 amino acid residues. The highly conserved of Gly-Val-Asp-Arg (motif 3), the ATP 30 binding motif, is located at the position 537-540 in the C-terminus. Deletion analysis of the 31 *aspS* gene upstream region suggested that the tentative promoter is around 173 bp upstream 32 from ATG initiation codon. Interestingly, transformation with the plasmid pGEM-T138, 33 pUC138 and pCM138 synthesizing 138 amino acids of C-terminal fragments of AspRS 34 harboring the ATP binding domain caused E. coli cell lengthening at 37 and 42°C. Moreover, 35 E. coli harboring pUC595 (synthesizing 595 amino acids) and disordered aspS gene in 36 pGEM-T138 had normal rod shapes. The normal rod shape was observed in *E. coli* harboring pD539V following site-directed mutagenesis of the ATP binding domain. We propose that 37 38 over-production of truncated C-terminal sequence of *aspS* may cause sequestration of 39 intracellular ATP of E. coli leaving less ATP for cell division or shaping cell morphology. 40 Key words: Acetobacter pasteurianus, aspartyl-tRNA synthetase, aspS gene, ATP-binding 41 42 domain, filamentous cell 43 44 45 46 47 48 49

1. Introduction

52	Aminoacyl-tRNA synthetase plays an essential role in the accurate interaction of an
53	amino acid with its cognate tRNA, which is a crucial step in protein synthesis.
54	Aminoacylation consists of two sequential reactions: (i) formation of aminoacyl-adenylate by
55	activation of an amino acid with ATP; (ii) transfer of the activated amino acid to tRNA
56	followed by the release of the aminoacyl-tRNA (Ibba and Söll, 2000). For aspartyl-tRNA
57	synthetase (AspRS), the co-substrate ATP preferentially binds three Mg ²⁺ ions which raises
58	the binding free energy of Asp compared to Asn and this improves amino acid discrimination
59	(Thompson and Simonson, 2006). The <i>aspS</i> gene encoding AspRS from <i>Escherichia coli</i> has
60	been cloned and characterized (Eriani et al., 1990). It consists of 590 residues and showed
61	homology with LysRS and AsnRS, each of which contain the C-terminal tetrapeptide
62	sequence (Gly-Leu-Asp-Arg), a potential ATP-binding site. A single point mutation at
63	Leu535Pro of AspRS in motif 3 leads to conformational disorganization and inactivation of
64	the catalytic site (Eriani et al., 1990).
65	Sharples and Lloyd (1991), described a <i>tls-1</i> mutant of <i>E. coli</i> K12 exhibiting a
66	temperature-sensitive growth phenotype in low salt media and showed that the DNA
67	fragment encoding the C-terminal of AspRS was sufficient to allow its growth. Another
68	mutation of <i>aspS</i> at Pro555Ser in motif 3 displays reduced stability of both the acylation and
69	amino acid activation sites (Martin et al., 1997). In yeast AspRS, it was proposed that a
70	mutation in the C-terminal sequence reduced ATP binding and thus aspartic acid binding to
71	AspRS fails (Cavearelli et al., 1994; Ador et al., 1999). ATP is essential in aminoacylation
72	and also important for FtsH, an ATP-dependent protease in Caulobacter crescentus. Mutants
73	lacking FtsH protease can grow under normal conditions but are highly sensitive to elevated
74	temperature and increased salt concentration. Nevertheless, over-expression of the normal

ftsH gene resulted in an increased salt tolerance but still showed thermo-intolerance (Fischer *et al.*, 2002).

77	Acetobacter pasteurianus SKU1108, isolated from grapes in Thailand, is a promising
78	thermotolerant acetic acid bacterium for industrial vinegar fermentation at high temperature
79	(Saeki et al., 1997). We cloned various constructs of the aspS gene from A. pasteurianus
80	SKU1108, which included motif 3 and transferred these into E. coli and A. pasteurianus
81	SKU1108 both of which then show reduced temperature tolerance. We propose that the
82	temperature sensitive strain over-produces a dysfunctional AspRS protein but still maintains
83	ATP binding thus reducing cytosolic ATP to a level which is not able to support cell division
84	at elevated temperatures.
85	
86	2. Materials and methods
87	
88	2.1 Bacterial strains, culture media and culture conditions
89	
90	The bacterial strains and plasmids used in this study are described in Table 1. A.
91	pasteurianus SKU1108 was maintained on potato medium (5 g glucose, 20 g glycerol, 10 g
92	yeast extract, 10 g polypeptone, and 15 ml potato extract, made up to 1000 ml with tap water)
93	(Matsutani <i>et al.</i> , 2011). Cultivation was performed at 30°C on a rotary shaker at 200 rpm. <i>E</i> .
94	<i>coli</i> DH5 α harboring recombinant plasmids were cultured in Luria-Bertani medium (10 g
95	polypeptone, 5 g yeast extract, 5 g NaCl, made up to 1000 ml) containing appropriate
96	antibiotic and incubated at 37°C with vigorous shaking for 18-24 h.
97	
98	2.2 Cloning and nucleotide sequencing of the <i>aspS</i> gene
99	

100	Molecular cloning of <i>aspS</i> gene was performed by Random Amplified Polymorphic
101	DNA (RAPD) and shotgun cloning into pGEM [®] -T Easy and pUC18 vectors, respectively.
102	The random 10-mer oligonucleotide primer, AD01 (CAAAGGGCGG) was used as a random
103	primer to amplify DNA fragments from several strains of acetic acid bacteria; including A.
104	pasteurianus SKU1108. The recombinant plasmid pGEM-T138 contains 1.3 kb RAPD-PCR
105	product was digested with EcoRI and purified a 1.3 kb DNA fragment that contained the C-
106	terminus sequence of AspRS. This was used as DNA probe for shotgun cloning. The
107	aspartyl-tRNA synthetase gene was isolated from a plasmid pool containing completely
108	digested HindIII DNA fragments of A. pasteurianus SKU1108 chromosomal DNA inserted
109	in the appropriate <i>Hin</i> dIII site of the pUC18 vector. These plasmids were transformed into <i>E</i> .
110	<i>coli</i> DH5 α competent cells. Among these transformants, the colony showing a positive
111	hybridization signal was confirmed by PCR and its nucleotide sequence was determined. The
112	plasmid carrying an entire <i>aspS</i> gene was designated as pUC595.
113	
114	2.3 Deletion analysis of <i>aspS</i> gene for tentative promoter
115	
116	In order to analyze the tentative <i>aspS</i> gene promoter, five constructs of the <i>aspS</i> gene
117	were obtained by PCR amplification using specific oligonucleotide primers. These five DNA
118	fragments had different lengths beginning at the upstream region of the <i>aspS</i> gene and were
119	obtained by PCR amplification using 5 forward primers and 1 reverse primer that were
120	composed of <i>PstI</i> and <i>BamHI</i> restriction sites, respectively. The resultant PCR products were
121	digested with PstI and BamHI and separately introduced into the appropriate sites of the
122	promoter probe vector, pGSA, with the promoterless lacZ gene (Masud et al., 2011). This
123	vector was used for the construction of the transcriptional <i>aspS-lacZ</i> gene fusion. The
124	resulting plasmids are described in Table 1. Each of the <i>aspS-lacZ</i> fusion plasmid was

125	separately transferred to <i>E. coli</i> DH5a by heat shock and selected on a LB agar containing 10
126	µg/ml gentamicin and 20µg/ml X-gal. E. coli DH5α harboring the transcriptional aspS-lacZ
127	plasmids inclusive of the promoter probe vector pGSA were cultured in 100 ml of LB
128	medium in a 500-ml Erlenmeyer flask and cultivated at 37°C on a rotary shaker at 200 rpm
129	for 24 h. A 5 ml aliquot of each culture was separately harvested by centrifugation at 12,000
130	rpm for 1 min and the supernatant was discarded. The precipitates were collected and stored
131	at -20°C to assay β -galactosidase activity according to the standard method (Miller, 1972).

133 2.4 Construction of pGEM-T138 derivatives

134

135 The cell morphology of *E. coli* DH5α harboring pGEM-T138 changed from short rod 136 to long filamentous chains when grown at 37 and 42°C. Such morphological changes might 137 be caused by N-terminal β-galactosidase fusing with 138 amino acid C-terminal residues of 138 aspartyl-tRNA synthetase. To test this, three pGEM-T138 derivatives were constructed (also 139 shown in Fig. 1) by (i) removing the non-coding AspRS segment, (ii) a frame shift mutation 140 and (iii) sequence reversal. In detail, plasmid spGEM-T138 was constructed by removing the 141 non-coding AspRS segment in order to allow the synthesis of 138 residues of C-terminal 142 fragments of AspRS. Plasmids pGEM-T138FP and pGEM-T138R were constructed for 143 blocking AspRS synthesis. To construct pGEM-T138FP, pGEM-T138 was digested with PstI 144 to linearize DNA, end-blunting and self-ligation. This end-blunting limited the synthesis to 145 39 amino acids of the β-galactosidase N-terminal. Plasmid pGEM-T138R was constructed by 146 digesting pGEM-T138 with *Eco*RI to linearize followed by re-ligation. The sequence of the 147 insertion fragment in pGEM-T138R was the reverse of pGEM-T138. 148 The DNA fragment encoding 138 amino acid residues of the C-terminal fragments of

AspRS from pGEM-T138 was subcloned into pUC18, designated pUC138 and was used to

150	transfer into <i>E. coli</i> DH5a competent cells. <i>E. coli</i> DH5a harboring pGEM-T138 and its
151	derivatives were grown on LB medium containing ampicillin at 30, 37 and 42°C for 24 h. The
152	overnight cultures were smeared on glass slides, stained by Gram staining and the cell
153	morphology was observed by light microscopy (1,000x).

155 2.5 Construction of *aspS* disruptant

156

157 The plasmid pUC595 and pGEM-T138 (containing the entire 595 or the truncated 138 residues of AspRS, respectively) were separately digested with the selected restriction 158 159 enzymes to create the appropriate site for Kanamycin resistance (Km^r) cassette insertion, this 160 insertion cause a frame-shift in the DNA sequence (Fig. 1). The resultant plasmids carried an 161 insert of the 900 bp *Eco*RV Km^r cassette from *Eco*RV digested pTKm (Yoshida *et al.*, 2003) 162 at the region encoding N-terminal and C-terminal, designated pUC595N::Km^r and 163 pUC595C::Km^r, respectively. In addition, the plasmid pGEM-T138 was digested with Smal, then the 900 bp *Eco*RV Km^r cassette was inserted at the *Sma*I site located in the coding 164 165 sequence of C-terminal *aspS* gene (adjacent motif 3), designated pGEM-T138C::Km^r (Fig. 1). Finally, three plasmids containing the aspS disruptants, aspS -595N, aspS -595C or aspS -166 167 138C, were separately transferred into *E. coli* DH5a by heat shock and these are designated pUC595N::Km^r, pUC595C::Km^r and pGEM-T138C::Km^r. The E. coli DH5α harboring those 168 169 plasmids were grown at 30, 37 and 42°C for 24 h. The overnight cultures were observed 170 microscopically as Gram stained smears. 171

173

172

2.6 Site-directed mutagenesis of *aspS* gene

174 In order to determine the role of the ATP-binding motif in the truncated C-terminal 175 AspS, site-directed mutagenesis based on the PCR fusion method was performed. F-SDaspS 176 and R-SDaspS were designed to cover the sequence between 1,388 nucleotides (nt) 177 downstream of the ATG codon to 410 nt downstream of the TGA stop codon of aspS gene. 178 These primers generate an 811-bp PCR product coding for 132 amino acid residues of 179 truncated C-terminal AspRS. A mutagenic primer set was designed in order to generate one 180 amino acid changed in a conserved ATP-binding motif. A 237-bp DNA fragment containing 181 the upstream region of the *aspS* gene was amplified by F-SDaspS and R-D539V using 182 pGEM-T138 as a template. In addition, a 592-bp downstream fragment was amplified by F-183 D539V and R-SDaspS. These two PCR products were purified by MagExtractor-Purified Kit 184 (Toyobo, Osaka, Japan). The second PCR amplification was performed to fuse the two DNA 185 fragments using F-SDaspS and R-SDaspS as PCR primers. Fifty ng of each 237-bp and 592bp DNA fragments carrying the *aspS* gene were used as DNA templates. An 811-bp PCR 186 product was obtained and cloned into pGEM-T[®] Easy Vector. A recombinant plasmid with 187 188 the same direction as the *lac* promoter was selected. Alteration of the sequence at the ATP-189 binding motif was confirmed by nucleotide sequencing. 190 191 2.7 Truncated *aspS* gene and cell morphology at high temperature 192 193 A 1.3 kb EcoRI DNA fragment carrying partial aspS gene encoding truncated C-194 terminal fragments of AspRS was constructed from the EcoRI-digested pGEM-T138 and 195 further inserted into the broad host range vector pCM62 (Marx and Lidstrom, 2001) at the 196 EcoRI site. The resultant plasmid was designated pCM138 which was transferred into E. coli 197 DH5a cells while the pCM62 vector was transferred to control cells. These E. coli DH5a

198 cells were grown at 30, 37, 39 and 42°C for 24 h and then the morphology examined

199	microscopically in Gram stained smears. The plasmids pCM138 or pCM62 were also
200	transferred via conjugation into A. pasteurianus SKU1108 and grown at 30, 37, 39 and 42°C
201	for 24 h and again cell morphology assessed.
202	
203	The complete sequence data of the <i>aspS</i> gene from <i>A</i> . <i>pasteurianus</i> SKU1108 have
204	been submitted to the GenBank databases under accession no. JQ837915.
205	
206	3. Results
207	
208	3.1 Cloning, nucleotide sequencing and putative promoter region of <i>aspS</i>
209	
210	The chromosomal DNA from A. pasteurianus SKU1108 was used as the template for
211	RAPD amplification using the random 10-mer AD01 as described in materials and methods.
212	Three typical RAPD-PCR amplified DNA fragments (0.6, 1.0 and 1.3 kb) could be clearly
213	observed in 13 thermotolerant strains; including A. pasteurianus SKU1108 (unpublished
214	data). Each of them was cloned into pGEM [®] -T Easy vector. Of these, only pGEM-T138
215	containing the 1.3 kb RAPD product caused a morphological change in <i>E. coli</i> DH5 α at high
216	temperature. The 1.3 kb EcoRI DNA fragment was used as a DNA probe for Southern
217	hybridization of the chromosomal DNA from A. pasteurianus SKU1108 and then colony
218	hybridization for shotgun cloning and the resultant plasmids are shown in Fig. 1. The HindIII
219	DNA fragment in pUC595 consisted of 2,770 nucleotides. The open reading frame (ORF)
220	show high sequence homology to the <i>aspS</i> gene, this ORF consisted of 1,788 nucleotides,
221	started with an ATG at nucleotide 571-573 and terminated with TGA at 2,356-2,358. The
222	highly conserved tetrapeptide Gly-Val-Asp-Arg motif (motif 3) was located at amino acids
223	537-540 of the AspRS C-terminus.

224	The upstream region(s) of the <i>aspS</i> gene was analyzed by deletion analysis as
225	described in materials and methods. The resulting plasmids labelled pGSAF1, pGSAF2,
226	pGSAF3, pGSAF4 and pGSAF5 carried 50, 107, 173, 283 and 563 bp of the upstream region
227	of <i>aspS</i> gene, respectively (Table 1). The structures of the resultant DNA fragments are
228	shown in Fig. 2A. The cultured transformants showed highest β -galactosidase activity in that
229	harboring pGSAF3 (173 bp upstream from ATG) (Fig. 2B).
230	
231	3.2 Truncated aspS gene from A. pasteurianus SKU1108 on cell morphology
232	
233	Figure 3 shows <i>E. coli</i> DH5α cells grown at 30, 37 and 42°C and harboring either
234	pUC595 (synthesizing complete 595 residues), pUC138 or pGEM-T138 (synthesizing 138

residues of C-terminal fragments of AspRS). The pUC595 cells at all temperatures showed

normal rod shapes (Fig. 3A). Those cells harboring pUC138 or pGEM-T138 were also

normal rods but cells incubated at 37 and 42°C displayed abnormal short and long

filamentous shapes (Fig. 3B). Figure 3C shows normal cells incubated at 30°C and abnormal

filamentous pGEM-T138 cells from 37°C as viewed by scanning electron microscopy.

240 Plasmid pGEM-T138 contained a C-terminal fragment of AspRS with the same orientation as

241 the SP6 promoter and in-frame fusion with N-terminal β-galactosidase. Several derivatives of

pGEM-T138 were constructed (Fig. 1). The spGEM-T138 was constructed by deletion of 0.6

243 kb downstream region from the stop codon of *aspS* gene. This plasmid caused the cells to

become long and filamentous at 37 and 42°C because the deletion had no effect on the fusion

245 peptide. Two plasmids were constructed to create a frame-shift mutation (pGEM-T138FP)

and reversed sequence from the promoter (pGEM-T138R). These two plasmids prevented the

247 synthesis of the β -gal C-terminal fragments of AspRS fusion peptides. *E. coli* DH5 α cells

harboring either of these two plasmids grew normally at 37 or 42°C.

250 3.3 Disruption of *aspS* gene and cell morphology

The recombinant plasmids pUC595N··Km ^r pUC595C··Km ^r pGFM-T138C··Km ^r
The recombinant plasmids poessortKin, poessoeKin, poesition 1150eKin
which coded the AspRS protein with Km ^r insertion at a position 44, 508 and 535 downstream
from the first amino acid (methionine) were introduced into <i>E. coli</i> DH5α. The morphology
of <i>E</i> . <i>coli</i> DH5 α harboring pUC595N::Km ^r was changed from short rod to a few long
filaments when grown in LB medium at 37 and 42°C (Fig. 4A). Nevertheless, cells harboring
pUC595C::Km ^r in which the AspRS protein was disrupted at the C-terminal but carrying the
normal motif 3 exhibited the same morphological change (Fig. 4B) as those cells harboring
pUC595N::Km ^r , but not in <i>E. coli</i> harboring pUC595.
Moreover, Km ^r insertion into pGEM-T138C::Km ^r at amino acid position 535 adjacent
to the motif 3 ATP binding domain produced short rod morphology (Fig. 4C).
3.4 Effect of altered amino acid residue at ATP-binding motif
Site-directed mutagenesis based on the PCR fusion method was used to determine an
essential role of ATP-binding motif in the truncated C-terminal AspS protein. A plasmid,
designated as pD539V, was prepared encoding mutated ATP-binding motif. At the conserved
motif 3(Gly-Val-Asp-Arg), a single amino acid alteration was presented in pD539V, in which
539Asp was changed to Val. E. coli DH5α harboring the mutagenic plasmid was grown on
LB agar at 37°C for 18 h, and the cell morphology was compared (Fig. 5). These cells
harboring pGEM-T138 displayed abnormal short and long filamentous shapes at 37°C (Fig.
5A). <i>E. coli</i> DH5α harboring a mutated ATP-binding motif, one site amino acid alteration in
pD539V plasmid, showed normal shapes at 37°C (Fig. 5B).

275 3.5 Overexpression of truncated *aspS* gene on cell morphology

276

277	The 1.3 kb DNA fragment carrying the partial <i>aspS</i> gene synthesizing 138 amino
278	acids of the C-terminal of AspRS was inserted into a broad host range vector, pCM62. A.
279	pasteurianus SKU1108 harboring each of pCM138 and pCM62 are illustrated in Fig. 5.
280	Normally, A. pasteurianus SKU1108 grows as short rods at 30, 37 and 39°C but with
281	different morphology at 42°C, and the two conjugants, pCM138 and pCM62, exhibited the
282	same cell shape as the parental strain. Minor abnormalities were only observed when A.
283	pasteurianus SKU1108 harboring the truncated C-terminal fragments of AspRS was grown at
284	39°C (Fig. 6A). Thus, the truncated C-terminal fragments of AspRS cause less severe cell
285	structural changes in A. pasteurianus SKU1108 at this temperature than in E. coli. However,
286	the truncated C-terminal fragment of AspRS in pCM138 inhibited division of <i>E. coli</i> DH5α
287	cells at high temperature, an effect which was more severe than in A. pasteurianus SKU1108
288	(Fig. 6).
289	
290	4. Discussion
291	

In this study, we cloned recombinant plasmids that contain different length constructs of the *aspS* gene encoding Aspartyl-tRNA synthetase (AspRS) from *A. pasteurianus* SKU1108, a thermotolerant acetic acid bacterium. Thus all the short plasmids carrying the truncated C-terminal sequence containing the functional ATP binding site at motif 3 were unable to support cell division. The full length gene can support cell division but does not with Km^r cassette inserts at amino acid position 44 and 508. A Km^r cassette attached directly to motif 3 restored normal cell morphology, presumably by interfering with ATP binding sothe amount of cytosolic ATP was adequate to support normal cell morphology.

The amino acid sequence of AspRS from *A. pasteurianus* SKU1108 showed 99% sequence similarity with *A. pasteurianus* NBRC 3283. These two strains have led to a physiological understanding of the relationships between thermotolerance and phylogeny via genome-wide phylogenetic analysis (Matsutani *et al.*, 2012).

304 Deletion analysis of upstream regions of *aspS* gene suggested that the tentative *aspS* 305 gene promoter might be located at around 173 bp upstream from the start codon. However, 306 the enzyme activity is reduced when it contain more sequences in upstream region it might be 307 due to contain repressor binding site.

308 Excess of intact *aspS* in *E. coli* DH5α harboring pUC595, overexpressing the
309 complete gene sequence, preserved normal cell morphology which may reflect feedback
310 regulation of further gene expression, perhaps thereby limiting the excessive binding of ATP.
311 Such feedback regulation has been observed in yeast by Frugier *et al.* (2005) who cloned the
312 *aspS* gene into a yeast null strain for AspRS.

313 Insertion of the Km^r cassette in pUC595N::Km^r and pUC595C::Km^r created abnormal 314 E. coli cells implying excessive functional ATP binding at motif 3. This ATP binding domain 315 plays an important role in amino acid activation in aminoacylation during protein synthesis 316 (Ibba and Söll, 2000; Martin et al., 1997; Metlitskaya et al., 2006). Sequence analysis of 317 yeast aspS mutants shows that charged residues at the C-terminus are necessary for ATP 318 binding and stabilizing the reaction transition states (Cavarelli et al., 1994). Eriani et al. 319 (1990) showed that all residues in motif 3 (Gly-Leu-Asp-Arg) are required for ATP binding. 320 Thus, a single amino acid change causes a dramatic loss of activity and reduced ATP affinity 321 (Ador et al., 1999). In this study, we have confirmed by site-directed mutagenesis that all 322 residues in the ATP binding domain are necessary for ATP binding. Here, C-terminal

323 fragments of AspRS truncation only affects cell function at higher temperatures (for A.

324 *pasteurianus*) as judged by the effect on cell morphology.

325 In this study, we predicted that excessive synthesis of truncated C-terminal fragments 326 of AspRS may cause excessive sequestration of intracellular ATP at high temperature (37°C), 327 so the cell enters into an ATP starvation state. This would have inevitable consequences on 328 cell growth. For example, Fischer et al. (2002) reported that one of the cell division genes in 329 C. crescentus, namely ftsH, encodes the ATP-dependent protease, FtsH. This gene is also 330 found in *E. coli* so a shortage of intracellular ATP may fail to support cell division via FtsH. 331 Many truncated aa-RS paralogs have been found in genomes of several bacteria and 332 considered to be pseudogenes. The E. coli yadB gene encodes for a truncated glutamyl-tRNA synthetase (GluRS) that enables activation and transfer of glutamate on to tRNA^{Asp} (Salazar 333 334 et al., 2004). The function of the shorter aa-RSs paralog is not restricted to amino acid 335 biosynthesis: some of them were shown to have specific esterase function by hydrolysis of 336 misacylated tRNA (Campanacci et al., 2004). In the present study the truncated gene caused 337 short filament formation in A. pasteurianus SKU1108 but at different temperatures compared to E. coli. This implies that the truncated aspS gene caused less severe effects at restricted 338 339 temperature in A. pasteurianus SKU1108 than in E. coli. 340 Our results suggested that the ATP-binding motif 3 of the *aspS* gene has a permissive

341 effect on cell growth and in *A. pasteurianus* SKU1108 at the higher temperature (39°C).

342 While *E. coli* can normally grow at higher temperatures, this fails when expressing the

truncated *aspS* gene. Thus this gene might be involved in cell growth and heat stress response

in *A. pasteurianus* SKU1108 and as well as the response for cell survival at high temperature.

There are several limitations to our work, as well as further studies that need to be undertaken to determine the hypothesized role of ATP binding in the morphological changes we observed. It would be valuable in future work to assess the extent of over-expression of 348 the various gene fragments and constructs. Furthermore, determination of cellular ATP 349 concentrations would be valuable in testing our hypothesis of ATP starvation associated with 350 over-expression of motif 3.

352 Acknowledgments

This work was financial supported by Thailand Research Fund (TRF) under project code RSA4780013, Kasetsart University Research and Development Institute (KURDI), the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Department of Microbiology and The Graduate School, Kasetsart University. Sincere thanks are also expressed to Dr. Wasu Pathom-Aree and Mr. Worapot Jinda for their skillful experiments. Special thanks to Dr. C. Norman Scholfield and Professor Gavin P. Reynolds Naresuan University, Thailand, for their help with the manuscript. Part of this work was carried out through the Asian Core Program collaboration supported by the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT).

- **References**

373	Ador, L.	. Camasses	. A., F	rbs. P.,	Cavarelli.	. I	Moras.	D.,	. Ganglo	ff. J.	. and Eriani.	G
515	- riuor, La	, Cumubbeb	, . . ., . .	41 10 10 9 II • 9	Cuvuicing	, U •9) IVIUI (109		, Gangio	ш, о.	, and Drain,	

374 1999. Active site mapping of yeast aspartyl-tRNA synthetase by *in vivo* selection of

- 376 Campanacci, V., Dubois, Y.D., Becker, D.H., Kern, D., Spinelli, S., Valencia, C., Pagot,
- 377 F., Salomoni, A., Grisel, S., Vincentelli, R., Bignon, C., Lapointe, J., Giegé, R., and
- 378 **Campillau, C.** 2004. The *Escherichia coli yadB* gene product reveals a novel aminoacyl-
- tRNA synthetase like activity. J. Mol. Biol. **337**, 273 283.
- 380 Cavarelli, J., Eriani, G., Rees, B., Ruff, M., Boeglin, M., Mitschler, A., Martin, F.,
- 381 Gangloff, J., Thierry, J.C., and Moras, D. 1994. The active site of yeast aspartyl-tRNA
- 382 synthetase: structural and functional aspects of the aminoacylation reaction. *EMBO J.* 15,
- 383 327 337.
- 384 Eriani, G., Dirheimer, G., and Gangloff, J. 1990. Aspartyl-tRNA synthetase from
- 385 *Escherichia coli*: cloning and characterisation of the gene, homologies of its translated
- amino acid sequence with asparaginyl- and lysyl-tRNA synthetases. *Nucleic Acids Res.*
- **18**, 7109 7118.
- Fischer, B., Rummel, G., Aldridge, P., and Jenal, U. 2002. The FtsH protease is involved
 in development, stress response and heat shock control in *Caulobacter crescentus*. *Mol. Microbiol.* 44, 461 478.
- Frugier, M., Ryckelynck, M., and Giegé, R. 2005. tRNA-balanced expression of a eukaryal
 aminoacyl- tRNA synthetase by an mRNA-mediated pathway. *EMBO. Rep.* 6, 860 –
- **393 865**.
- **Ibba, M. and Söll, D.** 2000. Aminoacyl-tRNA synthesis. *Annu. Rev. Biochem.* **69**, 617 650.
- 395 Martin, F., Sharples, G.J., Lloyd, R.G., Eiler, S., Moras, D., Gangloff, J., and Eriani, G.
- 396 1997. Characterization of a thermosensitive *Escherichia coli* aspartyl-tRNA synthetase
- 397 mutant. J. Bacteriol. **179**, 3691 3696.

enzyme mutations lethal for cell growth. J. Mol. Biol. 288, 231 – 242.

398	Marx, C.J. and Lidstrom, M.E. 2001. Development of improved versatile broad-host-range
399	vectors for use in methylotrophs and other gram-negative bacteria. Microbiology. 147,
400	2065 – 2075.

- 401 Masud, U., Matsushita, K., and Theeragool, G. 2011. Molecular cloning and
- 402 characterization of two inducible NAD⁺-*adh* genes encoding NAD⁺-dependent alcohol
- 403 dehydrogenases from Acetobacter pasteurianus SKU1108. J. Biosci. Bioeng. 5, 422 –

404 431.

405 Matsutani, M., Hirakawa, H., Nishikura, M., Soemphol, W., Ibnaof Ali, I.A., Yakushi,

- 406 **T., and Matsushita, K.** 2011. Increased number of Arginine- based salt bridges
- 407 contributes to the thermotolerance of thermotolerant acetic acid bacteria, *Acetobacter*
- 408 tropicalis SKU1100. Biochem. Biophys. Res. Commun. 409, 120 124.

409 Matsutani, M., Hirakawa, H., Saichana, N., Soemphol, W., Yakushi, T., and Matsushita,

- 410 **K.** 2012. Genome-wide phylogenetic analysis of differences in thermotolerance among
- 411 closely related *Acetobacter pasteurianus* strains. *Microbiology*. **158**, 229 239.
- 412 Metlitskaya, A., Kazakov, T., Kommer, A., Pavlova, o., Praetorius-Ibba, M., Ibba, M.,
- 413 Krasheninnikov, I., Klob, V., Khmel, I., and Severinov, K. 2006. Aspartly-tRNA
- 414 synthetase is the target of peptide nucleotide antibiotic microcin C. J. Biol. Chem. 281,
- 415 18033 18042.
- 416 Miller, J.H. 1972. Experiments in molecular genetics: a laboratory manual and handbook for
- 417 *Escherichia coli* and related bacteria. Cold Spring Harbor Laboratory, Cold Spring

418 Harbor, New York.

419 Saeki, A., Theeragool, G., Matsushita, K., Toyama, H., Lothong, N., and Adachi, O.

- 420 1997. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation
- 421 at higher temperatures. *Biosci. Biotechnol. Biochem.* **61**, 138 145.

422	Salazar, C.J., Ambrogelly, A., Crain, F.P., McCloskey, A.J., and Söll, D. 2004. A
423	truncated aminoacyl-tRNA synthetase modifies RNA. PNAS. 101, 7536 – 7541.
424	Sharples, G.J. and Lloyd, R.G. 1991. Location of a mutation in the aspartyl-tRNA
425	synthetase gene of <i>E. coli</i> K-12. <i>Mutat. Res.</i> 264, 93 – 96.
426	Thompson, D. and Simonson, T. 2006. Molecular dynamics simulations show that bound
427	Mg ²⁺ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-
428	tRNA synthetase through long-range electrostatic interactions. J. Biol. Chem. 281, 23792
429	- 23803.
430	Yoshida, T., Ayabe, Y., Yasunaga, M., Usami, Y., Habe, H., Nojiri, H., and Omori, T.
431	2003. Genes involved in the synthesis of the exopolysaccharide methanolan by the
432	obligate methylotroph Methylobacillus sp. strain 12S. Microbiology. 149, 431 – 444.
433	
434	
435	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	

448

449 **Figure legends**

450 Fig. 1. Schematic representation of plasmids pGEM-T138, spGEM-T138, pUC138

- 451 (harboring truncated 138 residues C-terminal of aspartyl-tRNA synthetase) and pUC595
- 452 (harboring complete *aspS* gene encoding 595 residues of the same protein) carrying 2.7 kb
- 453 *Hin*dIII DNA fragment. The ATP binding motif (motif 3) and Km^r cassette are indicated by

454 black boxes and triangles, respectively. Plasmids pGEM-T138 and spGEM-T138 allow the

455 synthesis of 138 amino acid residues of AspRS C-terminal whereas pGEM-T138FP and

456 pGEM-T138R were constructed to prevent AspRS synthesis.

457

458 Fig. 2. (A) Structure of DNA fragments is carrying sequences around the tentative *aspS* 459 promoter and (B) comparison of β-galactosidase activity in *E. coli* DH5α harboring the 460 various transcriptional *aspS-lacZ* fusion plasmids shown.

461

462 Fig. 3. Microscopic appearance of *E. coli* DH5α harboring pUC595 (A), pUC138 or pGEM-

T138 (B) and scanning electron microscopic appearance of the cells from B (C) grown on LB
medium containing 50 μg/ml ampicillin at 30, 37 and 42°C. The bacterial cells were observed

under light and scanning electron microscopes with magnifying power of 1,000x (scale bars =

466 10 μ m) and 15,000x (scale bars = 1 μ m).

467

468 Fig. 4. Microscopic appearance of *E. coli* DH5α harboring recombinant plasmids carrying

469 disrupted *aspS* gene. Plasmids pUC595N::Km^r (A), pUC595C::Km^r (B) and pGEM-

470 T138C::Km^r(C) carrying Km^r cassette inserted at amino acid 44, 508 and 535, respectively.

471	Then cultures were grown on LB medium at 30, 37 and 42°C for 24 h. Magnification 1,000x
472	(scale bars = $10 \ \mu m$).

474	Fig. 5. Microscopic ap	pearance of <i>E. coli</i> DH5α	harboring pGEM-T13	38 (A) and pD539V (B)
-----	------------------------	---------------------------------	--------------------	-----------------------

475 grown on LB medium containing 50 μ g/ml ampicillin at 37°C. The bacterial cells were

476 observed under light microscopes, Axio Imager. A1, ZEISS, with magnifying power of

477 1,000x.

478

479	Fig. 6. Microscopic appearance of A. pasteurianus SKU1108 harboring pCM138 (A), pCM62
480	(B) were grown on potato medium and <i>E. coli</i> DH5α harboring pCM138 (C), pCM 62 (D)

481 were grown on LB medium at 39°C for 24 h. Magnification 1,000x (scale bars = $10 \ \mu m$). The

482 black arrows were indicated the minor abnormal cells of *A. pasteurianus* SKU1108 harboring

483 pCM138 when grown at higher temperature (39°C).

484

485 Table legends

486

487 Table 1. Bacterial strains and plasmids used in this study.

*Figure

Fig. 1.

-

-

+

pGEM-T 138C::Km^r Fig. 5.

Fig. 6.

Bactrial strain	Relevant characteristics	Reference
and Plasmid	Relevant enalueteristics	
A. pasteurianus	Source of <i>aspS</i> gene	Saeki et al., 1997
SKU1108		
E. coli DH5α	$supE44 \Delta lacU169 (\phi 80 lacZ\Delta M15) hsdR17 recA1 endA1 gyrA96$	Toyobo
	thi-1 relA1	
pGEM-T [®] Easy	Ap ^r , <i>lacZ</i>	Promega
pGEM-T138 ^a	Ap ^r , 1.3 kb DNA fragment carrying truncated C-terminal AspRS	This study
spGEM-T138 ^a	Ap ^r , 0.7 kb <i>Eco</i> RI fragment DNA fragment carrying truncated C-	This study
	terminal AspRS	
pGEM-T138R ^a	Ap ^r , constructed for blocking C-terminal AspRS synthesis by	This study
	inserted at opposite direction from promoter	
pGEM-T138FP ^a	Apr, constructed for blocking C-terminal AspRS synthesis by	This study
	created frame-shift mutation	
pGEM-	Ap ^r , insertion of Km ^r cassette at amino acid 535 in truncated	This study
T138C::Km ^r	aspS gene on pGEM-T138	
pD539V ^a	Ap ^r , 0.8 kb DNA fragment carrying truncated C-terminal	This study
	AspRS; 539Asp of AspS is changed to Val	
pUC18	Ap^{r} , $lacZ^{2}$, $lacI$	Biolab
pUC138 ^a	Apr, 0.8 kb DNA fragment carrying truncated C-terminal AspRS	This study
pCM62	Acetobacter-E.coli shuttle vector, Tc ^r , lacZ	Marx and Lidstrom,
		2001
pCM138 ^a	Tc ^r , 0.8 kb DNA fragment carrying truncated C-terminal AspRS	This study
pUC595 ^b	Ap ^r , 2.7 kb DNA fragment carrying entire AspRS	This study
pUC595N::Km ^r	Ap ^r , insertion of Km ^r cassette at amino acid 44 in <i>aspS</i> gene on pUC595	This study
pUC595C::Km ^r	Ap ^r , insertion of Km ^r cassette at amino acid 508 in <i>aspS</i> gene on pUC595	This study
pGSA	Gm^r , promoter probe vector carrying the promoterless <i>lacZ</i> gene	Masud et al., 2011
pGSAF1	Gm ^r , carrying a 563 bp promoter region of <i>aspS</i> gene ^c	This study
pGSAF2	Gm ^r , carrying a 283 bp promoter region of <i>aspS</i> gene ^c	This study
pGSAF3	Gm ^r , carrying a 173 bp promoter region of <i>aspS</i> gene ^c	This study
pGSAF3	Gm^r , carrying a 173 bp promoter region of $aspS$ gene ^c	This study

Table 1 Bacterial strains and plasmids used in this study

^aThe indicates DNA fragment carrying 138 amino acid truncated C-terminal AspRS ^bThe indicates DNA fragment carrying entire 595 amino acid AspRS ^cThe indicates length excluded some part of structural gene, *aspS* (22 bp)