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1

The purpose of this paper is to investigate the dual orbits correspondence of
the non-regular simple prehomogeneous representation (GL(1)? x Sp(2), Ay +
A1,V (5) @ V(4)) (see Proposition 2).

2

Preliminaries. In the following, we denote by G the group GL(1)? x Sp(2)
and by p the representation A + Ay of Sp(2) with scalar multiplications.
We define an element e; of C* by e; = ¥(1,0,0,0), e; = %(0,1,0,0), e3 =
£(0,0,1,0), e4=%(0,0,0,1). Put u; = %(el Nes —eas Neyg),ug = e Aeg,uz =
e1 N ey, uy = €3 A e3,us = ez A eq. The representation space of p is identified
with
V={2=(z1,22); 11 € V1,22 € Va},

5 2 1
where ‘/1 ={.’I31 =Zx,~1ui€ /\(C4;37i1 S C (1 § 1 § 5)} and ‘/2={$2=in261'
€eChrzoeC(1 é_i < 4)}. Then the action p is given by i

p(9)Z = (ap2(g)x1, Bgz2)

for g=(a, 8;9) € G=GL(1)? x Sp(2) and &= (x1,z2) € V, where p3(g)(e; A
ex) = (g¢;) A (gex)-

Proposition 1. The triplet (G, p, V') has eight orbits p(G)Z; (1 £ ¢ < 8)
where the representative points Z; (1 < ¢ £ 8) are given as follows:
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Representative point Codimension
(1) &1 = (e1 Nea +e3 Aeg,e1)
(2) (61 A €9, 63)

(3) $3 = (61 A €9 + €3 A €4,€1 +€4)
(4) T4 = (e1 Nes, €1)

(5) s = (e1 A ea + e3 A eq,0)
(6) 6 — (61 A 62,0),

(7) 27 = (0, €1)

(8) Zs = (0,0).
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3

Let A be the conormal bundle of an orbit S in V and A* that of an orbit S*
in V*. When A = A*, we say that S and S* are the dual orbits of each other.

Since G is reductive, we have (G, p*,V*) = (G, p, V) and hence the dual
space V* has also eight G-orbits. We identify V and V* as usual.

Proposition 2. The dual orbits correspondence of (GL(1)% x Sp(2), Ay +
A;) is given as follows:

Representative point Point of the dual orbit
Ci'l (61 N eg + e3 /\64,61) fi’g
(61 N es, 63) fi‘e
(61 N e + e3 /\64,61 +€4) 574
.’L‘4 = (61 A 62,61) .’23
.775 (61 N eq + €3 A €4, 0) .1'7
56 = (61 AN €9, O) 12’2
5?7 = (0, 61) 535
g = (07 0) j’:1

For a point Z of V, we denote by Gz = {g € G; p(9)Z = Z} the isotropy
subgroup of G at Z. Let &z (resp.®) be the Lie algebra of G; (resp.G), and
dp; (resp.dp) the infinitesimal representation of pz = p* |, (resp.p).

We identify the cotangent bundle 7*V of V with V x V*. Let = be a
point of V. The conornal vector space V7 is defined by

VE = (dp(8)z)* = {y € V*; < dp(A)Z,y >= 0 for all A € &}.
Since Vig): = p*(g)VZ, the isotropy subgroup G; at Z acts on V7 by p;z =
p* |, and hence we obtain the triplet (Gz, pz, V7).
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The conormal bundle T'(p(G)Z)* of an orbit p(G)Z is, by definition, the
Zariski-closure of {(v,w) € VxV*;v € p(G)Z,w € V;*}. The group G acts on
T(p(G)Z)* by (,y) = (p(9)z, p*(g)y) for g € G. Then G acts on T(p(G)Z)*
prehomogenously if and only if the triplet (G, pz, V5') is a prehomogenous
representation.

If the triplet (Gz,pz, V) is a prehomogeneous representation, then we
denote by o its generic point. Moreover, if there is one one-codimensional
orbit, then ¢; denotes a point of that orbit.

Put
a; a2 by b1z
a1 Q2 b1z by
sp(2)=< A= € sl(4
p( ) ¢ C2| —a1 —ax1 ( )
Ci2 Co | —Q12 —Q2
For A € sp(2), we have the following:
dp2(A) (Ul, Uz, U3, U4, u5)
0 C12 —ag1 a2 —b1a
bi2 | a1+ a2 by —b; 0
= (w1, U, U3, Us, us) | —a12 Co ay — ap 0 by
as —Cy 0 az — aq —by
—C12 0 G —C2 —a) — ag
(1) The case of Z; = (e; A ex + €3 A eq, €1).
a; a2 b1 0
_ . 0 —a 0 0
6; = {(0, ai; 0 0 a4, 0 ) S @}
0 —b|—ar o
Vi =1{(0,0) }. %o = (0,0) € p*(G)7s.
(2) The case of o = (e; A eg, €3).
ay 0 0 0
.. = {A = (_al — a9, a1, 821 a2 0 b2 ) € 6}
2 T 0 0 —a; —as '
0 0 0 —a2
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Vz, = C{(us,0)). dpz,(A)(us,0) = 2(a1 + a2)(us, 0).
gO = (U5,0) € p*(G)-;i:G and gl =0.

(3) The case of 3 = (e; A ey + €3 A ey, €1 + €4).

ay a2 b, b12
1 agr —a1| b2  —ag
Gz, = {A=1(0,—a; — byy; € Bl
7 =1 ( ' = azi bz | —a1 —an ) J
b1z —bi | —ai2 a1

Vi, = C(v1,v2) where vy = (—2u1 + up — us, —2e; + 2e4) and vy = (ug,
es + 63).

i %, -a
oo = ) (o) 30 )
Jo = v € p*(G)iy4.

(4) The case of Z, = (e; A eg, €1).

ay a2 by b12
< 0 b b
&;, ={A=(—a1 —a, —ay; 0 %2 _;21 02 ) € B}
0 0 ‘ —Qij2 —0a9

Vz = C(v1,v3,v3) where vy = (uy, —e4), v2 = (ug,€3) and vz = (us,0).

)
5 a; + as 0 0
dpi4(A)(U1aU27v3) = (vl’v2’03) ( —ai2 2a; 0 ) .
1)12 bg 2(0,1 + 0,2)
%o = v1 € p*(G)Z3 and §, = vy € p*(G)T4.

(5) The case of Z5 = (e; A ex + e3 A e4,0).

ay a2 b b2

1 az; —ap | big by
Gz, ={A=(0,8,A= € &).
{ 0.5 —by b2 | —a; —am; ) }

biz —bi | —ar2 ay

Vi = C(vy,vz,v3,v4) where vy = (0,e1), va = (0,€2), v3 = (0,€3) and
Vg = (O) 6%)

dpz5(A)(0,y) = (0, — *Ay — By) for (0,y) € VZ,.

Yo =V = (0, 61) < p*(G):i:7
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(6) The case of T = (e1 A e2,0).

a1 a2 by b2
i DA an az | bip by

65;6 = {A = (—a1 - ag,ﬂ, A= 0 0 Za, —ay, ) € @}
0 0 —Q12 —a9

Vz = C{vi,vq,v3,v4,v5) where v; = (u5,0), v2 = (0,€1), v3 = (0,€3),
vy = (0,e3) and vs = (0, e4).

dpzs(A)(Tsus, y) = (2(a1 + az)zsus, — Ay — By) for (zsus,y) € Vgc*6

Yo = v1 + v2 = (us, 1) € p*(G)Zz and §1 = vz € p*(G)Z7.

(7) The case of &7 = (0,¢€1).

a; ai2| b1 b2

i A 0 a b12 by
®s = {A= (0 —anA= | g—t=2—2— | ce)

0 Ca —Q12 —Aa2

‘/;7 = C(Ul,vz,’U3,U4,’U5> where v = (Ul,O), Vg = (’u2,0), V3 = (U3,0),
Vg = (U4,0) and Vs = (’LL5,0).

dps,(A)(z,0)

0 —b12 ai12 0 0
0 —a); — A —Cy 0 0
= ( 0 —b, —a; + ay 0 0 x — azx,0)
—ag by 0 ay — as Co
b12 0 —bl b2 a; + as

for (z,0) € V7 .
Yo = v2 +vs = (uz + us,0) € p*(G)Z5 and §; = vy € p*(G)Zs.

(8) The case of g = (0,0).
In this case, we have (G, oz, V) = (G, p, V). §o = &1, th = Zo.
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