On the Correspondence of Dual Orbits Related to Some Representation, I

KASAI Shinichi

(Received September 27, 2013)

1

The purpose of this paper is to investigate the dual orbits correspondence of the non-regular simple prehomogeneous representation $(GL(1)^2 \times Sp(2), \Lambda_2 + \Lambda_1, V(5) \oplus V(4))$ (see Proposition 2).

2

Preliminaries. In the following, we denote by G the group $GL(1)^2 \times Sp(2)$ and by ρ the representation $\Lambda_2 + \Lambda_1$ of Sp(2) with scalar multiplications.

We define an element e_i of \mathbb{C}^4 by $e_1 = {}^t(1,0,0,0)$, $e_2 = {}^t(0,1,0,0)$, $e_3 = {}^t(0,0,1,0)$, $e_4 = {}^t(0,0,0,1)$. Put $u_1 = \frac{1}{2}(e_1 \wedge e_3 - e_2 \wedge e_4)$, $u_2 = e_1 \wedge e_2$, $u_3 = e_1 \wedge e_4$, $u_4 = e_2 \wedge e_3$, $u_5 = e_3 \wedge e_4$. The representation space of ρ is identified with

$$V = {\tilde{x} = (x_1, x_2); x_1 \in V_1, x_2 \in V_2},$$

where $V_1 = \{x_1 = \sum_{i=1}^5 x_{i1} u_i \in {}^2 \mathbb{C}^4; x_{i1} \in \mathbb{C} \ (1 \le i \le 5) \}$ and $V_2 = \{x_2 = \sum_{i=1}^4 x_{i2} e_i \in \mathbb{C}^4; x_{i2} \in \mathbb{C} \ (1 \le i \le 4) \}$. Then the action ρ is given by

$$\rho(\tilde{g})\tilde{x} = (\alpha \rho_2(g)x_1, \beta gx_2)$$

for $\tilde{g} = (\alpha, \beta; g) \in G = GL(1)^2 \times Sp(2)$ and $\tilde{x} = (x_1, x_2) \in V$, where $\rho_2(g)(e_j \land e_k) = (ge_j) \land (ge_k)$.

Proposition 1. The triplet (G, ρ, V) has eight orbits $\rho(G)\tilde{x}_i$ $(1 \le i \le 8)$ where the representative points \tilde{x}_i $(1 \le i \le 8)$ are given as follows:

Representative point	Codimension
$(1) \ \tilde{x}_1 = (e_1 \wedge e_2 + e_3 \wedge e_4, e_1)$	0
$(2) \ \tilde{x}_2 = (e_1 \land e_2, e_3)$	1
(3) $\tilde{x}_3 = (e_1 \wedge e_2 + e_3 \wedge e_4, e_1 + e_4)$	2
$(4) \ \tilde{x}_4 = (e_1 \wedge e_2, e_1)$	3
$(5) \ \tilde{x}_5 = (e_1 \wedge e_2 + e_3 \wedge e_4, 0)$	4
(6) $\tilde{x}_6 = (e_1 \wedge e_2, 0),$	5
$(7) \ \tilde{x}_7 = (0, e_1)$	5
(8) $\tilde{x}_8 = (0,0)$.	9

3

Let Λ be the conormal bundle of an orbit S in V and Λ^* that of an orbit S^* in V^* . When $\Lambda = \Lambda^*$, we say that S and S^* are the dual orbits of each other.

Since G is reductive, we have $(G, \rho^*, V^*) \cong (G, \rho, V)$ and hence the dual space V^* has also eight G-orbits. We identify V and V^* as usual.

Proposition 2. The dual orbits correspondence of $(GL(1)^2 \times Sp(2), \Lambda_2 + \Lambda_1)$ is given as follows:

Representative point	Point of the dual orbit
$\tilde{x}_1 = (e_1 \wedge e_2 + e_3 \wedge e_4, e_1)$	$ ilde{x}_8$
$\tilde{x}_2 = (e_1 \wedge e_2, e_3)$	$ ilde{x}_6$
$\tilde{x}_3 = (e_1 \wedge e_2 + e_3 \wedge e_4, e_1 + e_4)$	$ ilde{x}_4$
$\tilde{x}_4 = (e_1 \wedge e_2, e_1)$	$ ilde{x}_3$
$\tilde{x}_5 = (e_1 \wedge e_2 + e_3 \wedge e_4, 0)$	$ ilde{x}_7$
$\tilde{x}_6 = (e_1 \wedge e_2, 0)$	$ ilde{x}_2$
$\tilde{x}_7 = (0,e_1)$	$ ilde{x}_5$
$\tilde{x}_8 = (0,0)$	$ ilde{x}_1$

For a point \tilde{x} of V, we denote by $G_{\tilde{x}} = \{\tilde{g} \in G; \rho(g)\tilde{x} = \tilde{x}\}$ the isotropy subgroup of G at \tilde{x} . Let $\mathfrak{G}_{\tilde{x}}$ (resp. \mathfrak{G}) be the Lie algebra of $G_{\tilde{x}}$ (resp.G), and $d\rho_{\tilde{x}}$ (resp. $d\rho$) the infinitesimal representation of $\rho_{\tilde{x}} = \rho^* |_{G_{\tilde{x}}}$ (resp. ρ).

We identify the cotangent bundle T^*V of V with $V \times V^*$. Let \tilde{x} be a point of V. The conornal vector space $V_{\tilde{x}}^*$ is defined by

$$V_{\tilde{x}}^* = (d\rho(\mathfrak{G})\tilde{x})^{\perp} = \{ y \in V^*; \langle d\rho(A)\tilde{x}, y \rangle = 0 \text{ for all } A \in \mathfrak{G} \}.$$

Since $V_{\rho(G)\tilde{x}}^* = \rho^*(g)V_{\tilde{x}}^*$, the isotropy subgroup $G_{\tilde{x}}$ at \tilde{x} acts on $V_{\tilde{x}}^*$ by $\rho_{\tilde{x}} = \rho^*|_{G_{\tilde{x}}}$, and hence we obtain the triplet $(G_{\tilde{x}}, \rho_{\tilde{x}}, V_{\tilde{x}}^*)$.

The conormal bundle $T(\rho(G)\tilde{x})^{\perp}$ of an orbit $\rho(G)\tilde{x}$ is, by definition, the Zariski-closure of $\{(v,w)\in V\times V^*; v\in \rho(G)\tilde{x}, w\in V_v^*\}$. The group G acts on $T(\rho(G)\tilde{x})^{\perp}$ by $(x,y)\mapsto (\rho(g)x,\rho^*(g)y)$ for $g\in G$. Then G acts on $T(\rho(G)\tilde{x})^{\perp}$ prehomogenously if and only if the triplet $(G_{\tilde{x}},\rho_{\tilde{x}},V_{\tilde{x}}^*)$ is a prehomogenous representation.

If the triplet $(G_{\tilde{x}}, \rho_{\tilde{x}}, V_{\tilde{x}}^*)$ is a prehomogeneous representation, then we denote by \tilde{y}_0 its generic point. Moreover, if there is one one-codimensional orbit, then \tilde{y}_1 denotes a point of that orbit.

Put

$$\mathfrak{sp}(2) = \left\{ A = \begin{pmatrix} a_1 & a_{12} & b_1 & b_{12} \\ a_{21} & a_2 & b_{12} & b_2 \\ \hline c_1 & c_{12} & -a_1 & -a_{21} \\ c_{12} & c_2 & -a_{12} & -a_2 \end{pmatrix} \in \mathfrak{sl}(4) \right\}.$$

For $A \in \mathfrak{sp}(2)$, we have the following:

 $d\rho_2(A)(u_1,u_2,u_3,u_4,u_5)$

$$= (u_1, u_2, u_3, u_4, u_5) \begin{pmatrix} 0 & c_{12} & -a_{21} & a_{12} & -b_{12} \\ \hline b_{12} & a_1 + a_2 & b_2 & -b_1 & 0 \\ -a_{12} & c_2 & a_1 - a_2 & 0 & b_1 \\ \hline a_{21} & -c_1 & 0 & a_2 - a_1 & -b_2 \\ -c_{12} & 0 & c_1 & -c_2 & -a_1 - a_2 \end{pmatrix}.$$

(1) The case of $\tilde{x}_1 = (e_1 \wedge e_2 + e_3 \wedge e_4, e_1)$.

$$\mathfrak{G}_{\tilde{x}_1} = \{(0, -a_1; \begin{pmatrix} a_1 & a_{12} & b_1 & 0 \\ 0 & -a_1 & 0 & 0 \\ \hline 0 & 0 & -a_1 & 0 \\ 0 & -b_1 & -a_{12} & a_1 \end{pmatrix}) \in \mathfrak{G}\}.$$

$$V_{\tilde{x}_1}^* = \{ (0,0) \}. \ \tilde{y}_0 = (0,0) \in \rho^*(G)\tilde{x}_8.$$

(2) The case of $\tilde{x}_2 = (e_1 \wedge e_2, e_3)$.

$$\mathfrak{G}_{ ilde{x}_2} = \{ ilde{A} = (-a_1 - a_2, a_1; egin{pmatrix} a_1 & 0 & 0 & 0 \ a_{21} & a_2 & 0 & b_2 \ \hline 0 & 0 & -a_1 & -a_{21} \ 0 & 0 & 0 & -a_2 \end{pmatrix}) \in \mathfrak{G}\}.$$

$$V_{\tilde{x}_2}^* = \mathbb{C}\langle (u_5, 0) \rangle. \ d\rho_{\tilde{x}_2}(\tilde{A})(u_5, 0) = 2(a_1 + a_2)(u_5, 0).$$

 $\tilde{y}_0 = (u_5, 0) \in \rho^*(G)\tilde{x}_6 \text{ and } \tilde{y}_1 = 0.$

(3) The case of $\tilde{x}_3 = (e_1 \wedge e_2 + e_3 \wedge e_4, e_1 + e_4)$.

$$\mathfrak{G}_{\tilde{x}_3} = \{ \tilde{A} = (0, -a_1 - b_{12}; \begin{pmatrix} a_1 & a_{12} & b_1 & b_{12} \\ a_{21} & -a_1 & b_{12} & -a_{21} \\ a_{21} & b_{12} & -a_1 & -a_{21} \\ b_{12} & -b_1 & -a_{12} & a_1 \end{pmatrix}) \in \mathfrak{G} \}.$$

 $V_{\tilde{x}_3}^* = \mathbb{C}\langle v_1, v_2 \rangle$ where $v_1 = (-2u_1 + u_2 - u_5, -2e_1 + 2e_4)$ and $v_2 = (u_4, e_2 + e_3)$.

$$d\rho_{\tilde{x}_3}(\tilde{A})(v_1, v_2) = (v_1, v_2) \begin{pmatrix} -2b_{12} & -a_{21} \\ -2(b_1 + a_{12}) & -2a_1 \end{pmatrix}.$$

$$\tilde{y}_0 = v_2 \in \rho^*(G)\tilde{x}_4.$$

(4) The case of $\tilde{x}_4 = (e_1 \wedge e_2, e_1)$.

$$\mathfrak{G}_{ ilde{x}_4} = \{ ilde{A} = (-a_1 - a_2, -a_1; egin{pmatrix} a_1 & a_{12} & b_1 & b_{12} \ 0 & a_2 & b_{12} & b_2 \ \hline 0 & 0 & -a_1 & 0 \ 0 & 0 & -a_{12} & -a_2 \end{pmatrix}) \in \mathfrak{G}\}.$$

$$\begin{split} V_{\tilde{x}_4}^* &= \mathbb{C}\langle\,v_1,v_2,v_3\,\rangle \text{ where } v_1 = (u_1,-e_4),\, v_2 = (u_4,e_3) \text{ and } v_3 = (u_5,0). \\ d\rho_{\tilde{x}_4}(\tilde{A})(v_1,v_2,v_3) &= (v_1,v_2,v_3) \left(\begin{array}{ccc} a_1+a_2 & 0 & 0 \\ -a_{12} & 2a_1 & 0 \\ b_{12} & b_2 & 2(a_1+a_2) \end{array} \right). \\ \tilde{y}_0 &= v_1 \in \rho^*(G)\tilde{x}_3 \text{ and } \tilde{y}_1 = v_2 \in \rho^*(G)\tilde{x}_4. \end{split}$$

(5) The case of $\tilde{x}_5 = (e_1 \wedge e_2 + e_3 \wedge e_4, 0)$.

$$\mathfrak{G}_{ ilde{x}_5} = \{ ilde{A} = (0, eta; A = egin{pmatrix} a_1 & a_{12} & b_1 & b_{12} \ a_{21} & -a_1 & b_{12} & b_2 \ \hline -b_2 & b_{12} & -a_1 & -a_{21} \ b_{12} & -b_1 & -a_{12} & a_1 \end{pmatrix}) \in \mathfrak{G}\}.$$

 $V_{\tilde{x}_5}^* = \mathbb{C}\langle v_1, v_2, v_3, v_4 \rangle$ where $v_1 = (0, e_1), v_2 = (0, e_2), v_3 = (0, e_3)$ and $v_4 = (0, e_4).$

$$d\rho_{\tilde{x}_5}(\tilde{A})(0,y) = (0, -{}^tAy - \beta y) \text{ for } (0,y) \in V_{\tilde{x}_5}^*.$$

$$\tilde{y}_0 = v_1 = (0, e_1) \in \rho^*(G)\tilde{x}_7.$$

(6) The case of $\tilde{x}_6 = (e_1 \wedge e_2, 0)$.

$$\mathfrak{G}_{\tilde{x}_6} = \{\tilde{A} = (-a_1 - a_2, \beta; A = \begin{pmatrix} a_1 & a_{12} & b_1 & b_{12} \\ a_{21} & a_2 & b_{12} & b_2 \\ \hline 0 & 0 & -a_1 & -a_{21} \\ 0 & 0 & -a_{12} & -a_2 \end{pmatrix}) \in \mathfrak{G}\}.$$

 $V_{\tilde{x}_6}^* = \mathbb{C}\langle v_1, v_2, v_3, v_4, v_5 \rangle$ where $v_1 = (u_5, 0), v_2 = (0, e_1), v_3 = (0, e_2), v_4 = (0, e_3)$ and $v_5 = (0, e_4).$

$$d\rho_{\tilde{x}_6}(\tilde{A})(x_5u_5, y) = (2(a_1 + a_2)x_5u_5, -{}^tAy - \beta y) \text{ for } (x_5u_5, y) \in V_{\tilde{x}_6}^*.$$

$$\tilde{y}_0 = v_1 + v_2 = (u_5, e_1) \in \rho^*(G)\tilde{x}_2 \text{ and } \tilde{y}_1 = v_2 \in \rho^*(G)\tilde{x}_7.$$

(7) The case of $\tilde{x}_7 = (0, e_1)$.

$$\mathfrak{G}_{ ilde{x}_7} = \{ ilde{A} = (lpha, -a_1; A = egin{pmatrix} a_1 & a_{12} & b_1 & b_{12} \ 0 & a_2 & b_{12} & b_2 \ \hline 0 & 0 & -a_1 & 0 \ 0 & c_2 & -a_{12} & -a_2 \end{pmatrix}) \in \mathfrak{G}\}.$$

 $V_{\tilde{x}_7}^* = \mathbb{C}\langle v_1, v_2, v_3, v_4, v_5 \rangle$ where $v_1 = (u_1, 0), v_2 = (u_2, 0), v_3 = (u_3, 0), v_4 = (u_4, 0)$ and $v_5 = (u_5, 0).$

$$d\rho_{\tilde{x}_7}(\tilde{A})(x,0)$$

$$= \begin{pmatrix} 0 & -b_{12} & a_{12} & 0 & 0 \\ 0 & -a_1 - a_2 & -c_2 & 0 & 0 \\ 0 & -b_2 & -a_1 + a_2 & 0 & 0 \\ -a_{12} & b_1 & 0 & a_1 - a_2 & c_2 \\ b_{12} & 0 & -b_1 & b_2 & a_1 + a_2 \end{pmatrix} x - \alpha x, 0)$$

for
$$(x,0) \in V_{\tilde{x}_7}^*$$
.
 $\tilde{y}_0 = v_2 + v_5 = (u_2 + u_5, 0) \in \rho^*(G)\tilde{x}_5$ and $\tilde{y}_1 = v_2 \in \rho^*(G)\tilde{x}_6$.

(8) The case of $\tilde{x}_8 = (0,0)$. In this case, we have $(G_{x_8}, \rho_{x_8}, V_{x_8}^*) \cong (G, \rho, V)$. $\tilde{y}_0 = \tilde{x}_1, \ \tilde{y}_1 = \tilde{x}_2$.

References

- [1] Gyoja, A. (1994), Highest weight modules and b-functions of semi-invariants, Publ. RIMS Kyoto Univ. 30, 353-400.
- [2] Sato, M., Kashiwara, M., Kimura, T. and Oshima, T. (1980), Microlocal analysis of prehomogeneous vector spaces, Inv. Math. 62, 117-179.