A Variable Size Mechanism of Distributed
Graph Programs and Its Performance
Evaluation in Agent Control Problems

Shingo Mabu ®»*Kotaro Hirasawa” Masanao Obayashi?
Takashi Kuremoto®
&Graduate School of Science and Engineering, Yamaguchi University, Tokiwadai
2-16-1, Ube, Yamaguchi, 755-8611, Japan

b Information, Production and Systems Research Center, Waseda University,
Hibikino 2-2, Kitakyushu, Fukuoka, 808-0135, Japan

Abstract

Genetic Algorithm (GA) and Genetic Programming (GP) are typical evolutionary
algorithms using string and tree structures, respectively, and there have been many
studies on the extension of GA and GP. How to represent solutions, e.g., strings,
trees, graphs, etc., is one of the important research topics and Genetic Network
Programming (GNP) has been proposed as one of the graph-based evolutionary al-
gorithms. GNP represents its solutions using directed graph structures and has been
applied to many applications. However, when GNP is applied to complex real world
systems, large size of the programs is needed to represent various kinds of control
rules. In this case, the efficiency of evolution and the performance of the systems
may decrease due to its huge structures. Therefore, we have been studied distributed
GNP based on the idea of divide and conquer, where the programs are divided into
several subprograms and they cooperatively control whole tasks. However, because
the previous work divided a program into some subprograms with the same size,
it cannot adjust the sizes of the subprograms depending on the problems. There-
fore, in this paper, an efficient evolutionary algorithm of variable size distributed
GNP is proposed and its performance is evaluated by the tileworld problem that
is one of the benchmark problems of multiagent systems in dynamic environments.
The simulation results show that the proposed method obtains better fitness and
generalization abilities than the method without variable size mechanism.

Key words: evolutionary computation, directed graph, distributed structure,
variable size, reinforcement learning, decision making

* Corresponding author. Tel.: +81-836-85-9519; fax: +81-836-85-9519.
Email address: mabu@yamaguchi-u.ac.jp (Shingo Mabu).

Preprint submitted to Expert Systems with Applications 8 July 2014

1 Introduction

Genetic Algorithm (GA) [1] and Genetic Programming (GP) [2,3] are typical
evolutionary algorithms that have been widely studied. A large number of
real world applications have been also studied such as robot programming [4],
financial problems [5-7] and network security systems [8,9].

In order to create reliable systems using evolutionary algorithms, the program
structures (phenotype and genotype representations) and how to efficiently
evolve them are important issues. Therefore, as an extended algorithm of GA
and GP, Genetic Network Programming (GNP) and its extension using re-
inforcement learning (GNP-RL) [10,11] have been proposed and applied to
many applications [12,13]. The program of GNP is represented by directed
graph structures and evolved by crossover and mutation. Originally, GNP was
proposed because graph structures may have better representation abilities
than strings and trees. In addition, human brain also has a graph (network)
structure, so some inherent abilities may be involved in the graph structure.
In fact, the graph structure has some advantages such as 1) reusability of
nodes and 2) applicability to dynamic environments. Actually, GNP has the
following features. 1) The directed graph structure automatically generates
some repetitive processes like subroutines, and reuses nodes repeatedly dur-
ing the node transition, which contributes to creating programs with compact
structures. 2) Once GNP starts its node transition from the start node, GNP
executes judgment nodes (if-then functions) and processing nodes (action func-
tions) according to the connections between nodes without any terminal nodes.
Therefore, the node transition implicitly memorizes the history of judgment
and actions, which contributes to the decision making in dynamic environ-
ments because GNP can make decisions based not only on the current, but
also the past information.

Evolutionary Programming (EP) [14,15] is a graph-based evolutionary algo-
rithm to create finite state machines (FSMs) automatically, but the charac-
teristics of EP and GNP are different. Generally, FSM must define the state
transition rules for all the combinations of states and possible inputs, thus
the FSM program will become large and complex when the number of states
and inputs is large. On the other hand, the evolution of GNP selects only the
necessary nodes by changing connections between nodes, which means that
GNP can judge only the essential inputs for making decisions at the current
situations. As a result, GNP does not have to consider all the combinations
of the inputs and actions, which makes the compact program structures.

When GNP is applied to complicated real world systems, large size of graph
structures are needed to represent various kinds of rules for adapting to vari-
ous kinds of situations. However, huge structures may decrease the efficiency

of evolution, as a result, decrease the performance of the systems. Therefore,
we have been studied distributed GNP [16] based on the idea of divide and
conquer which is used to create the complicated systems using relatively small
size of the programs [17]. In [16], the programs are divided into several sub-
programs which cooperatively control whole tasks, and this method is applied
to a stock trading model, which shows better performances than the method
without distributed structures. However, because the previous work divided
a program into some subprograms with the same size, it cannot adjust the
sizes of the subprograms depending on the problems. The best size of the
structure is different depending on the difficulties of the task, thus the fixed
size of the structure limits the representation ability of the solutions. In order
to solve this problem, an efficient evolutionary algorithm of variable size dis-
tributed GNP (VS-DGNP) is proposed and its performance is evaluated by
the tileworld problem [18] that is one of the benchmark problems of multia-
gent systems in dynamic environments. The features of the proposed method
are as follows.

The complicated structure can be divided into several substructures with dif-
ferent sizes. Genetic operations can be executed inside each substructure and
between substructures, respectively, as a result, the efficient optimization can
be done. Migration of nodes from a certain substructure to another substruc-
ture is executed to optimize the sizes of the substructures appropriately.

The rest of this paper is organized as follows. In section 2, the basic struc-
ture of GNP and GNP with reinforcement learning (GNP-RL) is reviewed.
In section 3, the structure of distributed GNP and how to realize variable
size structure are explained. In section 4, after simulation environments and
conditions are explained, the results and analysis are described. Section 5 is
devoted to conclusions.

2 Review of Genetic Network Programming with Reinforcement
Learning

Because the proposed Variable Size Distributed GNP (VS-DGNP) is based on
GNP with Reinforcement Learning (GNP-RL), the structure of GNP-RL and
its learning and evolution mechanisms are firstly reviewed. An individual of
GNP-RL is represented by a directed graph structure, evolved by crossover and
mutation, and the node transition rules are learned by reinforcement learning.

start node

5 judgment results
Q Processing node — ~

Fig. 1. Basic structure of GNP

2.1 Basic structure of original GNP

Before explaining the detailed structure of GNP-RL, the basic structure of
original GNP is introduced (Fig. 1). It consists of a number of judgment nodes
and processing nodes and one start node. The number of nodes are determined
in advance depending on the complexity of the problems. Each judgment node
has a if-then branch decision function and each processing node has an action
function. For example, a judgment node examines a sensor input of agents,
and a processing node determines agent actions, e.g., go forward, turn left,
turn right, etc. The role of the start node is to determine the first node to
be executed. Therefore, the node transition starts from the start node, and a
sequence of judgments and processing is created by the connections between
nodes and judgment (if-then) results.

2.2 Additional components in GNP-RL: Subnodes

The difference between the original GNP and GNP-RL is as follows. GNP-
RL has subnodes in each judgment and processing node as shown in Fig.
2. In the original GNP, one function is assigned to each node and executed
when the node is visited. In GNP-RL, several functions (two functions in Fig.
2) are assigned as subnodes and one of them is selected and executed by
a reinforcement learning algorithm. Therefore, reinforcement learning selects
better function/subnode for each node and the route of the node transition is
optimized. For example, subnode 1 in Fig. 2 (a) has a judgment function of
“judge forward”, and subnode 2 has that of “judge right”. Subnode 1 in Fig.
2 (b) has a processing function of “go forward”, and subnode 2 has that of
“turn left”.

A
Judgment nodei 5 Cit Processing node i

B A
IDix Cia Cii
judge forvard)
subnode 1
Qi2 A
IDi2 A Ci2
(judge right; Ci2

subnode 2

NT=1 di=1 B

subnode 2

@ (b)
Fig. 2. Judgment node and Processing node structures

node gene connection gene

nodei | NTi di | Qi1 IDit {Q2 IDi2 | ch ci | cb cb

subnode 1 subnode 2 subnode 1 subnode 2
node function library
Judgment node Processing node

J1 P1
12 P2 E—

Fig. 3. Genotype representation of GNP

2.3 Genotype representation

The graph structure is realized by the combination of gene structures shown
in Fig. 3. NT; shows the node type of node i. NT; = 0 means start node,
NT; = 1 means judgment node, and N7T; = 2 means processing node. d; is
a time delay which shows the time spent on the execution of node ¢. In this
paper, d; of judgment node is set at 1 and that of processing node is set at 5.
The time delay is useful to fix the maximum number of nodes to be executed
in each action step. In this paper, one action step is defined as a certain time
units that an agent can use for executing judgments and processing. If five
time units (time delay) are assigned to one action step, the action step ends
when the time units used by the node transition become five or exceed five.
That is, GNP can execute “less than five judgments nodes and one processing
node” in one action step to determine an action. If “five judgment nodes” are
else executed before visiting a processing node, one action step ends without
taking any actions. The explanation on the time delay is explained in [10] in
more detail.

Qi1, Qiz, - . . are @ values [19] assigned to the subnodes in node i. ID;y, I Dy, . ..
are the node functions of the subnodes. () value estimates the sum of the dis-

counted rewards obtained in the future. The contents of the functions are
described in the node function library. For example, NT; = 1 and I D;y = 2
show that the function of subnode 2 in node ¢ is J5. Node functions used in
the simulations of this paper are shown in Table 1 in section 4.1.

CH,CE ... and C4,C5, ... show the next node numbers connected from
node i. For example, subnode 1 in node i is connected to C#,CE,.... The
superscripts A and B correspond to the judgment results, i.e., if the judgment

result is A at subnode 1, the next node becomes C7.

2.4 Node transition and its learning algorithm

In this paper, Sarsa [19] which is one of the reinforcement learning algorithms
is used for the learning of GNP-RL. The reason why Sarsa is selected is that on-
policy algorithm (Sarsa) is effective to optimize state transitions considering
the effect of e— greedy policy used in this paper. The node transition of GNP-
RL is carried out as follows.

When the current node is a judgment node, one of the subnodes is selected
according to e—greedy policy, i.e., the subnode with the largest () value is
selected with the probability of 1 — &, otherwise one subnode is randomly se-
lected. After executing the function of the selected subnode, the current node
is transferred to the next node according to the judgment result and connec-
tion. In Fig. 2 (a), suppose subnode 1 is selected, then one of the connections
(A or B) is selected according to the judgment result. When the current node
is a processing node, one of the subnodes is selected by the same way as a
judgment node. After executing the action of the selected subnode, the next
node is determined by the connection from the subnode.

The above procedure corresponds to the basic reinforcement learning frame-
work, i.e., each node corresponds to “state” and the selection of a subnode
corresponds to “action”, and the optimal state transition is learned by Sarsa.

Every time the node transition is done, () value is updated by the following
equation.

Qip — Qip + a (T + ’Yqu - sz) J (1)

where @, shows the () value of the selected subnode p at node i, (), shows
the @ value of the selected subnode ¢ at the next node 7 and r is a reward
obtained after executing subnode p of node i. (€ (0,1.0]) is a learning rate,
v(€ [0,1.0]) is a discount rate.

2.5 Genetic operation

The genetic operation is based on elite selection, tournament selection, crossover
and mutation. Here, the procedure of crossover and mutation [10] is described.

e Crossover: Two individuals are selected as parents by tournament selection.
Two new offspring are generated from the parents by exchanging the genetic
codes. In detail, each node i is selected as a crossover node with the proba-
bility of P,, then the genes of the crossover nodes are swapped between the
parents.

e Mutation: One individual is selected by tournament selection and a new
individual is generated by the following operations.

(1) Connection mutation: each connection gene (Ci,CE ... C45,CE, ...) is

selected with the probability of P, and changed randomly.

(2) Function mutation: each node function I D; is selected with the probability
of P,, and changed randomly.

(3) Mutation of the number of subnodes: the number of subnodes in node i
is changed to another number (selected from 1 to M !). If the selected
number is larger than the original number, one or more new subnodes
with randomly assigned judgment/processing functions are added to the
node depending on the selected number. If the selected number is smaller,
one or more subnodes are removed from the node.

3 Proposed method: Variable size mechanism of Distributed GNP-
RL

In section 2, the basic structure of GNP-RL is explained, where one individual
consists of one graph structure. In this section, the distributed graph struc-
ture is firstly introduced, then a variable size mechanism of the distributed
structures is proposed.

3.1 Basic structure of variable size distributed GNP-RL

Fig. 4 is a basic structure of variable size distributed GNP-RL (Hereafter,
variable size distributed GNP-RL is called “VS-DGNP” for simplicity). VS-
DGNP has several features: 1) assignment of nodes to subprograms and 2)
normal and transferring nodes [16]. Branches from normal nodes are connected

1 M shows the maximum number of subnodes in each node. In this paper, M is set
at 4.

start node

sub program 2 sub program 3

Q <:> :normal node
. . : transferring node

Fig. 4. Basic structure of distributed GNP-RL

node gene connection gene

nodei | NT d iAF TR Qi IDi [Q: IDi | ch cf | Cso Co

Semssssgennnnnt gubnode 1 subnode 2 subnode 1 subnode 2

additional genes

Fig. 5. Genotype representation of VS-DGNP

to other nodes in the same subprogram (internal connections), and those from
transferring nodes are connected to the nodes in other subprograms (external
connections). In order to represent these features, each node has two additional
genes (AF; and TR;, where i is a node number) shown in Fig. 5. AF; shows
to which subprogram node 7 is assigned, and 1T'R; shows that node 7 is normal
or transferring node. If a node is normal node, TR; = 0, and if transferring
node, T'R; = 1. For example, in Fig. 4, node 1 is a normal node and belongs
to subprogram 1, thus TR; = 0 and AF; = 1. Node 12 is a transferring node
and belongs to subprogram 2, thus TR; = 1 and AF; = 2.

3.2 Initialization of the population

Before starting the first generation, an initial population is produced according
to the following rules.

(1) Node types (NT;): The numbers of judgment and processing nodes are
determined, respectively.

(2) Node affiliation (AF;): The same number of judgment and processing
nodes are assigned to each subprogram. For example, at the first gen-
eration, 1/3 of the nodes are assigned to subprogram 1, other 1/3 are
assigned to subprogram 2, and other 1/3 are assigned to subprogram
3, if the number of subprograms is three. However, in the evolutionary
process, AF; is changed to optimize the sizes of the subprograms.

(3) Normal/Transferring nodes (T'R;): Each node becomes transferring node
with the probability of P;, otherwise normal node, where P, shows a
transferring node ratio which is set at 0.1 in this paper.

(4) The number of subnodes in each node is determined separately node by
node in the range permitted, i.e., 1,...,4.

(5) Node functions (/D;): A randomly selected judgment/processing function
is assigned to each subnode.

(6) Connections (C:*,CE,...): If node i is a normal node, the next node(s)
are selected randomly from the same subprogram. If node ¢ is a trans-
ferring node, the next node(s) are selected randomly from the other sub-
programs.

(7) Q values (Qp,QF,...): All the Q values are set at zero.

3.8 Genetic operations for optimizing the sizes of subprograms

In this subsection, crossover and mutation operators for VS-DGNP are ex-
plained.

3.8.1 Crossover

Since each subprogram has the different number of nodes, new crossover op-
erator should be introduced.

First, two parent individuals (parent 1 and 2) are selected by tournament se-
lection, which is the same as the crossover introduced in section 2.5. However,
it should be noted that there are two important conditions in the crossover
of VS-DGNP. 1) The crossover of VS-DGNP exchanges genes between sub-
programs with the same number, i.e., between subprogram 1 of parent 1 and
that of parent 2, between subprogram 2 of parent 1 and that of parent 2, and

Make three pairs of judgment nodes

sub program j of parent 2

Make one pair of processing nodes
Fig. 6. An example of making node pairs between subprograms of two parents

so on. 2) The crossover exchanges the genes between the same type of nodes
(NT;), i.e., between processing & processing, or judgment & judgment, but
does not between judgment and processing nodes in order to avoid too large
changes by the crossover.

The crossover is carried out between two subprograms j (j € {1,2,...} is
a subprogram number) as follows. First, the crossover of judgment nodes is
executed, then that of processing nodes is executed, thus the following pro-
cedure is executed two times; one is for judgment nodes and the other is for
processing nodes.

(1) Determine the maximum number of judgment (processing) nodes ex-
changed between two subprograms as N = min{Ny;, Ny;}, where Ny;
is the number of judgment (processing) nodes contained in subprogram
jJ of parent 1, and Ny; is that of parent 2.

(2) One judgment (processing) node is selected from parent 1 and another
judgment (processing) node is selected form parent 2, then one pair of
judgment (processing) nodes is made. Repeating the above procedure N
times, N pairs of judgment (processing) nodes are made. Note that the
nodes for crossover are selected in ascending order of the node number,
and the same nodes are not selected more than once to make pairs.

(3) All the genes of each pair are exchanged with the probability of P¢

Fig. 6 shows an example of making pairs between subprograms of two parents,
where three judgment nodes and one processing node in each subprogram are

selected as crossover nodes.

The above procedure is repeated until the crossover of all the subprograms is
completed.

When two individuals are selected as parents for crossover, the reason why
the crossover is executed between subprograms with the same subprogram

10

number is to avoid the destructive effect of the crossover. In fact, in our pre-
liminary experiments, the crossover without considering subprograms, i.e., the
crossover can be executed between nodes belonging to any subprograms, did
not show better fitness than the proposed method. Because the advantage of
the graph structure is re-usability of nodes, some nodes may be shared by some
different node transitions, therefore even a small change may have a strong
impact on the whole structure. The proposed method can separately evolve
each subprogram, thus 1) localized function structures can be created, and 2)
the changes in a certain subprogram do not affect the structures of the other
subprograms.

3.3.2 Mutation

There are two mutation operators in VS-DGNP 1) to change normal (transfer-
ring) node to transferring (normal) node, and 2) to change subprograms that
each node belongs to. These two operators are added to the original mutation
introduced in section 2.5.

The mutation operator of “change normal/transferring nodes” is as follows.
Each gene TR; is selected with the probability of P!, then reset at 1 (=
transferring) with the probability of P;, otherwise reset at 0 (= normal).

The mutation operator of “change normal/transferring nodes” can determine
the good relations between the subprograms. For example, if the environmental
situation is not changed during the task, normal nodes should be used to
stay at the current subprogram, and if the situation is changed, transferring
nodes should be used to move to other subprograms in order to adapt to the
different situation. Note that this operator can be also used in Distributed
GNP without variable size mechanism (DGNP), therefore DGNP used in the
simulations also uses this operator.

The mutation operator of “change subprogram numbers (change affiliation
numbers)” is as follows. Each subprogram number (AF;) is selected with
the probability of P4/ and changed to a random subprogram number. If
it is changed to a different subprogram number from the original one, all the
branches connected from node ¢ are initialized to satisfy the condition of nor-
mal/transferring nodes. That is, if node i is a normal node, all the branches
have to be connected to the nodes of the same subprogram, and if it is a trans-
ferring node, they have to be connected to the nodes of other subprograms.

In the above change affiliation operation, two kinds of P2// are used to control
the degree of the structural changes. One is for the nodes that are used in
the task execution (P%/1), and the other is for the nodes that are not used
at all (P%72). In the simulations, P%//1 is set at 0.002 and P%/? is set at
0.01, which keeps the balance between exploitation and exploration of good

11

structures. The change affiliation operator can flexibly change the size of the
structure in order to create good action rules, which is one of the advantages of
the proposed method, however, the good node transitions might be destroyed
by the changes of the structure because some nodes are shared and reused by
many different action rules (transitions). Too large changes of the structure
might become the disadvantage in terms of the efficient evolution. Therefore,
the mutation rates have to be carefully set at the appropriate values. Although
they are determined through our experiences, the automatic adjustment of the
rates is one of the issues to be studied in the future.

At the initialization, each subprogram has the same number of nodes, but as
the generation goes on, the number of nodes in each subprogram is changed
by the mutation of change affiliation and crossover operations. By repeating
this process, VS-DGNP can create appropriate sizes of the subprograms which
are suitable to solve the given tasks.

4 Simulations

To confirm the effectiveness of the proposed method, the simulations for de-
termining agents’ behavior using the Tileworld problem [18] are described in
this section.

4.1 Tileworld

Tileworld is a benchmark problem for evaluating agent behaviors. Fig. 7 shows
examples of tileworld environments, each of which is a 2D grid world including
multi-agents, obstacles, tiles, holes and floors. Agents can move to a contiguous
cell in one step. Moreover, agents can push a tile to the next cell except when
an obstacle or other agent exists in the cell. When a tile is dropped into a
hole, the hole and tile vanish, i.e., the hole is filled with the tile. Agents have
some sensors and action abilities, and their aim is to drop many tiles into
holes as fast as possible. Therefore, agents are required to use sensors and
take actions properly according to their situations. Since the given sensors
and simple actions are not enough to achieve tasks, agents must make clever
combinations of judgments and processing.

The nodes used by the agents are shown in Table 1. The judgment nodes {
JF, JB, JL, JR } return { tile, hole, obstacle, floor, agent }, and { TD, HD,
THD, STD } return { forward, backward, left, right, nothing } as judgment
results, like A, B, ... in Fig. 2.

12

environment 8 environment 9 environment 10
Fig. 7. Tileworld

A trial ends when the action step reaches the preassigned step, then fitness
is calculated. (60 action steps are assigned to each agent in the simulations.)
The following “Fitness” is used in the evolution phase and “Reward” is used
in the learning phase.

Fitness =
ENV
Z [100 X Dtile + 20 x Ddistance + Tremain]) (2)
env=1
Reward =1 (when an agent drops a tile into a hole), (3)

where, env is an environment number, ENV is the total number of environ-
ments, Dy, is the number of dropped tiles, Dyistance Shows how many cells
the agents moved tiles close to the nearest holes, and T}.¢ 45 15 the remaining
time when the agents dropped all the tiles into holes. The coefficients of each

13

Table 1
Function Set

Judgment node

J | symbol content

J1 | JF judge FORWARD

Jo | JB judge BACKWARD

Js | JL judge LEFT side

Jy | JR judge RIGHT side

Js | TD direction of the nearest TILE from the agent

Jes | HD direction of the nearest HOLE from the agent

J7 | THD direction of the nearest HOLE from the nearest TILE
Jg | STD direction of the second nearest TILE from the agent

Processing node

P | symbol content

P, | MF move FORWARD
P, | TR turn RIGHT

P; | TL turn LEFT

Py, | ST stay

term (100 and 20) are the weights on the behavior of dropping a tile into a
hole and moving the tile to the good direction, respectively. The remaining
time is added only when the agents can drop all the tiles into holes in each
environment.

In the training simulations, 10 different tileworld environments in Fig. 7 are
used, and the agents have to obtain action rules which maximize the sum of the
fitness values given by the 10 tileworld environments. These 10 environments
have different initial positions of tiles, therefore different sequences of actions
should be obtained in order to drop all the tiles into holes as fast as possible.

4.2 Conditions of DGNP and VS-DGNP

The aim of the simulations is to confirm the effectiveness of distributed GNP
with variable size mechanism comparing to that without variable size mecha-
nism. The superiority of GNP and GNP-RL has been shown in [10] comparing
to Genetic Programming (GP), GP with automatic defined functions (GP with
ADFs) and evolutionary programming (EP).

14

Table 2
Simulation conditions

VS-DGNP DGNP

the number of individuals 300
the number of crossover 120
the number of mutation 175
the number of elite 5
the number of subprograms 3

the total number of nodes 120 (judgment: 80,
processing: 40)
crossover rate P, 0.1
mutation rate P, 0.01
mutation rate P 0.01
mutation rate Pﬁlffl 0.002 —

mutation rate P42 0.01 S

The simulation conditions are shown in Table 2. The number of individuals is
300. Although all the individuals are initialized by the procedure introduced
in section 3.2, 120 new individuals are generated by crossover, 175 new indi-
viduals are generated by mutation, and five elite individuals are kept in each
generation. The number of subprograms is set at three, and the total number
of judgment nodes is 80 and that of processing nodes is 40. Crossover rate
P., Mutation rates P, and P/ are determined appropriately through our ex-
periments, which keeps the variation of the population, but does not change
the programs too large. The settings of the parameters used in the learning
phase are as follows. The learning rate « is set at 0.9 in order to find solutions
quickly and the discount rate 7 is set at 0.9 in order to sufficiently consider the
future rewards. ¢ is set at 0.1 experimentally considering the balance between
exploitation and exploration. In fact, the programs with lower ¢ fall into local
minima with higher probability, and those with higher epsilon take too much
random actions. As described before, mutation rate P4//1 and P//2 is set at
0.002 and 0.01, respectively, based on our preliminary experiments.

4.3 Training results

Fig. 8 shows the fitness curves obtained by VS-DGNP and DGNP. Each curve
shows the fitness of the best individual at each generation averaged over 30 in-
dependent simulations. From Fig. 8, both methods can obtain better fitness as

15

6000

5000

/ VS-DGNP

4000

fitness

3000 |

i
2000 |

1000

0 1000 2000 3000 4000 5000
generation

Fig. 8. Fitness curves

Table 3

t-test on the average fitness in the training environments

VS-DGNP DGNP

average fitness 5,333 4,818
standard deviation 592 905
p-value [%] 0.597

the generation goes on. However, VS-GNP obtains better fitness than DGNP
throughout the generations. Table 3 shows the average fitness, standard devi-
ation and p-value calculated by t-test on the average fitness obtained in the

last generation. It can be seen from Table 3 that the p-value is 0.597[%], which
shows that there is a significant difference between VS-DGNP and DGNP.

Fig. 9 shows the average fitness obtained in each environment in the last
generation, where VS-DGNP show better fitness than DGNP in all the envi-
ronments. According to the definition of fitness (Eq. 2), the fitness of more
than 500 can be obtained when all the tiles are dropped into holes in each
environment.? It can be seen from Fig. 9 that VS-DGNP obtains more than
fitness 500 in eight environments out of ten, while DGNP obtains more than
500 in three environments. Even in these three environments where DGNP
obtains more than 500, VS-DGNP shows better fitness because the remaining
time of VS-DGNP is larger than DGNP, which means that VS-DGNP can
find the shorter and more efficient routes than DGNP to complete the tasks.
As a result, it is concluded that VS-DGNP can create the program adapt-
able to various situations in the 10 environments by optimizing the size of the

2 Each environment has three tiles, thus fitness 300 can be obtained by the first
term of Eq. 2. Next, the sum of the initial distances between each tile and the
nearest hole is 10, thus agents can move the tiles by 10 cells to the nearest hole
direction. Then, fitness 200 can be obtained by the second term of Eq. 2. Therefore,
the total fitness is at least 500 when all the tiles are dropped into holes.

16

B VS-DGNP |
EZZ] DGNP

600 [

500

400

fitness

300

200

100

1 2 3 4 5 6 7 8 9 10
environment number

Fig. 9. Average fitness obtained in each training environment

environment 2 environment 3 environment 4

environment 6 environment 7

environment 8 environment 9 environment 10

Fig. 10. Testing environments

substructures.

4.4 Testing results

In the testing simulations, the programs evolved by VS-DGNP and DGNP
are executed in unknown testing environments that are shown in Fig. 10. The
difference between the testing and training environments are as follows. The
positions of tiles are different in environments 1 and 2, the positions of tiles
and holes are different in environments 3 and 4, and the positions of tiles,
holes and obstacles are different in environments 5-10 where environments
5-7 and 8-10 have the same obstacle positions, respectively. Therefore, the
evolved program are required to have a general knowledge for achieving the

17

Table 4
t-test on the average fitness in the testing environments

VS-DGNP DGNP

average fitness 2,010 1,424
standard deviation 1,037 975.6
p-value [%] 1.40

[T vS-DGNP
EE] DGNP

1 2 3 4 5 6 7 8 9 10
environment number

Fig. 11. Average fitness obtained in each testing environment

task in unknown environments. The assigned action steps are 100.

Table 4 shows the average fitness, standard deviation and p-value calculated
by t-test on the fitness values obtained in the testing simulations. The average
fitness is calculated in such a way that 30 elite individuals independently
evolved in the training environments are executed in the testing environments
and the average fitness is calculated. It can be seen from Table 4 that the
p-value is 1.40[%], which shows that there is a significant difference between
VS-DGNP and DGNP in the testing simulations.

Fig. 11 shows the average fitness obtained in each testing environment, where
VS-DGNP show better fitness than DGNP in all the environments. Since
the positions of tiles, holes and/or obstacles are different from the training
environments, it is difficult for both VS-DGNP and DGNP to complete the
tasks; however, VS-DGNP effectively makes use of the evolved structure to
solve the unexperienced tasks better than DGNP. It means that the variable
size structure and its evolution mechanism can acquire general action rules
in the graph structure for adapting to various situations. The subprograms of
VS-DGNP can give and take nodes to/from another subprogram to optimize
the complexity of the subprograms depending on the problems, thus rules
can be created efficiently, while DGNP has the fixed number of nodes in each
subprogram and has to make action rules within the given size of the structure.
However, as mentioned in section 3.3.2, the flexibility of the program size might
cause too large changes of the structure and destroy the good building blocks,

18

therefore, the parameters on the evolution have to be determined carefully
and the learning or evolution algorithm of the parameters is a remaining issue
to be studied.

5 Conclusions

In this paper, a variable size mechanism of distributed GNP is proposed. In
order to realize this mechanism, the new crossover and mutation operators
considering the distributed structures are introduced. From the simulation re-
sults in the Tileworld problem, the proposed method shows better results than
distributed GNP without using variable size mechanism in both training and
testing environments. In the future work, the contribution of the distributed
structure and variable size mechanism is analyzed in detail. For example, the
action rules generated in each subprogram should be analyzed in order to find
the functions contained in each subprogram generated by evolution. In addi-
tion, the applicability of the variable size distributed GNP to many problems
such as data mining, robot programming and stock trading models will be
studied.

References

[1] J. H. Holland: Adaptation in Natural and Artificial Systems, Ann Arbor:
University of Michigan Press, (1975).

[2] J. R. Koza: Genetic Programming, on the programming of computers by means
of natural selection, Cambridge, Mass.: MIT Press, (1992).

3] J. R. Koza: Genetic Programming II, Automatic Discovery of Reusable
Programs, Cambridge, Mass.: MIT Press, (1994).

[4] S.Kamio and H. Iba: Adaptation technique for integrating genetic programming
and reinforcement learning for real robots, IEEE Trans. Energy Convers., vol. 9,
no. 3, pp. 318333, (2005).

[5] R. Ruiz-Torrubiano and A. Sudrez: Hybrid approaches and dimensionality
reduction for portfolio selection with cardinality constraints, Comp. Intell.
Mayg., vol. 5, pp. 92-107, (2010).

[6] E. Alfaro-Cid, P. A. Castillo, A. Esparcia, K. Sharman, J. Merelo, A. Prieto,
A. Mora, and J. Laredo: Comparing multiobjective evolutionary ensembles for
minimizing type i and ii errors for bankruptcy prediction, in Proc. of the IEEE
World Congress on Computational Intelligence, pp. 2902-2908, (2008).

[7] H. Iba and T. Sasaki: Using genetic programming to predict financial data, in
Proc. of the Congress on Evolutionary Computation 99, pp. 244-251, (1999).

19

[8] Z. Bankovi¢, D. Stepanovi¢, S. Bojani¢, and O. Nieto-Taladriz: Improving
network security using genetic algorithm approach, Computers and Electrical
Engineering, vol. 33, pp. 438-451, (2007).

[9] G. Folino, C. Pizzuti, and G. Spezzano: GP ensemble for distributed intrusion
detection systems, in ICAPR 2005, Lecture Notes in Computer Science (LNCS)
3686. Springer-Verlag Berlin Heidelberg, pp. 54-62, (2005).

[10] S. Mabu, K. Hirasawa, and J. Hu: A graph-based evolutionary algorithm:
Genetic network programming (GNP) and its extension using reinforcement
learning, Evolutionary Computation, vol. 15, no. 3, pp. 369-398, (2007).

[11] K. Hirasawa, M. Okubo, H. Katagiri, J. Hu, and J. Murata: Comparison
between genetic network programming (GNP) and genetic programming (GP),
in Proc. of the Congress on Evolutionary Computation, pp. 1276-1282, (2001).

[12] S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hirasawa: An intrusion-
detection model based on fuzzy class-association-rule mining using genetic
network programming, IEEE Trans. on Syst., Man, Cybern. C, vol. 41, no. 1,
pp. 130-139, (2011).

[13] K. Hirasawa, T. Eguchi, J. Zhou, L. Yu, and S. Markon: A double-deck elevator
group supervisory control system using genetic network programming, IEEE
Trans. on Syst., Man, Cybern. C, vol. 38, no. 4, pp. 535-550, (2008).

[14] L. J. Fogel, A. J. Owens, and M. J. Walsh: Artificial Intelligence through
simulated Evolution, John Wiley & Sons, (1966).

[15] D. B. Fogel: An introduction to simulated evolutionary optimization, IEEE
Trans. Neural Netw., vol. 5, no. 1, pp. 3-14, (1994).

[16] Y. Yang, X. He, S. Mabu, and K. Hirasawa: A cooperative coevolutionary stock
trading model using genetic network programming-sarsa, Journal of Advanced
Computational Intelligence and Intelligent Informatics, vol. 16, pp. 581-590,
(2012).

[17] R. Li, T.-P. Tian, and S. Sclaroff: Divide, conquer and coordinate: Globally
coordinated switching linear dynamical system, [EEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 34, pp. 654-669, (2012).

[18] M. E. Pollack and M. Ringuette: Introducing the tile-world: Experimentally
evaluating agent architectures, in Proc. of the conference of the American
Association for Artificial Intelligence, pp. 183-189, (1990).

[19] R. S. Sutton and A. G. Barto: Reinforcement Learning - An Introduction,
Cambridge, Massachusetts, London, England: MIT Press, (1998).

20

