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Abstract 

Multispectral satellite remote sensing can predict shallow-water depth distribution inexpensively and 

exhaustively, but it requires many in-situ measurements for calibration. To extend its feasibility, we 

improved and employed a recently developed technique, for the first time, to obtain a generalized 

predictor of depth. We used six WorldView-2 images and obtained a predictor that yielded a 0.648 m 

root-mean-square error against a dataset with a 5.544 m standard deviation of depth. The predictor can be 

used with as few as two pixels with known depth per image, or with no depth data whatsoever, if only 

relative depth is needed. (98 words) 
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Main Text 

I. INTRODUCTION 

Bathymetric mapping is fundamental to the study and management of coastal zones and watersheds 

because water depth distribution governs the physical and biological characteristics (e.g., flows, waves, 

and benthic habitats) of those areas. However, in shallow and rugged areas such as coral reefs, there is no 

perfect method for exhaustive bathymetric mapping. Conventional ship sounding is time consuming and 

constrained by ship access, while use of Airborne LIght Detection And Ranging (LIDAR) for bathymetry 

is costly. 

To supplement these approaches, a number of passive remote sensing methods, using multispectral 

(Spitzer and Dirks 1987; Stumpf et al. 2003; Leckie et al. 2005; Lyzenga et al. 2006; Daniell 2008; 

Ribeiro et al. 2008; Su et al. 2008; Bramante et al. 2013) or hyperspectral (Lee et al. 1999; Mobley et al. 

2005) imagery, have been proposed. These methods are based on the fact that the in-water volume 

scattering and bottom reflection components of the observed visible radiance depend on water depth. 

Among these methods, those requiring only one multispectral satellite image and some depth 

measurements can be applied quickly and inexpensively. The latest multispectral satellite sensors, 

operating at very high resolution (around 2 m), are especially suited for capturing coral reefs with complex 

structure. 

Among these remote sensing methods, there is a widely applied method known as Lyzenga’s method 

(Clark et al. 1990; Winterbottom and Gilvear 1997; Bryant and Gilvear 1999; Feurer et al. 2008; Hogrefe 

et al. 2008; Flener et al. 2012). This method (fully documented by Lyzenga et al. (2006) but originally 

proposed by others (Paredes and Spero 1983; Lyzenga 1985; Clark  et al. 1987)) consists of a regression 

using a physically based predictor of water depth. It uses a number of pixels with known (i.e. measured 

in-situ) depth as training data and then estimates the coefficients of the predictor, which is a linear function 



 5

of image-derived variables for each visible band. The predictor then calculates the water depth of other 

pixels with unknown depths. 

Theoretically, the optimal coefficients of the predictor will depend on the optical conditions of the target 

image: the bottom surface types, the in-water attenuation coefficient, the state of the atmosphere and water 

surface, and the elevations of the sun and the satellite sensor. Though use of multiple visible bands can 

reduce the effect of variations in bottom surface on the predicted depth (Lyzenga et al. 2006; Kanno and 

Tanaka 2012), predictor coefficients are usually estimated independently for each target image. Obviously, 

such independent estimations require a number of pixels with known depth in each image. 

To address this limitation, Kanno and Tanaka (2012) have recently proposed a technique, using pixels 

of known depth in multiple images obtained by the same sensor, to estimate more generalized coefficients. 

The coefficients estimated by this technique are not greatly affected by the state of the atmosphere and 

water surface or by the elevations of the sun and the satellite sensor. It is hoped that once this general set of 

coefficients is estimated, it can be reliably applied to other images, collected at various times and locations 

using the same sensor, without requiring a number of pixels with known depth for the calibration for each 

image. This generalization would thus save the effort for in-situ depth measurement and improve the 

feasibility of Lyzenga’s method. Unfortunately, the technique has not been extensively tested, and the set 

of generalized coefficients has not yet been presented. 

In this study, we apply the technique proposed by Kanno and Tanaka (2012) to a dataset composed of 

six WorldView-2 images of coral reefs and corresponding depth measurements. We then construct, for the 

first time, a set of generalized coefficients for application to other shallow-water images. To improve the 

generality of the coefficients in terms of water quality, we also propose and apply an additional 

generalization technique that partially corrects for the differences in in-water attenuation coefficients 

among the target images. 
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WorldView-2 imagery was selected because of its six visible bands, the greatest number available in 

current high-resolution satellite imaging. Since the robustness of the predictor against variations in bottom 

surface type increases with the number of visible bands used (Lyzenga et al. 2006; Kanno and Tanaka 

2012), our selection of WorldView-2 imagery should yield the greatest generality. 

 

II. LYZENGA’S METHOD 

Lyzenga’s method (Lyzenga et al. 2006) is based on a simple radiative transfer model for shallow water. 

In this model, the top-of-atmosphere spectral radiance, iL  [ 112 −−− ⋅⋅⋅ msrmW μ ], for the i th visible band 

of a shallow water pixel is considered as the sum of two components: the spectral radiance which would be 

observed if the pixel had an infinite water depth ( ∞,iL ), and an exponential function of water depth. After 

∞,iL  is approximated by using the spectral radiances observed for deep-water pixels and for near-infrared 

bands, the method calculates a variable [ ]∞−≡ ,log iii LLX , which is expected to be linearly related to 

water depth h  as 

.iii ChkX +−=                                                                                                                                              (1) 

Here, ik  is the in-water effective attenuation coefficient of the i th band and iC  is a term dependent on 

the bottom reflectance, apparent reflectance of deep water due to in-water scattering, round-trip 

transmittance through the atmosphere and water surface, and downwelling irradiance at the top of the 

atmosphere, for the i th band. 

After iX  is calculated for all M  visible bands used ( )Mi ,,1= , h  for each target pixel is calculated 

by the following predictor: 

.110 MM XXh βββ +++=                                                                                                                         (2) 
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Here, Mβββ ,,, 10   are coefficients estimated by the least-squares method (Gentle, 1998) using pixels 

with known depth.If we substitute (1) into (2), we get 
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are required for (2) to be physically based. 

In order to account for the effect of the sun and satellite elevations on the in-water optical path length, 

Lyzenga et al. (2006) modeled the effective attenuation coefficient ( )Miki ,,1=  as 

( ).secsec VSiik θθκ +=                                                                                                                               (5) 

Here, Sθ  is the solar zenith angle and Vθ  is the nadir view angle below the water surface; iκ  is the ik  

value at 0== VS θθ  (when both the sun and the satellite are at the zenith). Although not shown by Lyzenga 

et al. (2006), this modeling corresponds to changing (2) into 

MM XXh ′++′+= βββ 110                                                                                                                         (6) 

where ( )VSii XX θθ secsec +≡′  for Mi ,,1= . Note that this modification does not account for the 

effect of the sun and satellite elevations on the optical path length in the atmosphere. 

 

III. GENERALIZATION TECHNIQUE PROPOSED BY KANNO AND TANAKA 

Lyzenga et al. (2006) tried to obtain coefficients Mβββ ,,, 10   with some generality using pixels with 

known depth from various images as training data. However, this simple approach did not take into 
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account that iC  in (1) varies among images, depending on the elevations of the sun and the satellite sensor 

(the optical path length in the atmosphere) and on the states of the atmosphere and water surface. The 

differences in these above-surface optical conditions among the images will degrade the generality of the 

estimated coefficients in terms of the bottom surface type. Kanno and Tanaka (2012) pointed out this 

problem and showed that the effect of the differences can be absorbed by 0β  if we optimize 0β  for each 

target image. This corresponds to modifying (6) as 

MMn XXh ′++′+= βββ 11,0                                                                                                                        (7) 

where n,0β  is the 0β  value for the n th ( Nn ,,1= ; N being the number of images used) image. 

The coefficients Mββ ,,1   and N,01,0 ,, ββ   for predictor (7) can be estimated by applying the 

least-squares fitting of the linear model 

( )( )TMNMN XXh ββββγγ ,,,,,,,,,, 1,01,011  ′′=                                                                                        (8) 

to the pixels with known depth. Here, ( )Nnn ,,1=γ  is a variable that equals 1 for the n th image and 0 

for the others, and the superscript T indicates transpose. 

Theoretically, the coefficients Mββ ,,1   estimated by this technique are not affected by variations in 

the above-surface optical conditions among images—i.e., the elevations of the sun and the satellite sensor, 

and the states of the atmosphere and water surface. They should therefore be more generally applicable 

than the coefficients estimated by Lyzenga’s method using the same set of pixels with known depth. When 

applying predictor (7) using our estimated coefficients ( Mββ ,,1  ) to other images, only n,0β  ( 0β  for 

each image) remains to be calculated. To calculate 0β  for a given image, we require a minimum of just 

one pixel with known depth. 
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IV. ADDITIONAL GENERALIZATION TECHNIQUE 

The generalization technique proposed by Kanno and Tanaka (2012) adjusts the offset ( 0β ) of the 

predictor for each target image. As described above, this technique corrects for variations in the 

above-surface optical conditions but not for variations in the in-water attenuation coefficients 

( )Mii ,,1=κ
 
among images. To make the estimated coefficients ( Mββ ,,1  ) applicable to images with 

different iκ  values, further adjustment according to (4) is needed. 

For example, suppose a case when the iκ  value for target image A is α  times that for target image B for 

each band. Based on (4) and (5), Mββ ,,1   for image A must be set at α1  times those for image B. This 

is achieved by adjusting not only the offset ( 0β ) but also the gain of the predictor: multiplying predictor 

(7) by an image-specific factor for each image. In general expression, the gain adjustment corresponds to 

modifying (7) as 

( )MMnn XXph ′++′+= βββ 11,0                                                                                                                (9) 

where ( )Nnpn ,,1=  is the factor for the n th image and 11 =p . In order to estimate the coefficients for 

this model, the least-squares fitting of the following linear model should be repeated, adjusting 

( )Nnpn ,,2 =  using a nonlinear optimization method to minimize the residual sum of squares. In the 

application described in Section V, ( )Nnpn ,,2 =  was optimized using the method proposed by Nelder 

and Mead (1965). 

( )( )TMNMNn XXph ββββγγ ,,,,,,,,,, 1,01,011  ′′=                                                                          (10) 

Obviously, the additional “gain adjustment” technique proposed here cannot perfectly correct for the 

variation in iκ  when the ratio of iκ  between any two of the target images depends on band i . Still, the 

technique should make the estimated coefficients Mββ ,,1   more accurately applicable to images with 
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different iκ  values than those proposed by Kanno and Tanaka (2012). All that is needed for applying 

predictor (9) with the estimated coefficients to other images is the remaining coefficient ( n,0β ) and the 

gain ( np ), both of which can be calculated based on a minimum of two pixels of known depth. 

 

V. APPLICATION 

A. Datasets and Procedure 

The generalization techniques described in III and IV were applied to six WorldView-2 images of 

shallow water areas and the corresponding depth soundings. The images used, which are shown in Fig. 1, 

were standard multispectral image products of WorldView-2, with a pixel size of 2 × 2 m2. Depth 

measurement data were collected using a shipboard Acoustic Doppler Current Profiler (RD Instruments, 

Workhorse Sentinel ADCP) for images 1 and 2 and fishfinders (EAGLE GPS and Lowrance HDS-5) for 

images 3–5. For image 6, depth measurements using a multi-narrow-beam echo sounder (Reson SeaBat 

7125) were provided by the U.S. Naval Oceanographic Office via the website of the National Oceanic & 

Atmospheric Administration (NOAA)'s National Geophysical Data Center. In all surveys, positioning 

data were collected using differential GPS. 

The pixels with known depth were prepared as follows. First, all depth measurement data were 

corrected for tide level, so that the data represented the depth values at the time of image acquisition. Next, 

the pixels with multiple depth measurements were specified by a spatial overlay of each satellite image 

with depth measurement points. The pixels with small variation coefficients in the depth measurements 

were then designated as pixels with known depth. The “measured depth” for each of these pixels was 

defined as the average of its depth measurements. The specifications of each image and the corresponding 

pixels with known depth are listed in Table 1. The depth statistics of the pixels with known depth for each 
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image are shown in Table 2. 

The numbers of pixels with known depth differed greatly among the target images (Table 1). In order to 

equalize the contribution of each image, the weighted least-squares method (Gentle 1998) was used 

instead of the ordinary least-squares method in fitting the model ((8) or (10)) to the pixels with known 

depth. Here, the relative weight for the pixels in each image was set as the inverse of the number of pixels 

with known depth in the image. The same weight was applied in calculating the essential statistics for all 

six images: the mean and Standard Deviation (SD) of the water depth of the pixels with known depth, the 

Root Mean Square of Residuals (RMSR), and the Root Mean Square Error of predictions (RMSE). 

The RMSR and RMSE are the error statistics used to evaluate the goodness of fit and the prediction 

accuracy of the models, respectively. The RMSR for all six images is defined as 

( )
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Here, nw  is the relative weight for each pixel, Oh  is the measured depth, and Ph  is the depth ( h ) 

evaluated by predictor (7) or (9) using the estimated coefficients (fitted depth). V  is the set of pixels with 

known depth to which model (8) or (10) is fitted (training data); this set is, in fact, a set of all of the pixels 

with known depth in our study (6221 in total). The discrepancy between the measured and fitted depths, 

PO hh − , is called residual, and the RMSR is a measure of the overall magnitude of the residuals in meters. 

The closer the RMSR to zero, the better is the model fit. The RMSR for a single image can also be defined 

as (11), but in this case, V  only includes the training data pixels that belong to the image of interest, 

resulting in the weight being constant and not effective. 

The RMSE is similarly defined except that V  is not the training data but a different set of pixels used to 

evaluate the prediction accuracy of the model (test data). Thus, in case of RMSE, Ph  is not called “fitted 
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depth” but “predicted depth” and PO hh −  is not called “residual” but “prediction error.” The RMSE is a 

measure of the overall magnitude of the prediction errors in meters. The closer the RMSE to zero, the 

better is the prediction accuracy of the model. 

Because the calculation of the RMSE requires test data as well as training data, we randomly selected 622 

(10%) of the pixels with known depth as the test data and used the rest (90%) as the training data. We 

repeated the trial (the random division of the pixels with known depth into training and test data, the 

estimation of the predictor coefficients using the training data, and the prediction of the test data using the 

estimated coefficients) 1000 times and calculated RMSE using the virtual test data consisting of 622000 

pixels with known depth. This method, referred to as cross validation (Hastie et al. 2001), yields more 

stable values of the RMSE than a single trial. 

B. Results and Discussion 

Fig. 2 is a scattergram of fitted depth against measured depth for the fitting of the linear model (8) (to 

estimate the coefficients of Kanno and Tanaka (2012)’s predictor (7) described in III, which is different 

from Lyzenga’s predictor (6) in that the offset term is adjusted for each target image) to the pixels with 

known depth from the six images. Fig. 3 is the scattergram of fitted depth against measured depth for the 

fitting of linear model (10) (to estimate the coefficients of predictor (9) proposed in IV, which is different 

from predictor (7) in that the gain of the predictor as well as the offset is adjusted for each target image). 

Table 2 lists the RMSR and RMSE values of these fits, for all six images together and for each individual 

image. 

The overall distribution of the points shown in Fig. 2(a) and Fig. 3(a) is largely along the line y = x 

shown in red, indicating good overall fittings. However, if we look into the result for the individual images 

in Fig. 2, the distribution of points is not along the line y = x for some images. For images 2 and 3, the 

fitted depth tends to be too large for relatively small depths and too small for relatively large depths. In 
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other terms, the points of images 2 and 3 are distributed nearly horizontally in Fig. 2(b). Further, for image 

4, we cannot even observe a positive correlation between the measured and fitted depths. In fact, the 

correlation coefficient was negative (-0.154) for the image. On the other hand, image 1 may have the 

opposite problem: underestimation for relatively small depths and overestimation for relatively large 

depths. These problems indicate that the offset-adjustment technique proposed by Kanno and Tanaka 

(2012) (described in III) could not sufficiently generalize the predictor. 

A possible reason for this failure is the difference in the in-water attenuation coefficient ( )Mii ,,1=κ  

among images. In general, the clarity of the water is inversely proportional to the response of the observed 

radiance (or the variable iX ′  derived from the observed radiance) to the water depth. Therefore, if images 

2 and 3 have smaller attenuation coefficients compared to the other images, then, the coefficients 

Mββ ,,1   of predictor (7) (or the corresponding model (8)) for the images should ideally be larger in 

magnitude. However, because the coefficients are common to all the images, the least-squares fitting just 

yields “compromise” coefficients, which might be appropriate for some images but too small for images 2 

and 3. 

The problems found in Fig. 2 seem to be less significant in Fig. 3, which shows fitted depth plotted 

against measured depth for the linear model (10) including the new gain adjustment, indicating that they 

were mitigated by the additional gain adjustment. This is confirmed in Table 2 by the fact that, for each of 

images 2, 3 and 4, the RMSR decreases by the addition of the gain adjustment by no less than 29.4%. 

Actually, the RMSR for each of the six images decreases by more than 8.3%, resulting in an overall 

decrease of 28.8%. The largest decrease is 71.8%, for image 1. The decrease ratio corresponds to 0.866 m 

in absolute value, exceeding 40% of the mean depth (2.143 m) and 210% of the SD of depth (0.411 m). 

Although not shown in Table 2, the correlation coefficient between the measured and fitted depths for 

image 4 turned positive (0.348) by the addition of the gain adjustment. The correlation coefficient was 
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much higher for the other five images (0.562–0.928). Thus, the gain adjustment in addition to the offset 

adjustment significantly improves the fitting. 

Furthermore, as shown in Table 2, the RMSE of prediction similarly decreased with the gain adjustment. 

In fact, the RMSE values shown in Table 2 are close to the corresponding RMSR values: The maximum 

difference between the RMSR and RMSE values is just 0.026 m in absolute value and 4.7% in ratio. Thus, 

a discussion similar to the one above applies to RMSE. The RMSE for each of the six images decreases by 

more than 8.5% as a result of the additional gain adjustment. The overall RMSE for the six images (mean 

depth: 3.270 m; SD of depth: 5.544 m) was 0.913 m with offset adjustment alone and 0.648 m (0.265 m or 

29.0% smaller) with the additional gain adjustment. This means that the additional gain adjustment 

improves not only the fitting for pixels with known depth but also the accuracy of predicted depths for 

other pixels. Thus, we can confidently recommend the use of predictor (9) (with the additional gain 

adjustment) rather than predictor (7) (with the offset adjustment alone). 

The estimated coefficients of these predictors are listed in Table 3, for future use. To apply the 

coefficients of predictor (9) to water depth mapping of other images, the offset ( n,0β ) and gain ( np ) need 

to be adjusted using a minimum of two pixels with known depth per image, as described in IV. Note that 

this minimum is much smaller than that required for the conventional estimation of all 1+M  (e.g., 7 for 

WorldView-2) coefficients in (6) for each image. Naturally, the more pixels with known depth are used 

for the calibration, the better the prediction accuracy will be. 

It should also be noted that the coefficients are usable even when no in-situ depth measurements are 

available. Obviously, predictor (7) (with the offset adjustment alone) can predict the relative depth in the 

same unit as h , even if n,0β  is arbitrarily chosen, and predictor (9) (with the additional gain adjustment) 

can predict a variable linearly related to water depth, even if n,0β  and np  are arbitrarily chosen. These 

relative depth mappings, independent of in-situ measurements, may further expand the potential 
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application of the generalized coefficients presented in Table 3. 

Because there are a wide variety of bottom surface and water quality types in the world, we cannot 

expect the coefficients presented in Table 3 to be accurately applicable to all locations. The conditions 

under which these coefficients yield sufficiently accurate bathymetry are not yet clear and require further 

investigation. 

 

VI. CONCLUSION 

To enable application of the multispectral water-depth predictor proposed by Lyzenga et al. (2006) 

using a minimal amount of in-situ data, we have estimated and presented two sets of generalized predictor 

coefficients. One set was estimated by fitting the predictor to pixels with known depth from six 

WorldView-2 images of coral reefs, using a recently proposed generalization technique (Kanno and 

Tanaka 2012). This technique adjusts the offset of the predictor for each image and thereby removes the 

effect of above-surface optical conditions on the other coefficients. The other set was estimated by 

applying an additional, and newly proposed, generalization technique, which adjusts the gain of the 

predictor for each image and thereby reduces the effect of in-water attenuation coefficients on the other 

coefficients. The fitting and the prediction accuracy were significantly better for the latter set. For example, 

for the six target images (SD of depth: 5.544 m), the RMSE of prediction, evaluated by cross validation, 

was 0.913 m using the first set and 0.648 m using the second set. Based on these results, we can 

confidently recommend use of the latter set of coefficients. 

With the generalized predictor coefficients presented in this study, one can predict the water depth 

distribution from WorldView-2 imagery using a minimal number of in-situ depth measurements or 

perform relative depth mapping in the absence of in-situ data. This should significantly expand the 

applicability of Lyzenga’s predictor and thereby increase the feasibility of remote bathymetry. Future 
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studies could investigate the conditions under which the proposed coefficients yield sufficiently accurate 

results by applying them to other images of shallow water areas. 
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(a) Plot for the entire depth range                            (b) Enlarged plot for depth range of 0–5 m 

Fig. 2. Scattergram of fitted depth against measured depth for the fitting of (8) to the pixels with known depth 

from the six target images. For ease of viewing, only 100 randomly sampled pixels are plotted for each image. 

Because the pixels with known depth in images 1–4 are concentrated in the shallow domain, an enlarged plot 

for depth range 0–5 m (b) is shown in addition to the plot for the entire depth range (a). 
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(a) Plot for the entire depth range                            (b) Enlarged plot for depth range of 0–5 m 

Fig. 3. Scattergram of fitted depth against measured depth for the fitting of (10) to pixels with known depth 

from the six target images. For ease of viewing, only 100 randomly sampled pixels are plotted for each image, 

and an enlarged plot for depth range 0–5 m (b) is shown in addition to the plot for the entire depth range (a). 
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Table 1. Specifications of target images and pixels with known depth. Here, Sθ  is the solar zenith angle and 

Vθ  is the nadir view angle below the water surface. The pixel size of WorldView-2 imagery is 2× 2 m2. 

WorldView-2 image Pixels with known depth 

Image 
ID 

Location 
Acquisition

date VS θθ secsec + Number 
Mean 

longitude 
[degrees] 

Mean 
latitude 

[degrees] 

1 

Yaeyama islands, 
Japan 

2010/3/24 2.130 160 124.276 24.484 

2 2010/9/21 2.140 137 124.276 24.484 

3 2010/9/21 2.181 637 124.210 24.348 

4 2010/9/16 2.227 145 124.138 24.447 

5 2011/8/24 2.034 869 124.072 24.334 

6 Tinian island, U.S. 2009/12/7 2.224 4273 145.622 14.963 
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Table 2. Root Mean Square of Residuals (RMSR) of the fitting of the predictors to the training data and Root 

Mean Square Error (RMSE) of prediction evaluated by cross validation, for the application of the 

generalization techniques. Essential statistics for the pixels with known depth are also shown for reference. 

Image 
ID 

Pixels with known depth 
RMSR (upper) 

and RMSE (lower) 
 [m] 

Decrease of 
RMSR (upper) 

and RMSE (lower)
by additional gain 

adjustment 

Number 

Water depth [m] Predictor (7)
(with offset
adjustment 

alone) 

Predictor (9) 
(with offset 

and gain 
adjustment) 

Absolute
[m] 

Relative
[%] Min Mean Max SD 

1 160 1.021 2.143 2.900 0.411
1.206 
1.233 

0.340 
0.343 

0.866 
0.890 

71.8 
72.2 

2 137 1.091 1.774 2.502 0.400
0.369 
0.373 

0.240 
0.245 

0.129 
0.129 

34.9 
34.4 

3 637 0.179 1.245 3.973 0.851
0.809 
0.807 

0.571 
0.573 

0.238 
0.234 

29.4 
29.0 

4 145 0.687 1.012 2.547 0.288
0.429 
0.432 

0.270 
0.283 

0.159 
0.149 

37.1 
34.6 

5 869 0.790 3.431 17.875 3.339
1.421 
1.437 

1.242 
1.253 

0.179 
0.184 

12.6 
12.8 

6 4273 4.563 10.013 15.363 1.157
0.647 
0.650 

0.593 
0.595 

0.054 
0.055 

8.3 
8.5 

Overall 6221 0.179 3.270* 17.875 5.544*
0.901* 
0.913* 

0.641* 
0.648* 

0.260**
0.265**

28.8**
29.0**

* Weighted values (the weighting is described in Section V.A.) 

** Values derived from weighted values 
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Table 3. Estimated coefficients of the predictors (7) and (9). ( )6,,1=iiβ  is the coefficient for band i  of 

WorldView-2 imagery. The offset n,0β  and the gain np  (for predictor (9)) need to be estimated for each 

image to which these coefficients are applied. 

Predictor 1β  2β  3β  4β  5β  6β  

(7) -0.475385 8.30074 -10.8218 -2.57621 0.313112 0.315611 

(9) -0.627429 37.2749 -67.2247 -14.8380 -0.295890 0.826530 

 

 


