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Abstract

Abstract

This study aims on unloading shear behavior of cohesionless granular
materials. The unloading is often seen in underground engineering such as
tunneling, open cutting, slop cutting. It is known that unexpected
deformation often happened during these constructions. For purpose of
understanding the basic mechanical behavior of unloading shear behavior,
a series of experiments and numerical simulation were performed with
influence of particle shape, relative density being discussed. Moreover,
small-scale retaining wall model tests were performed to investigate the
unloading shear behavior by change of boundary conditions.

First, plane strain compression experiments were performed. Four
types of granular material including two sands and two glass beads with
different particle shape and particle size were selected. For the two sands,
one has angular particle shape while another has sub-angular particle
shape. Unloading shear experiments were performed considering
confining pressure and relative density. The unloading shear was
implemented by plane strain compression tests under decreasing
confining pressure (shorted for PSCD), where the vertical axial stress is
kept constant and the confining pressure is reduced until failure occurs. A
well-known general plane strain compression test (shorted for PSC) was
also performed to make a comparison. The PSC test The main different
point between the two tests is the mean stress on the test specimen
decreases in the PSCD test while it increases in the PSC test. In other
word, the PSCD reflects unloading while the PSC reflects loading from
physical viewpoint. Photographs of specimens during shear process were
taken and local deformations of specimens were analyzed by digital
image analysis method. Stress-strain relationship and local deformation
analysis results obtained from the experiments were shown as below.

In general, sands showed different shear behavior from glass beads.
Under the same test condition, the sand with angular particle shape
showed the highest shear strength and dilatancy. Shear behavior in both
sands and glass beads is influenced by stress path, however the influence
was found different. For the shear behavior of sands, the maximum
principle stress ratio and initial stiffness of stress ratio ~ deviatoric strain
were found generally higher in the PSCD test than those in the PSC test.
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The differences are more significant in dense specimens than those in
loose specimens. Moreover, shear bands appeared earlier in the PSCD
tests for sands. The sands were strongly influenced by stress path and
stress level compared to glass beads. Development of shear bands, final
inclination angle and width of shear bands were observed by image
analysis. Generally, the onset of shear bands occurs prior to the specimen
reaching its maximum principal stress ratio for both dense and loose
specimens. Between the peak in shear strength and the end of strain
softening, the local maximum shear strain grew approximately linearly
with the global axial strain. For the same material, the growth rate of the
local maximum shear strain became smaller with wider shear band. The
shear band width became smaller when the particle shape of materials
with similar mean particle size gets more angular, and it decreased with
increase of confining pressure regardless of particle shape. Moreover, the
measured shear band inclination angles were compared with prediction
values by Coulomb and Roscoe equations having been often used in past
study. It is found that the shear band inclination angles in sands matched
well with those estimated by Coulomb’s formula, while Roscoe’s formula
predicted shear band inclination angles relatively close to the
corresponding measured values in dense glass beads.

Next, based on the analysis of elemental experiment results, discrete
element method (DEM) was used to investigate underlying mechanism
from micro viewpoints. Biaxial compression (loading) and decompression
(unloading) tests were performed. Two types of particle model,  round
disk model and angular clump model were used in the simulation. The
simulation results generally reflected the influence of particle shape,
relative density and stress path in the elemental experiments. Through
micro behavior analysis including coordination number, contact
distribution, fabric inside specimens, the reason of different contact
variations in specimens that resulted in different macro shear behavior
was found. Moreover, strain energy variations at particle contacts were
analyzed in detail. Strain energy variation with the mean stress was
compared for the two types of shear test and isotropic consolidation test.
It is found that strain energy variation rate is the highest in unloading
shear test. Under the same test condition, the variation rate is higher in the
loose specimens than in the dense specimens, and is also higher in disk
specimen than in clump specimen. The behavior was considered to be
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influenced by the interlocking among particles. The interlocking is
stronger in angular particles than that in round particles, and also stronger
in dense specimens than that in loose specimens. When particles are
interlocked, the relative displacements between particles shall become
difficult and thus strain energy varies little. As a result, the stiffness of
specimens behaves strong. In the loading shear test with mean stress
increased, the interlocking developed until the peak strength and then
failed. Instead, for the shear test with decreasing confining pressure,
variation of interlocking gets smaller from the beginning. Thereby, the
particle shape effect is different on the different stress path and the
difference is more significant in dense specimens.

Finally, unloading retaining wall model tests were performed to
investigate particle shape effect and boundary effect on unloading shear
behavior. The same two sands and one glass beads were used again.
Investigation was focused on the failure mode behind the wall and
transition process to the active state. It is found that the particle shape has
influence on the resultant force of retaining wall. The more angular
particle shape of sand, the resultant force was smaller and the
displacement of wall until the final active state was smaller. Shear band
inclination angle and width were influenced by particle shape and relative
density, while the progress shear band pattern is dependent on the wall
movement mode regardless of particle shape. Within a limited range of
wall speed in this study, shear band became wider and local deformation
became larger with increase of wall speed.

In summary, a series of experiments and numerical analysis were
performed in this study to investigate the fundamental unloading behavior
of granular materials with different particle shapes. Based on the study,
particle shape effect on the macro mechanical behavior was presented and
further investigations were made on micro mechanical behavior and its
relevance to the macro behavior. Particularly, unloading shear behavior
was found to be clearly different from the general loading shear behavior
and influence of particle shape and relative density on the difference
between the behaviors was revealed. The influence was considered
rooting in the interlocking effect, which was qualitatively discussed from
micro viewpoint.
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Chapter 1 Introduction

1.1 Background

There are many kinds of unloading projects in the field of civil
engineering, such as excavation for retaining wall, slope cutting, tunneling,
and preloading and unloading in subgrades of railway or highway, as shown
in Fig. 1.1. Here, “unloading” is an engineering concept and it is different
from the mechanical meaning in “loading-unloading™ of a cyclic elemental
test. Such excavation or removal of soil (load) will generate a new boundary
and the soil around the new boundary will undergo different stress paths
accompanied by stress release. Taking the construction of a retaining wall as
an example, soil at the bottom of the excavation pit is subjected to extension
as the overburden is removed, and soil behind the retaining wall in active
state is subjected to shear compression by the progressive decrease of the
lateral pressure while the vertical stress remains constant (Head 1992). The
stability of new boundaries is very important, and unloading behavior of
soils especially deformation development deserves much attention to help
selecting construction method or support (Nicolini and Nova 2000, Ng and
Lee 2002).

1-1



a) opencut of foundation pit

ANVAVAVAN

/ST T T T T S
O RIRTR
b) tunneling d) remove of preload on subgrade
(a) sketch

(b) in-situ photos

Figure 1.1 Different unloading cases in civil engineering

Currently, excavation problems are mainly solved as a boundary and
constitutive model problem based on continuum theory. However, soil
properties are abstracted as mechanical or mathematic parameters and

selecting their values is very challenging. From author’s opinion, there are
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still several problems that haven’t been solved very well in excavation
calculation. These including:

(1) Soil rebound. Compared with some in-situ measurements, such as at
the base of foundation pit, and in subgrade after removing the preload, soil
rebound is often overestimated by elastic modulus of soil. The main reason
is that soil is not elastic, even during unloading. Resilient modulus may be
much larger than compressive modulus.

(2) Stress release. How much stress released around the new boundary?
This is usually estimated by empirical values, in addition, it is related with
excavation method, supporting as well as soil properties (Zhou 2005).

(3) Residual stress. This topic relates to stress release. Are there residual
stresses in soils? This is still a controversial problem.

Figure 1.2 presents the time history of vertical stresses at different
locations during loading and unloading on sand (Zhuang 2009). The vertical
stresses at different depths almost increased linearly with external load
during staged loading. However, the stress release behavior was highly
nonlinear and the amount of released stress is different in each stage of
unloading. The stress release was much smaller at the beginning of
unloading, but increased significantly when unloading continues, particularly
when the external pressure was unloaded to very low levels. After the
applied load was completely removed, residual stresses were measured in
sand. However, some researches insisted that measured stresses by soil cell
can’t represent real stresses in soil but they are only contact stresses between
soil cell and soil (Talenick et al. 2008).
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Figure 1.2 Static loading and unloading behavior of sand and residual stress:
(a) locations of soil stress cells in test box, (b) Vertical stress variations in
sand with applied external load (after Zhuang 2009)

Nevertheless, photoelastic study showed that there may have some
residual contact forces in particles when the previously applied load was

removed, as shown in Fig. 1.3.

Figure 1.3 Force chains in granular material by photoelastic technology

(4) Progressive and sudden failure. Soil failure and resulted collapse often
happened in practical engineering. Although they maybe attributed to

different reasons including soil properties and boundary conditions,
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progressive deformation of soils is still not clear and needs more study
(Asaoka et al. 1997). Shearing failure by local deformation was and is still a
hot topic. It is still a hard issue that how to use the appropriate theory to
explain or successfully predict the formation and development of the shear
bands in granular matter (Bi et al. 2011).

With the above confusing problems, it is necessary to further investigate
unloading behavior of soils, especially from micro viewpoints to reveal the
underlying mechanism. On the other hand, as soils with and without
cohesion behave much different, this study only focus on cohesionless soils

such as sands.

1.2 Literature review

1.2.1 Past study on unloading behavior of granular materials

Unloading behavior has been known to be very complex. Progressive
failure or sudden failure accidents happened a lot in practical engineering.
The current calculation methods of analyzing unloading problems are mostly
based on boundary conditions and constitutive models of soils (Nakai et al.
1997).

On the one hand, excavation load, a kind of counterforce of removed soils
to new boundaries, attracted attentions for a long time. Three methods have
been developed in the past to determine the excavation load on supporting
structures induced by excavation, which are: (i) load-structure method, (ii)
stiftness reduction method, and (iii) equivalent reverse nodal force method.
The first method considers the arch effect in soil, and the excavation load is
determined by Terzaghi’s soil arch formula (1936) in European countries and
[IporoasskonoBy’s formula (1907) in Russia and China, respectively. In the
second method, excavation in soil was considered as an equivalent process
of gradually decreasing the stiffness of the soil to be removed. The essence
of the third method as discussed by Mana (1981) is to determine the nodal

forces resulted from removed soil elements. The excavation is considered
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equivalent to a process of stress release under initial stress conditions
accompanied by soil deformation, and the stress release is generally affected
by excavation shape, soil properties and construction method (Gao 1999,
Nicolini and Nova 2000, Ren 2005). For example, Zhou (2005) pointed out
that piperoof could reinforce ground soil and diffuse overlying load; soil
nailing system can reduce the magnitude of stress relief at the tunnel heading
(Ng and Lee 2002). The remained problem in these past studies is that, some
important parameters such as the height of arching and stress release
coefficient are generally taken to be empirical values.

On the other hand, it is also very important to choose a suitable
constitutive model to estimate excavation deformation or stability if using
continuum method. Soil stress paths during excavation are very complex and
are much influenced by excavation method and support etc. Taking triaxial
test as an example, some typical stress paths are shown in Fig. 1.4. So far,
most study had been focused on the common compression behavior (stress
path D). Some researchers compared the yielding behavior, steady state,
viscous properties and stress-dilatancy of sands in both triaxial compression
and extension tests (Yasufuku et al. 1991; Masuda et al. 1999, Kiyota and
Tatsuoka 2006; Yoshimine and Kataoka 2007; Khan 2009; Chang and Yin
2010). Masuda et al. (1999) studied sand behavior under different stress
paths including plane strain compression, extension and cyclic loading to
investigate effects of preloading to struts in open cut excavations and the
experimental results indicated influence of stress paths on unloading
behavior of sand.

There are also a few studies on triaxial or plane strain extension tests
where stress paths were close to path 3). Wolf et al. (2006) noted that,
results of pre-tests as well as experimental results in the literature suggest
that not only the density but also the applied stress path affects the
stress—strain response of the material. They also presented that the stress path
in direct shear test can be described most suitably by stress path (3. Réchter
et al. (2010) observed shear banding and strain softening in plane strain

extension test of sand and sand-clay mixtures.
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triaxial compression: 64 > 6p=0g

Figure 1.4 Different stress paths in a triaxial test (after Wolf et al. 2006)

Despite many past studies on various stress paths, it is still rare to see
experimental or numerical study on soil behavior under stress path @ or
@ under either triaxial or plane strain condition, while stress path @ is
very important for tunneling and open cut problems. Numerical simulations
covering this topic include those study of Ng (2004), Thornton and Antony
(1999). Moreover, soil behavior before failure was sometimes treated too
simply like linear or nonlinear elastic in most constitutive models. Collins
(2005) also stated that most existing models are based on yield loci, flow and
hardening rules and failure lines while rarely have any firm physical basis.
According to the critical state theory, compression or extension tests will
arrive at the same critical state line even if experiencing different stress paths
(without considering particle crush). However, mobilized strength and shear
deformation show considerably different behaviors. This is very important

for the calculation of unloading problems and deserves more attention.
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1.2.2 Past study on local deformation in granular materials by
elemental test

Soil is a typical kind of inhomogeneous material, and shows many
complex types of discontinuous deformation. Therein the shear band or
strain localization in various granular materials had been and is still being
focused on by many researchers through triaxial test or plane strain test since
a long time before (Vardoulakis 1981, Peters 1988, Lade et al. 1996, Finno et
al. 1997, Alshibli et al. 2000, 2003, Desrues and Viggiani 2004, Hall et al.
2010, Rechenmacher et al. 2011, Borja et al. 2013)

Figure 1.5(a) shows an example of shear bands formed in sand specimen
in plane strain compression test. The formation process of shear band during
shearing and its two key factors including the inclination angle 6 and
thickness w are very important for understanding shear behavior of the test
material. Also, soil pressure behind retaining wall is also related to the shear

band properties.

Specimen

Figure 1.5 Shear bands in specimen of granular material
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It is known that shear band is developed from the discontinuous
deformation of materials, and much rotation happened within shear bands
(Iwashita and Oda 1998, 2000, Powrie et al. 2005, Cheung and O’Sullivan
2008, Belheine et al. 2009, Jiang et al. 2009). Several equations for
calculation of inclination angle of shear band had been suggested in the past
study, as shown in Table 1.1. Here, ¢, is mobilized friction angle at the
maximum stress ratio, and wris the dilation angle. The thickness of shear
band was summarized to be 4* Ds,, where 4 is a constant related to material
properties and stress level etc., and was reported to be several times or

several ten times in the past study.

Table 1.1 Main equations of inclination angle of shear band in the past study

Coulomb’s solution 454 @ /2

Roscoe’s solution

(1970) 45 b2 | dm=arcsin[(c1-05)/( 61+03)]max
Ye=arcsin(de’ +deP;)/ | (e’ -deP
Authur’s solution 4504 D) f (deP1+dePs)/ | (dePy-des) |
(1977) meVE

Note: o1, o3 are maximum and minimum principal stresses, and &}, &’; are maximum

and minimum plastic principal strains.

Some other researchers also focused on the boundary effects on the shear
band, such as by Desrues and Viggiani (2004), Xu (2005), Powrie et al.
(2005). These studies show that formation process and resulting patterns of
strain localization are much influenced by loading speed, relative friction
and movement of boundaries.

Local stress-strain behavior was also discussed in a few studies, in order
to explain progressive local deformation and sudden failure (Xu 2004).
Related to this, bifurcations in granular materials were analyzed from both
micro and macro viewpoints in past study (Darve and Laouafa 2000, Darve
et al. 2007, Nicot and Darve 2007). “Bifurcation” is defined as “a sudden or
discontinuous change or response (for example, deformation) under constant
or small disturb loading”. Shear band in soil is a kind of bifurcation, which

means that softening will occur in material and failure (sometimes temporary
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hardening occur) will be accelerated. Another kind of bifurcation is diffuse
failure, which was introduced in geomechanics in 1998 (Darve ef al. 2007)
to describe failure modes with no strain localization pattern in either shear
bands or compaction/dilation bands.

Pradhan (1997) showed that the direction of shear band is highly
influenced by the inherent anisotropy, confining pressure and particle size,
and the direction of shear band changes from Coulomb’s type to Authur’s
type (this means the inclination angle decreased) when the confining
pressure is increased. There was also study on the PSC test which shown that
thickness of the shear band decreases with the increase of confining pressure.
Alshibli et al. (2000) showed that shear band inclination angle increased as
the confining pressure increases for fine sand, but not for medium sand and
coarse sand. Also, they pointed out that there is no definite conclusion about
the influence of the confining pressure on the shear band orientation angle of
sands in the past study, and the relationship between them was also related to
the boundary condition and material properties including grain angularity,
particle size distribution and packing state.

Until now, influence factors on shear band formation and shear band
characteristics are still not completely clear. This is because there are too
many influence factors, which can be generally classified into two types: (1)
boundary condition such as confining pressure, stress path, loading or
unloading speed, (2) material properties such as particle size distribution,
particle shape, relative density etc. These influence factors are usually mixed
together and therefore the problem becomes complex. One example is given
here. Fig. 1.6 shows the effect of confining pressure on shear band
inclination angle. It was found that the values are quite discrete for different

materials and different study.
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Figure 1.6 Effect of confining pressure on shear band inclination angle (after
Alshibli and Sture 2000)

Although much study had been done on local deformations, it is rarely
related to unloading process. Moreover, compared with the resulting patterns
of shear bands, the beginning and development process and their influence

factors are more important for the unloading problems.

1.2.3 Past study on effects of particle shape on shear behavior
of granular materials

From the micro viewpoint, the key factors that determine the mechanical
behavior of granular material are the particle shape, as well as size
distribution and initial arrangement. The influence of particle shape on
strength, shear flow of granules has been confirmed in past studies, such as
the work by Shinohara (2000), Unland (2009), Lin (2005) and Cleary (2008).
Cho et al. (2003) showed that the particle shape has a large effect on the
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packing density, small strain stiffness and the strength of sands; Maeda et
al.(2010) showed that the macro critical state of granules is controlled by the
micro critical state of coordination number and limit of anisotropy, which
depend on grain shape effects; Cavarretta et al. (2010) noted that the granular
material response is slightly dependent on the surface roughness and friction,
while the influence of particle shape is much more significant; Zeghal (2001)
showed that an assemblage with irregular particles has a higher resilient
modulus than one with round regular particles. Despite such extensive
research on the influence of particle shape, very little study has considered
the effects of stress paths, especially the stress path during excavations.

It has been known for some time that particle shape has a great influence
on the strength, deformation and crushability of granules (Unland and
Al-Khasawneh 2009, Wang et al. 2011, Kato et al. 2002, Maeda et al. 2010,
Cavarretta et al. 2010, Zeghal 2001, Matsushima and Chang 2011, Ferellec
and McDowell 2007, Kock and Huhn 2007). Alshibli ez al. (2000) noted that
influence of confining pressure on strength and stability decreases as grain
angularity decreases. Maeda et al. (2010) pointed out that the macro critical
state of granules is controlled by the micro critical state of coordination
number and limit of anisotropy, depending on grain shape effects. Cavarretta
et al. (2010) noted that the granular material response is slightly dependent
on the surface roughness and friction, while the influence of particle shape is
very much more significant. Zeghal (2001) showed that sample with
irregular particles has a higher resilient modulus than one with round regular
particles. Matsushima and Chang (2011) qualitatively evaluated the effect of
particle shape in sheared granular assemblies. Despite such extensive
research of influence of particle shape, very little has been found that have
considered effects of stress paths, especially the stress paths in excavations.

Because of the extremely irregular shapes of particles in most of soils
and limitation of computation ability, very few studies had tried to describe
the real complex shape of each particle in calculations (Ferellec and
McDowell 2010). Particle shapes are simplified in most studies using DEM
simulation, such as clump model or cluster model, which has been verified to
be able to reflect the particle shape effects (Zeghal 2001, Matsushima and
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Chang 2011, Ferellec and McDowell 2007, Kock and Huhn 2007, Katagiri et
al. 2010). Besides various micro properties being able to be investigated in
DEM simulations, one advantage is that it can trace energies and work both
inside granular materials and at boundaries. Energy dissipation analysis has
been shown to be very helpful for studies on granular flow problems,
bifurcation and diffuse phenomena in granular materials (Asmar et al. 2003,
Stegmann et al. 2011, Nicot and Darve 2007, Darve et al. 2007).

1.2.4 Application of DEM simulation and DIC method to local
deformation analysis of granular materials

In order to investigate micro behavior of granular material especially
local deformation and its underlying mechanism, Discrete Element Method
(DEM) and image analysis are being used more and more since 1980s.

DEM is short for the “Discrete Element Method™, and is being used more
and more in study on granular materials since it was firstly proposed
by Cundall in 1971 (Itasca 2008, Cundall and Strack 1979) to solve
discontinuous problem in rocks. This method is much different from the
FEM being often used in various fields, as compared in Fig. 1.6. It is much
different from the FEM in that, material is not treated as continuum but as
assembly of discrete particles, which can have different sizes and particle
shapes. Take a simple tunneling problem shown in Fig. 1.7 as an example, in
the FEM, soils are treated as elements controlled by constitutive model,
while in the DEM, soils are treated as many particles whose behavior is
controlled by contact model between particles and the Newton’s second law.
Therefore, equilibrium equations, physical equations and so on for
continuum theory are not applied. Particles move and interact according to
the Newton’s second law and force-displacement law (contact model).

Details will be introduced in Chapter 3.
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(a) FEM (b) DEM
Figure 1.7 Different elements used in FEM and DEM

DEM has been successfully to solve problems of particle flow, particle
crushing, discontinuous deformations and so on. The main advantages of
DEM are that it can directly simulate physical and geometric properties of
granular materials, such as particle shape, size distribution and arrangement,
and therefore can help to explore underlying mechanism of macro behavior.
Some pioneer work in the field can refer to Cundall (1979), Ting et al.
(1989), Anandarajah (1992), Thomas and Bray (1999), Iwashita et al. (1998,
2000), Thornton and Antony (2000).

PFC is one of commercial DEM code developed by Itasca and it has both
2D and 3D versions. Fig. 1.8 shows an example of elemental test simulation.
In the figure, (a) shows a model composed of spheres to simulate ideal
granular material, and (b) shows test result of stress-strain behavior and
comparison of rigid and flexible lateral boundaries. DEM can also well
simulate model test, such as in Fig. 1.9. A different EM code called YADE
was used to simulate local deformation in retaining wall model test, and the
simulation results were shown to be well agreed with image analysis results
by DIC method (introduced as below).
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Figure 1.8 Three-dimension DEM simulation on trixial test (After Cheung

and O’Sullivan 2008)

Figure 1.9 Two-dimension DEM simulation on retaining wall model test on
initially dense sand: (a) translating wall, (b) wall rotating around top, (¢) wall
rotating around toe (after Widulinski 2011)
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DIC is short for “Digital Image Correlation” and is a kind of image
analysis (http://en.wikipedia.org/wiki/Digital_image correlation). Its basic idea is
to solve deformation (especially inside the object) according to the variations
of gray levels, see the Fig. 1.10. The gray levels of image patches of
observed object at different time are matched, assuming that they present
some similarity. This method is based on the PIV (Particle Image Velocity),
and the cross-correlation method is used. Some detail introductions and
applications of the DIC in soil mechanics especially for the local soil
deformation had been done by Bruck et al. (1989), Rechenmacher et al.
(2002, 2004), White et al. (2003), Sadek et al. (2003), Slominski et al. (2007),
and recently by Hall et al. (2010). These studies had shown that DIC has
high accuracy and is very helpful for soil analysis. Fig. 1.11 shows DIC
analysis results of model tests on sands. It is found that the local deformation
in test photos that is invisible to the naked eyes can be well reflected by DIC
analysis.

Figure 1.10 Image matching in the DIC method
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Figure 1.11 PIV analysis results of retaining wall model test (after
Niedostatkiewicz et al. 2010)

1.3 Research objective and main contents

This study aims on unloading shear behavior of granular materials.
Details of the objective including:
(1) Macro unloading shear behavior of granular materials during and its
influence factors especially particle shape, relative density;
(2) Micro unloading behavior of granular materials and the underlying
mechanism corresponding to the macro behavior;

(3) Progressive local deformation during unloading and its influence
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factors including material properties and boundary conditions;

(4) Shear band characteristics in granular materials during unloading.

With the above objectives, this study mainly focused on unloading shear
behavior of non-cohesive granular materials including sands and glass beads.
Unloading shear behavior is investigated from both macro and micro
viewpoints. Elemental experiments, 2D DEM simulation and retaining wall
model tests were performed. Photographs of specimens in both elemental
experiments and model tests were taken and image analysis on local
deformations was done. This dissertation is composed of five chapters.

Chapter 1, Introduction

Chapter 2, Unloading shear behavior of granular materials with different

particle shapes in plane strain compression tests

Chapter 3, Unloading shear behavior of granular materials in biaxial DEM

simulation

Chapter 4, Unloading shear behavior of granular materials with different

particle shapes in retaining wall model tests

Chapter 5, Summary and conclusions

In chapter 1, background and purpose of this study were mainly
introduced. Past study about unloading behavior and existing problems were
reviewed. Local deformation in granular materials, particle shape effect,
DEM simulation and image analysis method were particularly reviewed.

In chapter 2, plane strain compression tests under two different stress
paths were performed on two sands and two glass beads with angular,
sub-angular and round particle shape. The unloading shear behavior of
granular materials under decreasing confining pressure was mainly analyzed
and compared to that in common loading shear test under constant confining
pressure. Influence of particle shape and relative density was especially
analyzed.

In chapter 3, based on the experimental test results in chapter 2, 2D
(biaxial) DEM simulations under the two different stress paths were
performed. Disk and clump models were used to investigate particle shape

effects. Both macro and micro behaviors were analyzed, and underlying

1-18



mechanism of the different shear behavior presented in chapter 2 was
explained from micro viewpoint.

In chapter 4, retaining wall model tests were performed on the two sands
and one glass bead used in Chapter 2. Local deformation of granular
materials in active state behind the retaining wall and particle shape effect
were mainly studied. Influence of the boundary condition including wall
movement mode and speed on the formation process of local deformation
during unloading was discussed.

In chapter 5, main conclusions obtained in each chapter are summarized.
Questions not solved yet and to be continued in future are presented.

Main contents and structure of this draft dissertation are shown in the

flowchart in the next page.

1.4 Innovation of this study

In this study, there are three points thought as research innovations:

(1) Plane strain compression tests under decreasing confining pressure were
performed in this study to investigate unloading shear behavior. It was
noted that the unloading shear behavior is different from that in common
plane strain compression test. Particle shape and relative density were
found to be very important influencing factors.

(2) Three materials with similar mean particle size but angular, sub-angular
and round particle shapes were compared. The particle shape effect can
therefore be separated from particle size effect. The angular particle
shape was found to be a critical factor for shear behavior.

(3) Strain energy variation with mean stress in DEM simulation was
analyzed. It was linked to macro shear behavior. Moreover, it is expected
to serve as a bridge connecting particle interlocking and macro shear

behavior.
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Chapter 2 Unloading shear behavior of granular
materials with different particle shapes

in plane strain compression tests

The natural ground is a semi-infinite stratum being composed of various
soils and rocks. Therefore a plane strain condition is often considered when
analyzing soil or rock problems. For practical unloading problems, soils may
undergo different stress paths including shear compression and extension. In
this study, only shear compression behavior was investigated. Experiments
were mainly focused on plane strain compression under decreasing mean
stress to explore unloading shear behavior. To investigate influence factors,
four kinds of granular materials with different particle shape or particle size
were selected. Moreover, influence of relative density of specimen,

confining pressure is also studied in this chapter.

2.1 Two stress paths in plane strain compression test

As mentioned earlier in Fig. 1.4, there are two different simple stress paths
for the triaxial compression test. This is the same for the plane strain
compression test. In this study, plane strain compression tests under the two
different stress paths were performed, and the corresponding stress paths are
shown in Fig. 2.1. One test type is the conventional plane strain compression
test (referred to as PSC test), where the specimen was sheared under a
constant axial displacement rate (displacement-controlled test) and a
constant effective confining stress (¢ 3). The other plane strain test type is the
load-controlled test (referred to as PSCD test), which shears the specimen by
decreasing the effective confining pressure ¢’; under a constant effective
axial stress (¢1). In the PSCD test, when a specimen reaches peak strength

(the highest 6’1/ 63), a decrease in the confining pressure stops and shearing
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is continued under a constant axial displacement loading rate. Practical field

problems corresponding to the two different stress paths are illustrated in Fig.

2.1. The soil element below a long strip footing, which is continuous unlike

an isolated footing, approximately follows the stress path of the PSC test,
while those located at the lateral sides of excavation of tunnels or continuous
foundation pits are close to the stress path of the PSCD test. A main
difference between the PSCD test and the PSC test is that the mean stress on

specimen decreased in the former while it increases in the later.
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Figure 2.1 Stress paths of the two compression tests
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2.2 Experimental set-up

2.2.1 Test apparatus

The plane strain compression test apparatus used in this study is shown in
Fig. 2.2. Each specimen has a width of 60 mm, a depth of 80 mm, and a
height of 160 mm, approximately. An axial load was applied at the top of the
specimen and grease was painted on the front and back planes of the
specimen in the direction of zero strain to reduce friction. The intermediate
principal stress cannot be measured in this study. Photos of the front plane of
specimens were taken during the shearing process to observe local
deformations of the specimens (Fig. 2.3). Some black points were pasted on
the surface of membrane to enhance the accuracy of image analysis. The
latex membrane used in the tests has a thickness of 0.3 mm and is quite
smooth. Alshibli and Sture (2000) performed the triaxial tests using a
comparable membrane under a low confining pressure of 15 kPa and
concluded that the membrane influence on the test results is expected to be
negligible. Therefore, a limited membrane eftfect on the material behavior is

assumed in this study.

2-3



Figure 2.2 Plane strain compression test apparatus: (a) photograph; (b)
sketch

bcm
Figure 2.3 Installed specimen
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2.2.2 Test materials and methods

Four types of materials consisting of two silica sands and two glass beads
were used and these are referred to in this paper as Ube NO.6A sand,
Toyoura sand, Glassbeadl and Glassbead2, respectively. The first three
materials have similar mean particle sizes (Ds¢=0.2 mm) with different
uniformities, while Glassbead2 consists of quite uniform glass beads with
much bigger particle sizes. Physical properties of the materials are
summarized in Table 2.1. Ube No. 6A and Toyoura sands mainly consists of
angular and subangular grains, respectively, and the particle shapes of the
two glass beads are rounded, as shown in the photos (Figs. 2.5(a)—(d)) taken
using scanning electron microscope (SEM). The aspect ratio (4;: the ratio of
length to width of a particle) and roundness (R.: a measure of circularity of a
particle; equation given in Table 2.1) were calculated for particles with its
mean grain size (Dso) from the SEM images. Fig. 2.6 shows an example of
how to measure the geometric size of particles. The aspect ratios is 1.3~2.3
for the Ube NO.6A sand with the mean value of about 1.8, and is 1.1~2.1 for
the Toyoura sand with the mean value of about 1.5. For the two glass beads
materials, the aspect ratio is exactly 1.0. The sands and glass beads are not
reused in each test to avoid possible changes of particle surface

characteristics, such as shapes or abrasion especially in beads.

Table 2.1 Physical properties of the four materials

Material G, Dsg €max €min Aspect ratio Roundness
(mm) A= alb R.= L*/4n4
Ube No.6A sand | 2.60 | 0.215 1.044 | 0.623 1.1~2.44 1.2~2.0
Toyourasand | 2.65 | 0.205 | 0.976 | 0.635 1.16~2.27 1.09~1.84
Glassbead | 2.50 | 0.200 | 0.742 | 0.569 1.0 1.0
Glassbead?2 2.50 | 1.072 | 0.689 | 0.571 1.0~1.04 1.01~1.05

Note: G is the specific gravity; Dso is the mean grain size; ep,, and ey, are the
maximum and minimum void raios; a and b are the length and width of a particle; and L

and A are the perimeter and area of the projection of particles.
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Particle size (mm)

Figure 2.5 SEM photos of the four materials
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Figure 2.6 Measurement of geometry sizes of particles [the symbols (a, b, L,

and A) in the figure are the same notations in Table 2.1]

Dense specimens were prepared by air pluviation method maintaining a
constant falling height of 125 c¢m, while loose specimens were made using
the same funnel but with almost zero falling height. The initial void ratio (ey),
void ratio after consolidation (e.), and initial relative density (D;) are listed in
Table 2.2. For the four different materials, dense samples were prepared at
their maximum possible relative densities by applying the maximum
possible manageable falling distances. For the maximum possible falling
heights, however, only Ube No.6A sand with the most angular particle shape
produced a much lower relative density (around 52%) compared to those of
the other three materials. Therefore, a little bit of compaction is done on the
Ube No.6A sand specimen by hitting on the side platens (steel model) of
specimen uniformly using a small rubber hammer to prepare denser
specimens. However, the final obtained relative density of dense Ube No.6A
sand was about 73%, which is approximately lower by 10% compared to
those of the other materials.

To saturate the specimens, de-aired water was flushed through the
specimens and then a back pressure of 50 kPa was applied. All the specimens
were isotropically consolidated and were sheared under drained condition
until a global axial strain of about 12%. The volumetric strain was obtained
by measuring the water level in a burette with a differential pressure
transducer.

For each kind of material, two PSC tests on dense and loose specimens
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were performed at a constant axial displacement rate of 0.1 mm/min and a
constant confining pressure of 50 kPa. Three PSCD tests under initial
consolidation pressures of 50 kPa, 100 kPa or 200 kPa were performed on
dense specimens, and one PSCD test under confining pressure of 100 kPa
was performed on loose specimens. In all the PSCD tests, the confining
pressures were decreased at a loading rate within 1-3 kPa/min and smaller
decrement of loading rate was taken near the failure. Specimen and test

conditions are summarized in Table 2.2.
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Table 2.2 Summary of specimen and test conditions

Relative Initial . Effegtivg
Material ;1;3;; density Vf)id r;t/?(;de ;(;Iel:;llliag?
D, (%) ratio e ¢ (kPa) ¢
Ube U-1 PSC 73.4 0.735 0.721 50
No.6A U-2 | PSCD 72.7 0.738 0.729 50
sand U-3 | PSCD 73.6 0.734 0.711 100
U-4 | PSCD 73.9 0.733 0.673 200
U-5 PSC 22.8 0.948 0.943 50
U-6 | PSCD 21.6 0.953 0917 100
Toyoura T-1 PSC 85.6 0.684 0.681 50
sand T2 | PSCD 75.1 0.72 0.701 50
T-3 PSC 79.8 0.704 0.671 100
T-4 | PSCD 82.4 0.695 0.673 200
T-5 PSC 24.9 0.891 0.881 50
T-6 | PSCD 24 0.894 0.885 100
Glassbead | G1-1 PSC 82.1 0.6 0.596 50
1 G122 | PSCD 82.1 0.6 0.596 50
Gl-3 PSC 78 0.607 0.599 100
Gl-4 | PSCD 76.3 0.61 0.596 200
Gl-5 PSC 16.8 0.713 0.705 50
Gl1-6 | PSCD 28.3 0.693 0.648 100
Glassbead | G2-1 | PSC 89.8 0.583 0.575 50
2 G2-2 | PSCD 78.8 0.596 0.569 50
G2-3 | PSCD 96.6 0.575 0.549 100
G2-4 | PSCD 97.5 0.574 0.543 200
G2-5 PSC 11 0.676 0.671 50
G2-6 | PSCD 12.7 0.674 0.608 100
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2.3 Test results and analysis

Test results including macro stress-strain relationship and volume changes
were mainly analyzed in this section. PSCD test results were especially
compared with PSC test results. Confining pressure and relative density

influences were investigated.

2.3.1 Comparison of shear behavior of the four dense
materials in the PSC test

Developments of the effective principal stress ratio and volume change
with axial strain of the four materials at the same consolidation pressure of
50 kPa are compared in Fig. 2.7 for dense specimens. Here, the principal
stress ratio R is defined as ¢'1/¢ 3, the ratio of effective vertical stress ¢’; and
effective confining stress ¢ 3.

In Fig. 2.7, all the materials gave typical results of dense granular
materials showing gradually increasing strength until the peak and then
softening. R shows high to low values from Ube No.6A sand to Glassbead?2.
Dilation in Glassbeadl and Glassbead2 happened earlier than that in Toyoura
sand, which is also earlier than that in Ube No.6A sand. Dilation angle
measured around the peak strength is 20.5°, 19.2°, 19.2° and 16.2° in the

four types of material, respectively. Here, the dilation angle is calculated by:

¥ =sin [(de’; + de’3) / |[(de” - deP3)]] 2.1

where &1 and ¢’; are the major and the minor plastic principal strains.

It is inferred that the most irregularity of particle shape of Ube No.6A sand
contributes to the highest dilation angle, even if its relative density is the
lowest in the four dense specimens. Alshibli et al. (2000) also reported that
the dilatancy angles of sands are greater for more angular grains.

Moreover, compared with Glassbeadl, Glassbead2 clearly shows later

peak strength and the curve from the peak to the residual state is less steep.
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This means the localization process is slower in Glassbead2 than that in

Glassbeadl. The difference resulted from particle size effect and this will be

discussed in later section 2.4.

Effective principal stress ratio R

Volumetric strain (%)

1

1(@@) Dense specimen
—a— Ube No.6A sand
—e— Toyoura sand
—&— Glassbead1
—w— Glassbead?2

o 1 2 3 4 5 6 7 8 9 10 11 12
Global axial strain (%)

(b) Dense specimen
—=— Ube No.6A sand
—e— Toyoura sand
—A— Glassbead1
—v— Glassbead2

T dilation

T T T T T T T T T T T T T T T T T 1
2 3 4 5 6 7 8 9 l 10 11 12
contraction

Global axial strain (%)

Figure 2.7 Comparison of shear stress, strain behavior of the four dense

specimens in the PSC test: (a) principle stress ratio ~ global axial strain; (b)

volumetric strain.



2.3.2 Comparison of shear behavior of dense specimens in
PSC and PSCD tests

Figure 2.8 shows the effective principal stress ratio R verses the deviatoric
strain relationships in both PSC and PSCD tests for each material. Here, the

deviatoric strain ¢ is defined by:

:, =\/3[(el —E ) (e —8) + (5 -]
9 (2.2)

where ¢, and &3 are approximated by the global vertical and lateral strain

separately and &,=0.

The maximum effective principal stress ratio Rmax, peak frictional angle ¢,
peak dilation angle ¥, and secant modulus E o3 in each case, were listed and
compared in Table 2.3. ¥, is calculated according to Eq. (2.1) using the

parameters at the peak strength. ¢, and £y o3 are calculated by:

9p = sin"[(6'1-63)/( 61406 3) |max (2.3)
Eoo3=[(0’1-03)/e1] c1=0.03% (2.4)

2-12



Principal stress ratio R

12 4

(a) Ube No.6A sand
10
PSCD_50kPa
8 PSCD_100kPa
PSCD_200kPa
64
PSC_50kPa
4 -
2

T T T T T T T T T T 1

0 3 6 9 12 15

Deviatoric strain (%)

Principal stress ratio R

129 (b) Toyoura sand
104
PSCD_50kPa
8 -
6 -
4 4
PSC_50kPa PSCD_200kPa
2
T T T T T T T T T T 1
0 3 6 9 12 15

Deviatoric strain (%)

2-13



124

—_
o
1

(o]
1

Principal stress ratio R

(c) Glassbead1

PSCD_100kPa
PSCD_50kPa

PSCD_200kPa
PSC_50kPa

12

—
o
1

0]
1

Principal stress ratio R
£ 0]
1 1

Deviatoric strain (%)

(d) Glassbead2

PSC_50kPa
PSCD_50kPa

PSCD_100kPa

T T T T T T T T 1

0 3 6 9 12 15

Deviatoric strain (%)

Figure 2.8 Principal stress ratio — deviatoric strain relationships in the four

types of material
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Table 2.3 Summary of test results

Relative M.axi.mum Pe‘:ak‘ P.eak‘ Secant
Material Test density pr1nc1pal. friction | dilation | modulus
type D, (%) stress ratio angie angl:, Eoo3
R h(O) | HO) | (MPa)
Ube No.6A | U-1 PSC 73.4 9.1 533 20.5 51.8
sand U-2 | PSCD 72.7 11.0 56.4 242 108.6
U-3 | PSCD 73.6 10.0 54.9 23.0 136.9
U-4 | PSCD 73.9 9.6 54.2 21.1 314.9
uU-5 PSC 22.8 5.0 41.8 0.0 20.8
U-6 | PSCD 21.6 6.0 45.6 5.7 84.0
Toyoura T-1 PSC 85.6 6.8 48.0 19.2 65.4
sand T-2 | PSCD 75.1 8.7 52.5 18.1 81.0
T-3 | PSCD 79.8 8.0 51.1 17.7 111.1
T-4 | PSCD 82.4 7.4 49.6 17.7 252.5
T-5 PSC 24.9 3.8 35.7 0.0 32.1
T-6 | PSCD 24 4.4 39.0 4.0 72.2
Glassbeadl | GI1-1 | PSC 82.5 4.3 38.5 19.2 56.3
Gl1-2 | PSCD 82.1 5.2 42.6 18.3 62.4
G1-3 | PSCD 78.5 4.5 39.5 17.8 114.6
Gl1-4 | PSCD 76.3 4.2 38.0 16.8 241.6
G1-5 | PSC 16.8 2.9 29.2 4.0 54.6
Gl1-6 | PSCD 28.3 2.7 27.4 4.0 96.3
Glassbead2 | G2-1 | PSC 89.8 4.0 36.9 16.2 70.0
G2-2 | PSCD 78.8 4.5 39.5 15.1 73.4
G2-3 | PSCD 96.6 3.9 36.3 15.1 98.8
G2-4 | PSCD 97.5 3.7 35.1 15.1 195.1
G2-5 | PSC 11 2.7 27.4 2.2 51.1
G2-6 | PSCD 12.7 3.1 30.8 2.2 67.8

There are several findings from Fig. 2.8 and the listed values in Table 2.3.

First, all the three specimens in the PSCD test showed clearly higher
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stiffness (R/eq) before the peak, and earlier peak stress ratio than those in the
PSC test for both the two sands. However, this was not found for the two
glass beads. The R - ¢4 curves in the PSC test and in the two PSCD tests
under ¢’ o = 100 kPa, 200 kPa almost overlapped in both the two glass beads.
The relationships between deviator stress ¢ (= ¢’1-63) and axial strain are
shown in Fig. 2.9. The two sands especially Ube No.6A sand showed almost
linear stress-strain behavior up to 1% axial strain in the PSC test, while they
behaved nonlinearly in the PSCD test when 0.1% axial strain was exceeded.
This means that stiffness degradation is quicker in the PSCD test than in the
PSC test for sands. However, this is less noticeable for the two glass beads.

Second, variation of peak strength with confining pressure in the three
PSCD tests is also different. In general, R,y decreased with increasing stress
level in both sands and glass beads. However, variations of Ry, are more
significant in Ube No.6A sand (Rma = 11.1, 10.0, 9.1) than those in Toyoura
sand (Rmax = 8.7, 8.0, 7.4). Rnax in glass beads is clearly higher under ¢’ =
50 kPa while there is little variation when ¢’ increased from 100 kPa to 200
kPa. It should also be noted that stick-slip of glass beads is more remarkable
under higher stress level. Then, the peak appeared earlier with decreasing
confining stress in the two sands but not in the glass beads.

Third, the after-peak stress-strain behavior in the two sands varied
differently under different test conditions while it showed quite similar
behavior in the two glass beads.

Fourth, according to values of secant modulus £ ;3 listed in the Table 2.3,
it is known that E 3 is higher in the PSCD tests than that in the PSC test for
both dense and loose specimens for each material. £y 3 also increased with

increase of confining pressure in the PSCD test.
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Figure 2.9 Deviator stress — global axial strain relationships within 1% axial

strain in dense specimens under different test conditions

Figure 2.10 shows volumetric strain variations with deviatoric strain in
dense specimens of the four types of material. It is found that volume
response in the PSCD test is different from that in the PSC test at the
beginning of shearing. Volume expansion happened instead of contraction
due to stress release. Dilation developed gradually due to shearing and
dilation angle reached the maximum value at the peak strength. It can also be
known from Figs. 2.10(a), (b) that before the peak strength, at the same
global axial strain, total volumetric strains of sand specimens in the three
PSCD tests are higher than that in the PSC test. Under the plane strain
condition, this means more lateral extension was generated in the PSCD test
than that in the PSC test for the two sands.
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Figure 2.10 Volume responses in the four types of material

From the Table 2.3, it is known that the dilation angle is no more than
50% of mobilized frictional angle at the peak. The percentage is 38 - 43% for
Ube No.6A sand, 34 - 40% for Toyoura sand, 43 - 50% for Glassbeadl and
38 - 44% for Glassbead2, respectively. It has been noted that the mobilized
angle was composed of several contributors including internal particle
friction, dilation, particle rearrangement and probably particle interlocking
(Guo and Su 2007 ). Moreover, it is found that the peak dilation angle
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decreased with increasing consolidation pressure in the three PSCD tests,
except that Glassbead2 showed the same value. The peak dilation angle
decreased from 24.2° to 21.1° in Ube No.6A sand, while it only changed 0.4°
in Toyoura sand and 1.5° in Glassbeadl. This also indicates that the Ube
No.6A sand with the most irregular particle shape is most vulnerable to
stress level change.

The p’-q relationship in the PSC and PSCD tests were shown in Fig. 2.11.
Here, p’ = (¢’1+0°3)/2. Two lines were drawn in each figure for different
materials. The dashed line noted as “gmax line” connected the points at the
peak deviator stress in each test, while the solid line noted as “critical line”
connected the points at the residual stress. In general, for each material, the
four curves under different test conditions arrived at the same gmax line or

critical line approximately.
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2.3.3 Comparison of shear behavior in PSC and PSCD tests
between dense and loose specimens

Following the same way in section 2.3.2, test results on loose specimens
were summarized and they were compared with the results of dense
specimens, as shown in Fig. 2.12. In each subfigure, it is shown two PSC
tests under ¢’ o = 50 kPa and two PSCD tests under ¢’p = 100 kPa in dense
and loose specimen, separately. In general, there is also difference between
R-g4 curves of PSC and PSCD tests in loose sand specimens. However, the
difference was thought smaller than that in dense specimens. The overall
R-g4 curves and volumetric strain change produced from the PSC and PSCD
tests for the two loose glass beads specimens were quite similar.

The volumetric responses were quite dependent on both the stress paths
and the relative density, especially in sands. As seen from the PSC test
results in Fig. 2.7, as typically known, a dense specimen slightly contracts
initially due to an increase in mean effective stress, and then dilation
becomes dominant until the specimen reaches the residual state; while a
loose specimen mostly exhibits a contractive behavior during shearing. For a
specimen of the PSCD test, a small amount of expansion occurs because of a
decrease in confining stress and a subsequent decrease in mean effective
stress. Therefore, in the current study, the dense specimens expanded instead
of being contracted in the beginning of shearing. For the loose specimens,
the expansion amount was less than the contraction amount at the beginning
of shearing, and therefore loose specimens initially showed contractive
behavior in the PSCD test as well as in the PSC test. The dilation angle of
loose specimen is 0 in the PSC test, while it is 5.7 and 4.0 in the PSCD test
for the two sands separately. This is because that the mean stress in the
PSCD test is lower than that in the PSC test, and specimen dilates easier

under a low stress condition.
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2.3.4 Summary of test results

From the above test results, it is clearly found that unloading shear
behavior in PSCD test is different from that in PSC test, and the difference
varies in different materials and also depends on relative density. It can be
inferred that particle shape has a significant influence on the shear behavior,
and the more angular particle shape makes the macro stress-strain behavior
more sensitive to the stress level and stress path. In the subsequent sections,
local deformation developments and shear band patterns in the specimens

and particle shape effects are examined by image analysis.

2.4 Local deformation by digital image correlation

analysis

To observe the developments of local deformations, photos of the
specimens were taken during the shearing and were analyzed using the

photogrammetry method.

2.4.1 Digital image correlation method

The photogrammetry method used in this study follows the technique
introduced by White et al. (2003). This method is originated from the PIV
(Particle Image Velocimetry) method, and a cross-correlation function is
used to trace the deformation of the material based on the photos. Therefore,
it is also called DIC (Digital Image Correlation) method. The DIC method
has been proven to have a reasonable accuracy in measuring the soil (or
particle) deformation and to be very useful to investigate shear band patterns
(Desrues and Viggiani 2004, Hall et al. 2010, Rechenmacher 2006).

In order to illuminate the specimens, two 500-Watt LED lights were
installed symmetrically in front of the observation window. Photos were

taken using a digital camera with a 35 mm focal length. Geometric
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correction was implemented to reduce errors induced by lens distortion. The
procedure of tracking specimen deformation is as follows: First, geometric
correction is done by taking a photo of the grid of nodes with a fixed node
spacing of 10 mm. In this study, approximately 300 nodes are included in the
image used for the correction. The corrected photos have a scale of about
0.07-0.09 mm/pixel. The error between the artificial node locations and their
corresponding locations analyzed by DIC is no more than 0.1 pixel. Then,
node points of interest with a spacing of 20 pixel between each other are
selected inside the first photo and their coordinates are specified. For a node
of interest, a square standard pattern with its size of 20 pixels by 20 pixels is
generated and its center located at the node. The mean gray scale of the
standard pattern is calculated to keep track of the movement of the center
point of the standard pattern. Third, since locations of selected points change
in the next taken photo due to shear deformation, new positions of the points
will be decided by searching new standard patterns having similar grey scale
with previous ones. The photographic coordinates of the node points are
computed at an accuracy of 0.1 pixel by applying the Gaussian distribution
or the quadratic curve to the longitudinal and lateral distribution of the
correlation coefficients in the pixels which have the maximum correlation
coefficients in the regions recognized as the node points (Kikkawa ez al. 2006).
A cross correlation method is used, and the cross correlation coefficient is

calculated by the following equation:

=

-1M-

L

agr

(#11=7)(sL2:71-5)

R = 00 (2.5)

J (f[l 1-7) [E 5 le1-5)

where £ [ij] is the grey scale of a single pixel in the standard pattern, 7 is

\
»— Il
._.

the mean grey scale of the standard pattern, s[i.j] is the grey scale of a single

pixel in the unknown pattern, sis the mean grey scale of the unknown
pattern, M and N are the pixel sizes of the decided standard patterns in the

vertical and horizontal directions.
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When the new coordinates of the selected points are determined, total
displacements of the selected points at each shearing stage can be calculated
by comparing the new coordinates with the original corresponding
coordinates of the initial image. Finally, four-noded isotropic elements are
used to determine the strains of the specimen based on the finite element
method. Comparing the observed total displacement of the top platen with
the corresponding measured displacement predicted by the DIC analysis, it is
found that the maximum error in the estimation of the top platen
displacement is no more than 0.6 mm for which the total axial displacement
was 20 mm. The error of 3% (0.6 mm divided by 20 mm) could be assumed
reasonably small; therefore, the DIC method used in this study is considered

a reasonable technique to measure local deformations of the specimens.

2.4.2 Local lateral deformation

Lateral strain distributions in the specimens are compared at the same
global axial strain &, (near the peak strength) for each material, as shown in
Figs. 2.13~2.16. Here, ‘+’ represents compression and °-° represents
extension. (a), (b), (c) and (d) represent test conditions of PSC test with
0’.0=50 kPa and PSCD tests with ¢’,c=50 kPa, ¢’,0c=100 kPa and ¢’.(=200
kPa respectively. Butterfly shaped distribution was found in both sands and
glass beads. They are more symmetrical in the two glass beads compared to
those in the two sands. For each specimen, local lateral deformation showed
almost extension. For the Ube No.6A sand, local extension in the PSC test
(Fig. 2.13(a)) is seen clearly less than those in the PSCD tests (Figs.
2.13(b)~(d)).
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Figure 2.13 Local lateral strain distributions in Ube No.6A sand (£,=2%)
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Figure 2.14 Local lateral strain distributions in Toyoura sand (e,=1.5%)
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Figure 2.15 Local lateral strain distributions in Glassbeadl (¢,=1.2%)
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Figure 2.16 Local lateral strain distributions in Glassbead2 (¢,=1.5%)

2.4.3 Shear band evolution and shear band thickness

In this study, shear bands were captured from the maximum shear strain
distributions based on the image analysis. The maximum shear strain ymay 1S

calculated as:

where ¢y, €y, and )y, are the horizontal, vertical, and shear strains of a divided
element in the observed plane, respectively.

According to the observations, double shear bands were finally generated
in all the glass beads specimens, while both single and double shear bands
were commonly found in sand specimens. For all the specimens under
different test conditions, shear bands evolutions have similar but distinct
ways. Shear bands developed with changing patterns during the whole
shearing. The final shear bands are quite different from the initial ones,
especially in sands. Fig. 2.17 shows a case of Toyoura sand in the PSCD test
under ¢’ = 100 kPa. Five stages were chosen including (a) at the peak, (b) -
(d) typical stages and (e) at final state. It can be seen from Fig. 2.17(a) that
several shear bands have been formed at the peak and they are quite
nonuniform. Then, only the left-inclined band developed as shearing went on

until 4.2% axial strain. After that the first shear band pattern had almost no
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change and a second shear band began to appear. The second one gradually

evolved from discontinuous localized deformations and crossed with the first

shear band. It grew wider and wider until the final state.

Figure 2.17 Shear band evolutions in the PSCD test of Toyoura sand,
o ’0= 100 kPa: (a) e,=1.5%; (b) £,=2.0%:; (c) &,= 4.2%;
(d) ea=8.2%; (e) .= 12.0%

The above shear band evolutions are not limited to sands with irregular
particle shapes. Similar case was also found in Glassbeadl. Fig. 2.18 shows
an example of the PSCD test under ¢’y = 100 kPa. Symmetric shear bands
have been formed at the peak with &, = 1.2%, however they changed
immediately and only one shear band was clearly observed at ¢, = 1.6%.
Then the shear band developed for a relatively long shearing period and a
second shear band initiated at &, = 6.7%. After that development in the first
shear band almost ceased and increased deformation was localized within the
second one until the final state.

Although two shear bands were finally formed in all the four cases of
Glassbeadl, they were not developed at the same time. The second shear
band appeared at the under part of specimens as shown in Fig. 2.18 in two of
the four cases, and it appeared at a symmetric location of the first one in the
other two cases (see Fig. 2.23(b) and (d)). Therefore, even for the
Glassbeadl with very round particle shape and the relatively uniform narrow

particle size distribution, shear bands are not always symmetric and they are
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hard to predict. However, for the Glassbead2 with almost five times of
particle size of Glassbeadl, symmetric and conjugate shear bands were

always formed (see later Fig. 2.24).

Figure 2.18 Shear band evolutions in the PSCD test of Glassbeadl,
0 ’0= 100 kPa: (a) e,=1.2%:; (b) &,=1.6%:; (¢) €a= 6.7%;
(d) ea=10.3%; (e) .= 12.0%

From Figs. 2.17 and 2.18, it can be seen that shear band is not perfectly
uniform and its thickness changes at different places of specimen. To make
comparison of shear band thickness of the four materials, the thicknesses
were measured at the middle of the main shear bands or at slightly lower
location from the intersection of two conjugate shear bands based on the
maximum shear strain contours. Shear band thickness is measured according
to the outermost contour lines of the main shear band based on the maximum
shear strain contours. For the measurement purpose of the shear band
thickness, the shear band is defined for which the local maximum shear
strain ymax exceeds 10%.

Figure 2.19 shows shear band thickness in dense specimens at about 12%
axial strain for each material. Although the two sands and Glassbeadl have
almost the same Dsj, and Toyoura sand has very similar relative densities
with Glassbeadl, their shear band thicknesses are not always similar.
Glassbeadl has larger shear band thickness than the two sands. This is
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because Glassbeadl has a very uniform size distribution and round particle
shape compared with the two sands. When comparing the two glass beads
with the similar uniform size distribution but different particle size,
Glassbead2 shows clear higher thickness than Glassbeadl. However, the
shear band thickness is not proportional to the mean particle size. The Dsg
size of Glassbead? is almost 5 times as that of Glassbeadl while the ratio of
their shear band thicknesses is only about 1.1 - 1.4 times. The ratio of shear
band thickness and the Dsy size is not constant for different granular
materials and it decreases significantly when grain size becomes very big.
This was also reported by Desrues and Viggiani (2004). Moreover, it is
clearly seen that shear band thickness decreases with the increase of

confining pressure in the PSCD test for all the materials.
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Figure 2.19 Comparison of shear band thickness in the PSC and PSCD tests
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Figure 2.20 Comparison of shear band thickness in dense and loose

specimens

Figure 2.20 shows comparison of measured shear band thicknesses
between loose and dense specimens at about 12% axial strain. The PSCD
test results were compared at 6 'o= 100 kPa. Clearly, for each material, shear
band thickness is much smaller in the dense specimen than that in the loose
specimen for the same test condition.

The shear band thickness was introduced here also for the analysis of local

deformation development in next sub-section.

2.4.4 Local deformation developments within shear band

Developments of local deformations in the specimens with detail values
under different test conditions for the four materials were examined, as
shown in Figs. 2.21-2.24. The maximum shear strain contours at the end of
shearing (shearing ended around 12% of global axial strain) were produced
in the same scale as in the figures to represent general images of shear band
patterns.

As shown in Figs. 2.21-2.24, for the given five locations (marked by the
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circular points in the figures) along the shear band, development of the
maximum shear strains within the shear band was plotted with respect to the
global axial strain for each test condition. One or two shear bands were
observed in both dense and loose specimens. When two shear bands
appeared, the more apparent shear band is considered to be the main shear
band. The five locations were determined in a way that the locations are
approximately equally distributed along the main shear band. Lagrange
method is used to trace the local maximum shear strain variations. From Figs.
2.21-2.24, maximum shear strains slowly developed at the beginning of
shearing. As the global axial strain increased and reached to a certain value,
the local maximum shear strains of the five locations almost simultaneously
began to increase abruptly. Then, the start of abrupt change in gradient of the
maximum shear strain curve is considered “the onset of shear band.” For
each test condition, the global axial strain (g;"°) corresponding to the onset of
shear band is determined and listed in Table 2.4.
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Figure 2.21 Local deformation developments within shear bands in Ube No.6A sand:
(a) dense, PSC, ¢’ = 50 kPa; (b) dense, PSCD, ¢’,, = 50 kPa;
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Figure 2.22 Local deformation developments within shear bands in Toyoura sand:
(a) dense, PSC, ¢’ = 50 kPa; (b) dense, PSCD, ¢’ = 50 kPa;
(c) dense, PSCD, a’o = 100 kPa; (d) dense, PSCD, ¢’ = 200 kPa;
(e) loose, PSC, ¢’ = 50 kPa; (f) loose, PSCD, ¢’ = 100 kPa
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Figure 2.23 Local deformation developments within shear bands in Glassbead1:
(a) dense, PSC, ¢’ = 50 kPa; (b) dense, PSCD, ¢’ = 50 kPa;
(c) dense, PSCD, ¢’ = 100 kPa; (d) dense, PSCD, ¢’ = 200 kPa;
(e) loose, PSC, ¢’ = 50 kPa; (f) loose, PSCD, ¢’ = 100 kPa
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Figure 2.24 Local deformation developments within shear bands in Glassbead2:
(a) dense, PSC, ¢’ = 50 kPa; (b) dense, PSCD, ¢’ = 50 kPa;
(¢) dense, PSCD, ¢’o = 100 kPa; (d) dense, PSCD, ¢’ = 200 kPa;
(e) loose, PSC, ¢’ = 50 kPa; (f) loose, PSCD, ¢’ = 100 kPa

Separately from the onset of shear band development, the global axial
strains (g,;) corresponding to the peak strengths were also marked using a
symbol ‘¥ in Figs. 2.21-2.24 and summarized in Table 2.4. It is found that
e.’” is always smaller than or equal to &, corresponding to the peak strengths,
which means that the onset of shear band occurs prior to the mobilization of
peak strength for both dense and loose specimens.
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Table 2.4 local deformation characteristics

Relative Nug}bef & @ s» | Mean Shear

Material Test density | observed peak | & growth b and
type (%) Shear strength | (%) ate k thickness

band (%0) (mm)

Ube U-1 | PSC 73.4 1 2.03 2.0 | 421 4.24
No.6A | U2 |PSCD | 72.7 2 0.84 [0.83| 20.8 6.75
sand U-3 | PSCD | 73.6 1 1.22 | 1.04| 21.8 5.75
U-4 | PSCD | 73.9 1 135 | 1.17| 244 5.3

U-5 | PSC 22.8 1 500 [440| 19.2 6.67

U-6 | PSCD | 21.6 2 371 | 297 | 145 7.54
Toyoura | T-1 | PSC 85.6 1 1.79 | 1.64| 29.6 5.25
sand T2 |PSCD| 75.1 2 1.13 1.1 15.4 6.67
T3 |PSCD | 79.8 2 1.53 | 1.19] 19.6 6.21

T4 |PSCD| 824 1 1.52 | 1.52| 23.6 6.06

T-5 | PSC 24.9 2 423 [4.00| 183 7.15

T-6 | PSCD 24 2 420 |3.07] 132 7.60

Glass | Gl-1| PSC 82.1 2 1.11 1.05 | 24.5 6.95
beadl | Gl-2 | PSCD | 82.1 2 1.05 |0.88| 12.7 8.40
G1-3 | PSCD 78 2 095 1094 157 8.05

Gl-4 | PSCD | 76.3 2 1.18 | 1.16 | 22.0 5.63

G1-5| PSC 16.8 2 220 217 149 8.86

Gl-6 | PSCD | 283 2 224 |2.08| 9.8 9.29

Glass | G2-1| PSC 89.8 2 1.59 [095] 134 8.14
bead2 | G2-2 | PSCD | 78.8 2 1.55 052 8.1 9.73
G2-3 | PSCD | 96.6 2 143 [042| 9.2 8.78

G2-4 | PSCD | 97.5 2 147 1052 12.8 7.62

G2-5| PSC 11 2 338 | 140 9.1 10.51

G2-6 | PSCD | 12.7 2 343 | 1.72| 84 10.59
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It is interesting to find that most of the maximum shear strains within the
shear band grow approximately linearly with an increasing global axial strain
after the onset of shear band. However, the rate of increase in the local
maximum shear strain is not always the same at the five locations. As shown
in Fig. 2.25, the growth rate k (=Aymax/Ac€a) is defined as the ratio of the
change of yma to that of €,, and it is obtained from a simple linear regression
to the curves in Figs. 2.21-2.24.

(a) dense
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Principal stress ratio R &
Local maximum shear strain .

Figure 2.25 Sketch of definition of growth rate & in local maximum shear

strain curve for (a) dense and (b) loose specimens

The &, ranges used for the regression are &, < &, < “e, corresponding to

the end of strain softening” for dense specimens and easb < g, < “g, at 8%
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global axial strain™ for loose specimens. The upper bounds of &, for dense
and loose specimens were chosen as such, because the principal stress ratio
variations almost ceased near the specified upper bounds of &,.

Fig. 2.26 shows k values results in the PSCD tests of dense specimens
under different confining pressures. For the same test case, some points
overlapped because of the same growth rate of curves at different locations.
The mean value of the five locations in each case was also given in the
figure. It is found that k& decreased across Ube No.6A sand, Toyoura sand,
Glassbeadl and Glassbead2 under the same test condition. Moreover, for

each material, k increased with increase of confining pressure.
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Figure 2.26 Growth rate of maximum shear strain within shear band in the

PSCD test for dense specimens
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Figure 2.27 Comparisons of growth rate of maximum shear strain & within

shear band in each case

Figure 2.27 shows comparison results of k& values in dense and loose
specimens. Here, the PSCD test is under ¢’ = 100 kPa. In general, the mean
growth rate k is higher in dense specimen than that in loose specimen under
the same test condition. For both loose and dense specimens of each material,
k is higher in the PSC tests than that in the PSCD tests.

Referring to Figs. 2.19 and 2.20, the growth rates under different test
conditions found to have strong correlation with shear band thickness. The
mean growth rates k£ of local maximum shear strain yy.x and the shear band
thicknesses obtained for all the tests are summarized in Table 2.4. Regardless
of the material types, a consistent finding is that the growth rate £ decreased
with an increasing shear band thickness. For example, loose specimen had a
wider shear band than that in dense specimen, and the growth rate in loose
specimen was lower. When comparing the growth rates in different materials,
it is found that Glassbead2 with the largest shear band thickness show the
lowest growth rate under each test condition and Ube No.6A with the
smallest one shear band thickness shows the highest growth rate. The reason
is because that, for specimen with a wider shear band, it generates more

displacement to reach a certain extent of maximum shear strain ypn, and
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therefore more global axial strain ¢, is needed to increase ymax. As a result,

the growth rate is smaller.

2.4.5 Shear band inclination angles in the PSCD test

Shear band inclination angle has been studied a lot. Two classical
formulas proposed by Coulomb and Roscoe were often used for the
prediction of shear band inclination angle and their solutions are given in the
Table 2.5. For details about these two prediction equations can refer to
Alshibli and Sture (2000). Coulomb’s and Roscoe’s formulas to estimate

shear band inclination angles (6¢ and 6, respectively) to the horizontal are:

6. =45+, /2 en

Oy =45°+%, /2 2.8)

where @, is the mobilized peak friction angle and ¥, is the dilation angle

at peak strength (refer to Eq. (2.1) and Eq. (2.3)).

Different comparison results were given by several researchers. Such as,
Finno et al. (1997) concluded that the inclination angles in loose sands lied
between Coulomb and Arthur solutions; measured results by Alshibli and
Sture (2000) were much closer to Roscoe’s solution and the result was little
influenced by relative density and particle size distribution. In this study,
shear band inclination angles 8, to the horizontal at the peak strength and
those 6 at the maximum global axial strain (¢, = 12%) in our tests were

measured and summarized in Table 2.5.
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Table 2.5 Summary of measured and predicted shear band inclination angles

Mobilized | Dilation Coulomb | Roscoe

Material Rumax angle angle ?g) (9;) solution solution
Pm (°) () ©) )

Ube U-1 9.1 53.3 20.5 70.8 | 70.8 71.7 55.3
No.6A | U-2 | 11.1 56.6 24.2 72.8 | 67.8 73.3 57.1
sand U-3 | 10.0 54.9 23.0 72.1 | 67.7 72.5 56.5
U4 | 97 54.4 21.1 68.8 | 68.1 72.2 55.6

U-5 5.0 41.8 0.0 64.8 | 67.4 65.9 45.0

u-6 | 6.0 45.6 5.7 60.6 | 67.4 67.8 479
Toyoura | T-1 6.8 48 19.2 69.2 | 69.2 69.0 54.6
sand T-2 8.7 52.6 18.1 69.3 | 69.7 71.3 54.2
T-3 8.0 51.0 17.7 68.6 | 68.9 70.5 53.9

T-4 7.4 49.6 17.7 69.6 | 70.0 69.8 53.9

T-5 3.8 35.6 0.0 593 | 68.9 62.8 45.0

T-6 4.4 39.0 4.0 61.6 | 623 64.5 47.0

Glass | Gl-1| 4.3 38.6 19.2 56.3 | 53.8 64.3 54.6
beadl | GI1-2| 5.2 42.6 18.3 61.6 | 58.4 66.3 54.1
G1-3| 4.5 39.6 17.8 59.1 | 56.0 64.8 53.9

Gl-4 | 4.2 38.0 16.8 54.6 | 543 64.0 53.4

Gl-5| 29 29.2 4.0 54.6 | 56.0 59.6 47.0

Gl-6 | 2.7 27.4 4.0 52.1 | 519 58.7 47.0

Glass | G2-1 | 4.0 36.8 16.2 54.0 | 51.8 63.4 53.1
bead2 | G2-2| 4.5 39.6 15.1 545 | 51.8 64.8 52.6
G2-3| 39 36.2 15.1 53.7 | 51.8 63.1 52.6

G2-4 | 3.7 35 15.1 53.7 | 51.8 62.5 52.6

G2-5| 2.7 27.4 2.2 532 | 51.8 58.7 46.1

G2-6 | 3.1 30.8 2.2 48.0 | 473 60.4 46.1

Clearly, 6, values were much smaller in the loose specimens than in the

dense specimens under the same test condition for all the materials. For Ube

No.6A sand, measured shear band inclination angle decreased from 6, to 6;

2-51




for dense specimens while the 6; was higher than 6, for loose specimens. For
Toyoura sand, almost no change was found between 6, and 6; in the dense
specimens and only a small decrement (1.8° and 0.7°) from 6, to 6; was
observed for the loose specimens. However, the measured shear band
inclination angles of the two glass beads dropped from 6, to 6; for both dense
and loose specimens.

Fig. 2.28 shows comparison results on the horizontal axis of maximum
principal stress ratio R. The R value was no more than 6 in the two glass
beads and it was no less than 6 in the two sands. It is found that measured
inclination angles in the two sands are well predicted by Coulomb’s formula
with errors of 0 — 2°. For the two glass beads, measured values are quite
close to Roscoe solutions in Glassbead2 while they lie between Coulomb
solutions and Roscoe solutions in Glassbeadl. As a result, Roscoe’s formula
considering only dilation angle underestimated the shear band inclination
angles in the sands, while Coulomb’s solution clearly overestimated the
angles in the glass beads. The results revealed that the shear band inclination
angle calculation method can be different between round and irregular

granules. This needs more study in the future.
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Figure 2.28 Comparison of the measured inclination angles 6, and the
predicted values based on the two classical solutions: (a) Ube No.6A
sand and Toyoura sand; (b) Glassbeadl and Glassbead2
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2.5 Conclusions

Two types of plane strain compression tests, one with constant and another
with decreasing confining pressures, were compared in this study for four
kinds of granular materials. Local deformations of specimens were analyzed
using the DIC method. It was found that shear compression behavior under
the two different stress paths shows different points in several aspects. Some
conclusions were drawn as below:

(1) Macro stress — strain behavior is more easily influenced by stress level
and stress path in the two sands than that in the two glass beads. The more
angular particle shape induced more significant peak strength variations with
stress level. For the given stress levels in this study, the peak appeared earlier
and initial stiffness was clearly higher in all the PSCD tests than those in the
PSC test for the sands.

(2) Local lateral strain showed mainly extension and butterfly shaped
distribution near the peak strength. The extension was higher in the PSCD
test than that in the PSC test for sands at the same global shear strain. Shear
bands already initiated before peak strength and shear band patterns were
changing during the whole shearing process.

(3) Under the same test condition, shear band thickness in the two sands
was smaller than that in Glassbeadl even if the three types of material have
almost the same mean particle size. Shear band thickness also decreased with
increase of confining pressure regardless of particle shape or size.

(4) The onset of shear bands is defined at which the growth rate of the
local maximum shear strain starts to increase stiffly with an increasing global
axial strain. Generally, the onset of shear bands occurs prior to the specimen
reaching its maximum principal stress ratio for both dense and loose
specimens. Between the peak in shear strength and the end of strain
softening, the local maximum shear strain grew approximately linearly with
the global axial strain. For the same material, the growth rate of the local

maximum shear strain became smaller with wider shear band.
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(5) Shear band thicknesses in the two sands were clearly smaller than that
in Glassbeadl, even with their similar mean particle sizes. Shear band
thickness became thinner when particle shape is more angular. Shear band
thickness was also much dependent on the particle size. However, shear band
thickness was not proportional increased with an increasing mean particle
size.

(6) Inclination angles of shear bands corresponding to their peak strengths
were in between those estimated values by Coulomb’s and Roscoe’s
formulas for both sands and glass beads. The shear band inclination angles in
sands matched well with those estimated by Coulomb’s formula, while
Roscoe’s formula predicted shear band inclination angles relatively close to
the corresponding measured values in dense glass beads.

From the experimental study, it is clearly seen that the unloading shear
behavior of granular materials in the PSCD test is different from the general
loading shear behavior in the PSC test. The differences between the two are
influenced by particle shape and relative density in a significant way. In the
next chapter, DEM simulation was performed to help understand the

mechanism from the viewpoint of the micro mechanics of granular material.
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Chapter 3 Unloading shear behavior of granular

materials in biaxial DEM simulation

In last chapter, plane strain compression tests on irregularly shaped sands
and rounded glass beads were introduced and it is found that particle shape
has a great influence on shear behaviors of granular materials under different
stress paths. In order to investigate the underlying mechanism of the particle
shape effects on the shear behavior under different stress paths, DEM is used
to simulate the experiments. Simulations were performed using the PFC*°
program by the Itasca Company. Simulation results were compared from

both macro and micro viewpoints of granular materials.

3.1 DEM Simulation by PFC*"

3.1.1 Introduction of PFC*®

“PFC” is shorted for “Particle Flow Code”, which has two-dimension and
three-dimension codes. Two-dimension code of PFC?” is used in this study.

(1) Fundamental geometric entity and calculation cycle

In PFC, there are only two fundamental geometric entities applied for
calculation. One is “ball” and another is “wall”. A PFC*® model consists of a
two-dimensional collection of particles. The particles are treated as rigid
bodies. Newton’s second law is used to determine the motion of each particle
arising from the contact and body forces acting upon it, while the
force-displacement law is used to update the contact forces arising from the

relative motion at each contact, as shown in Fig. 3.1.
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Figure 3.1 Calculation cycle in PFC*® (after “User Manual” 2008)

As shown in Fig. 3.2, the points between two balls signify contacts and
lines signify contact forces. The wider of lines, the larger contact forces. For
2D simulation, the out-of-plane force component and the two in-plane
moment components are not considered in any way in the equations of
motion or in the force-displacement laws.

(a) e

Figure 3.2 Particles used in the DEM calculation: (a) round shape; (b)
arbitrary shape

(2) Contact model

There are two frequently-used contact models in the PFC, including the
linear model and Hertz model. The linear model provides sliding behavior,
constant stiffness and optional bond behavior for particles. For non-cohesive

granular materials, bonding is ignored and there is no tension strength
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between particles. The Hertz model provides sliding behavior and stiffness
that varies as a function of the elastic constants of the two contacting entities,
overlap and normal force. As the name implies, behavior of contact between
particles follows Hertz contact law. There are also several alternative contact
models provided by PFC to meet different requirements, such as ductile
model, smooth-joint model, which can meet user’s different requirement.
Hertz contact model is applicable to only spheres. As the maximum
pressure applied on the research subject is not big compared to particle’s
stiftness and referring to past studies, the simplest linear contact model is
used in this study. Fig. 3.3 shows contact behaviors of two particles in DEM

simulation.

Figure 3.3 Contact behaviors of two balls

The normal force £/ and shear force F;’ at contact N; are calculated as
follows. When Equation (3.3) is satisfied, slip between the two particles
occurs.

F'=K"*U/" (3.1)
Fi=F-E*AU;? (3.2)
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P> upk" (slip) (3.3)
here, K" and K’ are normal and tangential contact stiffness separately; U/ is
the normal overlap; u is friction coefficient, AU; is increment of shear
displacement.

Contact stiffness is treated as constant in the model. The contact normal
secant stiffness and shear tangent stiffness are given by

K" =k, kICky*+ kD) (3.4)

K=k kPICkS ™+ k) (3.5)

k' kP, k, kP are the normal and shear stiffness of two balls A and B in
contact.

The dashpots in Fig. 3.3 are used to dissipate kinetic energy to help the
sliding arrive at a steady state solution in a reasonable number of cycles.
Local damping and viscous damping are available. Local damping applies a
damping force to each ball with magnitude proportional to unbalanced force,
while viscous damping adds normal and tangential dashpots at each contact
and provides forces that are proportional to a relative velocity difference
between the two contacting entities. Since the simulated tests in this study
are quasi-static, only local damping is applied and the damping constant is
0.5.

(3) Particle shape

By default, balls are treated as spheres. They can also set to be disks of
unit thickness or cylinder with a specified thickness. To simulation plane
stain condition, balls are set to be disks of unit thickness. Balls can well
simulate round shaped particles such as glass beads. However, natural sands
usually have much irregular particle shape. “Clump” model supplied by PFC
can help to solve this problem.

Several circular balls can be combined to form a clump, as shown by some
examples in Fig. 3.4. The positions of slaved balls in a clump can be
adjusted to meet any requirements on the appearance. Clump behaves as a
rigid body that will not break apart, regardless of the forces acting upon it.
That means the particles comprising the clump remain at a fixed distance

from each other only if the clump command is cancelled. Particles within a
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clump may overlap to any extent and contact forces are not generated
between these particles. Therefore, one clump acts as a particle and it can be
used to simulate any kind of particle shape by adjusting size and position of
particles within a clump. However, to modify real shape of granular particles
such as sand, it may need a large number of different balls as shown in Fig.
3.5. This will take long time and require high performance equipment for

calculation.

Figure 3.4 Different clumps made by several balls

Figure 3.5 Simulation of real particle shape with overlapping spheres (after
Ferellec and McDowell 2010)

(4) Boundary condition

As mentioned above, PFC modeling only contains two elements of ball
and wall. Boundaries can be supplied by both ball and wall through applying
forces or velocities. For each ball, an applied force or/and moment acting
through its center and initial velocity (translational and rotational) can be
specified. Balls can also be fixed or fix-released. For each wall, only
velocities can be specified. The wall motion is specified and the Newton’s
second law is not applied to walls. Walls only require that the
force-displacement law account for ball-wall contacts. Its motion is specified
by the user and remains constant regardless of the contact forces acting on it.

Also, contacts may not form between two walls.
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(5) Selection of particle size and specimen size

There is no necessary to simulate the real particle sizes of sands used in
experiment, because real particle sizes of sands are usually very small and
one specimen may contains numerous particles. Also, there is no need to
simulate the same size of specimen with that in the experiment. For the same
number of particles and same arrangement, the simulation results will be the
same. However, for 2D simulation, length-width ratio will have influence
when it exceeds a certain range. Particle size effect is not obvious.

The total number of particles and particle size distribution are very
important for simulation. If number of particles is too small, the boundary
effect is large and simulation result of stress and strain behavior inside
specimen maybe unreliable. On the other hand, if you choose too many
particles, it will take much time. Generally, particle sizes in simulation can

be reduced by the same proportion according to their real sizes.

3.1.2 Test specimens

In this study, after several trials, specimens were set to be 3 cm wide and
6 cm height. A total of 6000 particles with diameters ranging from 0.4 mm to
0.96 mm were generated in specimens, and the size distribution was almost
the same as the Toyoura sand often used. In order to consider the particle
shape effects on shear behaviors, two types of specimens were generated
using round particles (treated as disks of unit thickness) and irregular shaped

particles, as being called “disk™ and “clump” in Fig. 3.6, separately .
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Flexible wall by ball

Figure 3.6 Specimens with disks and clumps

The irregular shaped particle “clump™ was made by replacing each single
particle with a clump consisting of 3 uniform disks, as shown in Fig. 3.6.
The center positions of original disks were not changed. Radius and

locations of the 3 balls in one clump are decided according to the following

equations:
re=a*ry*sin(Pi/N)/(1+sin(Pi/N)) (3.6)
X=xpta*(re- r¢)*cos(2*i*Pi/N) (3.7)
Ve=Vota*(ry- ro)*sin(2*i*Pi/N)  (i=0,1,2) (3.8)

where 7., x., J. are diameter and center coordination of the disks inside each
clump; ry, xpand yy are diameter and center coordination of original disk; a is
a factor to adjust the overlap between disks and thus the clump shape varies;
N is the number of balls compose each clump. In the simulations of this
study, a is 1.2 and N is 3.

The selected shape of clump is rather ideal and the aspect ratio is not
suitable to judge the shape. As shown in Fig. 3.7, there is only single contact
between disks, while single and multiple contacts exist between clumps.
Dense clumps have a maximum of 3 contact points and loose clumps have 1

or 2 contact points. This can represent particle roughness to some extent. The
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particle roughness had been considered in 2D DEM by setting multiple
contact points between two disks (Jiang et al. 2009). Moreover, normal
contact force between disks always points to the centers of the two disks, and
thus rolling resistance is 0. The rolling resistance in real sands can be
considered using clump model.

Figure 3.7 Contacts between particles: (a) dense disks; (b) dense clumps and

(¢) loose clumps

3.1.3 Boundaries and simulation parameters

The top and bottom of the model were confined by rigid wall boundaries,
while the lateral sides were confined by flexible boundaries made of disks to
simulate the membrane in the real test. The disks used for the membrane
were uniform and had the same diameter with the smallest particles in
specimens. No friction was supposed and a very high bonding strength was
set among these membrane disks to prevent stripping. Single forces were
applied to the membrane disks to supply the confining pressure.

Two dense specimens and two loose specimens were generated by giving
different initial void ratios for both disk and clump models. All the
specimens were consolidated at the same isotropic confining pressure of 100
kPa. The void ratio after consolidation is about 0.16 and 0.18 for dense
clump and disk specimens, and 0.25, 0.24 for loose clump and disk
specimens respectively. The main calculating parameters are listed in Table
3.1
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Table 3.1 Main parameters in the simulation

Parameter value
Inter particle friction coefficient # 0.5
. normal An 3e8 N/m
contact stiffness -
tangential ks 2e8 N/m
Density of disks or clumps » 2600 kg/m’
Total number of disks or clumps N 6000
Particle-Wall friction 0.2
Flexible boundary friction 0
Contact model Linear
Consolidation pressure 100 kPa
. . . dense 0.16,0.18
Initial void ratio eg
loose 0.24, 0.25

After consolidation, each specimen was sheared under two stress paths, as
described in Fig. 2.1. The PSC test is simulated by biaxial compression,
where the top and bottom plates are given a constant speed to compress the
specimen while the confining pressure is kept constant. The PSCD test is
simulated by biaxial decompression. Servo-control was set to the top and
bottom walls to keep the vertical boundary stress constant. The confining
pressure was reduced by decreasing the forces on the membrane disks at an
interval (starts from 10 kPa), which was set to be smaller and smaller as peak
or failure approaches. After that the forces on the membrane disks were kept

constant and the specimen continued to be sheared until 10% axial strain.

3.1.4 Calculation method of local shear deformation

Past studies of both FEM and DEM simulations have shown that shear
bands are not only related to the properties of materials but also much

dependent on boundary conditions, especially for the positions and shapes of
shear bands (Masuda et al. 1999, Rechenmacher 2006, Cheung and Sullivan
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2008, Wang et al. 2007). In order to investigate local shear deformations,
positions of some particles were traced during the shear. A strain calculation
method presented by Wang et al. (2007) is referred. As shown in Fig. 3.8,
several grid points were set at a fixed spacing in the specimen, and the disk
or clump which is the closest to each grid point was chosen. This is judged
by the equation (3.9). The displacements of grid points are thus thought as
the same to the selected disks or clumps. The spacing was set to be about
3Dsg in the simulation. It is found that positions of grid points and selected

disks or clumps almost coincide with each other, as seen in Fig. 3.9.

—L<—L(i=12...N,,i# j) (3.9)

Crid point
|/ ! P

Particle

Figure 3.8 Grid points setting and particles selection (After Wang et al.
2007)
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Figure 3.9 Locations of Grid points and selected particles

The value of the selected spacing will influence results of local
deformation analysis. Taking the compression test of dense disk specimen as
an example, influence of the spacing was investigated by comparing results
under spacing of 1.5Dsy, 3Ds0and 6Dsg, as shown in Fig. 3.10. It is found
that different spacing results in the same shear band pattern, but very
different values of local strain. Local strain decreases with increase of
spacing. Some particles with large displacements will be missed if using too
large spacing. On the other hand, if the spacing is too small, some tracing
grids will locate at voids. Their displacements are still thought as the same as
the nearest particles, and the local deformation will be amplified. Therefore,
it is important to select an appropriate spacing according to the particle size
distribution.
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Figure 3.10 Comparison of local maximum shear strain distributions at

different spacing in dense disk specimen in compression test: (a)
1.5Ds0; (b) 3Ds0; (c) 6Dso

3.2 Simulation results

3.2.1 Macro stress-strain relationship

Figures 3.11(a) and (b) show the principal stress ratio-axial strain
relationships in the two types of tests for disk specimens and clump
specimens. It is clearly seen that the clump specimens show much higher
peak and residual stress ratios. For dense clump specimens in Fig. 3.11(a), it
is found that the initial stiffness and residual stress ratio are both higher in
the PSCD test than in the PSC test, while for dense disk specimens in Fig.
3.11(b), only the initial stiffness is seen a little higher in the PSCD test.

Higher initial stiffness in the PSCD test was also found in laboratory test

results for dense sands and glass beads, which is more obvious in sands.

3-12



Moreover, it is also found that the principal stress ratios at peak and residual
state are both higher in the PSCD test than in the PSC test for irregularly
shaped sands (Zhuang et al. 2013). However, only higher residual stress ratio
is found for clump specimens in the simulation.

For both loose clump and disk specimens, there is almost no difference
between the principal stress-strain relationships in the PSC and PSCD tests.
This is the same with observed results of glass beads in the experiments.
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3.2.2 Volume deformation

The total volume strain ¢y is calculated as

£, =&, t¢, (3.10)
&x, €y 1s the mean lateral and vertical strain respectively. ex was measured
according to the mean width of specimen through calculating position of
each ball in the flexible boundaries. Volume strain changes are compared in

Figs. 3.12(a) and (b) for dense and loose specimens.
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Figure 3.12 Volume change in the two types of test: (a) clump specimens; (b)

disk specimens
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In both dense disk and clump specimens results shown in Fig. 3.12(a)
and (b), it shows contraction first and then dilation in the compression test,
while it shows volume expansion first due to unloading and then dilation in
the decompression test. Moreover, as the clump specimen behaves more
volumetric strain in the decompression test than in the compression test at
the same axial strain, more lateral extension (gx) happened in the
decompression test according to Eq. (3.10). This indicates a higher
anisotropy in the decompression test for dense clump specimen, which is
proved by the fabric anisotropy in the later section.

For loose specimens, volume behaviors are very similar in the two types
of test, regardless of disk or clump. All the loose specimens contract until
3—4% axial strain and then dilate. Compared with dense specimens, little
difference between the compression and decompression tests is found in both

loose clump and disk specimens.

3.2.3 Local shear deformation

Figures 3.13 and 3.14 show local displacement loci of clump specimens
and disk specimens within 10% axial strain in different cases. Comparing the
particles inside shear bands and those outside the shear bands, it is seen that

translation of particles is smaller while rotation is larger inside shear bands.
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(b) dense, decompression; (¢) loose, compression;

(d) loose, decompression

displacement vectors of disk specimens: (a) dense,

1

a
compression;

Figure 3.14 Loc

Figures 3.15 and 3.16 show evolutions of local maximum shear stain in
dense clump specimens in compression and decompression tests. Four states

including the onset of dilation in compression test (£,=0.25%), the peak
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(£.=1%), the softening (¢,=2%) and the residual state (¢,=10%) are chose. It
can be seen that shear bands were formed between 0.25—-1% axial strain, and
similar conjugate shear bands were observed in both compression and
decompression tests. Despite the similar shape and inclination angle, the
shear bands are relatively narrower in the compression test than in the
decompression test.

Figure 3.15 Evolutions of local maximum shear strain in compression test of
dense clump specimen: (a) £,=0.25%; (b) €,=1%; (c) €,=2%; (d)
£.=10%

Figure 3.16 Evolutions of local maximum shear strain in decompression test
of dense clump specimen: (a) £,=0.25%; (b) &,=1%:; (¢) €.=2%; (d)
£.=10%
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Figure 3.17 Evolutions of local maximum shear strain in compression test of
loose clump specimen: (a) £,=2%; (b) £,=3%:; (¢) €.=4%; (d) £,=10%

Figure 3.18 Evolutions of local maximum shear strain in decompression test

of loose clump specimen: (a) ,=2%; (b) &,=3%:; (c) €.=4%; (d)
£.=10%
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Figure 3.19 Local maximum shear strain distributions at ¢,=10% for disk
specimens: (a) dense, compression; (b) dense, decompression;

(c) loose, compression; (d) loose, decompression

3.2.4 Coordination number

Coordination number Cy is defined as the mean contact number for all the

particles inside the specimen. In the PFC2D, it is calculated by

(TORA )

Cy=

(3.11)
N,+N,

(p) ,, (c)

here, n'"”,n "’ are the number of active contacts of disks and clumps

respectively; N,, N are the numbers of disks and clumps respectively.
Variations of Cy with axial strain in different cases are shown in Fig.
3.20. It is clearly seen that coordination numbers in clump specimens are
much higher than in disk specimens. For dense specimens in Fig. 3.20(a), in
all the four cases, Cn decreased first and then kept constant. However, it
decreased faster in the decompression test than in the compression test
before approximately 1% axial strain, where shear band was clearly
generated as noted by the dash line in Fig. 3.20(a). The value of Cy at
residual state is different for clump specimens under the two stress paths,
which is 4.0 in the compression test and 3.6 in the decompression test; while

for the disk specimens, little difference is seen and the residual value of Cy is
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approximately 3.0 in the two types of test.

For loose specimens in Fig. 3.20(b), the initial value of Cy is
approximately 3.5 for clump specimens and 3.0 for disk specimens. Little
variation was seen except some small fluctuations in the decompression test.
Cyis a little higher in the compression test than in the decompression test for

clump specimens while always shows the same value for disk specimens.
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Figure 3.20 Variations of coordination number during the shear: (a) dense
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Comparing Figs. 3.20(a) with (b), difference between variations of
coordination number in the compression and decompression tests is much
obvious in dense clump specimens, and is relative small in dense disk
specimens and loose clump specimens. No difference is seen in loose disk
specimens. It is possible that particle shape effects on the variation of
coordination number under different stress paths are much more significant

in dense state than in loose state.

3.2.5 Contact number distribution

Contact numbers at different directions are also counted inside specimens.
The plane is divided evenly into 36 parts, and the right horizontal central
axis of specimens is set as the initial direction (0°). Because of diagonally
symmetric, only values ranging from 0~180° are given. The values are
compared for different cases in Fig. 3.21 and Fig. 3.22 for dense and loose
specimens respectively.

For all the four cases in Figs. 3.21(a)~(d), contact numbers near the
vertical axis (90°) increase a little before the peak and then decrease, while
they always decrease in other directions. Variations of contact numbers
become larger and larger from the vertical axis to the horizontal axis (0°,
180°). Comparing the contact number distributions between Figs. 3.21 (a)
and (b), Figs. 3.21(¢c) and (d) at the same axial strain, it is found that contact
numbers decrease much quicker in the PSCD test than in the PSC test,
especially for the pre-peak. Contact numbers lost a lot at very small strain
(e.g., 0.01%) in the PSCD test, as can be seen from Figs. 3.21(b) and (d). At
the residual state of 10% axial strain for all the four cases, contact numbers
in all directions decreased compared to the initial state. However, the
residual values of contact numbers in the PSCD test are lower than in the
PSC test for both clump and disk specimens. This has already been proved
by the coordination numbers in Fig. 3.20(a).

In loose specimens, contact number distribution during shear shows
much different behaviors from that in dense specimens. For clump

specimens in Figs. 3.22(a) and (b), contact numbers in the directions ranging
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from 50° to 130° increase gradually during shear, while decrease in other
directions. At the residual state, contact numbers in the vertical direction is a
little higher in the PSC test than in the PSCD test. For disk specimens in Figs.
3.22(c) and (d), similar behaviors are shown for both the PSC and PSCD
tests. Contact number increased in both clump and disk specimens, but was
considerable in clump specimens.

In general, despite the particle shape, contact number distributions in
loose specimens show little difference between the PSC and PSCD tests
compared to that in dense specimens. Therefore, it is also indicated that

stress path effects are more significant in dense granular materials.
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3.2.6 Deviator fabric

Satake (1982) first presented the notion of fabric to define the structural

anisotropy of granular material, which is defined by
l C
9, =Ezl:n,n] =<nn, > (3.11)

ni, njare contact vectors in i and j directions; C is the total contacts.
The degree of structural anisotropy can be evaluated by a deviator fabric
a=(4—¢;) (3.12)

where ¢, and ¢, are the vertical and horizontal fabric in 2D case.

Figures 3.23(a) and (b) show variations of deviator fabric during shear in
clump and disk specimens separately. For both dense clump and dense disk
specimens, deviator fabric increases before peak then decreases after peak,
and finally reaches the same value at the residual state. However, deviator
fabric increases faster in the PSCD test than in the PSC test. For loose
specimens, deviator fabric always increases until the residual state, and there
is almost no difference between the PSCD and PSC tests. It is inferred that
the critical deviator fabric is dependent on the particle shape, while is not
dependent on initial void ratio and stress path. This is consistent with the
study by Maeda et al. (2010) that the critical value of deviator fabric is only

seen to be dependent on grain shape.
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Figure 3.23 Variations of deviator fabric: (a) clump specimens; (b) disk

specimens

Compared to the disk specimens, deviator fabric is much higher in the
clump specimens. The peak value is 0.23 and 0.21 in dense clump specimens
in the decompression and compression tests, while is 0.16 for disk specimens
independent of stress path. The residual value is approximately 0.18 for
clump specimens and 0.1 for disk specimens. Therefore, it is known that
high anisotropy is easier to be formed in irregularly shaped particles, and
contributes to higher shear strength of granular materials.

To summarize the simulation results, it is likely that particle shape effect
on different shear behaviors under compression test and decompression test
are significant for dense specimens, while it is insignificant for loose
specimens. Further comparisons are made below from the viewpoint of

energy variation to investigate the underlying mechanism.

3.3 Energy variations

PFC program allows us to trace energies and works during the calculation.
For the non-cohesive particles, the main items include strain energy FE,
frictional work E; body work Ej, boundary work E,, and kinetic energy Ej
(almost 0 for quasi-static calculation) (Itasca, 2008). Strain energy E; is
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elastic and directly lies on normal and tangential contact forces at all
contacts, while frictional work Eis dissipated plastic energy due to sliding at
contacts. Body energy is accumulated work done by body forces including
gravity force on the assembly, and boundary work is accumulated work done
by all walls on the assembly. Since membrane disks are used in the
calculation, the total external work W should be calculated by the body
energy and boundary work. The internal work includes the strain energy and
dissipated energies. According to the energy balance rule, there should have

AW=AEy+ AE,= AE+ AEc+ AEx (3.13)

The strain energy and frictional energy are calculated as

i BT
ES—E%‘,(T"‘T) (3.14)
E =Y (E)au )" (3.15)

where, ky, ks, Fi", F’ are the normal and tangential contact stiffness and the
normal and tangential contact force respectively; N, is the total contact
number; A4 U is the relative tangential displacement.

Matsushima and Chang (2011) noted that the external work due to
boundary load is equal to the internally stored energy at contacts plus the
dissipated energy. The dissipation due to damping was found to be much
smaller than the dissipation by the interparticle friction.

3.3.1 Global energy variations

After isotropic consolidation to 100kPa, the initial strain energy is 0.27J,
0.31J, 0.44J and 0.42] for dense clump, dense disk, loose clump and loose
disk specimen separately. Figs. 3.24 and 3.25 show incremental variations of
the W, E¢ and E (initial values before shearing are set to be 0) with the
deviator stress ¢ in dense clump specimens and dense disk specimens
separately. The curves before and around the peak are shown in a larger scale
to be seen clearly. It is seen that clump and disk specimens show similar

rules. Moreover, the external work is almost equal to the sum of the three
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items of AE;, AErand AE, and the Equation (3.13) is verified.

In the compression test in Figs. 3.24(a) and 3.25(a), strain energy
increased before peak and then decreased, while the dissipated frictional
work increased monotonically. In the decompression test in Figs. 3.24(b) and
3.25(b), strain energy decreased (elastic energy released due to unloading)
until the peak, after that it almost keeps constant. The frictional work
dissipated as the same as in the compression test. As a result, the external
work was minus before the peak, which means the specimen does work to
the boundary walls.

It is also found that variation of strain energy is different in the two types
of test. As mentioned above, strain energy is the total elastic energy at all the
contacts. This energy has been noted from macro viewpoint in past studies.
Cucoovillo and Coop (1997) thought that the total work ' done by the
stresses at the boundary of the soil element was partly dissipated in friction
and partly spent in disrupting the structure of the soil. This idea was
followed and further explained by Guo and Su (2007), who noted that the
soil structure refers to inter-particle locking associated with particle
angularity. For a unit volume, the energy relation was expressed by

AW =AW e +*AW e = q'8es" + p'de,’ (3.16)
where ¢’ and p' are effective shear stress and mean stress; & and &, are the
plastic components of the volumetric and shear strains.

Moreover, Collins (2003, 2005) described the contact energy stored in soil
elements as the free energy W, and the total work increment of a
representative volume element

SW=d¥+8® = pde,® +p.de,’/2 + 5P (3.17)
where 8@ is increment in dissipation, p and p. are effective and
consolidation pressures, and e,° and e,” are elastic and plastic volume strains.

Therefore it is thought that the strain energy is related to the mean stress

and plastic volume deformation from the macro viewpoint.
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Figure 3.24 Variations of three main works (energies) with the deviator stress

g in dense clump specimens: (a) compression, (b) decompression
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Figure 3.25 Variations of three main works (energies) with the deviator stress

q in dense disk specimens: (a) compression; (b) decompression

3.3.2 Strain energy variation with mean stress

Figure 3.26 shows variations of strain energy AE; (increase ‘+’°, decrease
-’) with mean stress p = (o1t03)/2 in the isotropic compression and
decompression tests (a;=a3) for different specimens. Here, the slope of the p

— AE curve is noted by
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k=AEJAp (3.18)

It can be seen that in both of isotropic compression and decompression
tests, the slope increased across the dense clump, dense disk, loose clump
and loose disk specimens. The difference between the dense clump and disk
specimens, loose clump and disk specimens is only due to the particle shape
effect. The difference between the dense and loose clump specimens or the
disk specimens is due to the initial void ratio effect. The effect of the initial
void ratio is higher than the particle shape effect for the four types of
specimens in this study. The variation pattern of strain energy in isotropic
compression and decompression test seems independent of particle shape
and initial state.
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Figure 3.26 Variations of strain energy in isotropic compression and

decompression tests

Figure 3.27 shows p—AE curves in compression tests and decompression
tests. According to the compression test results in Fig. 3.27(a), the two dense
specimens have the same variation pattern while the two loose specimens
have a different variation pattern. The clump specimen gained more strain

energy than the disk specimen and also dense specimen gained more than
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loose specimen. In the decompression test, strain energy decreased
monotonically (Fig. 3.27(b)). It can also be seen that the strain energy
variation pattern during shearing is determined by the stress path and initial
packing density while independent of the particle shape. When comparing
points A~D in Fig. 3.26 with points A’~D’ in Fig. 3.27(a) at the same mean
stress in each case, it is found that more strain energy is stored in the

compression test than in the isotropic compression test.
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3.3.3 Strain energy variation rate with mean stress

Although the AE; — p curves in Figs. 3.26 and 3.27 didn’t follow the same
variation pattern, they can be well fitted by polynomials of degree no more
than 3:

AE,= Ap* +Bp> +Cp + D (3.19)

A, B, C and D are parameters for the fitted curves. When p= p.=100 kPa,
AEs = 0. For dense specimens, AEs — p curves before and after the peak are
treated separately.

As the net strain energy is much dependent on mean stress, to compare
strain energy variation rates with mean stress increment under different
stress paths, slope of AE; — p curve is proposed and it is calculated by
differentiation of the equation (3.19):

k= 0(AEs) / dp (3.20)

Then k value at each mean stress level can be obtained according to
equation (12). Figs. 3.28(a) ~ (d) show the & values being plotted with mean
stress p under the different stress paths for different specimens, separately.

Generally, k£ increases with increase of mean stress in loading tests and
decreases with decrease of mean stress in unloading tests. For the isotropic
compression and decompression tests, the curves in Fig. 3.26 can be well
fitted by second degree polynomials and therefore & displays a linear
relationship with mean stress. The variation patterns in compression and
decompression tests are different in dense specimens while they are very
similar in loose specimens. As shown in Fig. 3.28(a) and (b), in the
compression test, k shows a quadratic relationship with mean stress only
before the peak in dense specimens, after the peak it has a sudden large
decrease and keeps constant. In the decompression test, £ decreases linearly
with decrease of mean stress until the peak and then keeps constant. For
loose specimens in Fig. 3.28(c) and (d), k always varies linearly with mean
stress regardless of stress path.
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In all the figures, it can be seen clearly that lines under the two shearing
stress paths locate above those under isotropic compression and
decompression stress paths. This means strain energy variation rate is higher
under shearing than that under isotropic consolidation, as discussed in the
previous sub-section. When comparing at the same stress level, £ value is
much higher for dense disk specimen than that of dense clump specimen
especially in loading tests. However, £ values are almost the same for loose
clump and disk specimens in both compression and decompression tests.
Moreover, when comparing Figs. 3.28(a) with (¢), and Figs. 3.28(b) with (d),
it is found that £ values in loose specimens are much higher than those in

dense specimens at the same stress level under each stress path.
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Figure 3.28 Comparisons of slopes of strain energy variation with mean

stress: (a) dense clump; (b) dense disk; (c¢) loose clump; (d) loose disk

The behavior was considered to be influenced by the interlocking among
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particles. The interlocking is stronger in angular particles than that in round
particles, and also stronger in dense specimens than that in loose specimens.
When particles are interlocked, the relative displacements between particles
shall become difficult and thus strain energy varies little. As a result, the
stiftness of specimens behaves strong. In the loading shear test with mean
stress increased, the interlocking developed until the peak strength and then
failed. Instead, for the shear test with decreasing confining pressure,
variation of interlocking gets smaller from the beginning. Thereby, the
particle shape effect is different on the different stress path and the difference

is more significant in dense specimens.

3.3.4 Discussion on strain energy variation from
micro-viewpoint

From micro viewpoint, variation of strain energy only depends on the
contact force at all the contacts in specimens (the contact stiffness is constant
in the linear contact model). If the contacts distribution is different, the force
chains at contacts will certainly be different. Different variation of particle
contacts is thought to be the basic reason to explain why strain energy
variations are different. Figs. 3.20-3.22 have shown that for dense specimens,
average coordination number and contacts distribution both varied
differently between the compression test and decompression test, while
showed almost the same variations for loose specimens. This is the reason
why strain energy behaved much different in the two types of test for dense
specimens but not for loose specimens.

However, there are so many contacts in the specimen and their variations
are unpredictable currently. As explained in Fig. 3.7, the disks have only
single contact, while the clumps have 1~3 multiple contacts, which will
produce interlocking. Besides, the total contact number in clump specimen is
larger in clump specimen than in disk specimen in despite of dense or loose
condition. As a result, particle shape effect is reflected on both the total
contacts in the specimen and local contacts between particles.

An interesting finding is about the contact forces at 3-point contacts in
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dense clump specimen. Local specimens including such typical contacts
before and during shearing are shown in Fig. 3.29. The particles in Figs. 3.29
(a) and (b) are not the same ones, particles in (b) are near the shear band.
Width of the force chain is proportional to the contact force. Before shearing,
contact forces at the 3-point contacts (A, B, C) are very small comparing
their force chains with the main force chain. During shearing, contact forces
at the 3-point contacts (D, E, F, G) are still found to be very small. Therefore,
it is thought that stain energy at these contacts has little contribution to the
total strain energy. Moreover, in the whole specimen, locations of 3-point
contacts changed and the number of such multiple points contact increased
during shearing. Particle shape effect on the variation of individual contact
and force chain distribution is beyond this study. However, it is believed that
this will help linking stain energy variation with macro behavior of granular
materials.
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Figure 3.29 Multiple contacts and force chains in dense clump specimen:

(a) before shearing; (b) during shearing.

3.4 Conclusions

Shear behaviors of granular materials under biaxial compression and

decompression were analyzed using DEM simulation. Particle shape effects
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were considered for both dense and loose specimens. It is found that particle
shape effects on shear behaviors under the two stress paths are much obvious
in dense specimens. Some detailed conclusions are drawn as follows:

(1) Principal stress ratio — axial strain relationship was different in the
compression and decompression tests for dense clump specimens. Initial
stiftness was higher in decompression test. There was little difference for
loose clump specimen, both dense and loose disk specimens.

(2) The decompression test showed only dilation for dense specimens, and
the dilation was clearly higher than in the compression test for clump
specimens. Similar volume behavior was shown for loose specimens in the
two types of test despite the particle shape.

(3) Similar conjugate shear bands were found in the two types of test for
both clump and disk specimens. Shear bands start before the peak in dense
specimens, and before the onset of dilation in loose specimens.

(4) Coordination number decreased quicker and more in the
decompression test than in the compression test for dense specimens, while
had little change in loose specimens despite the particle shape. Critical
coordination number is influenced by both stress path and particle shape,
especially in dense specimens.

(5) Deviator fabric before the peak was higher in the decompression test
than in the compression test for dense specimens. There was almost no
difference in both loose clump and disk specimens. Critical deviator fabric is
only dependent on particle shape.

(6) Total external work on the specimen is mostly converted into
dissipated frictional energy and elastic strain energy stored at particle
contacts. For dense specimens at the peak, more work is dissipated and
therefore less work is converted into strain energy in the clump specimen
than those in disk specimen in the biaxial compression test; in the
decompression test, more strain energy is released in the clump specimen
than that in the disk specimen.

(7) Other things being equal, strain energy variation rate with the mean
stress is higher in the loose specimens than in the dense specimens, and is

also higher in disks than in clumps. Furthermore, strain energy storage or
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dissipation is much related to the particle interlocking, which is dependent
on the particle shape as well as relative density.

According to the simulation results and referring to the former
experimental results, it is thought that irregularly shaped particles can be
well simulated by clump model in the DEM simulation. Further study is

expected in the future aiming on the particle interlocking.
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Chapter 4 Unloading shear behavior of granular
materials with different particle shapes in

retaining wall model tests

The previous two chapters have shown shear behaviors of granular
material specimens under specified stress paths. The specimens suffered load
controlled or deformation controlled loading. In practical engineering,
boundary conditions are much complex. They maybe load controlled or
displacement controlled or the mix of them. Chu and Wanatowski (2009)
noted that loading mode has influence on strain softening and instability
behavior of sand in plane-strain tests. Past study on model tests of retaining
wall has shown that movement of retaining wall has large influence on the
earth pressure and deformation of soils behind the wall (Tejchman 2004,
Niedostatkiewicz et al. 2010, Widulinski et al. 2011), as well as mean
particle size.

In this chapter, a series of retaining wall model tests under 1-g condition
were performed to investigate unloading behavior in open cut excavations
considering different wall boundaries. The same Ube sand NO.6A, Toyoura
sand and Glassbead2 were used. The DIC method is used again to

investigate progressive deformation in granular materials.

4.1 Test setup

Model tests were performed using a metal box with thick plastic confining
plates at front and back sides. The plates are designed transparent to take
photos for image analysis. The retaining wall is a piece of aluminum plate
with about 40cm long and 20cm wide, and is supported by two upper wheels

and two lower wheels connected to a motor apparatus. The four wheels can

4-1



move forward or backward in a speed of 0~1.4 mm/min. The retaining wall
is set to cling to the four wheels and sit on the foundation at the beginning,
and can moves as a rigid body based on the wheels. Translation or rotation of
the wall is controlled by embedding depth of the wall. The embedding depth
is 0 in case of wall translation, and is about 5~10 cm in case of wall rotation.
The foundation is 50cm long, 5~10cm high and 20cm wide. The space
behind the retaining wall is 30cm long, S0cm high and 20cm wide. Two soil
cells with a diameter of 3.4cm are embedded on the wall to measure
pressures generated by the granular materials. Detail designs are shown in
Fig. 4.1(a).

The two sands and glassbead?2 introduced in Chapter 2 were used again.
Dense and loose dry samples were made. For dense sand samples, air
pluviation sampling method is used; for dense glassbead2 samples, tamping
method is used. Loose samples are made by pouring method with almost no
falling height from the sample surface. As a result, final relative density for
dense samples is larger than 75%, and for loose samples it is no more than
30%. A case of Toyoura sand is shown as an example in Fig. 4.1(b).

The main test order is as follows:

(1) Preparation of foundation;

(2) Setting the retaining wall;

(3) Sample preparation of materials behind the wall;

(4) Setting camera and lights;

(5) Choose the speed of wall, turn on the switch and unloading starts.
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Figure 4.1 Sketch of model box and test photo: (a) sketch; (b) test photo

In this study, the unloading speed was fixed at 0.42 mm/min for
investigation of shear band patterns and it is low enough for generating
stable deformation. Speeds of 0.84 mm/min, 1.26 mm/min were also

compared to investigate influence of unloading speed of wall. Two pieces of
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sponge strip were pasted to the front and back side of wall plate, therefore
the wall did not touch the glass window of the model box. The sponge was
greased to minimize friction between sponge and glass window. The
frictional force between the two was tested under condition of moving wall
before sample preparation. It is found that the frictional force is no more than
IN and therefore it has no influence to the measured wall force during the

following experiments.

4.2 Test results and analysis

4.2.1 Cases of active wall translation

Taking the case of loose Toyoura sand as an example, loci of the retaining
wall is shown in Fig. 4.2. In the figure, the initial horizontal coordinates of
the two points are set to 0, and rightward unloading displacement is noted as
positive. The vertical coordinate of the sample surface is set to 0, and the
depth in the vertical axis means vertical distance away from the sample
surface. It can be seen that the wall underwent translation for about 15 mm
total horizontal displacement, and penetration of 12 mm happened during
this period. The wall then moved with both translation and rotation but

without penetration.
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Figure 4.2 Trace of the retaining wall movement

(1) Variation of active force on the retaining wall

Figure 4.3 shows the variation in the resultant active force on the wall
with the mean horizontal displacement of the wall u. In each case, the
resultant force decreased quickly within a small displacement (smaller than 2
mm). We found that the resultant force decreased more quickly in dense
samples than in loose samples for all three materials. After the quick
decrease, the force increased a little with dense sands and then decreased
gradually to zero while it only decreased gradually to zero in loose sands.
This also means that sands can finally reach a self-standing state. Loose and
dense Glassbead2 samples showed similar behavior, but with some
differences from the two sands. After the quick decrease, the resultant wall
force increased slightly until about 10 mm wall displacement and then
decreased again. The glass beads did not reach a stable state; even at a large

displacement of the retaining wall, the resultant force was around 20 N.
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Figure 4.3 Variation of counterforce of the wall in each case

(2) Local deformation development

Developments of local deformation in the three materials are compared at
0.42mm displacement of wall. Figs. 4.4(a)~(f) show the maximum shear
strain distribution at the beginning, middle and the residual state of the
unloading for loose and dense samples of Ube sand NO.6A, Toyoura sand
and Glassbead2, separately. For each group of figures, the same scale was
used for the strain distributions at different stages.

It can be seen from the figure that for all the three materials, Shear band
formed at the beginning of the unloading, and developed gradually with the
movement of the wall. Local deformation started around the toe of the wall,

and then extended to the surface of sample.
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(c) Toyoura sand, loose sample
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(d) Toyoura sand, dense sample

(f) Glassbead2, dense sample

Figure 4.4 Developments of local deformation under wall translation
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(3) Maximum shear strain and shear band pattern

Developments of maximum shear strain distribution are compared for the
three kinds of materials at # = 4.2 mm (10 min after the unloading). The
definition of maximum shear strain has been introduced in Chapter 2 (refer
to Eq. (2.6)). Figs. 4.5(a) and (b), (c) and (d), and (¢) and (f) show the results
in loose and dense samples for the Ube No.6A sand, Toyoura sand and
Glassbead2 respectively, under a wall displacement of 2.1 mm. Fig. 4.6
shows similar results under a wall displacement of 4.2 mm.

Table 4.1 lists the initial conditions and finally resulted shear band
information in each case. Here, D; is relative density. § is the inclination
angle of the main shear band. w is the thickness of the main shear band at u =
4.2 mm, and ds is the mean particle size. The thickness was measured based

on the 2-order derivative of displacement vector obtained from DIC analysis.

Table 4.1 Comparisons of initial conditions and shear band information

Sample D: | 0(°) |w(mm) |w/ds,
Ube NO.6A | (a) | Loose |26% 73.6 4.8 21.8
sand (b) | Dense | 78% 79.7 3.73 17
Toyoura (c) | Loose | 18% 72.8 4.88 24.4
sand (d) | Dense | 80% 78.6 3.96 19.8
(e) | Loose | 3% 56.5 9.97 8.9
Glassbead2
(f) | Dense | 75% 67.0 4.68 4.2

For all three materials, the shear band shows a higher inclination angle but
a smaller thickness in the dense state than that in the loose state. The Ube
No.6A sand with more angular particle shape showed a little higher
inclination angles than Toyoura sand. The shear band thicknesses in the two
sands are quite close. The shear bands in Glassbead2 showed smaller
inclination angles than the two sands but much larger thickness. However,
w/Ds is smaller for the Glassbead2 because of its larger mean particle size.

This result is consistent with the findings of elemental test in Chapter 2.
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Figure 4.5 Shear bands in different cases at a wall translation,

u=2.1mm




Figure 4.6 Maximum shear strain in different samples for wall translation,

=42 mm

4-12



(4) Local shear stress and shear strain

An element inside the center of the shear band was chosen to analyze local
stress—strain behavior and results for the loose and dense samples of each
material were compared. We found that the three materials gave similar
results for dense or loose samples, while the behavior was quite different
between the loose and dense samples. For instance, developments of local
shear stress and local strain in the loose and dense Toyoura sand samples are
compared in Fig. 4.7 and Fig. 4.8.
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Figure 4.7 Developments of local shear stress and maximum shear strain in

loose Toyoura sand
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Figure 4.8 Developments of local shear stress and maximum shear strain in

dense Toyoura sand

As has been shown in Fig. 4.3, the resultant force decreased quickly at the
very beginning of the unloading, while the vertical pressure is thought to
remain unchanged, and thus the shear stress increased, as can be seen in Figs.
4.7(b) and 4.8(b). The shear stress became relatively stable after 6 mm wall
displacement. In the loose samples, the maximum shear strain increased
gradually with the wall displacement and always showed a linear
relationship, as shown in Fig. 4.7(a). However, in the dense samples, despite
the quick increase of shear stress at the beginning, the maximum shear strain
increased very slowly, and was only 0.22 at 5 mm wall displacement. The
reason for this is that, at the beginning of unloading, the dense particles
supported each other in a stable state and thus little deformation occurred. As
the unloading continued, the stable structure was destroyed and local
deformation developed quickly. The maximum shear strain was found to be
higher in the dense sample than in the loose sample at the same wall
displacement.
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4.2.2 Cases of active wall rotation around the toe

Taking the case of loose Toyoura sand as an example, loci of the
retaining wall is shown in Fig. 4.9. Compared with Fig. 4.2, it can be seen
that the wall rotated around the toe at the beginning and no penetration

happened.
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(1) Variation of active force on the retaining wall

Figure 4.9 Trace of the retaining wall movement

Figure 4.10 shows the variation in the resultant active force on the wall

with the mean horizontal displacement of the wall. Similarly to Fig. 4.3, the
resultant force decreased quickly at the very beginning of the unloading.

However, the resultant force arrived at the residual value much earlier

compared to that in the case of wall translation.
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Figure 4.10 Variation of resultant wall forces under wall rotation

(2) Local deformation development

Figures 4.11(a) ~(c) show local deformation development in the three
loose samples. Compared with Figure 4.4, it is clearly seen that shear band
pattern is much different for the same material. Multiple shear bands
generated at the same time under wall rotation and shear bands are shorter
and have smaller inclination angles. The shear bands are seen curvilinear in
both the Ube No.6A sand and the Toyoura sand but straight and parallel in
Glassbead2. Moreover, the shear bands were not generated at the same time
and two shear bands combined into one with the development of

deformation.
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Figure 4.11 Developments of maximum shear strain under wall rotation

(3) Maximum shear strain and shear band pattern

Figures 4.12(a)—(c) show the maximum shear strain distributions in the
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three loose samples at the beginning of rotation (€ = 0.2°). Compared with
Figs. 4.5 and 4.6, it is clear that the shear band pattern is quite different.
Multiple shear bands are generated behind the wall and shear bands are
shorter and have smaller inclination angles. The shear bands are curvilinear
in both the Ube No. 6A sand and Toyoura sand, but approximately straight
and parallel in the glass beads. Moreover, the shear bands were not
developed synchronously. Fig. 4.13 shows the maximum shear strain
distributions at 8 = 4°. When comparing Fig. 4.12 and Fig. 4.13, it can be
seen that only one or two initial shear bands developed into the single main
shear band, and the other shear bands disappeared.

(a) Ube No.6A sand (b) Toyoura sand (c) Glassbead?2

Figure 4.13 Maximum shear strain distributions under wall rotation (6 = 4.0°)
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(4) Local strain development

Developments of local deformations inside the initial shear bands were
investigated at three locations, as noted by points A, B, and C in Fig. 4.12,
and the results are compared in Fig. 4.14. It can be seen that the local
deformation at the three locations varied quite differently in all the materials.
The three materials showed very different results: the local strain at location
C in Ube No. 6A sand, location B in the Toyoura sand and location A in the
glass beads developed much more than at other locations. It is speculated
that the initial shear band with a long length and without obvious curvature
is easier to develop into the main shear band.
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Figure 4.14 Development of local deformations with the rotation angle of the

wall for each material
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4.2.3 Influence of wall movement mode

From the above two sections it can be seen that shear band pattern is
much influenced by the wall movement mode. This section mainly focused

on the influences.

(1) Comparison of resultant wall forces

Figure 4.15 shows comparison of the wall force under three different
conditions. When comparing the same loose Toyoura sand sample under
translation and rotation of the wall, it is found that for the same loose
samples, the resultant wall force deceased much more quickly under wall

rotation. The residual force on the wall is the same in the three cases.
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Figure 4.15 Comparison of the resultant wall forces in Toyoura sand

(2) Formation process of shear band
It has been known from Fig. 4.6 that under the wall translation, only one
shear band generated in the materials. However, the wall was not under

exactly translation due to the self weight and friction at the bottom of the
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wall. In this case, local deformation is much complex. Figs. 4.16 and 4.17
show local deformations inside loose Ube NO.6A sand and loose Glassbead?2

at the beginning of the unloading in different scales.
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Figure 4.16 Local deformation of loose Ube NO.6A sand at the beginning of

unloading in different scales
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Figure 4.17 Local deformation of loose Glassbead?2 at the beginning of

unloading in different scales

It can be seen that, at a small scale, multiple shear bands generated inside
the samples. However, only one shear band can be seen if plotted at a large
scale. This means, although multiple shear bands generated at the beginning
of the unloading, but only one is the main shear band. The main shear band
continued and others disappeared with the increase of the wall displacement.

This is different from the result under wall rotation. Multiple shear bands
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generated at the same time and they are all main shear bands despite that two

main shear bands merge into one main shear band afterward.

(3) Shear band patterns
Figure 4.18 shows the sketches of shear band patterns under the two

types of wall movement.

— =
Granular unloading

Materials

Retaining wall

Granular
materials

Retaining wall

Foundation

Figure 4.18 Boundary influence on the local deformation

Shear band pattern much depends on boundary condition. Under the active
wall translation, local deformation starts from the toe of the retaining wall

and only single shear band generates; under active wall rotation, local
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deformation started from the surface of the sample close to the retaining wall
and multiple shear bands generated. The findings have nothing related to
particle shape. According to the study by Niedostatkiewicz et al. (2010), in
the case of active wall movement, the thickness of the interior shear zone is
larger under wall translation than under wall rotation while the inclination is
smaller.

The phenomenon of multiple shear bands in granular materials was
discussed by Lesniewska (2001). He noted that shear bands may have
different roles. For two families of shear bands, one is responsible for a basic
soil movement, and the other not always appears and seems to be responsible
for adjusting failure mechanism to changing boundary conditions. The

investigation results of this study are in accordance with his statement.

4.2.4 Influence of unloading speed of retaining wall

To investigate the influence of wall unloading speed, Three types of wall
speed were chose, which are noted as V, 2V, 3V with V= 0.42 mm/min. All
the tests were performed on loose samples under wall translation.

Figure 4.19 shows variations of resultant wall force with the horizontal
displacement of the wall under different unloading speed. It is thought that

there is no clear difference among the three cases for the same material.
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Figure 4.19 Resultant forces on the wall under different wall speeds

Figures 4.20 - 4.22 show comparisons of maximum shear strain
distribution at different unloading speed for the three materials. The
comparisons were made under three stages with the wall displacement d =
0.42 mm, 0.84 mm and 2.1mm. It is shown that, with increase of unloading
speed of the wall, local deformation inside the material became larger.

Moreover, distribution of local deformation also became wider.
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4.3 Conclusions

Based on the above test results and analysis, main findings obtained from the
model test are summarized as below:

(1) Wall movement mode has a big influence on the development of local
deformation behind the wall. Local deformation started from the toe of the
retaining wall and only one shear band generated in case of active wall
translation, while it started from the surface adjacent to the wall and multiple
shear bands generated in case of wall rotation to the toe. Moreover, the
resultant force on the wall under its active rotation arrived at the residual
value much earlier compared to that in the case of wall translation.

(2) The influence of retaining wall on the local deformation behavior has
found nothing related to particle shape. Particle shape does not influence
shear pattern behind wall. It influences the inclination angle of shear band as
well as initial density. Particle shape also influences the resultant force on
the wall. The more angular particle shape of sand, the resultant force was
smaller.

(3) Unloading speed of wall translation has little influence on the resultant
force of the retaining wall. However, shear band became wider and local

deformation became larger under a higher unloading speed.
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Chapter 5 Summary and conclusions

Unloading shear behavior of granular materials with different particle
shape was investigated through plane strain compression test, DEM
simulation and retaining wall model test. Local deformation developments
and shear band properties were analyzed specifically by image analysis.
Main conclusions in Chapters 2, 3 and 4 are summarized below:

Chapter 2 Plane strain compression test

Plane strain compression tests under two different stress paths (PSCD and
PSC) were performed on two sands and two glass beads with different
particle shape. Image analysis was done to investigate local deformation

inside specimens.

(1) Macro stress — strain behavior is more easily influenced by stress level
and stress path in the two sands than that in the two glass beads. The more
angular particle shape induced more significant peak strength variations with
stress level. For the given stress levels in this study, the peak appeared earlier
and initial stiffness was clearly higher in all the PSCD tests than those in the
PSC test for both the sands. The above differences were not found for the

two glass beads.

(2) Local lateral strain showed mainly extension and butterfly shaped
distribution near the peak strength. The extension was higher in the PSCD
test than that in the PSC test for sands at the same global shear strain. Shear
bands already initiated before peak strength and shear band patterns were

changing during the whole shearing process.

(3) Under the same test condition, shear band thickness in the two sands
was smaller than that in Glassbeadl even if the three types of material have
almost the same mean particle size. Shear band thickness also decreased with

increase of confining pressure regardless of particle shape or size.
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(4) The onset of shear bands is defined at which the growth rate of the
local maximum shear strain starts to increase stiffly with an increasing global
axial strain. Generally, the onset of shear bands occurs prior to the specimen
reaching its maximum principal stress ratio for both dense and loose
specimens. Between the peak in shear strength and the end of strain
softening, the local maximum shear strain grew approximately linearly with
the global axial strain. For the same material, the growth rate of the local

maximum shear strain became smaller with wider shear band.

(5) Shear band thicknesses in the two sands were clearly smaller than that
in Glassbeadl, even with their similar mean particle sizes. Shear band
thickness became thinner when particle shape is more angular. Shear band
thickness was also much dependent on the particle size. However, shear band
thickness was not proportional increased with an increasing mean particle

size.

(6) Inclination angles of shear bands corresponding to their peak strengths
were in between those estimated values by Coulomb’s and Roscoe’s
formulas for both sands and glass beads. The shear band inclination angles in
sands matched well with those estimated by Coulomb’s formula, while
Roscoe’s formula predicted shear band inclination angles relatively close to

the corresponding measured values in dense glass beads.
Chapter 3 Biaxial DEM simulation

Two-dimensional DEM simulation results qualitatively reflected the
differences between shear behaviors under the two different stress paths as in

plane strain compression tests.

(1) Principal stress ratio — axial strain relationship was different in the
compression and decompression tests for dense clump samples. Initial
stiffness was higher in decompression test. There was little difference for

loose clump sample, both dense and loose disk samples.

(2) The decompression test showed only dilation for dense samples, and
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the dilation was clearly higher than in the compression test for clump
samples. Similar volume behavior was shown for loose samples in the two

types of test despite the particle shape.

(3) Similar conjugate shear bands were found in the two types of test for
both clump and disk samples. Shear bands start before the peak in dense

samples, and before the onset of dilation in loose samples.

(4) Coordination number decreased quicker and more in the
decompression test than in the compression test for dense samples, while had
little change in loose samples despite the particle shape. Critical coordination
number is influenced by both stress path and particle shape, especially in

dense samples.

(5) Deviator fabric before the peak was higher in the decompression test
than in the compression test for dense samples. There was almost no
difference in both loose clump and disk samples. Critical deviator fabric is

only dependent on particle shape.

(6) Total external work on the specimen is mostly converted into
dissipated frictional energy and elastic strain energy stored at particle
contacts. For dense specimens at the peak, more work is dissipated and
therefore less work is converted into strain energy in the clump specimen
than those in disk specimen in the biaxial compression test; in the
decompression test, more strain energy is released in the clump specimen

than that in the disk specimen.

(7) Other things being equal, strain energy variation rate with the mean
stress is higher in the loose specimens than in the dense specimens, and is
also higher in disks than in clumps. Furthermore, strain energy storage or
dissipation is much related to the particle interlocking, which is dependent
on the particle shape as well as relative density.

Chapter 4 Retaining wall model test

Retaining wall model tests on the two sands and one glass beads were
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performed under boundary conditions of active translation and active

rotation. Some findings are as below:

(1) Wall movement mode has a big influence on the development of local
deformation behind the wall. Local deformation started from the toe of the
retaining wall and only one shear band generated in case of active wall
translation, while it started from the surface adjacent to the wall and multiple
shear bands generated in case of wall rotation to the toe. Moreover, the
resultant force on the wall under its active rotation arrived at the residual

value much earlier compared to that in the case of wall translation.

(2) The influenced of retaining wall on the local deformation behavi
or has found nothing related to particle shape. Particle shape does not
influence shear pattern behind wall. It influences the inclination angle of
shear band as well as initial density. Particle shape also influences the res
ultant force on the wall. The more angular particle shape of sand, the

resultant force was smaller.

(3) Unloading speed of wall translation has little influence on the resultant
force of the retaining wall. However, shear band became wider and local

deformation is larger under a higher unloading speed.

The research findings in this study can be used as a reference for
excavation problem calculation especially in coheisonless granular materials.

There are still several problems not solved well in this study:
(1) Shear band thickness measurement.

In this study, shear band thickness was measured according to maximum
shear strain distributions in the middle of shear band. While the shear bands
are not uniform in most cases, the measurements have limited accuracy. As
mentioned by Niedostatkiewicz et al. (2010), there is no unified way of

determination of shear band thickness agreed between researchers.
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Measuring shear band thickness accurately is still a challenging problem,

especially for those nonuniform shear bands.
(2) Particle interlocking.

Although interlocking of granular materials has been presented since a
long time ago, there was no way or standard to evaluate the level of
interlocking. Even the physical meaning is not clear enough. The
interlocking was found to be related to particle shape, relative density and
maybe other more factors. It is suggested to relate the interlocking to the
strain energy mentioned in this study. This topic still need further study.

(3) Shear band simulation in retaining wall model test.

The model test simulation was failed in this study. The key reason is
considered to be the contact model of particles. It is expected to modify the

current linear contact model to simulate the model test.
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Appendixes Main DEM codes for the simulation

A. Sampling, consolidation and shearing process for a disk

sample

Step 1: Sampling
; Undercompaction method for biaxial
sample

new
set random 20000
SET disk on

set dt max Se-7
set gravity 0 -9.8

damp default local 0.7 viscous normal 0.1

shear 0.1 notension on

def sample parameters
ball_num = 6000

N=10; clump is composed of N balls

id_s=0

id_cl=1

rad_num = 13
layer_num =5

min_rad = 0.0002
ep=0.1

ep_ini = 1.0
compres_vel =-10.0
ball_kn = 3.0e8 ; initial stiffnesses
ball_ks =2.0e8
b_fric_ini =0.01
ball_dens =2600
w_nstiff = 3.0e8
w_sstiff =2.0e8

array ep_layers(5)
ep_layers(1) = ep+0.000
ep_layers(2) = ep+0.000
ep_layers(3) = ep+0.000
ep_layers(4) = ep+0.000
ep_layers(5) = ep+0.000

array ball_rad(13) weight_percent(13)

ball rad(1)=0.00048
weight percent(1)=0.033
ball_rad(2) = 0.00044
weight percent(2) = 0.033
ball rad(3) = 0.00042

weight percent(3) = 0.0815
ball_rad(4) = 0.0004
weight_percent(4) = 0.0815
ball_rad(5) = 0.00038
weight percent(5) = 0.0815
ball_rad(6) = 0.00036
weight percent(6) = 0.0815
ball_rad(7) = 0.00034
weight_percent(7)=0.124
ball_rad(8) = 0.00032
weight percent(8)= 0.124
ball_rad(9) = 0.0003
weight_percent(9)=0.124
ball_rad(10) = 0.00028
weight_percent(10)= 0.095
ball_rad(11)=0.00026
weight_percent(11)= 0.095
ball_rad(12) =0.00024
weight_percent(12)=0.0337
ball_rad(13) = 0.0002
weight_percent(13)=0.0123
end

def get_size
p_avre=0.0
loop counter (1,rad_num)
pp = weight_percent(counter)
rr = ball_rad(counter)
p_avre =p_avre + pp/rr2
end_loop
sum = 0.0
loop counter (1,rad_num)
pp = weight_percent(counter)
sum = sum + pi * pp * ball_num /
p_avre
end_loop
width = sqrt((ep+1)*sum/2)
height =
(ep_ini+1)*sum/(width*layer_num)
end

def make walls ; create walls with



overhang of extend

extend =0.3

_x0 = -extend*width
_y0=0.0

_x1 = width*(1.0 + extend)
_y1=0.0

Command

wall id=1 kn=w_nstiff ks=w_sstiff
fric=0 nodes (_x0,_y0) (_x1,_yl)

end _command

_x0 = width

_y0 = -layer_num*extend*height/2

_x1 = width

_y1 = height*layer num

command

wall id=2 kn=w_nstiff ks=w_sstiff

fric=0 nodes (_x0,_y0) (_x1, y1)

end_command

~x0=0.0
_y0 = height*layer _num
x1=0.0

_yl = -layer_num*extend*height/2
command
wall id=3 kn=w_nstiff ks=w_sstiff
fric=0 nodes (_x0,_y0) (_x1,_yl)
end command
_x0 = width*(1.0 + extend)

y0=0

_x1 = -extend*width
yl=0

command

wall id=4 kn=w_nstiff ks=w_sstiff
fric=0 nodes (_x0, y0) (_xI,_yl)
end_command
end

defassemble ; assemble sample

make_walls

id 1=1

y_0=0.0

loop m (1,layer_num)
command

del wall 4

end_command
_x0 = width*(1.0 + extend)
_y0 =y 0+ height
_x1 = -extend*width
_yl =y _0+ height
command
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wall id=4 kn=w_nstiff ks=w_sstiff
fric=0 nodes (_x0,_y0) (_x1,_yl)
end_command
ball_1=id_1
loop counter (1,rad_num)
pp = weight_percent(counter)
rr = ball_rad(counter)
id 2=id_1+ pp * ball_num/
(rr"2*p_avre*layer_num)-1
y_1=y 0-min_rad
y_ 2=y 0+ height
command
gen id=id_1,id_2 rad=rr,rr
x=0,width y=y 1.y 2 tries 100000000
end_command
id_1=id 2+1
end_loop
color_id = m-1
command
prop dens=ball_dens kn=ball_kn
ks=ball_ks fric=b_fric_ini
prop color color_id range id
ball_1,id 2
end_command

bp = ball_head
sum = 0.0
loop while bp # null
sum = sum + pi * b_rad(bp)"2
bp = b_next(bp)
end_loop
ep_need =ep_layers(m)
command
wall id=4 yvel=compres_vel
end_command
wp = find_wall(4)
i=1.0
loop while i>0.00001
command
cycle 100
end_command
ep_meas =
(width*(y_2+w_y(wp)))/sum-1
i=(ep_meas-ep_need)/ep_need
end_loop
y_0=y_2+w_y(wp)
command
wall id=4 yvel=0
cycle 3000



ini xvel=0 yvel=0 spin=0
end command
end_loop
height=y 0
command
wall prop x=0 y=0
end_command
end

sample_parameters

get_size

plot create assembly

plot add ball lorange wall black
plot show

assemble

save UCM_0.1_6000.SAV

>

Step 2: Isotropic consolidation with
rigid boundary wall

; Servo-control and initial stress state for
biax sample

prop dens ball_dens ks ball ks kn ball_kn
fric 0.01

def get_ss ; determine average stress and
strain at walls
xdif =w_x(wadd2) - w_x(wadd3)
ydif =w_y(wadd4) - w_y(waddl)
new_xwidth = width + xdif
new_height = height + ydif
wsxx = 0.5%(w_xfob(wadd2)-
w_xfob(wadd3))/new_height
wsyy = 0.5%(w_yfob(wadd4)-
w_yfob(waddl))/new_xwidth
wexx = xdif / width
weyy = ydif / height
wevol=wexx + weyy
end

def get gain ; determine servo gain
parameters for x and y
alpha = 0.5 ; relaxation factor
count =0
avg stiff=0
cp = contact_head
of contacts on x-walls
loop while cp # null

; find avg. number
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if ¢_ball1(cp) = wadd2
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end if
if ¢_balll(cp) = wadd3
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
if ¢_ball2(cp) = wadd2
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
if ¢_ball2(cp) = wadd3
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
cp = c_next(cp)
end_loop
nxcount = count / 2.0
avg_stiff = avg_stiff / count
gx = alpha * (height * 1.0) / (avg_stiff *
nxcount * tdel)

count = 0
avg stiff=0
cp = contact_head ; find avg.
number of contacts on y-walls
loop while cp # null
if ¢_balll(cp) = wadd1
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
if ¢_balll(cp) = wadd4
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
if ¢_ball2(cp) = wadd1
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
if ¢_ball2(cp) = wadd4
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
cp = c¢_next(cp)
end_loop
nycount = count / 2.0
avg_stiff = avg_stiff / count
gy = alpha * (width * 1.0)/ (avg_stiff *



nycount * tdel)
end

def'servo_xy
while_stepping
get_ss , compute
stresses & strains
if x_servo=1
udx = gx*(Wsxx-sxxreq)
w_xvel(wadd3) = -udx
w_xvel(wadd2) = udx
end_if
ify_servo=1
udy = gy*(wsyy-syyreq)
w_yvel(waddl) = -udy
w_yvel(wadd4) = udy
end_if
end

def iterate_xy
loop while 1 #0
get_gain
if abs((wsxx-sxxreq)/sxxreq)<sig_tol
then
if abs((wsyy-
syyreq)/syyreq)<sig_tol then
exit
end_if
end_if
command
cycle 100
end_command
end_loop
end

def iterate_y
loop while 1 # 0
get_gain
if abs((wsyy-
syyreq)/syyreq)<sig_tol then
exit
end_if
command
cycle 100
end_command
end_loop
end

def wall_addr

wadd1 = find_wall(1)

wadd2 = find_wall(2)

wadd3 = find_wall(3)

wadd4 = find_wall(4)
end

wall_addr

ini xvel 0 yvel 0 spin 0

set sxxreq=1.0e5 syyreq=1.0e5

sig tol=0.005 x_servo=1y_servo=1
iterate_xy

save RigCon_100.sav

£l

Step 3: Isotropic Consolidation with
flexible boundary wall

;define a membrane and re-consolidation
set ydif=0

def wall_addr

wadd1 = find_wall(1)

wadd2 = find_wall(2)

wadd3 = find_wall(3)

wadd4 = find_wall(4)

rc = 0.4*width

xcl = 0.5*width

ycl = 0.25*height

xc2 = 0.5*width

yc2 = 0.5*height

xc3 = 0.5*width

yc3 = 0.75*height

command
measure id 10001 x xcl y ycl rad rc
measure id 10002 x xc2 y yc2 rad rc
measure id 10003 x xc3 y yc3 rad rc

end_command

madd] = find_meas(10001)

madd2 = find_meas(10002)

madd3 = find_meas(10003)

end

def membrane
height 0=new_height
width_O=new_xwidth
x_l=w_x(wadd2)
Xx_r=w_x(wadd3)
start NO=ball_num
command



del wall 2 3
end_command
mb_rad = min_rad
mb_num =
int(new_height/(2.0*mb_rad))+1
mb_kn = ball_kn/10.0
mb_ks = ball ks/10.0
mb_dens = 1000.0
loop count (1,mb_num)
_x=x_r-0.95*mb_rad
_y=w_y(wadd1)+(2.0*count-
1)*mb_rad
_id = start NO+count
if count =mb_num
_y = height+w_y(wadd4)-mb_rad
end_if
command
ball rad=mb _rad id=_idx= xy=y
group membranel range id _id
end_command
end_loop

loop count (1,mb_num)
_x=x_[+0.95*mb_rad+width
_y=w_y(wadd1)+(2.0¥count-
1)*mb_rad
_id = start. NO+mb_num-+count
if count = mb_num
_y = height+w_y(wadd4)-mb_rad
end if
command
ball rad=mb_rad id=_id x= xy=y
group membrane2 range id _id
end_command
end_loop

mb_idl = start NO+1
mb_id2 = _id
command
prop kn=mb_kn ks=mb_ks
dens=mb_dens range id mb_id1 mb_id2
prop n_bond=1e100 s_bond=1e100
color 4 range id mb_id1 mb_id2
end_command
badd1 = find_ball(mb_id1)
badd2 = find_ball(start NO+mb_num)
badd3 = find_ball(mb_id1+mb_num)
badd4 = find_ball(mb_id2)
b_yfix(baddl) =1
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b_yfix(badd2) =1
b_yfix(badd3) =1
b_yfix(badd4) =1
b_yvel(baddl) = w_yvel(wadd1)
b_yvel(badd3) =w_yvel(waddl)
b_yvel(badd2) = w_yvel(wadd4)
b_yvel(badd4) = w_yvel(wadd4)
end

def get_ss ; determine average stress and
strain at walls
LXcoord=0
RXcoord=0
LXforce=0
RXforce=0
loop count (1,mb_num)
baddi = find_ball(start NO+count)
LXcoord = LXcoord + b_x(baddi)
LXforce = LXforce + b_xfap(baddi)
end_loop
loop count(1,mb_num)
baddi =
find_ball(start. NO+mb_num-+count)
RXcoord = RXcoord + b_x(baddi)
RXforce = RXforce + b_xfap(baddi)
end_loop
aver_LXcoord = LXcoord/mb_num
aver RXcoord= RXcoord/mb_num
new_width = aver RXcoord -
aver_L Xcoord
ydif = w_y(wadd4) - w_y(wadd1)
new_height = height + ydif
wsxx = 0.5*(LXforce -
RXforce)/new_height
wsyy = 0.5 * (w_yfob(wadd4) -
w_yfob(waddl)) / (new_width * 1.0)
wexx = (new_width - width_0) / width_0
weyy = ydif/ height 0
wevol = wexx + weyy
mean_stress W = (WSXX+wsyy)/2

_flag = measure(madd1,1)
msxx1 =-m_sl1(maddl)
msyyl =-m_s22(maddl)
mporosl =m_poros(madd1)
_flag = measure(madd2,1)
msxx2 =-m_s11(madd2)
msyy2 = -m_s22(madd2)
mporos2 = m_poros(madd2)



_flag = measure(madd3,1)

msxx3 =-m_s11(madd3)

msyy3 = -m_s22(madd3)

mporos3 = m_poros(madd3)

msxx = (msxx 1+msxx2+msxx3)/3.0

msyy = (msyyl+msyy2+msyy3)/3.0

MSXy = mSyy-msxx

mean_stress m = (msxx+msyy)/2

mporos =
(mporos1+mporos2-+mporos3)/3.0

void_ratio = mporos/(1-mporos)
end

def get gain ; determine servo gain
parameters for y
count =0
avg stiff=0
cp = contact_head ; find avg.
number of contacts on y-walls
loop while cp # null
if c_balll(cp) = waddl
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
if c_balll(cp) = wadd4
count = count + |
avg_stiff = avg_stiff + c_kn(cp)
end_if
if ¢_ball2(cp) = wadd1
count = count + |
avg_stift = avg_stiff + ¢_kn(cp)
end_if
if ¢_ball2(cp) = wadd4
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
cp = c_next(cp)
end_loop
nycount = count / 2.0
avg_stiff = avg_stiff/ count
gy = alpha * width / (avg_stiff *
nycount* tdel)
end

B

def servo_xy
while_stepping
get_ss ; compute stresses & strains
ify_servo=1
udy = gy*(wsyy-syyreq)
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if abs(udy) > 0.1

udy = sgn(udy)*0.1
end_if
w_yvel(waddl) = -udy
w_yvel(wadd4) = udy
b_yvel(badd1) =w_yvel(wadd1)
b_yvel(badd3) = w_yvel(waddl)
b_yvel(badd2) = w_yvel(wadd4)
b_yvel(badd4) = w_yvel(wadd4)

end if

if x_servo=1
fx0 = -sxxreq*mb_rad
fy0=0.0
bp = ball_head
loop while
b_id(bp)>ball_num+mb_num-+1
bp_next = b_next(bp)
fx = £x0-0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy = fy0+0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
x0 = -0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy0 = 0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
b_xfap(bp) = fx
b_yfap(bp) = fy
bp =b_next(bp)
b_color(bp)=2
end_loop
if b_y(bp)<w_y(wadd4)+height 0
if b_y(bp)>w_y(waddl)
b_xfap(bp) = fx0-
sxxreq*mb_rad
b_yfap(bp) = fy0
b_color(bp)=3
end if
end if
;b_xfap(find_ball(ball_num+mb_num
*2)) = fx
;b_color(find_ball(ball_ num+mb_nu
m*2))=2

fx0 = sxxreq*mb_rad

fy0=0.0

bp = b_next(bp)

loop while b_id(bp)>ball num+1
bp_next =b_next(bp)



fx = fx0+0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy = £y0-0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
x0 = 0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy0 = -0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
b_xfap(bp) = fx
b_yfap(bp) = fy
bp =b_next(bp)
b_color(bp)=4
end_loop
if b_y(bp)<w_y(wadd4)+height 0
if b_y(bp)>w_y(waddl)
b_xfap(bp) =
fx0+sxxreq*mb_rad
b_yfap(bp) = fy0
b_color(bp)=5
end_if
end_if
;b_xfap(find_ball(ball_num+mb_num
) = 1fx
:b_color(find_ball(ball_num+mb_nu
m))=3

end if
end

def iterate_xy
loop while 1 #0
get_gain
if abs((wsxx-
sxxreq)/sxxreq)<sig_tol then
if abs((wsyy-
syyreq)/syyreq)<sig_tol then
exit
end_if
end if
command
cycle 100
end_command
end _loop
end

wall_addr

membrane

set sxxreq=1e5 syyreq=1e5

set sig_tol=0.001 alpha = 0.1 x_servo=1

A-T

y_servo=1
iterate Xy
save flexCon_100_new.sav
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Step 4: Shearing and data recording (an
example of PSCD test)

prop fric 0.5 range id 1 6000

set dt max 1.0e-5 hist_rep=2000
x_servo=0y_servo=I

ini xvel=0 yvel=0 xdis=0 ydis=0 spin=0

wall id 1 fric 0.2

wall id 4 fric 0.2

def set_numbers
band_num =11
column_num =5
strain_rate = 1000.0 ;1.0%/s
grid_num = band_num*column_num
end
set_numbers

def make_arrays
array ball_xO(ball_num)
ball_yO(ball_num) ball_rO(ball_num)
array ball_xvel(ball_num)
ball_yvel(ball_num) ball_vel(ball_num)
array stress_1(grid_num)
stress_2(grid_num) stress_drct(grid_num)
array f_big(grid_num)
f small(grid_num) f drct(grid num)
array grid_apr(grid_num)
grid_fdev(grid_num) grid_ep(grid_num)
array cont_fabric(18) fabrics(72)
array max_1(2) max_2(2) max_il(2)
max_i2(2) max_j1(2) max_j2(2)
array min_1(2) min_2(2) min_il(2)
min_i2(2) min_j1(2) min_j2(2)
end

2

def set_ini
height_ini = new_height
width_ini = new_width
weyy 0= weyy
wevol_0 = wevol
bp = ball_head
loop while bp # null
if b_id(bp) <= ball_num



ball_id =b_id(bp)
b_rot(bp) = 0.0
b_xdisp(bp) = 0.0
b_ydisp(bp) = 0.0
ball_rO(ball_id) =b_rot(bp)
ball_x0(ball_id) =b_x(bp)
ball_yO(ball_id) =b_y(bp)

end_if

bp = b_next(bp)

end loop
end

defy strain
y_strain = weyy - weyy_0
vol_strain = wevol- wevol_0
end

def paint_ball
a0 = aver_LXcoord
color n=-1
loop _column (1,column_num)
loop _band (1,band_num)
xc = (_column-
0.5)*new_width/column_num + a0
yc =w_y(wadd1)+(_band-
0.5)*new_height/band_num
color_n = color_n+1
if color_ n=4
color n=0
end_if
bp = ball_head
loop while bp # null
if b_id(bp) <= ball_num
if b_y(bp) >= yc-
0.5*new_height/band_num
if b_y(bp) <
yc+0.5%new_height/band_num
if b_x(bp) >= xc-
0.5*new_width/column_num

if b_x(bp) <
xc+0.5*new_width/column_num
b_color(bp) =
color_n
else
if _column =
column_num
b_color(bp) =
color_n
end_if

end if
else
if _column=1
b_color(bp) =
color_n
end_if
end if
end_if
end_if
end_if
bp = b_next(bp)
end_loop
end_loop
end_loop
end

def measure_circle
a0 = aver_LXcoord
array x_m(grid_num) y_m(grid_num)
ball_num_m(grid_num)
command
set extra ball 1
end_command
circle_num =0
loop _column (1,column_num)
loop _band (1,band_num)
xc = (_column-
0.5)*new_width/column_num + a0
yc =w_y(wadd1)+(_band-
0.5)*new_height/band_num
circle_num = circle_num+1
x_m(circle_num) =0.0
y_m(circle_num) = 0.0
ball_num_m(circle_num) = 0.0
bp = ball_head
loop while bp # null
if b_id(bp) <= ball_num
if b_y(bp) >= yc-
0.5*new_height/band_num
if b_y(bp) <
yc+0.5%new_height/band_num
if b_x(bp) >= xc-
0.5*new_width/column_num
if b_x(bp) <
xc+0.5*new_width/column_num
b_extra(bp,1) =
circle_num
x_m(circle_num) =
x_m(circle_num)+b_x(bp)



y_m(circle_num) =
y_m(circle_num)+b_y(bp)

ball_num_m(circle_num) =
ball_num_m(circle_num)+1
end_if
end_if
end_if
end if
end if
bp = b_next(bp)
end_loop
Xc =
x_m(circle_num)/ball_num_m(circle_num)
ye=
y_m(circle_num)/ball_num_m(circle_num)
rc = 0.5*min(new_width/column_num,
new_height/band_num)
if _band =1
rc=
0.45*min(new_width/column_num,
new_height/band_num)
end if
if _band = band_num
rc=
0.45*min(new_width/column_num,
new_height/band_num)

yc =yc-0.5%rc
end_if
if _column =1
rc=

0.45*min(new_width/column_num,
new_height/band_num)
end if
if _column = column_num
rc=
0.45*min(new_width/column_num,new_h
eight/band_num)
end_if
command
measure id circle num x xcy yc
rad rc
end_command
end_loop
end_loop
end

def stress_field
stress_max = 0.0
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loop id_m (1,circle_num)
mp = find_meas(id_m)
Xc =m_x(mp)
yc =m_y(mp)
_flag = measure(mp,1)
ms_mean =
abs((m_s11(mp)+m_s22(mp))/2)
ms_shear = sqrt((m_s11(mp)-
m_s22(mp))"2/4.0+m_s12(mp)"2)
if ms_shear = 0.0
ms_shear = 1.0e-5
end_if
stress_1(id_m) =
ms_mean+ms_shear
stress_2(id_m) = ms_mean-
ms_shear
stress_max =
max(stress_max,stress_1(id_m))
_angle =
atan2(2*m_s12(mp),m_s11(mp)-
m_s22(mp))/2.0
if round(100*cos(2* _angle)) #
round(50*(m_s22(mp)-
m_sl1(mp))/ms_shear)
_angle = _angle+pi/2.0
else
if round(100*sin(2*_angle)) #
round(100*m_s12(mp)/ms_shear)
_angle = _angle+pi/2.0
end_if
end_if
stress_drct(id_m) = _angle
mporos = m_poros(mp)
void_r = mporos/(1.0-mporos)
grid_ep(id_m) = string(xc)+'
'+string(yc)+' '+string(void_r)
end_loop
poros_name =
'erid_ep_'+stringfmt(y_strain,1,1)+".txt'
_flag_ = open(poros_name,1,1)
_flag_ = write(grid_ep,circle_num)
_flag_=close
end

def draw_stress
rc = 0.5*min(new_width/column_num,
new_height/band_num)
loop id_m (1,circle_num)
section



pi/9)/3

pif9)/3

if stress_1(id_m) = 0.0
exit_section

end_if

mp = find_meas(id_m)

Xc = m_x(mp)

yc =m_y(mp)

_rl =rc*stress_1(id_m)/stress_max

_r2 =rc*stress_2(id_m)/stress_max

angle = stress_drct(id_m)

_angle = angle+pi/2

if _angle > pi

_angle = _angle-pi

end if
xi = xc+_rl*cos(angle)
yi = yct+_rl*sin(angle)
xil = xc+_rl*cos(angle-pi/9)/3
yil = yc+_rl*sin(angle-pi/9)/3
xi2 = xc+_r1*cos(angle+pi/9)/3
yi2 = yc+_rl*sin(angle+pi/9)/3
xj = xc-_rl1*cos(angle)
yj = yc-_rl*sin(angle)
xj1 = xc-_rl*cos(angle-pi/9)/3
yjl = yc-_rl*sin(angle-pi/9)/3
Xj2 = xc-_rl*cos(angle+pi/9)/3
yj2 = yc-_rl*sin(angle+pi/9)/3
_xi=xct_r2*cos(_angle)
_yi=yct r2*sin(_angle)
_xil =xct+_r2*cos(_angle-

_yil =yc+_r2*sin(_angle-

_Xi2 =

xc+_r2*cos(_angle+pi/9)/3

yi2 =

yct+_r2*sin(_angle+pi/9)/3

_Xj = xc-_r2*¥cos(_angle)

_yj =yc-_r2*sin(_angle)

_xjl =xc-_r2*cos(_angle-pi/9)/3
_yj1 =yc-_r2*sin(_angle-pi/9)/3
_Xj2 =xc-

_r2*cos(_angle+pi/9)/3

_yj2=yc-

_12*sin(_angle+pi/9)/3

command
wall nodes (xc,yc) (xi,yi)
wall nodes (xc,yc) (xil,yil)
wall nodes (xc,yc) (xi2,yi2)
wall nodes (xc,yc) (Xj,yj)
wall nodes (xc,yc) (xj1,yj1)
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wall nodes (xc.yc) (xj2,yj2)
wall nodes (xc,yc) (_xi, yi)
wall nodes (xc,yc) (_xil,_yil)
wall nodes (xc.yc) (_xi2, yi2)
wall nodes (xc,yc) (_Xj, yj)
wall nodes (xc,yc) (_xj1,_yjl)
wall nodes (xc.yc) (_xj2,_yj2)

end_command

end_section

end_loop

stress_name =
'stress_'+stringfmt(y_strain,1,1)+".emf
command

set plot emf size 4096 3072

plot create stressfield

plot set background white

plot add ball Icyan Icyan Icyan Icyan

outline off wall

plot hardcopy stressfield file

stress_name

plot show

end_command

end

2

def stress_item

plot_item

rc=
0.5*min(new_width/column_num,new_hei
ght/band_num)

loop id_m (1,circle_num)

section
if stress_1(id_m)=10.0
exit_section
end_if
mp = find_meas(id_m)
Xc =m_x(mp)
yc =m_y(mp)
_rl =rc*stress_1(id_m)/stress_max
_1r2 =rc*stress_2(id_m)/stress_max
angle = stress_drct(id_m)
_angle = angle+pi/2
if _angle > pi
_angle = _angle-pi
end_if
max_1(1) =xc+_rl*cos(angle)
max_1(2) = yct+_rl*sin(angle)
max_2(1) =xc-_r1*cos(angle)
max_2(2) = yc-_rl*sin(angle)
_flag = draw_line(max_1,max_2)



max_il1(1) = xct+_rl*cos(angle-

pi/9)/3

max_i1(2) = yct_rl*sin(angle-
pif9)/3

max_i2(1) = xc-_rl*cos(angle-
pi/9)/3

max_i2(2) = yc-_rl*sin(angle-
pi/9)/3

_flag =
draw_line(max_il,max_i2)

max_jl(1) =
xct_rl*cos(angle+pi/9)/3

max_j1(2) =

yc+_rl*sin(angle+pi/9)/3
max_j2(1) = xc-
_rl*cos(angle+pi/9)/3
max_j2(2) = yc-
_rl*sin(angle+pi/9)/3
_flag=
draw_line(max_jl,max _j2)
min_1(1) = xc+_r2*cos(_angle)
min_1(2) = yc+_r2*sin(_angle)
min_2(1) = xc-_r2*cos(_angle)
min_2(2) = yc-_r2*sin(_angle)
_flag = draw_line(min_1,min_2)
min_il(1) = xc+_r2*cos(_angle-

pi/9)/3

min_il(2) = yct+_r2*sin(_angle-
pi/9)/3

min_i2(1) = xc-_r2*cos(_angle-
pi/9)/3

min_i2(2) = yc-_r2*sin(_angle-
pi/9)/3

_flag =
draw_line(min_il,min_i2)

min_jl(1) =
xc+_r2*cos(_angle+pi/9)/3

min_j1(2) =

yc+_12*sin(_angle+pi/9)/3
min_j2(1) = xc-

_12*cos(_angle+pi/9)/3
min_j2(2) = yc-

_12*sin(_angle+pi/9)/3
flag =

draw_line(min_j1,min_j2)

end_section
end_loop
end

b
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def fabric_field
loop _count (1,18)
cont_fabric(_count)=0
end_loop
cp = contact_head
loop while cp # null
section
if ¢_nforce(cp)=0
if c_bflag(cp)=0
exit section
end if
else
if pointer_type(c_ball2(cp)) = 101
exit section
end_if
end_if
if b_id(c_balll(cp)) > ball_ num
exit section
else
if b_id(c_ball2(cp)) > ball num
exit section
end_if
end if
if ¢ xun(cp) # 0.0
cont_drt =
18*atan(c_yun(cp)/c_xun(cp))/pi
else
cont_ drt=9
end_if
if cont_drt <0.0
cont_drt = cont_drt+18
end_if
case_of int(cont_drt)
case 0
cont_fabric(1) =
cont_fabric(1)+1
case |
cont_fabric(2) =
cont_fabric(2)+1
case 2
cont_fabric(3) =
cont_fabric(3)+1
case 3
cont_fabric(4) =
cont_fabric(4)+1
case 4
cont_fabric(5) =
cont_fabric(5)+1
case 5



cont_fabric(6) =
cont_fabric(6)+1
case 6
cont_fabric(7) =
cont_fabric(7)+1
case 7
cont_fabric(8) =
cont_fabric(8)+1
case 8
cont_fabric(9) =
cont_fabric(9)+1
case 9
cont_fabric(10) =
cont_fabric(10)+1
case 10
cont_fabric(11) =
cont_fabric(11)+1
case 11
cont_fabric(12) =
cont_fabric(12)+1
case 12
cont_fabric(13) =
cont_fabric(13)+1
case 13
cont_fabric(14) =
cont_fabric(14)+1
case 14
cont_fabric(15) =
cont_fabric(15)+1
case 15
cont_fabric(16) =
cont_fabric(16)+1
case 16
cont_fabric(17) =
cont_fabric(17)+1
case 17
cont_fabric(18) =
cont_fabric(18)+1
end case
end_section
cp = c_next(cp)
end loop
loop _n (1,18)
_nl =2% n-1
_n2=2*%n
_n3=_nl+36
_n4= n2+36
_fabrics(_n1)=string(cont_fabric(_n))
_fabrics(_n2)=_fabrics(_nl)
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_fabrics(_n3)=_fabrics(_nl)
_fabrics(_n4)=_fabrics(_nl)

end_loop
_fname =

'fabric_'+stringfmt(y_strain,1,1)+'.txt'

_flag_=open(_fname,1,1)

_flag_=write(_fabrics,72)
_flag_=close

rc = min(new_width/column_num,

new_height/band_num)
incrm_time = time-time_0
apr_max=0.0
f big max=10.0
loop id_m (1,circle_num)
mp = find_meas(id_m)
xc =m_x(mp)
yc =m_y(mp)
pr_sum = 0.0
c_count= 0.0
f11=0.0
f22=0.0
f 12=0.0
cp = contact_head
loop while cp # null
section
if ¢_nforce(cp)=0

if ¢_bflag(cp)=0
exit section
end_if

else

101

if pointer_type(c_ball2(cp)) =

exit section
end_if

end if

if b_id(c_balll(cp)) > ball_num

exit section

else

if b_id(c_ball2(cp)) > ball_num

exit section
end if

end_if

if (¢_x(cp)-x¢)"2+(c_y(cp)-ye)"2

<=rc"2

¢_count =c¢_count+1
bp_1=c_balll(cp)
bp_2 =c_ball2(cp)
r_1=b_rad(bp_1)



r 2=b rad(bp_2)
r_avg =2%r_1*r 2/(r_1+r_2)
ball_id =b_id(bp_1)
sp_1=(b_rot(bp_1)-
ball_rO(ball_id))/(incrm_time)
ball_id =b_id(bp_2)
sp_2 = (b_rot(bp_2)-
ball_rO(ball_id))/(incrm_time)
pr_sum = pr_sum +
(sp_1*r_l+sp 2*r 2)/r_avg
f 11 =1 1l+c_xun(cp)*2
f 22 =1 22+c_yun(cp)"2
f12=
f 12+c_xun(cp)*c_yun(cp)
end if
end_section
cp = c_next(cp)
end_loop
apr = pr_sum/c_count
grid_apr(id_m) = string(xc)+'
“string(yc)+'  '+string(apr)
f 11=1 _11/c_count
f 22 =1 22/c_count
f 12=1 12/c_count
f dev0 = sqrt((f_11-
f 22)"2/4+f 1272)

if f dev0=10.0
f dev0 = 1.0e-5
end if

f big(id_m) = 0.5+f_dev0

f_small(id_m) = 0.5-f_dev0

f big max =
max(f big_max,f big(id_m))

_angle = atan2(2*f_12,f 11-f 22)/2

if round(100*cos(2* _angle)) #
round(50*(f_11-f 22)/f dev0)

_angle = _angle+pi/2
else
if round(100*sin(2*_angle)) #
round(100*f _12/f devO0)
_angle = _angle+pi/2
end if

end_if

f dret(id_m) = _angle

grid_fdev(id_m) = string(xc)+'
“+string(yc)+' “+string(f_dev0)

end_loop
_fname = 'grid-

apr_tstringfmt(y_strain,1,1)+".txt'

_flag_ = open(_fname,1,1)
_flag_ = write(grid_apr,circle_num)
_flag_ = close
_fname = "grid-fabric-
dev_'+stringfmt(y_strain,1,1)+".txt'
_flag_ = open(_fname,1,1)
_flag = write(grid_fdev,circle_num)
_flag_ = close
end

def draw_fabric
rc = 0.5*min(new_width/column_num,
new_height/band_num)
loop id_m (1,circle_num)
section
if f_big(id_m)=10.0
exit_section
end_if
mp = find_meas(id_m)
xc =m_x(mp)
yc =m_y(mp)
_rl =rc*f_big(id_m)/f big max
_12 =rc*f small(id_m)/f big_max
angle = f_drct(id_m)
_angle = angle+pi/2
if _angle > pi
_angle = _angle-pi
end_if
xi = xct_rl*cos(angle)
yi =yc+_rl*sin(angle)
Xj = xc-_rl*cos(angle)
yj = yc-_rl*sin(angle)
_xi=xc+_r2*cos(_angle)
_yi=yct+_r2*sin(_angle)
_Xj =xc-_r2*cos(_angle)
_yj =yc-_12*¥sin(_angle)
command
wall nodes (xc,yc) (xi,yi)
wall nodes (xc.yc) (Xj,yj)
wall nodes (xc,yc) (_xi, yi)
wall nodes (xc,yc) (_Xj, yj)
end_command
end_section
end_loop
fabric_name =
'fabric_'+stringfmt(y_strain,1,1)+.emf'
command
set plot emf size 4096 3072
plot create fabricfield



plot set background white

plot add ball Icyan Icyan Icyan Icyan
outline off wall

plot hardcopy fabricfield file
fabric_name

plot show

end _command

end

def fabric_item
plot_item
rc = 0.5*min(new_width/column_num,
new_height/band_num)
loop id_m (1,circle_num)
section
it f big(id_m)=10.0
exit_section
end_if
mp = find_meas(id_m)
Xc =m_x(mp)
ye =m_y(mp)
_rl =rc*f_big(id_m)/f_big max
12 =rc*f small(id_m)/f big_max
angle = f drct(id_m)
_angle = angle+pi/2
if _angle > pi
_angle = _angle-pi
end_if
max_1(1) = xc+_rl*cos(angle)
max_1(2) = yc+_rl*sin(angle)
max_2(1) =xc-_rl*cos(angle)
max_2(2) =yc-_rl*sin(angle)
_flag = draw_line(max_1,max_2)
min_1(1) = xct+_r2*cos(_angle)
min_1(2) = yc+_r2*sin(_angle)
min_2(1) = xc-_r2*cos(_angle)
min_2(2) = yc-_12*sin(_angle)
_flag = draw_line(min_1,min_2)
end_section
end_loop
end

def cf_range
range_element
cf range=1.0
cp = fc_arg(0)
if b_id(c_ball1(cp))>ball_num
cf range =0
end_if
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if pointer_type(c_ball2(cp)) = 101
cf range =0
end_if
if pointer_type(c_ball2(cp)) = 100
if b_id(c_ball2(cp))>ball_num
cf range =0
end_if
end_if
if c_nforce(cp)<av_cforce
cf range =0
end_if
end

def plot_cforce
cf_fname =
'cforce '+stringfimt(y_strain,1,1)+".emf'
b_fname =
'balls_'+stringfmt(y_strain,1,1)+'.emf
command
plot close cforce
plot destroy cforce
plot create cforce
plot set background white
plot add cforce black range fish
cf range
plot hardcopy cforce file cf fname
plot hardcopy balls file b_fname
end_command
end

def plot_stress
stress_name =
'stress_'+stringfmt(y_strain,1,1)+ .emf
command
plot close stressfield
plot destroy stressfield
plot create stressfield
plot set background white
plot add ball Icyan Icyan Icyan Icyan
outline off
plot add fish stress_item black
plot hardcopy stressfield file
stress_name
end_command
end

def plot_fabric
fabric_name =
'fabric_'+stringfmt(y_strain,1,1)+.emf'



command
plot close fabricfield
plot destroy fabricfield
plot create fabricfield
plot set background white
plot add ball Icyan Icyan Icyan Icyan
outline off
plot add fish fabric_item black
plot hardcopy fabricfield file
fabric_name
end_command
end

def fabric_trace
f11=0.0
22=0.0
f12=10.0
c_count = 0.0
cp = contact_head
loop while cp # null
section
if c_nforce(cp)=0
if ¢_bflag(cp)=0
exit section
end_if
else
if pointer_type(c_ball2(cp)) =
101
exit section
end if
end if

if b_id(c_balll(cp)) > ball_num
exit section
else
if b_id(c_ball2(cp)) > ball_num
exit section
end_if
end if
¢_count = c_count+1
fl1 = fl1+c_xun(cp)*2
22 = f22+c_yun(cp)"2
f12 = f12+c_xun(cp)*c_yun(cp)
end_section
cp = ¢_next(cp)
end_loop

f11 =fl1/c_count
22 =122/c_count
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f12 = f12/c_count
end

def servo_xy
while_stepping
get_ss ; compute stresses & strains
fabric_trace
ify_servo=1
udy = gy*(wsyy-syyreq)
if abs(udy) > 0.005
udy = sgn(udy)*0.005
end_if
w_yvel(waddl) = -udy
w_yvel(wadd4) = udy
b_yfix(baddl) =1
b_yfix(badd2) =1
b_yfix(badd3) =1
b_yfix(badd4) =1
b_yvel(baddl) = w_yvel(wadd1)
b_yvel(badd3) = w_yvel(waddl)
b_yvel(badd2) = w_yvel(wadd4)
b_yvel(badd4) = w_yvel(wadd4)
end if

if x_servo=1
x0 = -sxxreq*mb_rad
fy0=0.0
bp = ball_head
loop while
b_id(bp)>ball_num+mb_num-+1
bp_next = b_next(bp)
fx = fx0-0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy = fy0+0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
x0 = -0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy0 = 0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
b_xfap(bp) = fx
b_yfap(bp) = fy
bp =b_next(bp)
end_loop
if b_y(bp)<w_y(wadd4)+height 0
if b_y(bp)>w_y(waddl)
b_color(baddi)=5
b_xfap(bp) = fx0-
sxxreq*mb_rad
b_yfap(bp) = fy0



end_if
end_if

x0 = sxxreq*mb_rad
fy0 =10.0
bp = b_next(bp)
loop while b_id(bp)>ball_num+1
bp_next = b_next(bp)
fx = fx0+0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy = fy0-0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
X0 = 0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy0 = -0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
b_xfap(bp) = fx
b_yfap(bp) = fy
bp = b_next(bp)
end_loop
if b_y(bp)<w_y(wadd4)+height_0
if b_y(bp)>w_y(waddl)
b_color(baddi)=5
b_xfap(bp) =
fx0+sxxreq*mb_rad
b_yfap(bp) = fy0
end_if
end_if
end if
end

def cellpressure
bp=ball_head
fx = sxxreq*new_height/mb_num
loop while b_id(bp)>start NO
b_xfap(bp)=-fx*sgn(b_x(bp)-
0.5*width)
bp=b_next(bp)
end_loop
end

set_ini

paint_ball

trace energy on
history id=1 measure coord id 10001
history id=2 measure coord id 10002
history id=3 measure coord id 10003
history id=4 wexx
history id=5 wevol

history id=6 measure poro id 10001
history id=7 measure poro id 10002
history id=8 wsxx

history id=9 wsyy

history id=10 msxx

history id=11 msyy

history id=12 y_strain

history id=13 void_ratio

history id=14 {11

history id=15 122

history id=16 f12

history id=17 energy body

history id=18 energy boundary
history id=19 energy fric

history id=20 energy kinetic
history id=21 energy strain

plot create stress-strain
plot add hist 8,9,10,11 vs 12
plot create volstrain

plot add hist 5 vs 12

plot create cforce

plot create fabricfield

plot create stressfield

plot create balls

plot add ball blue Ired

plot set background white
set plot emf size 4096 3072

def save_state
loop _num (1,circle_num)
x_m(_num) = 0.0
y_m(_num) = 0.0
end_loop
bp = ball_head
loop while bp # null
if b_id(bp)<=ball_num
if b_extra(bp,1) # 0
_num = b_extra(bp,1)
X_m(_num) =
x_m(_num)+b_x(bp)
y_m(_num) =
y_m(_num)+b_y(bp)
end_if
end_if
bp = b_next(bp)
end_loop
loop _num (1,circle_num)
mp = find_meas(_num)



m_x(mp) =
x_m(_num)/ball_num_m(_num)
m_y(mp) =
y_m(_num)/ball_num_m(_num)
end_loop

stress_field
fabric_field
plot_stress
plot_fabric
plot_cforce

bp = ball_head
loop while bp # null
if b_id(bp)<= ball_num
_num = b_id(bp)
ball_x0(_num) =b_x(bp)
ball_yO(_num)=b_y(bp)
ball_rO(_num) =b_rot(bp)
end_if
bp = b_next(bp)
end_loop
time_0 = time
end

def'set_space

grid_space=0.002

x_grid = int(new_width/grid_space) + 1

y_grid = int(new_height/grid_space) + 1

grid num =x_grid * y_grid

array x0_grid(10000) yO_grid(10000)
z0_grid(10000)

array x1_grid(10000) y1_grid(10000)
z1_grid(10000)

array x2_grid(10000) y2_grid(10000)
z2_grid(10000)

array grid No(10000)
grid_zahyou(10000); NO of balls attached
to grids

array loci_1(2) loci_2(2)
xdisp(10000,30) ydisp(10000,30)
end
set_space

def grid_search ;get initial coordinations of
grids

id_grid=1
loop j(1,y_grid)

loop i(1,x_grid)
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x0_grid(id_grid) = -0.012 * width + (i-1)
* grid_space
y0_grid(id_grid) = (j-1) * grid_space
id_grid =id_grid + 1
end_loop
end_loop
end

def zahyou_judge ;search the balls nearest
to the grids
array grid_id(grid_num)
ball_pos(grid_num)
array gg(grid_num)
loop i(1,grid_num)
xi =x0_grid(i)
yi=y0_grid(i)
grid_zahyou(i) = string(xi)+'
“Fstring(yi)
dri=10.0
bp = ball_head
loop while bp # null
xp =b_x(bp)
yp = b_y(bp)
rp = b_rad(bp)
di = sqrt((xp-xi)"2+(yp-yi)"2)
dri = min(di/rp,dri)
if dri = di/rp
grid_No(i) = bp
grid_id(i) = b_id(grid_No(i))
gg(i) = string(grid_id(i))
ball pos(i) = string(b_x(bp))+'
“+string(b_y(bp))
end if
bp = b_next(bp)
end_loop
end_loop
_fname = "grid_zahyou'+'.txt'
_flag_=open(_fname,1,1)
_flag_=write(grid_zahyou,grid num)
_flag_=close

_fname = "ball_pos'+'.txt'

_flag_ = open(_fname,1,1)

_flag_ = write(ball_pos,grid_num)
_flag_ = close

; Data output to txt file
status = open('filel.fio', 1, 0)
status = write(grid_id,grid num)




status = close

status = open('file2.txt', 1, 1)
status = write(gg,grid_num)
status = close

end

def grid_disp_out
command
table 1 erase
end_command

array bb(grid_num)

status = open('file2.txt', 0, 1)
status = read(bb, grid_num)
status = close

loop i (1,grid_num)
ball_add = int(bb(i))
ii=out('bb_id="+ string(l)+'

'+string(n)+' '+string(ball_add))

x_value =
b_x(find_ball(ball_add)) * 1000

_value =

b_y(find_ball(ball_add)) * 1000

r_value =
b_rot(find_ball(ball_add))

ii=out('x="+ string(x_value)+'
y="+string(y_value)+' r="+string(r_value))

command

table 1 x_value y_value ;
end_command
end_loop

file_ name log = file_name+
sub_name+'disp.log'
command

set logfile file_name_log

set echo on

set log on

print table 1

set log off

set echo off

set logfile pfc.log
end_command
end

def grid_kiroku

plot_item
load_grad = load_grad + 1
loop i(1, grid_num)
xdisp(i,load_grad) =
b_xdisp(grid_No(i))
ydisp(i,load_grad) =
b_ydisp(grid_No(i))
end_loop
end

def grid_draw
loop j(1,load_grad-1)
plot_item
loop i(1,grid_num)
x1_grid(i) = xdisp(i,j) + x0_grid(i)
y1_grid(i) = ydisp(i,j) + y0_grid(i)

x2_grid(i) = xdisp(i,j+1) + x0_grid(i)
y2_grid(i) = ydisp(i,j+1) + y0_grid(i)
loci_1(1) =x1_grid(i)
loci_1(2) =yl_grid(i)
loci_2(1) =x2_grid(i)
loci_2(2) =y2 grid(i)

_flag = set_color(2)
_flag = draw_line(loci_1,loci_2)
end_loop
end_loop

loop i(1,grid_num)

loci_1(1) =x0_grid(i)

loci_1(2) =y0_grid(i)

_flag = draw_circle(loci_1,0.0002)
end_loop
end

def plot_dis
command
plot create disfield
plot set background white
plot add fish grid_draw Iblue ;orange
red blue brown
end_command
end

El

grid_search
zahyou_judge
grid_kiroku



measure_circle
save_state

set sxxreq=0.95e5
cellpressure

cyc 10000
grid_kiroku

save de5.sav

set sxxreq=0.9e5
cellpressure

cyc 10000
grid_kiroku
save del0.sav

set sxxreq=0.85e5
cellpressure

cyc 20000
grid_kiroku

save del5.sav

set sxxreq=0.8e5
cellpressure

cyc 20000
grid_kiroku
save de20.sav

set sxxreq=0.75e5
cellpressure

cyc 30000
grid_kiroku

save de25.sav

set sxxreq=0.7e5
cellpressure

cyc 30000
grid_kiroku
save de30.sav

set sxxreq=0.65e5
cellpressure

cyc 40000
grid_kiroku

save de35.sav

set sxxreq=0.6e5
cellpressure

cyc 40000
grid_kiroku

save de40.sav

set sxxreq=0.55e5
cellpressure

cyc 50000
grid_kiroku

save ded5.sav

set sxxreq=0.5e5
cellpressure

cyc 50000
grid_kiroku
save de50.sav

set sxxreq=0.45e5
cellpressure

cyc 50000
grid_kiroku

save de55.sav

set sxxreq=0.42e5
cellpressure

cyc 100000
grid_kiroku

save de58.sav

set sxxreq=0.4e5
cellpressure

cyc 100000
grid_kiroku
save de60.sav

set sxxreq=0.4e5
cellpressure
cyc 100000
grid_kiroku
save de60_1.sav

...... ; shearing until the peak state




B. Sampling and consolidation for a clump sample with three

disks
Step 1: Sampling

; based on the disk sample -------------
def clump_gen; generate N small particles
along the boundary to make a clump
bp=ball_head
ball_NO=ball_num+1
N=3
id_cl=1
loop while bp # null
bpn = b_next(bp)
x0=b_x(bp)
y0=b_y(bp)
r0=b_rad(bp)
ball_id=b_id(bp)
re=1.2*r0*sin(pi/N)/(1+sin(pi/N))
dis=r0-rc
r_m=r0-2*rc

_a_=b_delete(bp)
bp=bpn

rad=r_m
ball NO=ball NO+1
loop i(0,N-1)
xc=x0+1.2*dis*cos(2*i*pi/N)
yc=y0+1.2*dis*sin(2*i*pi/N)
command
ball id=ball_NO x=xc y=yc
rad=rc
end_command
ball NO=ball NO+1
end_loop
end loop

loop j(1,ball_num)
id_start=ball_num+(j-1)*(N+1)+1
id_end=id_start+N
command
clump id=id_cl perm range
id=id_start,id_end
end_command
id_cl=id_cl+1
end_loop
end

clump_gen

prop dens ball_dens ks ball_ks kn ball_kn
fric 0.5

plot creat clump

plot add clump Icyan

save sample C3.sav

£l

Step 2: Rigid consoildation
Similar to the Step 2 in Appendix A

B

Step 3: Flexible consoildation

;define a membrane and re-consolidation
def wall_addr
wadd1 = find_wall(1)
wadd2 = find_wall(2)
wadd3 = find_wall(3)
wadd4 = find_wall(4)
rc = 0.4*width
xcl = 0.5*width
ycl = 0.25*height
xc2 = 0.5*width
yc2 = 0.5*height
xc3 = 0.5*width
yc3 = 0.75*height
command
measure id 10001 x xcl y yc1 rad rc
measure id 10002 x xc2 y yc2 rad rc
measure id 10003 x xc3 y yc3 rad rc
end_command
madd]1 = find_meas(10001)
madd2 = find_meas(10002)
madd3 = find_meas(10003)
end

def membrane
height_O=new_height
width_O=new_xwidth
x_|=w_x(wadd2)
X_1r=w_x(wadd3)
start NO=id_end
command



del wall 2 3
end_command
mb_rad = min_rad
mb_num =
int(new_height/(2.0*mb_rad))+1
mb_kn = ball_kn/100.0
mb_ks = ball_ks/100.0
mb_dens = 1000.0

loop count (1,mb_num)

X=X_T
_y=w_y(wadd1)+(2.0¥count-
1)*mb_rad

_id = start NO+count
if count = mb_num
_y = height+w_y(wadd4)-mb_rad
end if
command
ball rad=mb_rad id=_id x= xy=_y
group membranel range id _id
end_command
end_loop

loop count (1,mb_num)
_x=x_l+width
_y=w_y(wadd1)+(2.0¥count-
1)*mb_rad
_id = start NO+mb_num-+count
if count =mb_num
_y = height+w_y(wadd4)-mb_rad
end_if
command
ball rad=mb_rad id= idx= xy=y
group membrane? range id _id
end_command
end_loop

mb_idl = start NO+1
mb_id2 = _id
command
prop kn=mb_kn ks=mb_ks
dens=mb_dens range id mb_idl mb_id2
prop n_bond=1e100 s_bond=1e100
color 4 range id mb_id1 mb_id2
end_command
baddl = find_ball(mb_id1)
badd2 = find_ball(start. NO+mb_num)
badd3 = find_ball(mb_id1+mb_num)
badd4 = find_ball(mb_id2)
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b_xfix(badd1) =1
b_xfix(badd2) =1
b_xfix(badd3) =1
b_xfix(badd4) =1
b_yvel(baddl) =w_yvel(waddl)
b_yvel(badd3) =w_yvel(waddl)
b_yvel(badd2) = w_yvel(wadd4)
b_yvel(badd4) = w_yvel(wadd4)
end

£l

def get_ss ; determine average stress and
strain at walls
LXcoord=0
RXcoord=0
LXforce=0
RXforce=0
loop count (1,mb_num)
baddi = find_ball(start NO-+count)
LXcoord = LXcoord + b_x(baddi)
LXforce = LXforce + b_xfap(baddi)
end_loop
loop count(1,mb_num)
baddi =
find_ball(start. NO+mb_num-+count)
RXcoord = RXcoord + b_x(baddi)
RXforce = RXforce + b_xfap(baddi)
end_loop
aver_LXcoord = LXcoord/mb_num
aver RXcoord= RXcoord/mb_num
new_width = aver_RXcoord -
aver_LXcoord
ydif=w_y(wadd4) - w_y(waddl)
new_height = height_0 + ydif
wsxx = 0.5*(LXforce -
RXforce)/new_height
wsyy = 0.5 * (w_yfob(wadd4) -
w_yfob(waddl)) / (new_width * 1.0)
wexx = (new_width - width_0) / width_0
weyy = ydif/ height_0
wevol = wexx + weyy
mean_stress w = (Wsxx+wsyy)/2

_flag = measure(maddl,1)
msxx1 =-m_sl1(maddl)
msyyl =-m_s22(madd1)
mporos] =m_poros(maddl)
_flag = measure(madd2,1)
msxx2 =-m_s11(madd2)



msyy2 =-m_s22(madd2)

mporos2 = m_poros(madd2)

_flag = measure(madd3,1)

msxx3 =-m_s11(madd3)

msyy3 =-m_s22(madd3)

mporos3 = m_poros(madd3)

msxx = (msxx I+msxx2+msxx3)/3.0

msyy = (msyyl+msyy2+msyy3)/3.0

MSXy = mSyy-msxx

mean_stress m = (msxx+tmsyy)/2

mporos =
(mporos1+mporos2+mporos3)/3.0

void_ratio = mporos/(1-mporos)
end

def get gain ; determine servo gain
parameters for y
count =0
avg_stiff=0
cp = contact_head ; find avg. number of
contacts on y-walls
loop while cp # null
if ¢_balll(cp) = waddl
count = count + 1
avg_stift = avg_stiff + ¢_kn(cp)
end_if
if ¢_balll(cp) = wadd4
count = count + 1
avg_stiff = avg_stiff + c_kn(cp)
end_if
if c_ball2(cp) = wadd1
count = count + 1
avg_stiff = avg_stiff + c_kn(cp)
end_if
if c_ball2(cp) = wadd4
count = count + 1
avg_stiff = avg_stiff + ¢_kn(cp)
end_if
cp = c_next(cp)
end loop
nycount = count / 2.0
avg_stiff = avg_stiff / count
gy = alpha * width / (avg_stiff *
nycount* tdel)
end

def servo_xy
while_stepping
get_ss ; compute stresses & strains
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ify_servo=1
udy = gy*(wsyy-syyreq)
if abs(udy) > 0.1
udy = sgn(udy)*0.1
end_if
w_yvel(wadd1) = -udy
w_yvel(wadd4) = udy
b_yvel(badd1) = w_yvel(wadd1)
b_yvel(badd3) = w_yvel(wadd1)
b_yvel(badd2) = w_yvel(wadd4)
b_yvel(badd4) = w_yvel(wadd4)
end_if

if x_servo=1
fx0 = -sxxreq*mb_rad
fy0=0.0
bp = ball_head
loop while
b_id(bp)>start. NO+mb_num-+1
bp_next =b_next(bp)
fx = £x0-0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy = fy0+0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
x0 = -0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy0 = 0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
b_xfap(bp) = fx
b_yfap(bp) = fy
bp = b_next(bp)
b_color(bp)=2
end_loop
if b_y(bp)<w_y(wadd4)+height_0
if b_y(bp)>w_y(waddl)
b_xfap(bp) = fx0-
sxxreq*mb_rad
b_yfap(bp) = fy0
b_color(bp)=3
end_if
end_if

b_xfap(find_ball(start_ NO+mb_num*2)) =
fx
b_color(find_ball(start. NO+mb_num*2))=
2

X0 = sxxreq*mb_rad

fy0=0.0

bp = b_next(bp)



loop while b_id(bp)>start NO+1
bp_next = b_next(bp)
fx = fx0+0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy = £y0-0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
x0 = 0.5*sxxreq*abs(b_y(bp)-
b_y(bp_next))
fy0 = -0.5*sxxreq*(b_x(bp)-
b_x(bp_next))
b_xfap(bp) = fx
b_yfap(bp) = fy
bp =b_next(bp)
b_color(bp)=4
end_loop
if b_y(bp)<w_y(wadd4)+height_0
if b_y(bp)>w_y(waddl)
b_xfap(bp) =
fx0+sxxreq*mb_rad
b_yfap(bp) = fy0
b_color(bp)=5
end_if
end_if

end_if
end

def iterate_xy
loop while 1 # 0
get_gain
if abs((msxx-
sxxreq)/sxxreq)<sig_tol then
if abs((wsyy-
syyreq)/syyreq)<sig_tol then
exit
end_if
end if
command
cycle 100
end_command
end_loop
end

wall_addr

membrane

set sxxreq=1.0e5 syyreq=1.0e5

set sig_tol=0.01 alpha = 0.1 x_servo=1
y_servo=1

iterate_xy
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save FlexiCon_C3.sav



