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Abstract A chaotic neural network proposed (CNN)
by Aihara et al. is able to recollect stored patterns dy-
namically. But there are difficult cases such as its long

time processing of association, and difficult to recall a
specific stored pattern during the dynamical associa-
tions. We have proposed to find the optimal parame-

ters using meta-heuristics methods to improve associ-
ation performance, for example, the shorter recalling
time and higher recollection rates of stored patterns in

our previous works. However, the relationship between
the different values of parameters of chaotic neurons
and the association performance of CNN was not in-

vestigated clearly. In this paper, we propose a method
to analyze the spatiotemporal changes of internal states
in CNN and, by the method, analyze how the change

of values of internal parameters of chaotic neurons af-
fects the characteristics of chaotic neurons when multi-
ple patterns are stored in the CNN. Quantile-Quantile

plot (Q-Q plot), least square approximation (LSA), hi-
erarchical clustering (HC), and Hilbert transform (HT)
are used to investigate the similarity of internal states

of chaotic neurons, and to classify the neurons. Simula-
tion results showed that how different values of an in-
ternal parameter yielded different behaviors of chaotic

neurons and it suggests the optimal parameter which
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generates higher association performance may concern
with the stored patterns of the CNN.
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1 Introduction

The chaotic neural network proposed (CNN) by Aihara
et al. is well-known as a recurrent neural network which

is able to dynamically recollect stored patterns [1,2].
And CNN has been widely applied to optimization [3],
parallel distribution processing [4,5], robotics [6], and

so on. In our previous works, we have proposed some
meta-heuristic methods (e.g. genetic algorithm, particle
swarm optimization) to determine the optimal parame-

ters of chaotic neurons to realize higher performance of
association memory of CNN [7,8]. However, the causal-
ity between the determined parameters and the asso-

ciation ability was not investigated. In this paper, we
propose the method to extract the features of the spa-
tiotemporal changes of internal states in CNN, analyze

them and intend to analyze how the varied internal
states of chaotic neurons are yielded by the different
parameters of neuron dynamics. The spatiotemporal

changes of the internal states of each chaotic neuron are
observed, and the comparison of these time series data
is given by kinds of methods such as Quantile-Quantile

plot (Q-Q plot) [9], least squares approximation (LSA),
hierarchical clustering (HC) [10]. And Hilbert trans-
form (HT) [11]. Here, Q-Q plot, LSA, and HC are used

to show the similarity between the dynamical changes
of the internal states of chaotic neurons of CNN, mean-
while HT is used to show the synchronization of neu-

rons during association process. Associative simulation
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showed that how change of an internal parameter af-

fected the characteristics of neurons and the optimal
parameter may concern with the stored patterns.

2 Chaotic neural network

Aihara et al.’s chaotic neural network (CNN) is a kind
of interconnected recurrent artificial neural network which
neurons perform chaotic output [1,2]. The dynamics of

a chaotic neuron i of CNN is defined as follows:

ηi(t+ 1) = kfηi(t) +
N∑
j=0

wijxj(t) (1)

ζi(t+ 1) = krζi(t)− αxi(t) + a (2)

yi(t+ 1) = ηi(t+ 1) + ζi(t+ 1) (3)

xi(t+ 1) =
1

1 + e−yi(t+1)/ε
(4)

where N is number of chaotic neurons in network, ηi(t)
and ζi(t) are internal state for the feedback inputs and

refractoriness, kf and kr are the decay parameters for
the feedback input and the refractoriness, wij is a synap-
tic weight from the jth neuron to the ith neuron, α is

a refractory scaling parameter, a is a threshold, yi(t) is
the internal state, xi(t) is the chaotic neuron output,
ε is a steepness parameter. In this paper, the internal

states of the chaotic neurons are limited to yi(t), i =
0, 1, . . . , N − 1 and the internal parameter kr is inves-
tigated in detail.

Hebb learning rule [12] is used to store patterns in
CNN, that is, the synaptic weight between two arbi-
trary neurons is modified as follow:

∆wij =

{
β
∑M−1

m=0 χmiχmj if i ̸= j
0 otherwise

(5)

where β = 1/M is a learning coefficient, χmi is the ith
bipolar value of the mth pattern.

3 Feature extraction

In this paper, Quantile-Quantile plot (Q-Q plot), least
squares approximation (LSA), hierarchical clustering

(HC), and Hilbert transform (HT) are used for ana-
lyzing the characteristics of the dynamical association
in CNN. The dynamics that is in equilibrium, cycle or

chaos but not divergence moves in bounded and then is
able to represent by state distribution. So the results of
the comparison between the internal state distributions

in CNN represent as the characteristics of the relation-
ship between the state distributions of neurons. And
the characteristics of the relationship between the tem-

poral changes of neurons are represented by the syn-
chronization between neurons. This synchronization is
able to give that the mutual change relative to fluctu-

ation is happening at the same time, at a delay or at
different timing. Firstly, Q-Q plot is used to compare
the distribution types of each chaotic neuron internal

states in CNN. Secondly, the curve plotted by Q-Q plot

is approximated to a function by LSA. Finally, the ap-

proximation errors and approximated parameters are
clustered by HC, and the clustered data as the simi-
larity between neurons is shown. Because the synchro-

nization depends on time, cannot be represented with
the internal state distribution of each chaotic neuron,
so HT is used to observe the synchronization between

internal states of chaotic neuron.

3.1 Quantile-Quantile plot

Quantile-Quantile plot (Q-Q plot) is a graphical method
to represent the similarity and characteristics between

the distributions of two data sets [9]. When the ele-
ments of two data sets are sorted in ascending order,
the elements of one data set are plotted on X-dimension

in order, and the elements of another data set are plot-
ted on Y-dimension either, then the correlation and the
similarity of the two data sets are easily to be observed.
If the plotted graph has linearity, it means that their

data distributions were a certain similarity. On other
hand, if the graph has nonlinearity, it means that their
data are not similar. In this paper, similarities of all

observed internal states of chaotic neurons in CNN are
investigated using Q-Q plot, and the linearities are cal-
culated by least squares approximation described in the

next subsection.

3.2 Least squares approximation

Least squares approximation (LSA) is a method to find
an approximate fitting function using samples of data

set. In this paper, linear least square as a LSA method
is used to quantitatively measure the plot graph (the
sorted two data sets) in Q-Q plot mentioned in 3.1 sec-

tion. A polynomial equation of the first degree (linear
function) as an approximation function is used to mea-
sure the similarity (linearity) between the distributions

of two data in Q-Q plot. Using the linear function given
by LSA, we can measure the similarity of two data dis-
tributions by squares errors.

For example, as the quantitative values of the char-
acteristics in Q-Q plot, the coefficient, the intercept and
the squares error of approximation linear function are

1, 0 and 0 in the case those two distributions are equal.
However, the coefficient and the intercept get to dif-
ferent values in the cases that the mutual scale of the

distributions is different and that the mutual mean of
distributions is different, respectively. The squares er-
ror is given a value of more than zero in the case that

mutual distributions are different.

3.3 Hierarchical clustering

Hierarchical clustering (HC) is a clustering method that
iteratively merges clusters in higher similarity [10]. And

the method creates the clusters that have a tree-like
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structure. In this paper, the nearest neighbor method

is used in HC, and Euclidean distance, as the degree
of similarity of the internal state, is used to classify
the chaotic neurons. Shorter Euclidean distance repre-

sents higher similarity between two clusters. The quan-
titative values calculated by LSA in Q-Q plot between
each chaotic neuron and all are used in HC. So the

similarities between the internal state distributions of
all neurons are able to be represented in the tree-like
structure of HC. And HC is able to give the clusters on

voluntary hierarchy (at voluntary distance) by limiting
maximum distance (setting the lower limit similarity).
This means that the clusters and their clustered neu-

rons at the quantitative value of similarity in HC are
represented as the characteristics.

3.4 Hilbert transform

Hilbert transform (HT) is a transform technique to cal-

culate the complex signal from an observed time series
signal [11]. Here, the complex signal is transformed from
the internal state time series signal of each chaotic neu-
ron in CNN. And the synchronization between neurons

is observed with the complex signals. The method of
HT is as follows:

FT: yi(t) → yi(ω) (6)

yi(ω) ≡ Re [yi(ω)] + IIm [yi(ω)] (7)

y′i(ω) ≡ Im [yi(ω)]− IRe [yi(ω)] (8)

FT−1: y′i(ω) → yiH(t) (9)

where yi(t) is an observed signal, FT is Fourier trans-
form, I is the imaginary unit, FT−1 is inverse Fourier
transform, yiH(t) is the signal of HT.

The phase difference ϕi(t) − ϕj(t) of two signals
(yi(t), yj(t)) is calculated by following equation:

ϕi(t)− ϕj(t) = tan−1 yiH(t)yj(t)− yi(t)yjH(t)

yi(t)yj(t) + yiH(t)yjH(t)
(10)

This phase difference means the relationship be-

tween the fluctuations of two signals. For example, the
phase difference gets to zero always in the case that
two signals are same equilibrium, cycle or chaos and

their temporal changes are happening at the same time
(however, mutual scale does not affect the phase differ-
ence). And, the phase difference is not zero always in

the case that two signals are same cycle and one side
is delayed for a time interval. However, the phase dif-
ference changes frequently in the case that the mutual

fluctuations of two signals change at different timing.

4 Computational simulations

The features of the internal states in CNN were ob-
served when the value of the internal parameter kr of

CNN was different. Other parameters of the associative

“cross” “star” “triangle” “wave” “initial”
Fig. 1 “cross”, “star”, “triangle” and “wave” are stored pat-
terns in CNN, and “initial” is an initial pattern of output in
CNN, where both width and height of respective pattern are
10, black cell of respective pattern represents χmi = −1, on
other hand, white cell represents χmi = +1
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Fig. 2 Maximum Lyapunov exponents with different values
of kr

Table 1 Recalling times of stored patterns of each CNN and
it’s total times, where the stored pattern is regarded as re-
calling when Euclidean distance between output pattern and
a stored pattern (as black cell is −1 and white cell is +1) is
less than 1.

kr “cross” “star” “triangle” “wave” Total
0.9 6 2 8 14 30
0.8 0 7 12 0 19

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

-30 -25 -20 -15 -10 -5  0  5  10  15

S
o
rt

ed
 y

1
(t

)

Sorted y0(t)

linear function : y = a x + b

Sorted y1(t) : 
∧
y

Sorted y0(t) : x

Coefficient : a = 1.000

Intercept : b = 0.000

Error : ���� 12048∑(y-
∧
y)

2
 = 0.000

approximation linear function

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

-30 -25 -20 -15 -10 -5  0  5  10  15

S
o
rt

ed
 y

6
(t

)

Sorted y0(t)

linear function : y = a x + b

Sorted y6(t) : 
∧
y

Sorted y0(t) : x

Coefficient : a = 1.456

Intercept : b = -0.627

Error : ���� 12048∑(y-
∧
y)

2
 = 2.984

approximation linear function

(a) (b)

Fig. 3 The approximation linear function and the quantita-
tive values (coefficient, intercept and squares error) by LSA
in Q-Q plot with different chaotic neuron internal states.

model were set as N = 100 (10 × 10 network), ζi(0) =
0, ηi(0) = 0, kf = 0.2, α = 10, a = 2, ε = 0.015, β =
0.25. The stored patterns in CNN were “cross”, “star”,

“triangle”, and “wave” as shown in Fig. 1 and they
have been used usually as the stored patterns in CNN
[2]. “initial” in Fig. 1 means the initial output state

of CNN in recollection process. The internal states of
chaotic neurons in CNN were recorded from t = 2, 048
to t = 4, 095 during a recalling.

The different values of kr are 0.9 and 0.8 those are
value used in [2] and simple value. And the maximum
Lyapunov exponent of CNN with kr = 0.9 was 0.290,

and CNN with kr = 0.8 was 0.245 from Fig. 2. The dy-
namical attractor of which the maximum Lyapunov ex-
ponent is positive is chaos (strange attractor). So both

the CNN with kr = 0.9 and the CNN with kr = 0.8
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Fig. 4 The results of hierarchical clustering, horizontal axes are distance between clusters (similarity between neurons),
vertical axes are neuron’s number, arrow and broken line point at 0.5 distance and present clusters there: (a) is a whole image
of hierarchical clustering in CNN with kr = 0.9, (b), (c), (d), and (e) are parts of (a); (f) is in CNN with kr = 0.8, (g), (h),
(i), and (j) are parts of (f)

suggest that they are generating chaotic associative pro-
cess. Table 1 shows the recalling times of the different

stored patterns. The CNN with kr = 0.9 had a higher
recalling rates.

Fig. 3 shows examples of Q-Q plots and quantita-

tions by LSA. The plotted graph has linearity in Fig. 3
(a) and then the quantitative values (coefficient, inter-
cept and squares error) of approximation linear function

by LSA are 1, 0 and 0 because the distributions of 0th
neuron internal state and one of 1th neuron are more
similar. On the other hand, because the internal state

distributions of 0th neuron and 6th neuron are not sim-
ilar, the graph in Fig. 3 (b) is nonlinear and then the
quantitative values get to different values from what

mutual distributions are similar.

The HC results of the case kr = 0.9 (which was
the value used in the original paper [2]) and the case

kr = 0.8 (which was an optional value used in this
simulation) are shown in Fig. 4.

In Fig. 4, 100 neurons are arranged on the vertical

axes which orders are according to their clusters. When
the distances between the clusters (horizontal axes) is
at the point with arrows in Fig. 4 (a) and Fig. 4 (f), the

numbers of clusters were both 16, but neurons in those
clusters were different when the parameter kr=0.9 and
kr=0.8. Neurons in 16 clusters yielded by the different

parameters are listed in Table 2.

Table 2 In the results of clustered neurons which internal
states were similar during recollection using HC, cluster at
0.5 distance and neurons that belong to it’s cluster.

Cluster’s No.
Neuron’s No.
(kr = 0.9)

Neuron’s No.
(kr = 0.8)

C0 23, 32, 45, 55, 66 14, 15, 86
C1 14, 15, 86 71, 72, 77, 78, 81, 87
C2 33, 34, 37, 43, 44, 56 7, 42, 51, 60, 61
C3 3, 4, 20, 30, 31, 59, 70 23, 32, 45, 55, 66
C4 0, 1, 10, 28, 90 46, 47, 52, 57, 84, 95
C5 16, 24, 25 53, 58, 68, 85 12, 17, 22, 27, 64, 65, 76
C6 8, 9, 11, 18, 19, 21, 80 8, 9, 11, 18, 19, 21, 80
C7 12, 17, 22, 27, 64, 65, 76 5, 79, 83, 92, 93, 94, 96, 97
C8 46, 47, 52, 57, 84, 95 26, 35, 36, 54, 62, 63, 67, 73
C9 82, 88, 89, 91, 98, 99 6, 29, 38, 39, 40, 41, 48, 49, 50
C10 2, 13, 69, 74, 75 2, 13, 69, 74, 75
C11 7, 42, 51, 60, 61 82, 88, 89, 91, 98, 99
C12 71, 72, 77, 78, 81, 87 16, 24, 25 53, 58, 68, 85
C13 5, 79, 83, 92, 93, 94, 96, 97 3, 4, 20, 30, 31, 59, 70
C14 6, 29, 38, 39, 40, 41, 48, 49, 50 33, 34, 37, 43, 44, 56
C15 26, 35, 36, 54, 62, 63, 67, 73 0, 1, 10, 28, 90

The phases between the neurons in the same clus-

ter showed no any difference (ϕi(t) − ϕj(t) ≃ 0,i, j ∈∪15
k=0 Ck). Table 3 shows sample means and sample

standard deviations as some examples of the phase com-

parison using neuron No. 23 in C0 via neuron No. 32,
45, 55, and 66 (the first row in Table 2 where kr = 0.9),
and No. 14 via No. 15, and 86 (the first row in Table 2

where kr = 0.8). So the value of parameter kr did not
affect the synchronization of the neurons in the same
cluster.

Fig. 5 shows the phase differences between the clus-
ter C0 and other clusters (C1-C15) at each time. In Fig.
5, the horizontal axis indicates the time of recollection,

the vertical axis is the phase difference, and the depth



The effect of the internal parameters on association performance of a chaotic neural network 5

Table 3 The means and the standard deviations of phase
differences between the neurons of cluster C0, where sam-
ple means is ϕi − ϕj = 1

4095−2048+1

∑4095

t=2048
(ϕi(t) −

ϕj(t)), sample standard deviations sij =√
1

4095−2048+1

√∑4095

t=2048
[(ϕi(t)− ϕj(t))− (ϕi − ϕj)]2, t

is recollection time.

kr
Combination
of neuron no.

ϕi − ϕj (sij)

0.9 i = 23, j = 32 1.629 · 10−18 (2.001 · 10−16)
i = 23, j = 45 1.567 · 10−17 (1.314 · 10−15)
i = 23, j = 55 1.919 · 10−17 (1.292 · 10−15)
i = 23, j = 66 −5.407 · 10−17 (2.594 · 10−15)

0.8 i = 14, j = 15 0.000 · 100 (0.000 · 100)
i = 14, j = 86 −9.780 · 10−18 (3.230 · 10−16)
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Fig. 5 The phase differences between the neurons of different
clusters, where three axes are recollection time t, phase differ-
ence (ϕi(t) − ϕj(t)), and combination with C0, respectively,
recollection time t is from t = 2048 to t = 4095: (a) kr = 0.9,
i = 23 of C0, j is 14, 33, 3, 0, 16, 8, 12, 46, 82, 2, 7, 71, 5, 6, or 26
of 16 clusters from C0 to C15. (b) kr = 0.8, i = 14 of C0, j
is 71, 7, 23, 46, 12, 8, 5, 26, 6, 2, 82, 16, 3, 33, or 0 of 16 clusters
from C0 to C15

axis corresponds to different clusters (from C1 to C15).
And Fig. 6 shows the means and the standard devi-
ations of the phase differences between clusters from
t = 2, 048 to t = 4, 095 in CNN with kr = 0.9 (shown

in Fig. 4 (a)-(e)). So we can find that the change of
the phase difference happened between the neurons of
different clusters in CNN with kr = 0.9 because the

standard deviations of the phase differences were not
zero. And though the standard deviations in CNN with
kr = 0.8 are not shown in this paper, they were not

zero likewise.

Furthermore, to investigate the relationship between

the stored patterns and the neuron spatial positions, we
listed the output of neurons in 16 clusters, and it was
interested that the number of clusters (i.e. 16) equaled

to the number of the combination of stored patterns
(see Table 4). For example, neuron No. 23, 32, 45, 55,
and 66 in C0 when kr = 0.9 and in C3 when kr = 0.8,

output “-1” when stored pattern “cross” was recalled.
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Fig. 6 The means and the standard deviations of the phase
differences between clusters from t = 2, 048 to t = 4, 095 in
CNN with kr = 0.9

Table 4 The causality between elements combinations of
stored patterns and clustered neurons.

Neuron’s output
corresponding to

the stored
patterns in Fig.1

Neuron’s No.
Cluster’s No.
(kr = 0.9)

Cluster’s No.
(kr = 0.8)

-1, -1, -1, -1
26, 35, 36, 54, 62,

63, 67, 73
C15 C8

-1, +1, -1, -1
71, 72, 77, 78, 81,

87
C12 C1

-1, -1, -1, +1
33, 34, 37, 43, 44,

56
C2 C14

-1, -1, +1, -1
12, 17, 22, 27, 64,

65, 76
C7 C5

+1, -1, -1, -1
16, 24, 25 53, 58,

68, 85
C5 C12

-1, +1, -1, +1
82, 88, 89, 91, 98,

99
C9 C11

-1, +1, +1, -1
8, 9, 11, 18, 19,

21, 80
C6 C6

-1, -1, +1, +1 23, 32, 45, 55, 66 C0 C3

+1, +1, -1, -1 14, 15, 86 C1 C0

+1, -1, -1, +1
46, 47, 52, 57, 84,

95
C8 C4

+1, -1, +1, -1 2, 13, 69, 74, 75 C10 C10

-1, +1, +1, +1 0, 1, 10, 28, 90 C4 C15

+1, +1, -1, +1
5, 79, 83, 92, 93,

94, 96, 97
C13 C7

+1, +1, +1, -1
3, 4, 20, 30, 31,

59, 70
C3 C13

+1, -1, +1, +1 7, 42, 51, 60, 61 C11 C2

+1, +1, +1, +1
6, 29, 38, 39, 40,
41, 48, 49, 50

C14 C9

“+1”, “+1”, “-1” were output corresponding to the re-

calling of “star”, “triangle” and “wave”, respectively.

On the other hand, in 2 cases of CNN with kr = 0.5
and CNN with kr = 0.795 as non-chaotic associative

process, Table 5 shows clusters at 0.5 distance and neu-
rons that belong to their cluster on HC in CNN with
kr = 0.5 and CNN with kr = 0.795 and Fig. 7 (a)

and (b) show the means and the standard deviations
of the phase differences between clusters in respective
kr. 0.5 and 0.795 are selected as the values that maxi-

mum lyapunov exponents are negative and one side is
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Table 5 In the results of clustered neurons which internal
states were similar during recollection using HC, cluster at
0.5 distance and neurons that belong to it’s cluster.

Cluster’s No.
Neuron’s No.
(kr = 0.5)

Neuron’s No.
(kr = 0.795)

C0 2, 13, 14, 15, 69, 74, 75, 86 2, 13, 69, 74, 75
C1 82, 88, 89, 91, 98, 99 8, 9, 11, 18, 19, 21, 80
C2 71, 72, 77, 78, 81, 87 82, 88, 89, 91, 98, 99
C3 46, 47, 52, 57, 84, 95 71, 72, 77, 81, 87
C4 33, 34, 37, 43, 44, 56 46, 47, 52, 57, 84, 95
C5 26, 35, 36, 54, 62, 63, 67, 73 33, 34, 37, 43, 44, 56
C6 23, 32, 45, 55, 66 26, 35, 36, 54, 62, 63, 67, 73
C7 16, 24, 25, 53, 58, 68, 85 23 ,32, 45, 55, 66
C8 12, 17, 22, 27, 64, 65, 76 16, 24, 25, 53, 58, 68, 85
C9 8, 9, 11, 18, 19, 21, 80 14, 15, 86
C10 7, 42, 51, 60, 61 12, 17, 22, 27, 64, 65, 76
C11 6, 29, 38, 39, 40, 41, 48, 49, 50 7, 42, 51, 60, 61
C12 5, 79, 83, 92, 93, 94, 96, 97 6, 29, 38, 39, 40, 41, 48, 49, 50
C13 3, 4, 20, 30, 31, 59, 70 5, 79, 83, 92, 93, 94, 96, 97
C14 0, 1, 10, 28, 90 3, 4, 20, 30, 31, 59, 70
C15 0, 1, 10, 28, 90
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(b)
Fig. 7 The means and the standard deviations of the phase
differences between clusters from t = 2, 048 to t = 4, 095; (a)
CNN with kr = 0.5; (b) CNN with kr = 0.795

nearly zero from Fig. 2. The number of clusters in CNN

with kr = 0.5 of Table 5 is not different from Table 2
but, in CNN with kr = 0.795 of Table 5, the number of
clusters and their neurons are equal to Table 2. These

mean that the internal state distributions in CNN with
kr = 0.5 have the different relationship from kr = 0.8
and kr = 0.9 and, in CNN with kr = 0.795, have the

similarly relationship from kr = 0.8 and kr = 0.9. How-
ever, Fig. 7 (a) and (b) show the synchronization be-
tween clusters because the standard deviations of the

phase differences between some clusters (e.g. C0, C3,
C7, C10, C11, C12 and C13; C1, C5, C6 and C9; C2,
C4, C8 and C14 in kr = 0.5, C0, C1, C3 and C8;

C2, C4, C11 and C15; C5 and C7; C6 and C10; C12
and C13 in kr = 0.795) are zero (synchronous). So, as
non-chaotic association, CNN with kr = 0.5 and CNN

with kr = 0.795 have the different characteristics from
kr = 0.8 and kr = 0.9 as chaotic association.

Namely, the proposed analysis method is able to
give the differences and the characteristics between the
internal states in CNN with kr = 0.8 or kr = 0.9 as

chaotic associative process and the internal states in

CNN with kr = 0.5 or kr = 0.795 as non-chaotic as-

sociative process. And then the method gives that the
neurons in chaotic associative process have the synchro-
nization in the clusters relative to the elements combi-

nations of stored patterns and the synchronization be-
tween clusters.

5 Conclusion

In this paper, we proposed the method to analyze the

spatiotemporal changes of internal states in CNN and
investigated the effect of the internal parameter of CNN
on the association process by the proposed analysis

method. The spatiotemporal change of the internal states
of neurons was used to show the differences yielded by
the change of the value of the internal parameter: the

decay parameter for the refractoriness of chaotic neu-
rons. The chaotic neurons were clustered according to
their similarities of internal states, and the character-

ization of synchronization seemed affected by the pa-
rameter values. So these results show the validity of the
proposed analysis method. The method is able to ex-

pect to support our previous works which suggested the
importance of the optimal parameter for the dynamic
association model CNNs.
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