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Phase Shift of Interacting Algebraic Solitary Waves in a Two-Layer Fluid System
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The interaction of interfacial solitary waves of algebraic type is investigated on the basis of a higher-
order Benjamin-Ono equation. By developing a multisoliton perturbation theory, we show analytically
that the overtaking collision between two solitary waves exhibits the phase shift but the amplitudes
are not altered after interaction. The predication of the phase shift that takes place between algebraic
solitary waves is the first example reported in the literature.

PACS numbers: 03.40.Kf, 02.90.+p, 03.40.Gc, 68.10.-m

The development of the theory of nonlinear waves has
enabled us to describe the wave propagation in physical
systems by simple nonlinear evolution equations (NEEs)
[1-3]. A typical example is the Korteweg—de Vries
(KdV) equation that is a model for the unidirectional
propagation of long waves of small amplitude. Almost
all the NEEs thus derived incorporate the lowest-order
nonlinearity in wave amplitude. For the study of large
amplitude waves, however, one must take into account
higher-order nonlinearities. In the context of water waves,
various types of higher-order KdV equations have been
derived in accordance with the physical situation under
consideration and the properties of solutions have been
studied in detail. For instance, the interaction process
between two solitary waves has been investigated both
analytically [4—6] and numerically [7-10].

Recently, the author derived a higher-order Benjamin-
Ono (BO) equation that describes interfacial waves in
a two-layer fluid system and obtained a solitary wave
solution [11]. In contrast to the great deal of work which
has been done for the higher-order KdV equations, there
appears to be a dearth of study dealing with the effect
of higher-order nonlinear and dispersive terms on the BO
equation. The BO solitons have novel characteristics [12—
14] in comparison with those of the KdV equation. One
is that they have a profile expressed in terms of algebraic
functions. Another remarkable aspect is that they exhibit
no phase shift after collisions. Our primary concern is
to study how these important characteristics are altered
owing to the addition of higher-order terms.

In this Letter, we shall focus our attention on the inter-
action process of solitary waves. In particular, the total
changes of the amplitude and the phase after overtaking
collision between two solitary waves are calculated ana-
lytically by developing a multisoliton perturbation theory
for the BO equation. It will be shown that the amplitudes
of solitary waves do not change after interaction while
the phase shifts occur depending on the amplitude ratio of
both solitary waves and the density ratio of two layers.

The basic equation considered here is a higher-order
BO equation derived in a recent paper [11] to describe a
unidirectional motion of interfacial waves in a two-layer
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fluid system in which the upper layer with a uniform
density p, is infinitely deep and the depth of the lower
layer with a uniform density p; is very small compared
with the typical wavelength of the wave. It can be written
in dimensionless form as follows [1]:

3 1 3
M+ N + 3ann, + 3A8Hn,, — 5“27]2""
1 5 9
+ EAatS[z”r]HT]xx + zH (nny), + an"Ix]
3
- §(A2 - 3)52771,\',\' =0. (1)

Here n = n(x,t) is the interfacial elevation, A = p,/
p1(<1) is the density ratio, @ and & are small parameters
given by a = a/hg, & = hy/l where a and ! are typi-
cal amplitude and wavelength of the wave, respectively,
and hg is the undisturbed depth of the lower layer. The
operator H is the Hilbert transform and the subscripts ¢
and x appended to 7 denote partial differentiations. It
should be remarked that in the derivation of (1) the order-
ing @ = O(8) has been introduced between the two pa-
rameters. In the first order of the approximation, Eq. (1)
reduces to the BO equation provided that the condition
a < A <1 holds, which is assumed implicitly through-
out the analysis. Equation (1) can be recast in a form rel-
evant to the following perturbation analysis as

- 15 27
u, + 4uu, + Hu,, = e[3u2ux — ZuHuy, — 7H (uuy),

— 3u,Hu, + %E(Az - g)um]

€R[u], 2

by transforming it to a moving frame with the phase ve-
locity of the wave and then rescaling the variables 7, t,x
according to n — (3¢/a)u, t — (32A6/81€?)t, and x —
(4A8/9¢)x, respectively, where € is a small positive pa-
rameter and e€R[u] represents a perturbation.

In order to analyze soliton equations with small pertur-
bations, several different approaches are known. These in-
clude a method based on the inverse scattering transform
[15], a direct method using multiple time scale expansion
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[16], a mixture of the above two methods [17], a tech-
nique using variational principle [18], and a generalized
reductive perturbation method [4,5,19]. As for the merits
and demerits of these methods, see a review paper [20].
It should be pointed out, however, that for the perturbed
BO equation, these methods have not been applied as yet.
Quite recently, a direct multisoliton perturbation theory has
been developed that is applicable to a wide class of NEEs
[21]. Therefore, we first summarize the main results of the
theory with an application to the present problem.

To begin with, expand u in powers of € as u =
3-0€u; and introduce the multiple times by t; =
€/t (j =0,1,...), so that the time derivative is replaced
by 3/dt = 3 _e/d/at;, where u; are supposed to be
functions of fy,t;,... as well as x. Substituting these
expressions into (2) and equating the coefficients of like
powers of €, we obtain a hierarchy of equations for
uj (j =0,1,...), the first two members of which read in
the forms

uos, + 4uouox + Huoxx =0, 3)

ul,lo + 4(u0ul)x + Hul,xx = R[uO] - u0,11 . (4)

Equation (3) is just the BO equation and the equations
for j = 1 become linear inhomogeneous equations for u;.
As a solution of (3), we take the N-soliton solution [12]
which includes the N amplitude parameters a; and the N
phase parameters ¢; (j = 1,2,...,N). We note that in the
. limit of #p — o, uy is decomposed into a superposition
of N algebraic solitary waves, the jth of which has g;
and ¢; as the independent parameters. The fundamental
assumption in the following discussion is that these
parameters are slowly varying functions of ¢; (j = 1) in
the presence of the perturbation. The time evolution of a;
and £; is determined by the compatibility conditions such
that Eq. (4) has bounded solutions. Explicitly, they can
be expressed as

(g R U] = wou) = [ g, (Rluo] = wou)dx = 0
(j=12.., O

where g; are solutions of the adjoint equation for the
homogeneous part of (4), i.e.,

8ju t 4uogjx + Hgjxx = 0. 6)

The 2N independent bounded solutions for (6) can be
constructed as

* auo
= —d. = ..
8; [_m 2a, x (j=12,...,N), @)
T dug .
gj+N=f — dx (j=1,2,,N) (8)
—w &

An important observation at this stage is the following
orthogonality relations which can be obtained with the aid
of the BO equation (3):

ow)_ [, aw)_m,
8is afj 8i+N> aaj 4 %

(i,j=12,....,N), (9

o\ _(, om)_,
8i» aaj 8i+N> af}

(i,j=12,...,N), (10)

where 6;; is Kronecker’s delta. Since uo depends on
t; through a; and &;, uo, = Z?;l(aj,,l uga, + &jnlog;)-
Substituting this relation into (5), using (9) and (10)
and then rewriting the resultant equations in terms of
the original time variable ¢, we finally obtain the time
evolution of a; and £; as follows:

d .

T ~ 2 (g RIw) (= 120N, (D)
t o

d¢; 4 .

dtj =a; — f(gj,R[uo]) (j=12...N). (12)

It should be stressed that these results are valid over the
time interval 0 =t < ¢~!. Beyond the upper limit of
the interval, the higher-order modulation effects must be
taken into account. The leading-order analysis here may
be termed adiabatic approximation because it disregards
the emission of radiation as well as the distortion of the
shape of solitons due to perturbation. In order to elucidate
these first-order effects, one must proceed to a higher-
order approximation. To be more specific, it is necessary
to solve Eq. (4) with u( being the N-soliton solution of
Eq. (3). However, at present, I have no analytical means
to resolve the problem. In this respect, it should be
noted that the Green function method due to Keener and
McLaughlin [17] seems to be inapplicable to the present
first-order problem. One reason for this is that their
method works well when the linear operator associated
with the linearized equation [i.e., counterpart of the
homogenous part of Eq. (4)] is self-adjoint with respect
to appropriate inner product. Consequently, they could
treat the perturbed nonlinear Schrodinger and sine-Gordon
equations satisfactorily [17,22] whereas the application to
the perturbed KdV equation has been unsuccessful. In
the case of the KdV equation with a small dissipation, the
formation of a shelf in the lee of the solitary wave has
been found in a first-order correction [15,23]. Whether
similar phenomena occurs in the presence of dispersive
perturbation is an important problem to be pursued in a
future work.
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Let us now calculate the changes of the amplitude and
the phase by employing (11) and (12). The corresponding
changes of the jth solitary wave may be represented by
the relations

_ (7|4 _ (44 _
Aaj_,[—m[dt (dt )s,]dt (j=12, 13

A§j=f_2[d—di—j —(dd_ij)s,}d’ (j=12, 14

where the subscript s; denotes the contribution from the
Jjth single solitary wave when there are no interactions.
The above subtraction is necessary since we are seeking
the net changes of the amplitude and the phase due to the
interaction. In the present case, one finds that [11]

d(lj _ .
dé;\ _ 36(1,2- 2 .
(—dt ) =a; = 137 3147 +6) (j=12). @16

We first calculate Aa; and Aa,. It follows from the two-
soliton solution of the BO equation [12] (7) and (8) that

G G G
w=7. s=7. &=—, (D
with
2
+ 2
F = [—0,02 + (2 = }) ] +(0+ 6", (18)
G=ai|s0r+ 63+ CF D (19)
1 1 2 G-12 |
_ s+ 1
Gr=a 1[010% T o1

X {(=s* +4s + 1)6, + 4502}}, 20)

2
G; = —ay I:O% + (j—;_t—:) ], 1)

where 0; = aj(x — £€;)(£j4, = aj) and s = ay/a,(>1) is
the amplitude ratio. In these expression, the amplitude
and the phase of the larger (shorter) solitary wave are
given respectively by ay(a;) and £,(£;). Substituting (15),
(16), and (17)-(21) into (13) and (14), we immediately
see that all the calculations reduce to the double integral
of rational functions in ¢ and x. To carry out the integrals,
it is convenient to introduce the new variables z; and
22 by z; = (0, + 62)/2 and z; = (6; — 6,)/2, so that the
Jacobian of the transformation from (¢, z) to (z1, z2) yields
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FIG. 1. Total phase shifts as a function of the amplitude ratio
in the case of € = 0.003 and A = 0.2,0.3,0.8. The solid and
broken lines represent A¢, and A¢,, respectively.

2/[a}s(s — 1)]. As for Aay, one finds without any further
calculation that Aa; = 0 since the integrand becomes the
odd functions of z; or z;. Similarly, one obtains Aa, = 0.
Hence, up to the order €, the amplitudes of solitary waves
do not change after overtaking collision between them.
On the other hand, the calculation of A¢; and A&, is
quite lengthy. It turns out that the integration with respect
to z; is represented by a weighted sum of the associated

Legendre functions P;7/ 2(cos8) ( j=0,1,...,4) with

-1
+1\2
c050=2[z§+<;_:)] - 1.

The integration in z; is then performed straightforwardly.
All the algebraic calculations were done systematically
with the help of the algebraic programming system
REDUCE. The final result for A¢; is given as follows:

3me

—m[6(s2 - 2s—1)

A¢ =

+ (852 — 46s — 23)A?]. (22)

By the same way, one obtains for A&,

3me

= m[6(5‘2 + 25 — 1)

Aé

+ (235 + 465 — 8)A?]. (23)

The total phase shifts A¢; and A¢; are plotted in Fig. 1 as
a function of s for several values of A, where € has been
chosen to be 0.003.

It is seen from (23) that the larger solitary wave always
suffers a positive phase shift irrespective of values of s
and A. The situation is quite different for the shorter
solitary wave. Indeed, A¢; changes the sign according



VOLUME 73, NUMBER 10

PHYSICAL REVIEW LETTERS

5 SEPTEMBER 1994

1.00
0.75F 88,50
A£2>0
< 0.50pF
0.25F
I e i
0 1 2 3 4

FIG. 2. Critical curve A vs s that corresponds to A¢; = 0.

to values of s and A. There exists a critical curve A
vs s that corresponds to A¢; = 0 (see Fig. 2). In the
left region surrounded by the curve, A&, > 0 whereas in
the right region, A¢, < 0. However, for values of s in
the range s > 4.594, A¢, always takes a negative value.
Also we can observe that the maximum deviations of
A¢; (j = 1,2) decrease as the value of A increases.

In conclusion, we have demonstrated analytically that
the phase shifts occur after overtaking collision of two
interfacial solitary waves. Although the algebraic solitary
waves have been found in various model NEEs [12,24],
they never exhibit the phase shift during the interaction
process. Therefore, the result presented in this Letter
is the first example of the phase shift that takes place
between algebraic solitary waves. To confirm the above
analytical prediction, one may perform direct numerical
simulations on the basis of Eq. (2). In addition, it seems
to be worthwhile to carry out an experiment analogous to
that conducted for the purpose of determining the regions
of applicability of various theories dealing with finite-
amplitude interfacial solitary waves in a two-layer fluid
system [25].
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